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Chapter 1

Basic notions

Let us start by fixing some notation and giving some basic example.

1.1 Numerical sets

We denote by N the set of natural numbers, that is

N = {0, 1, 2, 3, . . .},

and with Z the set of integers

Z = {0, 1,−1, 2,−2, 3,−3, . . .}.

Two important subsets of Z are the sets Z+ of positive integers and Z− of
negative integers:

Z+ = {1, 2, 3, . . .}, and Z− = {−1,−2,−3, . . .}.

We can also use the notations Z+
0 and Z−0 to denote respectively the sets of

non-negative integers and the one of non-positive integers, that is:

Z+
0 = {0, 1, 2, 3, . . .} and Z−0 = {0,−1,−2,−3, . . .}.

Note that Z+
0 = Z+ ∪ {0} = N.

Other important numerical sets are the set of rational numbers Q defined us

Q =
{m
n
| m,n ∈ Z, n 6= 0

}
=

{
0,

1

2
,−3

5
, . . .

}
and the one of real numbers R (a formal definition is beyond the scope of this
course)

R =

{
0, 1,−5,

7

4
,
√

2, π, e, . . .

}
.
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The last numerical set we will consider is the set of complex numbers C
defined us

C = {a+ ib | a, b ∈ R},

where i is called the imaginary unit and satisfies i2 = −1.
We have the following chain of inclusions:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

1.2 Algebraic structures: one operation

A binary operation on a set M is a map f from the cartesian product M ×M
to M , that is

f : M × S →M
(x, y) 7→ f(x, y).

Example 1.1 The sum on N is the binary operation defined as

+ : N× N→ N
(a, b) 7→ +(a, b)

.

Instead of +(a, b), we usually denote the image of the sum by a+b. For istance,
2 + 3 = 5.

Some sets, when equipped with a binary operation (or more than one),
have particular properties. According to which properties are satisfied, we use
different names. In this section we consider the main algebraic structures.

1.2.1 Groupoids

Let us consider a set M and a binary operation ◦ : M ×M →M .
The pair (M, ◦) is called a groupoid whenever the set M is closed under the

operation ◦. That is, we have

∀ a, b ∈M a ◦ b ∈M.

Example 1.2 The pair (N,+) is a groupoid, since for every two natural num-
bers a, b one has a+ b ∈ N.

On the other hand, if we consider the set M = {0, 1, 2, . . . , 9}, we have that
M is not closed under the sum, since, for instance, 2 + 9 /∈M .

1.2.2 Semigroups

A groupoid (M, ◦) is called a semigroup if the operation ◦ is associative, that is
if

∀ a, b, c ∈M (a ◦ b) ◦ c = a ◦ (b ◦ c).
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Example 1.3 The set N with the usual multiplication is a semigroup, since for
every a, b, c ∈ N one has (a · b) · c = a · (b · c). The same is not true if we consider
the exponentiation as binary operation. Indeed

(23)
2

= 64 6= 512 = 2(32).

1.2.3 Monoids
A semigroup (M, ◦) is called a monoid whenever there exists a neutral element,
that is an element e ∈M such that

∀ a ∈M a ◦ e = e ◦ a = e.

Note that in the definition we want e to be a neutral element both on the left
and on the right. In some tricky case we could have only a left neutral element
but no right neutral element, or viceversa, or we could have both but distinct.

Example 1.4 The set N provided with the sum is a monoid. The neutral
element is the element 0 ∈ N.

Proposition 1.5 The neutral element of a monoid is unique.

Proof. Let (M, ◦) be a monoid and e some neutral element (from the definition
we know that at least one exists!). We prove by contradiction that e is the
only neutral element. By contradiction, assume that in the monoid there exists
another neutral element e′ different from e. It holds that

e′ = e′ ◦ e = e,

using the property of the neutral element from the definition. We get a contra-
diction with the statement that e′ 6= e.

1.2.4 Groups
Let us consider a monoid (M, ◦) with neutral element e. We say that an element
a ∈ M is invertible, whenever there exists another element b ∈ M such that
a ◦ b = e = b ◦ a. Such an element is called an inverse of a and it is usually
denoted −a (whenever we use the additive notation) or a−1 (whenever we use
the multiplicative notation). Note that, again, we consider an inverse as both a
left inverse and a right inverse.

A monoid (M, ◦), with neutral element e, is called a group if every element
is invertible, that is if

∀ a ∈M ∃ a−1 ∈M such that a ◦ a−1 = e and a−1 ◦ a = e.

Example 1.6 The monoid (Z,+) is a group, since the inverse of any element
a ∈ Z is −a. On the other hand (N,+) is not a group since, for istance, the
element 2 ∈ N has no inverse.
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Proposition 1.7 Each element of a group has exactly one inverse.

Proof. Let (M, ◦) be a group, a an arbitrary element of the group and a−1 one
of its inverse elements (from the definition we know that there exists at least
one!) Let us suppose, by contradiction, that there exists another element ā,
different from a−1 such that ā ◦ a = e = a ◦ ā, where e is the neutral element of
the group. Hence, it holds that

ā = ā ◦ e = ā ◦ (a ◦ a−1) = (ā ◦ a) ◦ a−1 = e ◦ a−1 = a−1,

contradicting the fact that ā 6= a−1.

A group (M, ◦) is called Abelian, or commutative, if its elements commute,
that is if

∀ a, b ∈M a ◦ b = b ◦ a.

Example 1.8 Both the additive group (Q,+) and the multiplicative group
(Q, ·) are Abelian. The first has neutral element 0, while the second has neutral
element 1.

A very important example of non Abelian group will be given later in this
chapter.

1.3 Algebraic structures: two operations

Let us consider now triplets (M,+·), withM a nonempty set and +, · two binary
operations on M .

1.3.1 Rings

We say that a triplet R = (M,+, ·) is a ring if the following hold:

• (M,+) is an Abelian group;

• (M, ·) is a monoid;

• both left and right distributive laws hold, i.e. ∀ a, b, c ∈M we have

– a · (b+ c) = a · b+ a · c and

– (b+ c) · a = b · a+ c · a.

We respect the standard convention that multiplication has a higher priority
than addition, so we can write a · b+ a · c instead of (a · b) + (a · c). standard

Moreover, when it is clear from the context we replace · by the simple
juxstaposition, that is we write ab instead of a · b.
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Example 1.9 Both the triplets (Z+, ·) and (Q,+, ·) are rings. On the other
hand the triplet (N,+, ·) is not a ring since (N,+) is not a group.

The triplet ({0},+, ·), with 0 + 0 = 0 and 0 · 0 = 0 is a ring called the trivial
ring.

We say that a ring R = (M,+, ·) is a commutative ring whenever · is com-
mutative. The group (M,+) is called the additive group of R, while the monoid
(M, ·) is the multiplicative monoid of R.

The neutral element of the additive group is called the zero element of the
ring, and it is denoted by 0, and the inverse element of a ∈ M is denoted by
−a. We can also define the subtraction of two elements a, b ∈M by

a− b := a+ (−b).

Proposition 1.10 Let (M,+, ·) be a ring. Left and right distributive laws hold
for the subtraction, that is:

∀ a, b, c ∈M a(b− c) = ab− ac and (a− b)c = ac− bc.

Proof. Let us prove the left distributive law, the right one being proved sym-
metrically. Since the distributive law hold for the sum, we have

ac+ a(b− c) = a(c+ b− c) = ab.

Thus, by subtracting ac to both members, we have

a(b− c) = ab− ac.

Example 1.11 The set of polynomials with real coefficients R[x] is a ring. The
zero element is the zero polynomial p(x) = 0. We will talk more of this example
in a following chapter.

1.3.2 Integral domains

Let (M,+, ·) be a ring. Two non-zero elements a, b ∈M are called zero divisors
if a · b = 0.

A commutative ring without zero divisors is called an integral domain

Example 1.12 The ring (Z,+, ·) is an integral domain. On the other hand the
ring (Z6,+6, ·6), where the sum and the product are defined modulo 6, is not
an integral domain, since 2, 3 6= 0 but 2 ·6 3 = 0.
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1.3.3 Fields
A ring (M,+, ·) is a field if (M \{0}, ·) is an Abelian group. This group is called
the multiplicative group of the field.

Example 1.13 The ring of integers (Z,+, ·) is not a field, since (Z \ {0}, ·)
misses some inverse elements.

On the other hand, (Q,+, ·) is a field. Moreover, this is the smallest number
field with the common arithmetical operations.

Example 1.14 The smallest field is the so-called trivial field ({0, 1},+, ·), with
operations

0 + 0 = 0, 0 + 1 = 1 + 0 = 1, 1 + 1 = 0,

and
0 · 0 = 0, 0 · 1 = 1 · 0 = 0, 1 · 1 = 1.

Proposition 1.15 Each field is an integral domain.

Proof. Since the multiplicative group (M \{0}, ·) is closed under multiplication,
for all non-zero elements a, b ∈M it holds that their product a · b ∈M \ {0} is
again non-zero.
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Chapter 2

Matrices: Definitions

In this chapter we will define and study matrices over R. We will see, in the next
chapters, that it is possible to consider matrices using other classes of numbers.

2.1 Definition of matrix
A matrix A over R is a rectangular array of real numbers of the form

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

. . . . . .
. . . . . .

am1 am2 · · · amn


with m,n ∈ N and aij ∈ R for all 1 ≤ i ≤ m and 1 ≤ j ≤ m.

The (i, j)-entry of A is the number aij , while its i-row and its j-column are
respectively

(
ai1 ai2 · · · ain

)
and


a1j

a2j

...
amj

 .

A matrix having m rows and n columns is called a m×n-matrix. When m = n,
the matrix is called a square matrix.

Example 2.1 The matrix

A =


1 −2 0 π
0 2 −3 0√
5 −1 0 7

2 6 7 9


is a square matrix of size 4× 4, that is it has 4 rows and 4 columns.
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The matrix

B =

(
0 0 1 2
3 2 1 0

)
is a 2× 4-matrix.

The (3, 2)-entry of A is −1 and the (1, 4)-entry of B is 2. The 2-row of A is(
0 2 −3 0

)
, while the 1-column of B is

(
0
3

)
.

We say that two matrices A and B are equal, and we write A = B, if and
only if A and B have the same size and the corresponding entries are equal.

The set of matrices over R of size m× n is denoted byMm,n (R), that is

Mm,n (R) =



a11 a12 · · · a1n

a21 a22 · · · a2n

. . . . . .
. . . . . .

am1 am2 · · · amn

 | aij ∈ R for all 1 ≤ i ≤ m, 1 ≤ j ≤ n

 .

Sometimes, when it is clear from the context, we can also write the matrix
A as (aij).

2.2 Matrix addition

Given two matrices A = (aij) and B = (bij) of the same size we can add them
just by adding the corresponding entries, that is the sum of A and B is the
matrix

A+B = (aij + bij).

. Similarly, we can define the difference

A−B = (aij − bij).

The negative of A is the matrix −A obtained as

−A = (−aij).

Example 2.2 Let un consider the tree matrices

A =

(
1 0 −2
5 2 0

)
, B =

(
0 1 2
−2 3 3

)
and C =

(
0 1
2 −1

)
.

We have

A+B =

(
1 1 0
3 5 3

)
, A−B =

(
1 −1 −4
7 −1 −3

)
and −A =

(
−1 0 2
−5 −2 0

)
.

We can not define A+ C or A− C since A and C have different size.
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Let us denote by Om,n the m×n-matrix having each entry equal to 0. Such
a matrix is called the zero matrix of size m × n. When m = n we will simply
write On instead of On,n. When the size is clear from the context, it is simply
denoted by O.

Example 2.3 The zero matrices of order 2× 3 and 2× 2 are respectively

O2,3 =

(
0 0 0
0 0 0

)
∈M2,3 (R) and O2,2 =

(
0 0
0 0

)
∈M2,2 (R) .

Proposition 2.4 The setMm,n (R) with the sum operation is an Abelian group.

Proof. (Exercise)

2.3 Matrix multiplication

Let n ∈ N. Let us consider a n-row-matrix, that is a matrix

A =
(
a1 a2 · · · an

)
∈M1,n (R)

and an n-column-matrix, that is a matrix

B =


b1
b2
...
vn

 ∈Mn,1 (R) .

We define the dot product of A and B as the number

n∑
k=1

aibi = a1b1 + a2b2 + · · · anbn ∈ R.

The product of a m × n-matrix A and an n × p-matrix B is the m × p-matrix
AB having as (i, j)-entry the dot product of the i-row of A and the j-column
of B. So, if the two matrices are

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 and B =


b11 b12 · · · b1p
b21 b22 · · · b2p
...

...
. . .

...
bn1 bn2 bnp


then the (i, j)-entry of AB is

n∑
k=1

aikbkj = ai1b1j + ai2b2j + · · ·+ ainbnj

13



and the matrix AB has the form

AB =



n∑
k=1

a1kbk1

n∑
k=1

a1kbk2 · · ·
n∑
k=1

a1kbkp

n∑
k=1

a2kbk1

n∑
k=1

a2kbk2 · · ·
n∑
k=1

a2kbkp

...
...

. . .
...

n∑
k=1

amkbk1

n∑
k=1

amkbk2 · · ·
n∑
k=1

amkbkp


.

