MIE-MPI: Tutorial 8

8.1 Numerical mathematics

Machine numbers

If not stated otherwise, we consider single precision and mathematical rounding.
Exercise 8.1. Are the following numbers machine numbers?
a) 10^{113}
b) $1+2^{-32}$
c) $\frac{1}{5}$
d) $\frac{3}{10}$
e) $\frac{3}{256}$
f) $2^{-10}-16$

Exercise 8.2. What are the (normalized) machine numbers which are the closest neighbours of the normalized machine number 2^{t}.

Exercise 8.3. Consider a decimal machine in which 2 decimal digits are allocated to the significand (and we do not care about the exponent). Sum the following numbers 0,25 , $0,0034,0,00051$ a 0,061 in the following order:
a) from the least to the greatest,
b) from the greatest to the least.

Compare to the exact result.
Exercise 8.4. Let x and y be normalized machine numbers. Which following statements are true if we suppose that no underflow or overflow happens (and we stay within normalized numbers)?

1. $\mathrm{fl}(x+y)=\mathrm{fl}(y+x)$;
2. $\mathrm{f}(x y)=\mathrm{f}(y x)$;
3. $\mathrm{f}(y-x)=-\mathrm{fl}(x-y)$;
4. $\mathrm{fl}(x+x)=\mathrm{fl}(2 x)$;
5. $\mathrm{fl}(0.5 x)=\mathrm{fl}(x / 2)$;
6. $\mathrm{fl}((x+y)+c)=\mathrm{f}(x+(y+c))$;
7. if $x \leq y$, then $x \leq \mathrm{fl}((x+y) / 2) \leq y$.

If a statement is not true, find a counterexample. If it is true, give an argument. If your answer depends on something else, mention it.

Exercise 8.5. Let $p(x)=\sum_{i=0}^{n} a_{i} x^{i} \in \mathbb{R}[x]$. Assume that all numbers a_{i} lie in the range of normalized number and so does x. Give a bound on the error committed while calculating $p(x)$ assuming that no underflow or underflow happens during the calculation.

