MIE-MPI: Tutorial 1

created: September 30, 2019, 16:52

1.1 Functions

Exercise 1.1. Let $f(x)=\sin (x)$ and $g(x)=(x-3)^{3}$. Find a formula for the following composite functions:
(a) $(f \circ g)(x)$,
(b) $(g \circ f)(x)$,
(c) $\left(f \circ g^{-1}\right)(x)$,
(d) $\left(g^{-1} \circ f\right)(x)$.

1.2 Derivatives

Exercise 1.2. Find the derivative of the following functions:
(a) $\left(x^{4}+3 x^{3}\right) x^{8}$,
(b) $e^{2 x}$,
(c) $\frac{x+3}{x^{2}}$,
(d) $\ln \left((x+4)^{15}\right)$,
(e) $\sin ^{2} x+\cos ^{2} x$,
(f) $x e^{2 x}$,
(g) $e^{x^{2}}$,
(h) x^{x}.

Exercise 1.3. Let P be the set of all real polynomials. Is the set P closed under differentiation? In other words: is is true that $p \in P \Rightarrow p^{\prime} \in P$?

Exercise 1.4. Let $p(x)=\sum_{k=0}^{n} a_{k} x^{k}$ be a polynomial of degree n (i.e., $a_{n} \neq 0$), where $n \in \mathbb{N}$. Find the n-th derivative $p^{(n)}$.

Exercise 1.5. Find the n-th derivative of $\sin x$. Try to express the result as simply as possible.

1.3 Partial derivatives

Exercise 1.6. Find the following partial derivatives:
(a) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for

$$
f(x, y)=x y+e^{x} \cos y
$$

(b) $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ for

$$
f(x, y)=x^{2} y^{3}+x^{3} y^{4}-e^{x y^{2}}
$$

(c) find the value of $\frac{\partial f}{\partial z}$ at point $(1,2,3)$ for

$$
f(x, y, z)=\sin \left(\frac{x y}{z}\right)
$$

(d) $\frac{\partial f}{\partial x}$ for

$$
f(x, y)=e^{-x^{2}-y^{2}}
$$

(e) $\frac{\partial f}{\partial x}$ for

$$
f(x, y)=\ln \left(x^{2}+y^{2}+1\right)
$$

(f) $\frac{\partial f}{\partial x}$ for

$$
f(x, y)=\frac{1}{x^{3}+y^{3}} .
$$

Exercise 1.7. Find $\frac{\partial^{2} f}{\partial x^{2}}$ and $\frac{\partial^{2} f}{\partial y^{2}}$ for:
(a) $f(x, y)=x^{2} y^{2}$,
(b) $f(x, y)=\sin (x y)$,
(c) $f(x, y)=x y^{2}-y e^{-x}-\cos (x-y)$.

Exercise 1.8. Find the mixed partial derivatives $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ for:
(a) $f(x, y, z)=e^{x z}+y \cos x$,
(b) $f(x, y, z)=z \cos (x y)+x \sin (y z)$.