Note that the product AB is defined if and only if the number of columns of A
is equal as the number of columns of B.

Example 2.5 Let A =

(
1 −2
1 0

)
∈ M2,2 (R), B =

(
1 −1
0 2

)
∈ M2,2 (R) and

C =

(
0 1 3
1 2 −1

)
. Then we have

AB =

(
1 −5
1 −1

)
, BA =

(
0 −2
2 0

)
, BC =

(
−1 −1 4
2 4 −2

)
, AC =

(
2 5 1
0 1 3

)
.

We can not define CA because of of the size.

Proposition 2.6 The matrix multiplication is associative, i.e., that for all ma-
trices A,B,C having the right sizes, we have (AB)C = A(BC).

Proof. (Exercise)

Proposition 2.7 The distributive laws hold both for the sum and for the sub-
traction, i.e., for all matrices A,B,C having the right sizes, we have

• A(B + C) = AB +AC;

• A(B − C) = AB −AC;

• (A+B)C = AC +BC;

• (A−B)C = AC −BC.

Proof. (Exercise)

The n× n identity matrix is the matrix In ∈Mn,n (R) with 1s on the main
diagonal, i.e., the entries of the form (i, i), and zero elsewhere. When the size
is clear from the context, it is simply denoted by I.
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Example 2.8 One has

I2 =

(
1 0
0 1

)
, I3 =

1 0 0
0 1 0
0 0 1

 and I4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .

Proposition 2.9 Let A ∈Mm,n (R). Then

ImA = A and AIn = A.

Proof. (Exercise)

Corollary 2.10 The set of m × n-matrices over R, i.e., Mm,n (R) with the
matrix addition and the matrix multiplication is a ring.

In the context, when it is clear from the context, we will use the same
notation for the set and the ring of matrices, i.e., we will writeMm,n (R) instead
of (Mm,n (R) ,+, ·).

Example 2.11 Let A,B as in Example 2.5. We have

AB =

(
1 −5
1 −1

)
6=
(

0 −2
2 0

)
= BA

The previous example shows that commutativity does not hold in general
for matrices.

Corollary 2.12 The ringMm,n (R) is not a commutative ring.

Example 2.13 Let us consider the matrix A =

(
0 0
1 0

)
. One has

A2 = A ·A =

(
0 0
0 0

)
.

The last example shows that the ringMm,n (R) has zero divisors.

Corollary 2.14 The ringMm,n (R) is not an integral domain (nor a field).

2.4 Scalar multiplication
Let A = (aij) ∈ Mm,n (R) be a matrix and λ ∈ R a real number. The scalar
product λA it defined as the matrix of the form (λaij), that is

λA = λ


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 =


λa11 λa12 · · · λa1n

λa21 λa22 · · · λa2n

...
...

. . .
...

λam1 λam2 · · · λamn

 .
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Example 2.15 Let A =

 1 0
−1 2
3 −3

. Then

2A =

 2 0
−2 4
6 −6

 .

Proposition 2.16 Let A,B be two matrices of the same size and let λ, µ be
two real numbers. Then

1. λ(A+B) = λA+ λB;

2. (λ+ µ)A = λA+ µA;

3. λ(µA) = (λµ)A;

4. 1A = A;

5. λ(AB) = (λA)B = A(λB).

Proof. (Exercise)

2.5 Transposition
Let A = (aij) ∈ Mm,n (R) be a matrix. The transpose of A is the matrix
AT ∈Mn,m (R) defined as

AT = (bij) with bij = aji for all i, j.

A matrix A is called symmetric if AT = A.

Example 2.17 Let

A =

(
3 2
1 0

)
, B =

(
1 0 −2
5 −1 0

)
and C =

(
2 1
1 0

)
.

Then we have

AT =

(
3 1
2 0

)
, BT =

 1 5
0 −1
−2 0

 and CT =

(
2 1
1 0

)

Moreover, the matrix C is symmetric.

Proposition 2.18 Let A,B ∈Mm,n (R) and let λ ∈ R. Then

1. If A is symmetric then m = n;

2. (AT )T = A;
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3. (λA)T = λAT ;

4. (A+B)T = AT +BT ;

5. (AB)T = BTAT .

Proof. (Exercise)

2.6 Matrix inverse
Let us consider a square matrix A ∈Mn,n (R). A matrix B is called an inverse
of A if AB = I and BA = I. Note that if such a matrix B exists, then it has
the same size as A.

A square matrix having an inverse is called an invertible matrix.

Example 2.19 Let us consider the matrix A =

(
0 1
1 1

)
∈ M2,2 (R). The

matrix A is invertible and the matrix B =

(
−1 1
1 0

)
one of its inverses. Indeed,

AB =

(
0 1
1 1

)(
−1 1
1 0

)
=

(
1 0
0 1

)
= I

and
BA =

(
−1 1
1 0

)(
0 1
1 1

)
=

(
1 0
0 1

)
= I.

Similarly to what we have done in Proposition 1.7 we can prove that the
inverse of matrix, when it exists, is unique.

Proposition 2.20 Let A ∈Mn,n (R) an invertible matrix. Then its inverse is
unique.

Proof. Let B,C ∈Mn,n (R) and let us suppose that both matrices are inverses
of A. Then

B = BI = B(AC) = (BA)C = IC = C.

Whenever a matrix A is invertible we denote by A−1 its unique inverse.
Note that not all matrices have inverses.

Example 2.21 Let us conside the matrix A =

(
1 0
1 0

)
. This matrix is not

invertible. Indeed, if we suppose by contradiction that there exists a matrix

B =

(
a b
c d

)
such that AB = I. Then, one has

(
1 0
1 0

)(
a b
c d

)
=

(
a b
a b

)
=

(
1 0
0 1

)
.
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which implies both that a = 1 and a = 0, a contradiction.

Also, non-square matrices do not have inverses and the zero matrix On is
not invertible neither (Exercise).

Let us now give some properties about inverses.

Theorem 2.22 The following properties hold for square matrices.

1. The identity matrix I is invertible and its inverse is I itself.

2. If A is invertible, then A−1 is invertible as well and
(
A−1

)−1
= A.

3. If A and B are invertible, then so is AB, and (AB)−1 = B−1A−1.

4. Let A1, A2, . . . Ak be invertible matrices, then their product A1A2 · · ·Ak is
also invertible, and (A1A2 · · ·Ak)−1 = A−1

k A−1
k−1 · · ·A

−1
1

5. If A is invertible, then for all k ≥ 1 the matrix Ak is invertible as well
and (Ak)−1 = (A−1)k.

6. If A is invertible, then so is AT , and (AT )−1 = (A−1)T .

7. If AT is invertible, then so is A and A−1 = ((AT )−1)T .

8. If A is invertible and λ 6= 0 is a real number, then λA is also invertible
and (λA)−1 = 1

λA
−1.

Proof.

1. This easily follows from the fact that II = I.

2. The second item also follows from the fact that A−1A = I and AA−1 = I.

3. It holds because

(AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I

and

(B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I.

4. Let us prove it by induction on k. The case k = 1 is trivial and the case
k = 2 follows from point 3. So, let us suppose that the property holds
for k − 1, that is that A1A2 · · ·Ak−1 is invertible and that its inverse is
A−1
k−1 · · ·A

−1
2 A−1

1 . Then

(A1A2 · · ·Ak−1Ak) = (A1A2 · · ·Ak−1)Ak

is a product of two invertible matrices and, by the previous point, is
invertible itself. Moreover, its inverse is exactly

A−1
k (A1A2 · · ·Ak−1)−1 = A−1

k A−1
k−1 · · ·A

−1
2 A−1

1 .
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5. This easily follows from the previous item by chosing Ai = A for all
1 ≤ i ≤ k.

6. Using the last point of Proposition 2.18 we have

AT (A−1)T = (A−1A)T = IT = I

and
(A−1)TAT = (AA−1)T = IT = I.

7. Using both the fact that (AT )−1 = (A−1)T , proved in the previous point,
and that (AT )T = A, proved in Proposition 2.18, we have

A((AT )−1)T = A((A−1)T )T = AA−1 = I

and
((AT )1)TA = ((A−1)T )TA = A−1A = I.

8. To prove the last point we use Proposition 2.16 and show that

(λA)

(
1

λ
A−1

)
=

(
λ

1

λ

)(
AA−1

)
= 1I = I

and (
1

λ
A−1

)
(λA) =

(
1

λ
λ

)(
A−1A

)
= 1I = I.

Corollary 2.23 Let A,B ∈ Mn,n (R). If A and AB are both invertible, then
B is also invertible.

Proof. (Exercise)

2.7 Diagonal and triangular matrices

A square matrix A = (aij) ∈ Mn,n (R) is called diagonal if every entry not in
the main diagonal is 0, that is if for every i, j with 1 ≤ i, j ≤ n and i 6= j one
has (aij) = 0.

Example 2.24 The matrices

A =

1 0 0
0 2 0
0 0 −5

 , B =


−1 0 0 0
0 4 0 0
0 0 0 0
0 0 0 1

 , C =

(
0 0
0 0

)

are diagonal.
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When a matrix A = (aij) is diagonal, we can also denote it simply as A =
diag (a11, a22, . . . , ann).

Example 2.25 Let us consider again the three matrices of Example 2.24. We
have

A = diag (1, 2,−5) , B = diag (−1, 4, 0, 1) and C = diag (0, 0) .

Proposition 2.26 Let A,B ∈Mn,n (R) be two diagonal matrices. Then

1. A+B is diagonal;

2. AB is diagonal.

Proof. (Exercise)

A square matrix A = (aij) is called upper triangular if every entry below
the main diagonal is zero, that if for every i, j with i > j one has aij = 0. Un
upper triangular matrix is called strictly upper triangular if the entries on the
main diagonal are zero as well.

In a symmetric way we define lower triangular and strictly lower triangular
matrices.

Example 2.27 Let us consider the four matrices

A =

6 9 1
0 0 2
0 0 1

 , B =

0 2 2
0 0 1
0 0 0

 , C =

3 0 0
0 0 0
2 1 0

 and D =

0 0 0
5 0 0
7 6 0

 .

The matrix A is upper triangular, the matrix B is strictly upper triangular.
Simarly C and D are respectively lower triangular and strictly lower triangular.

Proposition 2.28 Let A,B ∈ Mn,n (R) be two upper triangular matrices.
Then

1. A+B is upper triangular.

2. AB is upper triangular.

Proof. (Exercise)

A similar result also holds by replacing the condition "upper triangular" with
"strictly upper triangular", "lower triangular" or "strictly lower triangular".
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Chapter 3

Linear equations

In this chapter we will study linear equations and systems of linear equations.
We will also discuss how to use matrices to represent and solve such equations.

3.1 Variables, coefficients and solutions
We call a linear equation in the variables x1, x2, . . . , xn, with n ∈ N, an equation
of the form

a1x1 + a2x2 + · · ·+ anxn = b, (3.1)

where a1, a2, . . . , an, b ∈ R. The numbers a1, a2, . . . , an are called coefficients of
the variables x1, x2, . . . , xn, while the number b is called the constant term of
the equation.

We can represent the variables using the column matrix

X =


x1

x2

...
xn


called the matrix of variables of the equation.

A row-matrix (
s1 s2 . . . sn

)
is called a solution of the linear Equation (3.1) if

a1s1 + a2s2 + · · ·+ ansn = b

that is, if replacing xi with si for every 1 ≤ i ≤ n on the right side, we obtain
exactly b.

Example 3.1 Let us consider the linear equation

2x1 + x2 − x3 = 3
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The coefficients of the variables x1, x2, x3 are respectively 2, 1 and −1, while the
constant term of the equation is 3. The matrix of variables is

X =

 2
1
−1


and a solution of the linear equation is(

1 1 0
)

since
2 · 1 + 1 · 1− 1 · 0 = 3.

Another possible solution for the equation is
(
1 0 −1

)
.

From the previous example, we see that the solution of a linear equation is,
in general, not unique. We call one possible solution a particular solution of the
equation. A way to find all the solutions of the equation is fixing two variables
and compute the third one with respect to the previous.

Example 3.2 Let us consider the equation of Example 3.1. By setting x1 = s
and x2 = t, we find that 2s + t − x3 = 3, which implies that x3 = s2 + t − 3.
So, all solutions have the form

X =
(
s t 2s+ t− 3

)
for certain s, t ∈ R.

Following the terminology of the previous example, we call X the general
solution of the equation and s, t the parameters of the solution.

3.2 Systems of linear equations
A system of linear equations is a finite collection of linear equations. Its general
form is 

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

(3.2)

A solution satisfying every equation of a system is called a solution of the
system.

Example 3.3 The system of two linear equations in the variabels x, y{
x+ y = 10

2x− y = 5
(3.3)

has an unique solution X =
(
5 5

)
.
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Note that some system may have no solution. In this case we say that the
system is inconsistent.

Example 3.4 The system {
x+ y = 1

2x+ 2y = 3
(3.4)

has no solution (Exercise), so it is inconsistent.

When a system has (at least) one solution, we call it consistent.

Example 3.5 The system {
x+ y + z = 2
x− y + z = 0

(3.5)

has infintely many solution (Exercise). Thus it is consistent.

Let us now show how we can represent the system in Equation 3.2 using
matrices. The coefficient matrix and the constant matrix for this system are
respectively the m× n-matrix and the m× 1-matrix defined as

A =


a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

 and B =


b1
b2
...
bm

 .

We can also combine the two to obtain the augmented matrix defined as the
m× (n+ 1)-matrix 

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm

 .

Example 3.6 Let us consider the system 3.3. Its matrix of variable is
(
x
y

)
while its constant matrix and its coefficient matrix are respectively(

1 1
2 −1

)
and

(
10
5

)
.

Its augmented matrix is the (2× 3)-matrix(
1 1 10
2 −1 5

)
.
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Note that, sing the coefficient matrix, the variable matrix and the constant
matrix, we can represent the system of linear equations 3.2 as a single matrix
equation

AX = B.

Example 3.7 Using Example 3.6 we can represent the system 3.3 as the matrix
equation (

1 1
2 −1

)(
x
y

)
=

(
10
5

)
.

Example 3.8 Les us consider the system of three linear equations in four vari-
ables  x1 − x4 + x3 = 5

x3 − 3x4 = −1
x4 = 2

. (3.6)

The previous system is in a very special form and it can be solved by using
back-substitution. From the last equation we get x4 = 2. Then we substitute 2
for the variable x4 into the second last equation to solve for x3 = 5. Finally,
we substitute x3 = 5 and x4 = 2 and we replace x2 with a parameter s. The
general solution of the original system has thus the form

X =
(
4s s 5 2

)
where s is the parameter of the solution. That means that every solution can
be obtained by replacing s with a real number.

The system of linear equations presented in Example 3.8 was in a very special
form. In the next sections we’ll see how to use this technique to solve a system
in a more general form.

3.3 Equivalent systems
Two systems of linear equations having the same set of solutions are called
equivalent.

Example 3.9 Let us consider the system in Example 3.5 and let us swap the
two equations: {

x− y + z = 0
x+ y + z = 2

. (3.7)

It is clear that this new system is equivalent ot the system 3.5.

Example 3.10 Starting again from the system in Example 3.5, let us multiply
the left and the right term of the second equation by 2:{

x+ y + z = 2
2x− 2y + 2z = 0

. (3.8)

One can see that this system is also equivalent to the system 3.5. (Exercise)
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Example 3.11 Using one more time the system in Example 3.5, let us replace
the second equation by the sum of the two original equations.{

x+ y + z = 2
2x+ 2z = 2

. (3.9)

Also in this case it can be shown that the system is equivalent to 3.5. (Exercise)

Following the previous examples we define the three elementary operations
on a system of linear equation as:

i) interchange two equations;

ii) multiply one of the equations by a nonzero number;

iii) add a multiple of one equation to a different equation.

A similar set of operations can be defined also on matrices. We call elemen-
tary row operations on a matrix the following operations:

i) interchange two rows;

ii) multiply one of the rows by a nonzero number;

iii) add a multiple of one row to a different row.

These row operations can be seen as the respective of the elementary oper-
ations on system on the related augmented matrices.

Example 3.12 Let us consider the system of linear equations 3.5. Its aug-
mented matrix is (

1 1 1 2
1 −1 1 0

)
.

The augmented matrices of the systems 3.7, 3.8 and 3.9 are respectively:(
1 −1 1 0
1 1 1 2

)
,

(
1 1 1 2
2 −2 2 0

)
and

(
1 1 1 2
2 0 2 2

)
.

They are obtained by the first matrix by applying an elementary row operation
of type, respectively, i), ii) and iii).

Theorem 3.13 Let us consider a system of linear equations. The system ob-
tained by applying an elementary operation is equivalent to the original system.

The previous theorem tells us that in order to find the solution of asystem
we can apply a series of elementary operations to reduce a system to one which
is easier to solve.
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3.4 Gaussian elimination
In this section we’ll see how to find the solutions of a general system of linear
equations. Before giving the algorithm let us start with an example.

Example 3.14 Let us consider the following system of linear equations −x3 + 3x4 = 1
x1 − 4x2 + x3 = 5

2x1 − 8x2 + 2x3 − 3x4 = 4
. (3.10)

The augmented matrix of the system 3.10 is0 0 −1 3 1
1 −4 1 0 5
2 −8 2 −3 4

 .

Starting fom the 1-row, we find the first column from the left containing a non-
zero entry, in our case the (2, 1)-entry 1. Let us put the the 2-row on the top,
that is let us interchange the 2-row with the 1-row (we use an elementary row
operation of type i)). We get the matrix1 −4 1 0 5

0 0 −1 3 1
2 −8 2 −3 4

 .

The first non-zero entry 1, in the 1-row is called the leading 1 for the first row.
By subtracting 2 times the 1-row from the 3-row (i.e., applying an elementary
row operation of type iii)), we obtain the matrix1 −4 1 0 5

0 0 −1 3 1
0 0 0 −3 −6

 .

Now, let us forget the first row and let us modify the matrix in a similar
way we have done so far, starting from the second row. That is, starting from
the 2-row, we find the first column from the left containing a non-zero entry, in
our case the (2, 3)-entry −1. Since this non-zero element is already in the good
position, we don’t need to interchange rows (elementary row operation of type
i). On the other hand, to obtain a leading 1 in the second row, we can multiply
the whole 2-row by −1 (elementary operation of type ii). This way we obtain
the matrix 1 −4 1 0 5

0 0 1 −3 −1
0 0 0 −3 −6

 .

Now that we have the two first leading ones, et us do the same operation
starting from the third row. Starting from the 3-row, we find the first column
from the left containing a non-zero entry, in pour case the (3, 4)-entry −3. As
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before, let us multiply the 3-row by − 1
3 in order to create the leading 1 in the

third column, obtaining the matrix1 −4 1 0 5
0 0 1 −3 −1
0 0 0 1 2

 . (3.11)

The matrix 3.11 is the augmented matrix of the system of linear equa-
tions 3.6. From what we have seen in the previous section, that means that
the system of linear equations in Equation (3.10) is equivalent to the system
of linear equations in Equation (3.6), and thus the two have the same set of
solutions.

A matrix is said to be in row-echelon form, and it will be called a row-echelon
matrix if the following conditions are satisfied:

1. All zero rows are at the bottom;

2. The first non-zero entry from the left in each non-zero row is a 1, and we
call it the leading 1 of the row;

3. Each leading 1 is to the right of all leading 1s in the rows above it.

A row-echelon matrix is said to be in reduced row-echelon form, or is it called
a reduced row-echelon matrix if it satisfies as well the condition

4. Each leading 1 is the only non-zero entry in its column.

Example 3.15 The matrix 3.11 has is in row-echelon form but non in reduced
row-echelon form. All the other matrices in Example 3.14 are not in row-echelon
form.

The following matrices are in reduced row-echelon form

1 0 0 10
0 1 0 0
0 0 1 −3

 and


0 1 0 0 0 3
0 0 1 −1 0 2
0 0 0 0 1 1
0 0 0 0 0 0
0 0 0 0 0 0

 .

The following result shown that given a system of linear equations we can
always find an equivalent easier system which can be solved using the back-
substitution (when a solution exists). The algorithm in the proof is called the
Gaussian Algorithm

Theorem 3.16 Every matrix can be carried, in a finite number of steps to a
row-echelon form (reduced, if desiderd), using a sequence of elementary row
operations.

Proof.[Gaussian Algorithm] Do the following steps until you obtain a (reduced)
row-echelon matrix.
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Step 1-1 Starting from the 1-row, find the first non-zero entry in the
first column from the left and interchange the corresponding row with the
1-row;

Step 1-2 Multiply the 1-row by a costant to create the first leading 1 in
the 1-row;

Step 1-3 Make each entry below the leading 1 to be zero by subtracting
multiples of the 1-row from lower rows.

Step 1-3b (to obtain a reduced row-echelon matrix) Make each entry
above the leading 1 to be zero by subtracting multiples of the 1-row from
upper rows.

Step 2-1 Starting from the 2-row, find the first non-zero entry in the
first column from the left and interchange the corresponding row with the
2-row;

Step 2-2 Multiply the 2-row by a costant to create the first leading 1 in
the 2-row;

Step 2-3 Make each entry below the leading 1 to be zero by subtracting
multiples of the 2-row from lower rows.

Step 2-3b (to obtain a reduced row-echelon matrix) Make each entry
above the leading 1 to be zero by subtracting multiples of the 2-row from
upper rows.

...

Step k-1 Starting from the k-row, find the first non-zero entry in the
first column from the left and interchange the corresponding row with the
k-row;

Step k-2 Multiply the k-row by a costant to create the first leading 1 in
the k-row;

Step k-3 Make each entry below the leading 1 to be zero by subtracting
multiples of the k-row from lower rows.

Step k-3b (to obtain a reduced row-echelon matrix) Make each entry
above the leading 1 to be zero by subtracting multiples of the k-row from
upper rows.

The algorithm presented in the proof of Theorem 3.16 can be implemented
in your favorite program language (Exercise).

Note that the way to carry a matrix to its reduced form is not unique. Indeed
one can obtain the same result by changing the order of some of the steps. That
means that, even though the algorithm always work, it is not necessarily the
most efficient one.
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Example 3.17 Let us prove that the following system has no solution x+ y = 1
x− 2 = 2
y + z = 1

(3.12)

The reduction of the augmented matrix is1 1 0 1
1 0 −1 2
0 1 1 1

 iii)−−−−−−−−−→
R2 → R2 − R1

1 1 0 1
0 −1 1 1
0 1 1 1


ii)−−−−−−−→

R2 → −R2

1 1 0 1
0 1 −1 −1
0 1 1 1


iii)−−−−−−−−−→

R3 → R3 − R2

1 1 0 1
0 1 −1 −1
0 0 0 2


ii)−−−−−−−→

R3 → 1
2R3

1 1 0 1
0 1 −1 −1
0 0 0 1

 ,

where at every passage we show which elementary row operation we are
applying: for instance

iii)−−−−−−−−−→
R2 → R2 − R1

means that we are using the elementary

row operation of type iii) by subtracting once the first row to the second row.
The last row of the last matrix corresponds to the equation

0x+ 0y + 0z = 1,

which is clearly never satisfied, no matter the choice of x, y and z. Since the
solution of the system must satisfy all equations, the system of linear equa-
tion corresponding to this augmented matrix, and thus the equivalent original
system, has no solution.

Example 3.18 Let us find all solutions of the following system of linear equa-
tions  x+ y − z = 3

−2x− y = −4
4x+ 2y + 3z = −1

.

(Exercise)

Looking at the row-echelon reduction of the augmented matrix of a system of
linear equations, we can also determine if the original system has no solution, a
unique solution or infinitely many solution. Indeed, let us suppose that we have
a system of m linear equations in n variables, like the one in Equation (3.2),
and let A be its augmented matrix. If we reduce A to a row-echelon form R,
then we have the following cases

29



1. If there is a leading 1 in the last column, then the system of linear equation
has no solution (as seen in Example 3.17);

2. If there is no leading 1 in the last column, then the system has at least
one solution. We call the number of leading 1s the rank of the matrix,
and we denote it by rank (A). Note that the rank does not change under
elementary row operations, so rank (A) = rank (R). Moreover, since there
are no leading 1s in the last column, we have rank (a) ≤ n. We can thus
distinguish two cases:

(a) If there is at least one solution and rank (A) = n, then the solution
is unique, and it can be found simply by back-substitution.

(b) If there is at least one solution and rank (A) < n, then the system
has infinitely many solutions (as in Example 3.14). In this case we
assign n− rank (A) parameters to the variable corresponding to the
columns without leading 1s, and we solve, again, by back-substitution
(see also Example 3.8).

This method is also called Gaussian elimination.
We can summarize what seen so far in the following theorem.

Theorem 3.19 For any system of linear equations there are exactly three pos-
sibilities:

1. The system has no solution.

2. The system has a unique solution.

3. The system has infinitely many solutions. Moreover, if n is the number
of variables and r is the rank of the augmented matrix, then the set of
solutions has exactly (n− r) parameters.

When it is clear from the context we will also call rank of the system the
rank of the associated augmented matrix.

3.5 Homogeneous systems
Let us consider a system of linear equations in which all the constant terms are
zero, such as the following one

a11x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + a22x2 + · · ·+ a2nxn = 0

...
am1x1 + am2x2 + · · ·+ amnxn = 0

(3.13)

Such a system is called homogeneous. It is clear that when choosing x1 = x2 =
· · · = xn = 0 the equations are satisfied. Thus a homogeneous system has always
(at least) one solution, namely X =

(
0 0 · · · 0

)
. We call this solution the
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trivial solution of the homogeneous system. Any other possible solution with at
least one of the variables non-zero is called a non-trivial solution.

From what seen in the previous section we can prove the following result.

Theorem 3.20 If a homogeneous system of linear equations has more variables
than equations, then it has nontrivial solutions.

Proof. Let us consider a system of m linear equations in n variables and let
us suppose that n > m. Let A be the augmented matrix. We know that the
system has at least one solution, the trivial one. Since rank (A) ≤ m < n, we
have, using Theorem 3.19, that the system has infinitely many solutions.

Example 3.21 Let us consider the following homogeneous system
x1 − 2x2 + 4x3 − x4 + 5x6 = 0

−2x1 + 4x2 − 7x3 + x4 + 2x5 − 8x6 = 0
3x1 − 6x2 + 12x3 − 3x4 + x5 + 15x6 = 0
2x1 − 4x2 + 9x3 − 3x4 + 3x5 + 12x6 = 0

.

The augmented matrix of this system is
1 −2 4 −1 0 5 0
−2 4 −7 1 2 −8 0
3 −6 12 −3 1 15 0
2 −4 9 −3 3 12 0

 .

The (1, 1)-entry being the first leading 1, we proceed us in the previous section
to clean the rest of the 1-column and, after that, to find the other leading 1s and
continue with elementary row operations until we obtain a reduced row-echelon
matrix (Exercise) 

1 −2 0 3 0 −3 0
0 0 1 −1 0 2 0
0 0 0 0 1 0 0
0 0 0 0 0 0 0

 .

Thus the original system is equivalent to the following one: x1 − 2x2 + x4 − 3x6 = 0
x3 − x4 + 2x6 = 0

x5 = 0
.

The leading 1s in the augmented matrix correspond to the variables x1, x3 and
x5, and the rank of the system is 3. The other variables, i.e. x2, x4 and x6

are called non-leading variables. To find the general solution we will associate
some parameters, let us call them s, t and u, to the non-leading variables. The
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general solution has thus the form

X =


x1

x2

x3

x4

x5

x6

 =


2s− 3t+ 3u

s
t− 2u
t
0
u

 = s


2
1
0
0
0
0

+ t


−3
0
1
1
0
0

+ u


3
0
−2
0
0
1

 .

Let us denote

X1 =


2
1
0
0
0
0

 , X2 =


−3
0
1
1
0
0

 and X3 =


3
0
−2
0
0
1

 .

We call X1, X2 and X3 basic solutions of the system. The general solution X
is a linear combination of the three basic solutions, since

X = sX1 + tX2 + uX3

for any choice of s, t and u.

We can generalize the previous example in the following theorem.

Theorem 3.22 Let us consider a system of homogeneous linear equations in n
variables and let us suppose that its rank is r. Then

• The Gaussian algorithm produces exactly n− r basic solutions;

• Every solution is a linear combination of these basic solutions.

Given a general system of linear equations we can associate to it a homoge-
neous system called simply by replacing the constant terms with zero. We will
refer to this system as the associated homogeneous system of the original one.

Example 3.23 Let us consider the following system of 3 linear equations in 4
variables  x1 − 2x2 + x3 + x4 = 2

−x1 + 2x2 + x4 = 1
2x1 − 4x2 + x3 = 1

. (3.14)

A possible solution of the system 3.14 is

X0 =


0
0
1
1

 .
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Note that this particular solutionis not, in general, unique and it is not always
easy to find.

As seen in the first section of the Chapter, we can rewrite this sytem of linear
equations as a single matrix equation

AX = B

where

A =

 1 −2 1 1
−1 2 0 1
2 −4 1 0

 , X =


x1

x2

x3

x4

 , and B =

2
1
1


are respectively the coefficient matrix, the matrix of variables and the matrix
of constants of the system.

The associated homogeneous system is represented by the matrix equation 1 −2 1 1
−1 2 0 1
2 −4 1 0



x1

x2

x3

x4

 =

0
0
0

 . (3.15)

By reduction of the augmented matrix of the homogeneous system in a
reduced row-echelon form 1 −2 1 1 0

−1 2 0 1 0
2 −4 1 0 0

 iii)−−−−−−−−−−−−→
R2 → R2 + R1

R3 → R3 − 2R1

1 −2 1 1 0
0 0 1 2 0
0 0 −1 −2 0



iii)−−−−−−−−−−−−−→
R1 → R1 − R2

R3 → R3 −+2R2

1 −2 0 −1 0
0 0 1 2 0
0 0 0 0 0


we find that the general solution of the system 3.15 is

X = s


2
1
0
0

+ t


1
0
−2
1


where s and t are parameters representing arbitrary numbers.

The general solution of the system 3.14 is

X = X0 + sX1 + tX2 =


0
0
1
1

+ s


2
1
0
0

+ t


1
0
−2
1

 ,

with s and t arbitrary numbers, X0 the particular solution seen before and
X1, X2 the basic solutions computed above.
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The previous example illustrate the following theorem.

Theorem 3.24 Let us consider the system of linear equations AX = B, and
let us suppose that X0 is a particular solution. Then

1. if X ′ is a solution to the associated homogeneous system AX = O, then
X = X0 +X ′ is a solution to the system AX = B.

2. Every solution to the system AX = B has the form X = X0 +X ′ for some
solution X ′ to the associated homogeneous system AX = O.

Example 3.25 Let us consider the system of linear equations x1 − 2x2 + 2x3 − x4 = 1
2x1 − 4x2 + 3x3 + x4 = 2

3x1 − 6x2 + 5x3 = 3
.

Using the Gaussian elimination and Theorem 3.24, we can write the general
solution to the system as the sum of a particular solution and the general solution
to the associated homogeneous system (Exercise).
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Chapter 4

Inverse of a Matrix and
Elementary matrices

As we did in Chapter 2, we will consider here matrices over R.

4.1 The Matrix Inverse algorithm
In Section 2.6 we defined the inverse of a square matrix A as the matrix B such
that

AB = I and BA = I,

where B has the same size of A and I is the identity matrix.

Example 4.1 Let us consider the matrix

A =

(
−1 −1
1 0

)
∈M2,2 (R) .

Let us prove that the inverse of A is its square A2. Indeed, the matrix A2 is
given by

A2 =

(
−1 −1
1 0

)(
−1 −1
1 0

)
=

(
0 1
−1 −1

)
,

while the matrix A3 is

A3 = A2A =

(
0 1
−1 −1

)(
−1 −1
1 0

)
=

(
1 0
0 1

)
= I.

Thus AA2 = A3 = I and A2A = A3 = I, which prove the claim.

Finding the inverse of a given square matrix, when this exists, is not generally
a trivial task. In the following example we show how to use the tools from the
previous chapter in order to find the inverse of a matrix.
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Example 4.2 Let us consider the 2× 2 matrix

A =

(
2 −5
1 2

)
and let us suppose that its inverse exists and has the form

B =

(
x1 x2

x3 x4

)
for certains x1, x2, x3, x4 ∈ R.

Since BA = I, we have(
x1 x2

x3 x4

)(
2 −5
1 2

)
=

(
2x1 + x2 −5x1 + 2x2

2x3 + x4 −5x3 + 2x4

)
=

(
1 0
0 1

)
,

which is equivalent to the system of four linear equations in four variables
2x1 + x2 = 1

−5x1 + 2x2 = 0
2x3 + x4 = 0

−5x3 + 2x4 = 1

.

Using the Gaussian algorithm on the augmented matrix of the system, we can
find the equivalent matrix in reduced row-echelon form as follows:

2 1 0 0 1
−5 −2 0 0 0
0 0 2 1 0
0 0 −5 2 1

 ii)−−−−−−−→
R1 → 1

2R1


1 1

2 0 0 1
2

−5 2 0 0 0
0 0 2 1 0
0 0 −5 2 1



iii)−−−−−−−−−−→
R2 → R2 + 5R1


1 1

2 0 0 1
2

0 9
2 0 0 5

2
0 0 2 1 0
0 0 −5 2 1


ii)−−−−−−−→

R2 → 2
9R2


1 1

2 0 0 1
2

0 1 0 0 5
9

0 0 2 1 0
0 0 −5 2 1


iii)−−−−−−−−−−→

R1 → R1 − 1
2R2


1 0 0 0 2

9
0 1 0 0 5

9
0 0 2 1 0
0 0 −5 2 1


ii)−−−−−−−→

R3 → 1
2R3


1 0 0 0 2

9
0 1 0 0 5

9
0 0 1 1

2 0
0 0 −5 2 1
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iii)−−−−−−−−−−→
R4 → R4 + 5R3


1 0 0 0 2

9
0 1 0 0 5

9
0 0 1 1

2 0
0 0 0 9

2 1


ii)−−−−−−−→

R4 → 2
9R4


1 0 0 0 2

9
0 1 0 0 5

9
0 0 1 1

2 0
0 0 0 1 2

9


iii)−−−−−−−−−−→

R3 → R3 − 1
2R4


1 0 0 0 2

2
0 1 0 0 5

9
0 0 1 0 − 1

9
0 0 0 1 2

9

 .

Thus we get the solution

X =
(
x1 x2 x3 x4

)
=
(

2
9

5
9 − 1

9
2
9

)
.

One can check that considering the system of linear equations associated to the
matrix equation

AB =

(
2 −5
1 2

)(
x1 x2

x3 x4

)
=

(
2x1 − 5x3 2x2 − 5x4

x1 + 2x3 x2 + 2x4

)
=

(
1 0
0 1

)
= I

one find the same solution (Exercise).
The (unique) inverse of A is thus the matrix

B =

(
2
9

5
9

− 1
9

2
9

)
=

1

9

(
2 5
−1 2

)
∈M2,2 (R) .

The following result gives us a method to compute the inverse of an invertible
matrix using the Gaussian Algorithm.

Theorem 4.3 (Matrix Inverse Algorithm) Let A be a square matrix. If
there exists a sequence of elementary row operations that carry A → I, then A
is invertible and this same sequence carries I → A−1. Thus, applying the same
sequence of row operations on the matrix

(
A I

)
, one has the reduction(

A I
)
→
(
I A−1

)
.

Example 4.4 Let A be the matrix defined in Example 4.2. The reduction to
the reduced row-echelon form of the matrix

(
A I

)
is the following(

2 −5 1 0
1 2 0 1

)
i)−−−−−−→

R1 ↔ R2

(
1 2 0 1
2 −5 1 0

)
iii)−−−−−−−−−−→

R2 → R2 − 2R1

(
1 2 0 1
0 −9 1 −2

)
ii)−−−−−−−−→

R2 → − 1
9R2

(
1 2 0 1
0 1 − 1

9
2
9

)
iii)−−−−−−−−−−→

R1 → R1 − 2R2

(
1 0 2

9
5
9

0 1 − 1
9

2
9

)
37



Thus the inverse of the matrix
(

2 −5
1 2

)
is the matrix

(
2
9

5
9

− 1
9

2
9

)
(which we

already known from Example 4.2).

Using Theorem 4.3 we can find a formula to the inverse of an invertible
2× 2-matrix.

Example 4.5 Let us consider the 2× 2-matrix

A =

(
a b
c d

)
with a, b, c, d ∈ R and ad − bc 6= 0. Then A is invertible and its inverse is the
matrix

A−1 =
1

ad− bc

(
d −b
−c a

)
.

Indeed, by using the algorithm described in Theorem 4.3 we have the reduction
(Exercise) (

a b 1 0
c d 0 1

)
−→

(
1 0 d

∆ − b
∆

0 1 − c
∆

a
∆

)
where ∆ = ad− bc is called the determinant of A. We also call the matrix(

d −b
−c a

)
the adjoint of A (we will discuss more about determinants and adjoints later).

To double check we can also verify that

AA−1 =

(
a b
c d

)
· 1
ad−bc

(
d −b
−c a

)
= 1

ad−bc

(
a b
c d

)(
d −b
−c a

)
= 1

ad−bc

(
ad− bc 0

0 −cb+ ad

)
= I

and
A−1A = 1

ad−bc

(
d −b
−c a

)
·
(
a b
c d

)
= 1

ad−bc

(
ad− bc 0

0 −bc+ ad

)
= I.

Example 4.6 Let us consider the matrix

A =

1 2 −1
2 3 −5
4 1 1

 .
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Using the matrix inverse algorithm we can show that (Exercise) the inverse of
A is the matrix

B =
1

26

−8 3 7
22 −5 −3
10 −7 1

 .

To make sure that the answer is right it is enough to verify that AB = I and
BA = I.

If a matrix A is not invertible, then no sequence of row operations can carry
A→ I. Hence the algorithm breaks down because a row of zeros is encountered.

Example 4.7 The matrix

A =

1 2 −1
2 3 3
4 7 1


has no inverse. Indeed, let us try the matrix inverse algorithm on A.1 2 −1 1 0 0

2 3 3 0 1 0
4 7 1 0 0 1

 iii)−−−−−−−−−−−−→
R2 → R2 − 2R1

R3 → R3 − 4R1

1 2 −1 1 0 0
0 −1 5 −2 1 0
0 −1 5 −4 0 1



ii)−−−−−−−−−→
R2 → −R2

1 2 −1 1 0 0
0 1 −5 2 −1 0
0 −1 5 −4 0 1


iii)−−−−−−−−−−−−→

R1 → R1 − 2R2

R3 → R3 + R2

1 0 9 −3 2 0
0 1 −5 2 −1 0
0 0 0 −2 −1 1

 .

Since A will never be transformed to the identity matrix by elementary row
operations, A is not invertible.

4.2 Inverses and systems of linear equations
As we have seen at the end of Section 3.4, some systems of linear equations have
a unique solution. Here we show how to find such a solution.

Theorem 4.8 Let us consider a system of n linear equations in n variables and
let us suppose that we can write this system in matrix form as

AX = B.

If the n-square matrix A is invertible, the system has the unique solution

X = A−1B.
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Proof. Note that, since the system of linear equations has n equations and n
variables, then A has size n × n. Since A−1 is well defined, and both A−1 and
B has size n × 1, then X is also well defined and it has size n × 1. Thus the
system has at least one solution, namely X.

Moreover, since A is invertible, then we can use the matrix inverse algorithm
to reduce the matrix

(
A In

)
to
(
In A−1

)
. Using the same sequence of row

operations we can thus reduce
A→ In,

which implies that rank (A) = rank (In) = n. Thus, from what we have seen in
Section 3.4, the solution X is unique.

Example 4.9 Let us consider the system of linear equations{
2x− 5y = 1
x+ 2y = 2

.

The system can be written the a matrix equation

AX = B (4.1)

where
A =

(
2 −5
1 2

)
, X =

(
x
y

)
and B =

(
1
2

)
.

From Example 4.2 we know that A is invertible and that its inverse is

A−1 =

(
2
9

5
9

− 1
9

2
9

)
.

Thus. multiplying both sides of Equation 4.1 by A−1 we obtain

A−1AX = A−1B

IX =

(
2
9

5
9

− 1
9

2
9

)(
1
2

)
X =

(
2
9 + 10

9
− 1

9 + 4
9

)
(
x
y

)
=

(
4
3
1
3

)
.

Hence, the solution of our system is x = 4
3 and y = 1

3 .

Example 4.10 Let us consider the system of 3 linear equations in 3 variables x+ 2y − z = 1
2x+ 3y − 5z = 2

4x+ y + z = −1
.

We can represent the system as the matrix equation

AX = B
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where

A =

1 2 −1
2 3 −5
4 1 1

 , X =

xy
z

 and B =

 1
2
−1

 .

From Example 4.6 we know that A is invertible and that its inverse is the matrix

A−1 =
1

26

−8 3 7
22 −5 −3
10 −7 1


Then the unique solution of the system is

X = A−1B =
1

26

−8 3 7
22 −5 −3
10 −7 1

 1
2
−1

 =
1

26

−9
15
−5

 ,

that is, we have

x = − 9

26
, y =

15

26
and z = − 5

26
.

4.3 Conditions for invertibility
The following result (given without proof) summarizes the relation between an
invertible matrix and the associated system of linear equations.

Theorem 4.11 Let A be a n-square matrix. The following conditions are equiv-
alent:

1. The matrix A is invertible.

2. There exists a matrix C such that AC = I.

3. The matrix A can be carried to the identity matrix I by elementary row
operations.

4. The system AX = B has a solution X for every choice of column B.

5. The homogeneous system AX = O has only the trivial solution X = O.

Some of the equivalence in the previous theorem can be proved by using the
definition of inverse and the results in Sections 4.1 and 4.2.

We can also give an extra result, without proof, for invertible matrices.

Theorem 4.12 Let A,C be two square matrices. If AC = I then CA = I also.
Moreover, in this case, A and C are both invertible, C = A−1 and A = C−1

Using the previous theorem we can show that the only invertible matrices
are square. That is, if A is an m× n matrix, and AC = Im and CA = In hold
for some n×m matrix C, then m = n.

This is false if A and C are not square matrices.

41



Example 4.13 Let us consider the two matrices

A =

(
1 2 1
1 1 1

)
and C =

−1 1
1 −1
0 1

 .

One has

AC =

(
1 2 1
1 1 1

)−1 1
1 −1
0 1

 =

(
1 0
0 1

)
= I2

but

CA =

−1 1
1 −1
0 1

(1 2 1
1 1 1

)
=

1 0 0
0 1 0
0 0 1

 = I3.

Example 4.14 Let A,B be two square matrices and let us suppose that A3 =
B and that B is invertible. Then, using Theorem 4.12, we can prove that A is
invertible too (Exercise).

4.4 Elementary matrices
In Section 3.3 we defined the three types of elementary row operations on a ma-
trix. Similary, we call elementary column operations on a matrix the following
operations:

i) interchange two columns;

ii) multiply one of the columns by a nonzero number;

iii) add a multiple of one column to a different column.

Example 4.15 Let us consider the same matrix

A =

(
1 1 1 2
1 −1 1 0

)
of Example 3.12. The three matrices(

1 2 1 1
1 0 1 −1

)
,

(
5 1 1 2
5 −1 1 0

)
,

(
1 1 0 2
1 −1 0 0

)
are obtained from A using respectively an elementary row operation of type i)
(interchanging column 2 with column 4), type ii) (multiplying the first column
by 5), and type iii) (adding the second column to the third one).

A square matrix E that is obtained by doing a single elementary row oper-
ation or a single elementary column operation to the identity matrix I is called
an elementary matrix.

We say that E is of type i), ii) or iii) when the correspoding row or column
operation is of type i), ii) or iii).
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Example 4.16 The matrices

E1 =

0 0 1
0 1 0
1 0 0

 , E2 =

1 0 0
0 1

3 0
0 0 1

 and E3 =

 1 0 0
0 1 0
−2 0 1


are elementary matrices of type i), ii) and iii) respectively, obtained by per-
forming the following row operations on the 3× 3 identity matrix I3:

I
i)−−−−−−→

R1 ↔ R3

E1, I
ii)−−−−−−−→

R2 → 1
3R2

E2 and I
iii)−−−−−−−−−−→

R3 → R3 − 2R1

E3.

Theorem 4.17 Every elementary matrix E is invertible, and E−1 is the ele-
mentary matrix (of the same type of E) obtained from I by the inverse of the
operation that produces E from I.

Example 4.18 Let us consider the three elementary matrices E1, E2 and E3

seen in Example 4.16. Then we can find their inverses E−1
1 , E−1

2 and E−1
3

(Exercise).

The left multiplication by an elementary matrix of a certain type is equiva-
lent to a corresponding elementary row operation of the same type.

Example 4.19 Let us consider the matrix

A =

2 2 2 0
0 3 −2 0
1 1 1 0

 .

Interchanging the 1-row and the 3-row (elementary row operation of type i))
can be performed by multiplying A by the matrix E1 in Example 4.16. Indeed

E1A =

0 0 1
0 1 0
1 0 0

2 2 2 0
0 3 −2 0
1 1 1 0

 =

1 1 1 0
0 3 −2 0
2 2 2 0

 .

Subtracting 2 times the 1-row from the 3-row in the previous matrix (elementary
row operation of type iii)) can be done by multiplying E1A by the matrix E3

in Example 4.16. Indeed

E3(E1A) =

 1 0 0
0 1 0
−2 0 1

1 1 1 0
0 3 −2 0
2 2 2 0

 =

1 1 1 0
0 3 −2 0
0 0 0 0

 .

Multiplying the 2-row by 1
3 in the previous matrix can be done by left multipli-

cation by the matrix E2 in Example 4.16. Indeed

E2(E3E1A) =

1 0 0
0 1

3 0
0 0 1

1 1 1 0
0 3 −2 0
0 0 0 0

 =

1 1 1 0
0 1 − 2

3 0
0 0 0 0

 .
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Thus we can get an equivalent matrix to A in row echelon form by multiplying
on the left by (E2E3E1). We can also obtain a reduced row-echelon form of A
by left multiplying E2E3E1A by the elementary matrix of type iii)

Ẽ3 =

1 −1 0
0 1 0
0 0 1

 ,

indeed

Ẽ3E2E3E1A =

1 −1 0
0 1 0
0 0 1

1 1 1 0
0 1 − 2

3 0
0 0 0 0

 =

1 0 5
3 0

0 1 − 2
3 0

0 0 0 0

 .

Similarly, the right multiplication by an elementary matrix of a certain type
is equivalent to a correspoding elementary column operation of the same type.

Example 4.20 Let us consider the matrix

A =

(
5 0 1
0 2 −1

)
.

Interchanging the first column with the third column (elementary column op-
eration of type i) corresponds to multiply A on the right with the matrix E1 of
Example 4.16. Indeed

AE1 =

(
5 0 1
0 2 −1

)0 0 1
0 1 0
1 0 0

 =

(
1 0 5
−1 2 0

)
.

Subtracting 5 times the 1-column from the 3-column in the previous matrix
(elementary operation of type iii)) can be performed by right multiplication by
the elmentary matrix of type iii)

E3 =

1 0 −5
0 1 0
0 0 1

 .

Indeed

(AE1)E3 =

(
1 0 5
−1 2 0

)1 0 −5
0 1 0
0 0 1

 =

(
1 0 0
−1 2 5

)
.

Multiplying the 2-column of the previous matrix by 1
2 is done by right multi-

plying AE1E3 by the elementary matrix of type ii)

E2 =

1 0 0
0 1

2 0
0 0 1

 .
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Indeed

(AE1E3)E2 =

(
1 0 0
−1 2 5

)1 0 0
0 1

2 0
0 0 1

 =

(
1 0 0
−1 1 5

)
.

By right multiplying AE1E3E2 by the elmentary matrices of type iii)

Ẽ3 =

1 0 0
1 1 0
0 0 1

 and Ê3 =

1 0 0
0 1 −5
0 0 1

 ,

we obtain the matrix

(AE1E3E2)Ẽ3Ê3 =

(
1 0 0
−1 1 5

)1 0 0
1 1 0
0 0 1

 Ê3

=

(
1 0 0
0 1 5

)1 0 0
0 1 −5
0 0 1


=

(
1 0 0
0 1 0

)
.

This matrix is called a reduced column-echelon form of A. Its transposition

(AE1E3E2Ẽ3Ê3)T =

1 0
0 1
0 0


is in reduced row-echelon form.

The previous examples can be generalized in the following result.

Theorem 4.21 Let us consider two matrices A,B and let us suppose that there
exists a series of row operations carrying A→ B. Then

1. There exists an invertible matrix U such that B = UA.

2. U can be constructed by performing the same row operations carrying A
to B on the double matrix

(
A I

)
, that is(

A I
)
−→

(
B U

)
.

3. U = Ek · · ·E2E1, where E1, E2, . . . , Ek are the elementary matrices cor-
responding in order to the row operations carrying A to B.

Example 4.22 Let us consider the matrix

A =

2 2 2 0
0 3 −2 0
1 1 1 0
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seen in Example 4.19. We have seen that this matrix can be carried to the
matrix

B =

1 0 5
3 0

0 1 − 2
3 0

0 0 0 0


by a series of elementary row operations, and that B = UA where

U = Ẽ3E2E3E1

is an invertible matrix with 1, E2, E2 and Ẽ3 elementary row matrices.

Example 4.23 Let us consider the matrix

A =

(
3 −2 5
1 −1 0

)
.

Using Theorem 4.21 we can find an invertible matrix U (with its decomposition
in elementary matrices) and a matrix B in reduced row-echelon form such that
B = UA (Exercise).

4.5 Elementary matrices and rank

Combining Theorem 4.21 with Theorem 4.3 we obtain that the inverse of an
invertible matrix can be written as a product of elementary matrices.

Example 4.24 Let us consider the invertible matrix

A =

(
2 1
1 −1

)
.

A possible reduction of A is reduced row-echelon form is the following:(
2 1
1 −1

)
i)−−−−−−→

R1 ↔ R2

(
1 −1
2 1

)
iii)−−−−−−−−−−→

R2 → R2− 2R1

(
1 −1
0 3

)
ii)−−−−−−−→

R2 → 1
3R2

(
1 −1
0 1

)
iii)−−−−−−−−−→

R1 → R1 + R2

(
1 0
0 1

)
The elementary matrices corresponding to the previous elementary operations
are, in order:

E1 =

(
0 1
1 0

)
, E2 =

(
1 0
−2 1

)
, E3 =

(
1 0
0 1

3

)
and E4 =

(
1 1
0 1

)
.
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From Theorem 4.21 we thus have I = A−1A, where

A−1 = E4E3E2E1 =

(
1 1
0 1

)(
1 0
0 1

3

)(
1 0
−2 1

)(
0 1
1 0

)
=

1

3

(
1 1
1 −2

)
.

Note that we can also write A as a product of elementary matrices. Indeed,
since A =

(
A−1

)−1, we have

A = (E4E3E2E1)
−1

= E−1
1 E−1

2 E−1
3 E−1

4

=

(
0 1
1 0

)(
1 0
2 1

)(
1 0
0 3

)(
1 −1
0 1

)
.

If we combine row operations and column operations, we can get a simpler
for of any matrix.

Theorem 4.25 Let A ∈ Mm,n (R) be a matrix of rank r. Then there exit two
invertible matrices U ∈Mm,m (R) and V ∈Mn,n (R) such that

UAV =

(
Ir Or,n−r

Om−r,r Om−r,n−r

)

or, for short and when the size is clear from the context,
(
Ir O
O O

)
. Moreover,

the matrices U and V can be computed using the Gaussian Algorithm as follows:(
A Im

)
→
(
R U

)
,

where R is a reduced row-echelon matrix; and

(
RT In

)
→
((

Ir O
O O

)T
V T
)
.

Proof.[Idea] Let us give an idea of the proof.
First, we use a similar idea as the matrix inversion algorithm. We add

the m × m identity matrix to the right side of A to get the m × (m + n)
matrix

(
A Im

)
. Using the Gaussian algorithm we can perform a sequence of

elementary row operation and obtain
(
R U

)
, where R is a reduced row-echelon

matrix, equivalent to A, and U is the multiplication of the elementary matrices
corresponding to the elementary row operations, according to Theorem 4.21.

If R is not already in the form
(
Ir O
O O

)
, we consider its transpose RT and

we procede in a similar way. We add the n × n identity matrix to the right
side of RT , and doing a sequence of elementary row operations we obtain a

matrix of the form
((

Ir O
O O

)T
V T
)
. From Theorem 4.21 it follows that V

corresponds to the multiplication of the elementary matrices corresponding to
the elementary column operations.
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Since we have that R = UA in the first step of the theorem, then we also
have (always using Theorem 4.21)(

Ir O
O O

)T
= V TRT = V T (UA)T = V TATUT = (UAV )T ,

Recalling that for any matrix B we have (BT )T = B, we can conclude that

UAV =

(
Ir O
O O

)
.

Example 4.26 Let us consider the matrix

A =

 1 −2 3 1
−1 2 −1 1
2 −4 5 1

 .

Let us use Theorem 4.25 to show that rank (A) = 2 and that there exist two
matrices U, V such that

UAV =

(
I2 O
O O

)
.

Let us first consider the reduction
(
A I3

)
→
(
R U

)
as in the first step of

Theorem 4.25. 1 −2 3 1 1 0 0
−1 2 −1 1 0 1 0
2 −4 5 1 0 0 1

 iii)−−−−−−−−−−−−→
R2 → R2 + R1

R3 → R3 − 2R1

1 −2 3 1 1 0 0
0 0 2 2 1 1 0
0 0 −1 −1 −2 0 1



ii)−−−−−−−−−→
R2 → 1

2R2

1 −2 3 1 1 0 0
0 0 1 1 1

2
1
2 0

0 0 −1 −1 −2 0 1


iii)−−−−−−−−−−−−→

R1 → R1 − 3R2

R3 → R3 + R2

1 −2 0 −2 − 1
2 − 3

2 0
0 0 1 1 1

2
1
2 0

0 0 0 0 − 3
2

1
2 1

 .

Thus we have

R =

1 −2 0 −2
0 0 1 1
0 0 0 0

 and U =

− 1
2 − 3

2 0
1
2

1
2 0

− 3
2

1
2 1

 .

Note that here the reduced row-echelon matrix R has a unique form, while U
may have different forms.

Moreover, since R has two leadings ones, we have rank (A) = rank (R) = 2.
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Using the second step of Theorem 4.25, that is the reduction of
(
RT I4

)
,

we obtain:
1 0 0 1 0 0 0
−2 0 0 0 1 0 0
0 1 0 0 0 1 0
−2 1 0 0 0 0 1

 iii)−−−−−−−−−−−−→
R2 → R2 + 2R1

R4 → R4 + 2R1


1 0 0 1 0 0 0
0 0 0 2 1 0 0
0 1 0 0 0 1 0
0 1 0 2 0 0 1



i)−−−−−−−→
R2 ↔ R3


1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 0 2 1 0 0
0 1 0 2 0 0 1


iii)−−−−−−−−−−−→

R4 → R4 − R1


1 0 0 1 0 0 0
0 1 0 0 0 1 0
0 0 0 2 1 0 0
0 0 0 2 0 −1 1

 .

=

((
I2 O2,1

O2,2 O2,1

)
V T
)
.

where

V =


1 0 2 2
0 0 1 0
0 1 0 −1
0 0 0 1

 .

Note that the reduced row-echelon matrix
(
I2 O2,1

O2,2 O2,1

)
equivalent to R has a

unique form, while V may have different forms.
Finally, one can check that we actually have− 1

2 − 3
2 0

1
2

1
2 0

− 3
2

1
2 1

 1 −2 3 1
−1 2 −1 1
2 −4 5 1




1 0 2 2
0 0 1 0
0 1 0 −1
0 0 0 1

 =

1 0 0 0
0 1 0 0
0 0 0 0

 ,

that is
UAV =

(
I2 O2,2

O1,2 O1,2

)
.

Example 4.27 Following the previous example, let us show that given the
matrix

A =

(
3 −3 6
1 −1 1

)
we can write

UAV =

(
1 0 0
0 1 0

)
for two invertible matrices U, V (Exercise).
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Chapter 5

Determinant and
Diagonalization

5.1 Determinant
In Example 4.5 we defined the determinant of a generic 2× 2-matrix

A =

(
a b
c d

)
as

det (A) = det

(
a b
c d

)
= ad− bc.

In this section we define the determinant of a generic square matrix and we
show how to compute it.

To define the determinant, we give a recursive definition, that is we give
a definition for a base case, here for a 1 × 1-matrix, and then we define the
determinant of a n × n-matrix using the determinant of a (n − 1) × (n − 1)-
matrix.

• Let A =
(
a
)
∈M1,1 (R). Then det (A) = a.

• Let A =
(
aij
)
∈Mn,n (R). Then

det (A) = a11C11(A) + a12C12(A) + · · ·+ a1nC1n(A), (5.1)

where Cij(A) is called the (i, j)-cofactor of A and it’s defined as

Cij(A) = (−1)i+jdet (Aij) ,

for each i and j, where Aij is the (n− 1)× (n− 1)-matrix obtained from
A by delating the i-row and the j-column. We also call (−1)i+j the sign
of the (i, j)-position in A.
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Equation (5.1) is called the Laplace expansion, or cofactor expansion, of A
along the 1-row.

Example 5.1 The definition of determinant is consistent for 2 × 2-matrices.
Indeed we have

det

(
a b
c d

)
= a · (−1)1+1 det (d) + b · (−1)1+2 det (c) = ad− bc.

Example 5.2 Let us find the determinant of the 3× 3-matrix

A =

a11 a12 a13

a21 a22 a23

a31 a32 a33

 .

Using Equation (5.1) we have

detA = a11C11(A) + a12C12(A) + a13C13(A).

From the definition of cofactor, it follows that

C11(A) = (−1)1+1det (A11) = (−1)2 det

(
a22 a23

a32 a33

)
= a22a33 − a23a32,

C12(A) = (−1)1+2det (A12) = (−1)3 det

(
a21 a23

a31 a33

)
= −(a21a33 − a23a31),

C13(A) = (−1)1+3det (A13) = (−1)4 det

(
a21 a22

a31 a32

)
= a21a32 − a22a31.

Thus, we have

detA = a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)
= a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 − a13a22a31.

Example 5.3 Following the previous example we can find the determinant of
the matrix

A =

 1 −2 0
−1 1 2
5 0 3


(Exercise).

When we have a lot of zeros, especially in the first row, the computation is
easier.

Example 5.4 Let us compute the determinant of the matrix

A =


0 a12 0 0
a21 0 0 0
0 0 a33 0
0 0 0 a44

 .
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By definition we have

det (A) = a12(−1)1+2 det

a21 0 0
0 a33 0
0 0 a44

.
Let us now consider the 3× 3-matrix

B =

a21 0 0
0 a33 0
0 0 a44


Its determinant is given by

det (B) = a21(−1)1+1 det

(
a33 0
0 a44

)
= a21 · 1 · (a33a44) = a21a33a44.

Thus, we finally have

detA = a12 · (−1) · (a21a33a44) = −a12a21a33a44.

In the definition of determinant we considered the cofactor expansion along
the first row. The following important result show us that we can compute it
in a different way.

Theorem 5.5 (Laplace Expansion Theorem) Let A be a square matrix.
The determinant of A is equal to the cofactor expension along any row or column
of A.

Example 5.6 Let us consider the matrix

A =


2 −1 0 3
1 0 5 7
7 9 0 2
4 0 0 8

 .

A smart way to compute det (A) using a cofactor expansion along the rows and
the column having the bigger number of zeros. Let us thus start by doing the
cofactor expansion along the 4-row.

det (A) = 4 · (−1)4+1 det

−1 0 3
0 5 7
9 0 2

+ 0 · (−1)4+2 det

2 0 3
1 5 7
7 0 2


+0 · (−1)4+3 det

2 −1 3
1 0 7
7 9 2

+ 8 · (−1)4+4 det

2 −1 0
1 0 5
7 9 0


= −4 det

−1 0 3
0 5 7
9 0 2

+ 8 det

2 −1 0
1 0 5
7 9 0

.
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Applying the cofactor expansion along the 2-column of the first matrix and
along the 3-column of the second matrix we obtain respectively:

det

−1 0 3
0 5 7
9 0 2

 = 5 · (−1)2+2 det

(
−1 3
9 2

)
= 5(−2− 27) = −145

and

det

2 −1 0
1 0 5
7 9 0

 = 5 · (−1)2+3 det

(
2 −1
7 9

)
= −5(18 + 7) = −125.

Thus
det (A) = −4 · (−145) + 8 · (−125) = −420.

The following results easily follows from Theorem 5.5

Corollary 5.7 If a square matrix A has a row or a column of zeros, then
det (A) = 0.

Example 5.8 Let us consider the matrix

A =

1 2 3
0 0 0
1 −1 1

 .

Then, using the cofactor expansion along the second row, we find

det (A) = −0 · det

(
2 3
−1 1

)
+ 0 · det

(
1 3
1 1

)
− 0 · det

(
1 2
1 −1

)
= 0.

5.2 Elementary operations and determinants
Because of its recursive definition, it is often hard to compute the determinant.
Using elementary operations we can create more zeros in a matrix, but these
operations will change the determinant. Let us see how.

Theorem 5.9 Let A ∈Mn,n (R) be square matrix.

(1) If B is obtained from A by interchanging two different rows (elementary row
operation of type i)) or two different columns (elementary column operation
of type i)), then

det (B) = −det (A) .

(2) If B is obtained from A by multiplying a row (elementary row operation of
type ii)) or a column (elementary column operation of type ii)) by a number
k, then

det (B) = k · det (A) .
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(3) If B is obtained from A by adding a multiple of some row of A to a different
row (elementary row operation of type iii)) or a multiple of some column of
A to a different column (elementary column operation of type iii)), then

det (B) = det (A) .

The proof of the previous theorem is not hard, but its out of the scope of
this course.

Example 5.10 Let us consider the matrix

A =

1 2 −1
2 3 3
4 7 0

 .

Because of point (3) of Theorem 5.9, we know that the determinant does not
change if we subtract twice the 1-row from the 3-row and the 2-row from the
3-row, so

det (A) = det

1 2 −1
2 3 3
2 3 2

 = det

1 2 −1
2 3 3
0 0 −1

.
Thus, using Theorem 5.5 we have

det (A) = −1 · (−1)3+3 det

(
1 2
2 3

)
= −(1 · 3− 2 · 2) = 1.

Example 5.11 Following the previous result we can compute the determinant
of the following matrices:

A =

1 2 −1
2 3 3
4 7 1

 and B =


1 a a a
a 1 a a
a a 1 a
a a a 1


(Exercise).

5.3 Some properties on determinants
The following result easily follows from point (2) of Theorem 5.9.

Theorem 5.12 Let A ∈Mn,n (R). Then for any number k ∈ R

det (kA) = kndet (A) .

Example 5.13 Let us consider the matrix

A =

(
2 4
6 2

)
= 2

(
1 2
3 1

)
.

Then
det (A) = 4− 24 = −20 = 22 · (1− 6).
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The determinant of diagonal and triangular matrices is quite easy to com-
pute.

Theorem 5.14 If a square matrix is triangular, then its determinant is the
product of the entries of the main diagonal.

Proof.[Idea] Let us consider an upper triangular matrix A ∈ Mn,n (R), that is
a matrix of the form

A =


a1,1 0 · · · 0 0
∗ a2,2 · · · 0 0
...

...
. . .

...
...

∗ ∗ · · · an−1,n−1 0
∗ ∗ · · · ∗ an,n


where the ∗ represent arbitrary real numbers. Then, by considering recursively
the Laplace expansion along the first row, we find that

det (A) = a1,1a1,2 · · · an,n.

Example 5.15 Let us consider the matrix

A =


1 2 −1 5
0 −1 7 4
0 0 2 2
0 0 0 −3

 .

The matrix is (lower) triangular. Then, by Theorem 5.14 we have

det (A) = 1 · (−1) · 2 · (−3) = 6.

Column operations from a matrix A a to a matrix B can be accomplished
by doing the corresponding row operations from AT 4 to BT , then take the
transpose to BT back to B. The following theorem tell us that transposing a
matrix does not change its determinatn.

Theorem 5.16 Let A ∈Mn,n (R). Then

det
(
AT
)

= det (A) .

Example 5.17 Let us consider a matrix

A =

(
1 2
3 4

)
and its transpose

AT =

(
1 3
2 4

)
.

Then
det
(
AT
)

= 1 · 4− 3 · 2 = −2 = 1 · 4− 2 · 3 = det (A) .
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Theorem 5.18 Let E be an elementary matrix.

1. If E is of type i) then det (E) = −1.

2. If E is of type ii) and is obtained from I by multiplying a row (or a column)
by a number k, then det (E) = k.

3. If E is of type iii), then det (E) = 1.

Proof. In this proof we will consider elementary matrices obtained from In,
with n ∈ N, using a row elementary operation. The case of matrices obtained
by elementary column operations can be proved in a symmetric way.

1. Let us first consider the case of an elementary matrix of type i). Let i, j

with 1 ≤ i, j ≤ n be such that I
i)−−−−−−→

R1 ↔ Rj

E. Let us prove our result by

induction on n. If n = 2, then necessarly we

E =

(
0 1
1 0

)
and det (E) = −1.

If n > 2 then, we have

E =

1 i j n



1 0 · · · 0 · · · 0 · · · 0 1
0 1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
. . .

...
0 0 · · · 0 · · · 1 · · · 0 i
...

...
. . .

...
. . .

...
. . .

...
0 0 · · · 1 · · · 0 · · · 0 j
...

...
. . .

...
. . .

...
. . .

...
0 0 · · · 0 · · · 0 · · · 1 n

Let k 6= i, j. Then the (k, k)-entry of the matrix is 1 while for all h 6= k,
the (k, h)-entry of E is 0 (that is, the k-row has zeros everywhere except
at its k-th position). Using Theorem 5.5, we can consider the cofactor
expansion of E along the k-row and obtain

det (E) = (−1)k+k · 1 · det (Ak,k) +
∑
h6=k(−1)k+h · 0 · det (Ak,h)

= det (Ak,k) ,
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where Ak,k is of the form

Ak,k =

1 i′ j′ n− 1



1 0 · · · 0 · · · 0 · · · 0 1
0 1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
. . .

...
. . .

...
0 0 · · · 0 · · · 1 · · · 0 i′

...
...

. . .
...

. . .
...

. . .
...

0 0 · · · 1 · · · 0 · · · 0 j′

...
...

. . .
...

. . .
...

. . .
...

0 0 · · · 0 · · · 0 · · · 1 n− 1

for certains 1 ≤ i′, j′ ≤ n − 1. Note that Ak,k is an elmentary matrix of
size (n−1)×(n−1) and that it can be obtain from In−1 by the elementary
row-operation

In−1
i)−−−−−−→

Ri′ ↔ Rj′
Ak,k.

By inductive hypothesis det (Ak,k = 1). Thus det (E) = 1 as well.

2. Let us now consider the case of an elementary matrix of type ii). Let i

and k, with 1 ≤ i ≤ n and k 6= 0 be such that I
ii)−−−−−−→

Ri → kRi

E. Then, we

can prove that det (E) = k (Exercise).

3. Let us finally consider the case of an elementary matrix of type iii). Let

i, j and k with 1 ≤ i, j ≤ n and k ∈ R be such that I
ii)−−−−−−−−−−→

Rj → Rj + kRi

E.

Then, we can prove that det (E) = 1 (Exercise).

Example 5.19 Let us consider the three elementary matrices of Example 4.16.
We have

det (E1) = −1, det (E2) =
1

3
and det (E3) = 1.

The following important result tell us how to compute the determinant of
the product of two matrices.

Theorem 5.20 (Product Theorem) Let A,B ∈Mn,n (R). Then

det (AB) = det (A) det (B) .

Proof. Let us first consider an elementary matrix E ∈Mn,n (R). We know, from
Section 4.4 that the matrix B = EA represents the matrix A after we apply an
elementary row operation and that the matrix C = AE represents the matrix
A after we apply an elementary column operation. Combining Theorem 5.9
andand Theorem 5.18 we have that:
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• If E is of type i), then det (E) = −1. Moreover, B is obtained from A by
interchanging two different rows and the matrix C is obtained from A by
interchanging two columns. Thus

det (EA) = det (B) = −det (A) = det (E) det (A)

and
det (AE) = det (C) = −det (A) = det (A) det (E) .

• If E is of type ii), then det (E) = k for a certain number k 6= 0. The
matrix B is obtained from A by multiplying all elements of a certain row
by k, while the matrix C is obtained from A by multiplying all elements
of a certain column by k. Thus

det (EA) = det (B) = k · det (A) = det (E) det (A)

and
det (AE) = det (C) = k · det (A) = det (A) det (E)

• If E is of type iii), then det (E) = 1. Moreover B is obtained from A by
adding a multiple of some row of A to a different row, while C is obtained
from A by adding a multiple of some column of A t a differenc column.
Thus

det (EA) = det (B) = det (A) = det (E) det (A)

and
det (AE) = det (C) = det (A) = det (A)det (E) .

By Theorem 4.25, we know that there exists two invertible matrices U, V ∈
Mn,n (R) such that

UAV =

(
Ir O
O O

)
,

with r = rank (A). Moreover, from Section 4.5, we know that there exists
elementary matrices E1, E2, . . . , Ep, Ẽ1, Ẽ2, . . . , Ẽq such that

U = E1E2 · · ·Ep and V = Ẽ1Ẽ2 · · · Ẽq.
Thus one has

A = U−1

(
Ir O
O O

)
V −1

= E−1
p · · ·E−1

2 E−1
1

(
Ir O
O O

)
Ẽ−1
q · · · Ẽ−1

2 Ẽ−1
1 .

Note that E−1
1 , E−1

2 , . . . , E−1
p , Ẽ−1

1 , Ẽ−1
2 , . . . , Ẽ−1

q are also elementary matrices.
If rank (A) < n, then

det (AB) = det
(
E−1
p · · ·E−1

2 E−1
1

(
Ir O
O O

)
Ẽ−1
q · · · Ẽ−1

2 Ẽ−1
1 B

)
= det

(
E−1
p

)
· · · det

(
E−1

2

)
det
(
E−1

1

)
det
((

Ir O
O O

)
Ẽ−1
q · · · Ẽ−1

2 Ẽ−1
1 B

)
= det

(
E−1
p

)
· · · det

(
E−1

2

)
det
(
E−1

1

)
· 0

= 0,
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where the third equality follows from Corollary 5.7 and the fact that in the
matrix (

Ir O
O O

)
Ẽ−1
q · · · Ẽ−1

2 Ẽ−1
1 B

the last n− r rows (and the last n− r columns) are zero rows (zero columns).
If rank (A) = n, then

det (AB) = det
(
E−1
p · · ·E−1

2 E−1
1 InẼ

−1
q · · · Ẽ−1

2 Ẽ−1
1 B

)
= det

(
E−1
p

)
· · · det

(
E−1

1

)
det (In) det

(
Ẽ−1
q

)
· · · det

(
Ẽ−1

1

)
det (B)

= det
(
E−1
p · · ·E−1

2 E−1
1 InẼ

−1
q · · · Ẽ−1

2 Ẽ−1
1

)
det (B)

= det (A) det (B) .

Example 5.21 Let us consider the two matrices

A =

(
1 2
2 −1

)
and B =

(
3 2
2 3

)
.

Then

det (AB) = det

(
7 8
4 1

)
= −25 = −5 · 5 = det (A)det (B)

We give the following result without proof. However the second point is easy
to prove (Exercise).

Theorem 5.22 Let A ∈Mn,n (R). Then

1. A is invertible if and only if det (A) 6= 0.

2. If A is invertible, then det
(
A−1

)
= 1

det(A)
.

Example 5.23 Let A,B ∈Mn,n (R) and let us suppose that

det (A) = 2 and det (B) = −3.

Using the previous theorems we can compute det
(
2A3B−1ATB2

)
(Exercise).

Let A ∈ Mm,n (R) and B ∈ Mp,q (R) be two matrices. We call block upper
triangular matrix a matrix of the form(

A X
O B

)
,

where X is is a matrix of size m × q and O = Op,n. A blok lower triangular
matrix will be defined in a symmetrical way.
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Theorem 5.24 Let A and B be two square matrices, possibly of different size.
Then

det

(
A X
O B

)
= det (A) det (B)

and

det

(
A O
X B

)
= det (A) det (B) .

Proof. Let us consider rhe block upper triangular matrix. We can decompose it
as (

A X
O B

)
=

(
I O
O B

)(
A X
O I

)
.

From the Product Theorem we know that

det

(
A X
O B

)
= det

(
I O
O B

)
det

(
A X
O I

)
.

By repeated cofactor expansions it is easy to see that

det

(
I O
O B

)
= det (B) and det

(
A X
O I

)
= det (A) .

To prove the result for the block lower triangular matrices we can take the
transpose and use Theorem 5.16.

Example 5.25 Let

A =


1 2 a b c
2 5 d e f
0 0 2 −1 0
0 0 1 2 1
0 0 0 1 2

 .

We have

det (A) = det

(
1 2
2 5

)
det

2 −1 0
1 2 1
0 1 2

 = 1 · 8 = 8.

5.4 Cramer’s Rule

Let A ∈ Mn,n (R). We define the adjoint of A the transpose of the matrix of
cofactors:

adj (A) =
(
Ci,j(A)

)T
.

Note that adj (A) is also a n× n-matrix. When it is clear from the context, we
will write Ci,j instead of Ci,j(A).
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Example 5.26 Let us consider the matrix

A =

 3 0 −1
4 7 3
−2 8 5

 .

Its adjoint is the matrix:

adj (A) =

C1,1 C1,2 C1,3

C2,1 C2,2 C2,3

C3,1 C3,2 C3,3

T

=

C1,1 C2,1 C3,1

C1,2 C2,2 C3,2

C1,3 C2,3 C3,3


=

 11 −8 7
−26 13 −13
46 −24 21

 .

Example 5.27 Let us consider a generic 2× 2-matrix

A =

(
a b
c d

)
.

Its adjoint is the matrix

adj (A) =

(
C1,1 C1,2

C2,1 C2,2

)T
=

(
d −c
−b a

)T
=

(
d −b
−c a

)
.

Using the Laplace Expansion Theorem, we can obtain the following result.

Theorem 5.28 (Adjoint Formula) Let A be a square matrix. Then

1. A · adj (A) = det (A) I = adj (A) ·A.

2. If det (A) 6= 0, then A−1 = 1

det(A)
adj (A).

Example 5.29 Let us consider the matrix

A =

 3 0 −1
4 7 3
−2 8 5

 .

Its determinant is

det (A) = 3 det

(
7 3
8 5

)
− det

(
4 7
−2 8

)
= 3 · 11− 1 · 46 = −13,

while its adjoint is

adj (A) =

11 −26 46
−8 13 −24
7 −13 21

T

=

 11 −8 7
−26 13 −13
46 −24 21

 .
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Thus the inverse of A is the matrix

A−1 = − 1

13

 11 −8 7
−26 13 −13
46 −24 21

 .

If A is a n × n-matrix and B is a n × 1-column, then let us set Ai(B) the
n× n-matrix obtained from A by replacing the i-column by B.

Theorem 5.30 (Cramer’s Rule) Let us consider the system of linear equa-
tions AX = B, where A is invertible. If

X =


x1

x2

...
xn


where x1, x2, . . . , xn are the variables, then

xi =
det (Ai(B))

det (A)
for each i = 1, 2, . . . , n.

Example 5.31 Let us consider the system of linear equations 5x1 − 7x2 + 8x3 = 23
2x1 + 6x2 − 9x3 = 61
−x1 − 4x2 + 3x3 = 19

.

The matrix

A =

 5 −7 8
2 6 −9
−1 −4 3


is invertible since its determinant is

det (A) = −127 6= 0.

To find x2 let us consider the matrix

A2(B) =

 5 23 8
2 61 −9
−1 −19 3

 .

Since det (A2(B)) = 313, we have

x2 =
det (A2(B))

det (A)
= −313

127
.
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Example 5.32 Let us consider the system of linear equations 3x1 − x3 = 1
4x1 + 7x2 + 3x3 = 0
−2x1 + 8x2 + 5x3 = 1

.

Using the Cramer’s Rule we can find the solution (Exercise)

X =

x1

x2

x3

 .

5.5 Diagonalization
Let us recall from Section 2.7 that a n×n-matrix D is called a diagonal matrix
if all its entries off the main diagonal are zeros; that is, fi D has the form

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 = diag (λ1, λ2, . . . , λn) ,

where λ1, λ2, . . . , λn are numbers. These numbers are not necessarly reals (we
will see an example later), so, instead that in R, let us suppose that λi ∈ C for
all i.

A n-square matrix A is called diagonalizable if there exists an invertible
matrix P ∈ Mn,n (R) such that P−1AP = D is diagonal. In this case, the
invertible matrix P is called a diagonalizing matrix for A.

Diagonalization is one of the most important ideas inlinear algebra. One of
its uses is to give us an efficient method to calculate powers A,A2, A3, . . . of a
square matrix A.

Theorem 5.33 Let A be a diagonalizable matrix. Let us suppose that P is a
diagonalizing matrix and D = P−1AP . Then, for any k ∈ N one has

Ak = PDkP−1.

Proof. (Exercise)

Example 5.34 Let us diagonalize the matrix

A =

1 1 1
0 2 −1
0 −3 0

 .

By definition, we need to find an invertible matrix P such that

P−1AP =

λ1 0 0
0 λ2 0
0 0 λ3

 = diag (λ1, λ2, λ3) ,
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for certain numbers λ1, λ2, λ3. Let us set

P =
(
X1 X2 X3

)
where

X1 =

x1

x2

x3

 , X2 =

y1

y2

y3

 and X3 =

z1

z2

z3

 .

This is equivalent to find X1, X2 and X3 such that1 1 1
0 2 −1
0 −3 0

(X1 X2 X3

)
=

x1 y1 z1

x2 y2 z2

x3 y3 z3

λ1 0 0
0 λ2 0
0 0 λ3


=

λ1x1 λ2y1 λ3z1

λ1x2 λ2y2 λ3z2

λ1x3 λ2y3 λ3x3


=

(
λ1X1 λ2X2 λ3X3

)
.

Comparing columns, it shows that P−1AP = diag (λ1, λ2, λ3) if and only if
AXi = λiXi for i = 1, 2, 3. Moreover, if we want that P =

(
X1 X2 X3

)
is

invertible, we need to make sure that Xi 6= O.
In the following, we begin to find λ and X 6= O such that AX = λX. This

is equivalent to asking that the homogenous linear system

(A− λI3)X = 0 (5.2)

has a nontrivial solution X 6= O. Using the Gaussian algorithm we reduce the
matrix (A− λI3) into a (reduced) row-echelon form B which is equivalent to
left multiplication by a certain invertible matrix, say U , that is we have

U (A− λI3) = B.

By the Product Theorem we have

det (U) det (A− λI3) = det (B) .

Since det (U) 6= 0 (the matrix is invertible), we have

rank (A− λI3) = rank (B) ≤ n ⇔ det (B) 6= 0 ⇔ det (A− λI3) = 0.

Then we compute the determinant of A− λI3

det (A− λI3) = det

1− λ 1 1
0 2− λ −1
0 −3 −λ


= (1− λ) det

(
2− λ −1
−3 −λ

)
= (1− λ) (−λ(2− λ)− 3)
= (1− λ)(λ− 3)(λ+ 1).
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For the equation det (A− λI3), we obtain three solutions which are

λ1 = 1, λ2 = −1 and λ3 = 3.

Then, we substitute each λi into the Equation (5.2) to fin a basic solution for
each equation. For example, we solve

(A− λ1I3)X =

0 1 1
0 1 −1
0 −3 −1

x1

x2

x3

 =

0
0
0

 = O,

which is equivalent to solve0 1 1
0 0 1
0 0 0

x1

x2

x3

 =

0
0
0

 .

We thus get
X = s

(
1 0 0

)
where s is an arbitrary number. We can use the basic solution

X1 =
(
1 0 0

)
which is not a trivial solution as our solution corresponding to λ1 = 1. Similarly,
we can get

X2 =
(
−2 1 3

)
and X3 =

(
0 −1 1

)
corresponding respectively to to λ2 = −1 and λ3 = 3. Note that hereX1, X2, X3

can be arbitrary nonzero solutions corresponding to λ1, λ2, λ3.
Thus we can solve the equation

P−1AP = diag (λ1, λ2, λ3) ⇔ AP = Pdiag (λ1, λ2, λ3)

by obtaining

P
(
X1 X2 X3

)
=

1 −2 0
0 1 −1
0 3 1

 ,

and
diag (λ1, λ2, λ3) = diag (1,−1, 3) .

Using the Matrix Inverse Algorithm we can find1 −2 0 1 0 0
0 1 −1 0 1 0
0 3 1 0 0 1

 iii)−−−−−−−−−−−−→
R1 → R1 + 2R2

R3 → R3 − 3R2

1 0 −2 1 2 0
0 1 −1 0 1 0
0 0 4 0 −3 1


ii)−−−−−−−−−→

R3 → 1
4R3

1 0 −2 1 2 0
0 1 −1 0 1 0
0 0 1 0 − 3

4
1
4


iii)−−−−−−−−−−−−→

R1 → R1 + 2R3

R2 → R2 + R3

1 0 0 1 1
2

1
2

0 1 0 0 1
4

1
4

0 0 1 0 − 3
4

1
4

 .
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Thus P is invertible and

P−1 =

1 1
2

1
2

0 1
4

1
4

0 − 3
4

1
4

 .

In conclusion, we have

P−1AP =

1 1
2

1
2

0 1
4

1
4

0 − 3
4

1
4

1 1 1
0 2 −1
0 −3 0

1 −2 0
0 1 −1
0 3 1

 = diag (1,−1, 3) .

We can generalize the previous example to an n × n-matrix. Finding P
such that P−1AP is a diagonal matrix is equivalent to find n column vectors
X1, X2, . . . , Xn and n numbers λ1, λ2, . . . , λn such that

AXi = λiXi for each i = 1, 2, . . . n.

Moreover, if P =
(
X1 X2 · · · Xn

)
is invertible, A is diagonalizable.

5.6 Eigenvalues and Eigenvectors

Let A ∈Mn,n (R). A number λ is called an eigenvalue of A if

AX = λX

for some column X 6= O. Such a nonzero column X is called an eigenvector of
A corresponding to the eigenvalue λ.

Note that the condition AX = λX is automatically satisfied if X = O, so
the requirement that X 6= O is critical.

The characteristic polynomia cA(x) is defined by

cA(x) = det (xI −A) .

A number λ is called a root of the characteristic polynomial cA(x) if cA(λ) = 0.
Note that cA(λ) = 0 if and only if −cA(λ) = 0. For this reason, in the

following we will work indifferently with both equations det (xI −A) = 0 and
det (A− λI) = 0.

Example 5.35 Let us consider the matrix

A =

(
5 −2
4 −1

)
.
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Its characteristic polynomial is

cA(x) = det (xI −A)

= det
(
x

(
1 0
0 1

)
−
(

5 −2
4 −1

))
= det

((
x 0
0 x

)
−
(

5 −2
4 −1

))
= det

(
x− 5 2
−4 x+ 1

)
= (x− 5)(x+ 1)− 2(−4)
= x2 − 4x+ 3
= (x− 1)(x− 3).

The two roots of the characteristic polynomial are thus λ1 = 1 and λ2 = 3.

Theorem 5.36 Let A be a n× n-matrix.

1. The eigenvalues of A are the roots of the characteristic polynomial cA(x)
of A.

2. The eigenvectors X corresponding to the eigenvalues λ are the nonzero
solutions to the homogenous system of linear equations (λI −A)X = O.

Note that there are many eigenvectors of a square matrix A associated with
a given eigenvalue λ. In fact every nonzero solution X of (λI −A)X = O is an
eigenvector. Of course the eigenvalue λ is chosen so that there must be nonzero
solutions.

The eigenvalues of a real matrix need not to be real numbers.

Example 5.37 Let us find the eigenvalues of the matrix

A =

(
0 −1
1 0

)
.

The characteristic polynomial of the matrix is det (xI −A) = x2 + 1. So by
Theorem 5.36, the eigenvalues of A are the nonreal complex roots λ1 = i and
λ2 = −i.

A n× n-matrix has n (possibly complex) eigenvalues, but they may not be
distinct.

Example 5.38 Let us find the eigenvalues of the matrix

A =

(
1 1
0 1

)
.

Its characteristic polynomial is cA(x) = (x− 1)
2. So there is only one eigenvalue

of A, namely λ1 = 1. However, λ1 is a double root of cA(x) and we say that
λ1 = 1 has multiplicity 2.
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The following result illustrate the previous example

Theorem 5.39 Let A ∈Mn,n (R).

1. A is diagonalizable if and only if it has eigenvectors X1, X2, . . . , Xn such
that the matrix

P =
(
X1 X2 · · · Xn

)
is invertible.

2. When this is the case, we have

P−1AP = diag (λ1, λ2, . . . , λn)

where, for each i, λi is the eigenvalue of A corresponding to Xi.

Example 5.40 Let us show that the matrix

A =

(
1 1
0 1

)
is not diagonalizable.

We know from Example 5.38 that A has only one eigenvalue λ1 = 1, which
is of multiplicity 2. But the system of linear equations (λ1I − A)X = O has
general solution

X = s

(
1
0

)
,

so there is only one basic solution:

X1 =

(
1
0

)
.

Hence we can only choose

P =

(
s t
0 0

)
which is never invertible no matter the choice of s and t.

5.7 The Diagonalization Algorithm
In this section we give an altorithm to diagonalize a square matrix.

Diagonalization Algorithm. Let A ∈ Mn,n (R) be a square matrix. To
diagonalize A we apply the following steps:

Step 1. Find all the eigenvalues of A, which are the roots of the character-
istic polynomial cA(x);

Step 2. For each eigenvalue λ compute an eigenvector, by finding the basic
solution of the homogenous system (λI −A)X = O;
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Step 3. The matrix A is diagonalizable if and only if there are n basic
eigenvectors in total;

Step 4. If A is diagonalizable, the n×n-matrix P having these eigenvectors
as columns is a diagonalizing matrix for A; that is, P is invertible and P−1AP
is diagonal.

Example 5.41 Let us apply the previous algorithm to the matrix

A =

0 1 1
1 0 1
1 1 0

 .

Step 1. Let us first compute the characteristic polynomial

cA(x) = det (xI −A)

= det

 x −1 −1
−1 x −1
−1 −1 x


= det

x− 2 x− 2 x− 2
−1 x −1
−1 −1 x


= det

x− 2 0 0
−1 x+ 1 0
−1 0 x+ 1


= (x− 2)(x+ 1)2,

where to compute the determinant we first added the second and the third row
to the first row, and then we subtracted the first column from the second and
from the third column.

Hence, the equation cA(x) = 0 has two solutions: λ1 = 2 and λ2 = −1, with
the last one having multiplicity two.

Step 2. For λ1 = 2, the system

(λ1I −A)X =

 2 −1 −1
−1 2 −1
−1 −1 2

X = O

solution

X = s

1
1
1

 ,

where t is an arbitrary number. So the basic solution

X1 =

1
1
1
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is an eigenvector corresponding to λ1 = 2.
For λ2 = −1, the system

(λ2I −A)X =

−1 −1 −1
−1 −1 −1
−1 −1 −1

X = O

has general solution

X = s

−1
1
0

+ t

−1
0
1


where s and t are arbitrary numbers. Hence there are two basic solutions

X2 =

−1
1
0

 and X3 =

−1
0
1


corresponding to λ2 = −1.

Step 3. Since there are three eigenvectors, X1, X2 and X3, we can deduce
that A is diagonalizable.

Step 4. If we take

P =
(
X1 X2 X3

)
=

1 −1 −1
1 1 0
1 0 1

 ,

we find that P is invertible and

P−1 =

 1
3

1
3

1
3

− 1
3

2
3 − 1

3
− 1

3 − 1
3

2
3

 .

Thus

P−1AP = diag (2,−1,−1) =

2 0 0
0 −1 0
0 0 −1

 .

In a general case, an eigenvalue λ of a square matrix A is said to have
multiplicity m if it occurs m times as a root of the characteristic polynomial
cA(x). When the homogenous system (λI − A)X = O is solved, any set of
basic solutions is called a set of basic eigenvectors corresponding to λ. Here the
number of basic eigenvectors equals the number of parameters involved in the
solution of the system (λI −A)X = O.

Theorem 5.42 A square matrix A is diagonalizable if and only if it the multi-
plicity of every eigenvalue λ of A equals the number of basic eigenvectors corre-
sponding to λ (which is the number of parameters in the solution of (λI−A)X =
O).
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In this case, the basic solutions of the system (λI−A)X = O become columns
in the invertible diagonalizing matrix P such that P−1AP is diagonal.

Since for each eigenvalues there is at least a basic eigenvector, we have the
following immediate consequence of the previous theorem.

Corollary 5.43 If A is a n × n-matrix with n distinct eigenvalues, then A is
diagonalizable.

A good example which illustrate an application of diagonalization is given
in the following example.

Example 5.44 Let us compute A100 for

A =

1 1 1
0 2 −1
0 −3 0

 .

As we have already seen in Example 5.34, the matrix A has eigenvalues

λ1 = 1, λ2 = −1 and λ3 = 3,

with corresponding eigenvectors

X1 =

1
0
0

 , X2 =

−2
1
3

 and X3 =

 0
−1
1

 .

A diagonalizing matrix for A is thus given by the invertible matrix

P =

1 −2 0
0 1 −1
0 3 1


having inverse

P−1 =

1 1
2

1
2

0 1
4

1
4

0 − 3
4

1
4

 .

We thus have

A = P

1 0 0
0 −1 0
0 0 3

P−1.
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Thus, using Theorem 5.33, we have

A100 = P

1 0 0
0 −1 0
0 0 3

100

P−1

= P

1 0 0
0 1 0
0 0 3100

P−1

=

1 −2 0
0 1 −1
0 3 1

1 0 0
0 1 0
0 0 3100

1 1
2

1
2

0 1
4

1
4

0 − 3
4

1
4


=

1 0 0

0 1+3101

4
1−3100

4

0 3−3101

4
3+3100

4

 .

Example 5.45 Let us consider the matrix

A =

3 −4 2
1 −2 2
1 −5 5

 .

We can computeA20 (to do so we need first to diagonalize the matrix). (Exercise)

5.8 Similar matrices
Let us consider two square matrices A and B of the same size. We say that A
and B are similar if

B = P−1AP

for some invertible matrix P . When this is the case, we write A ∼ B.
Using this terminology, we can say that a square matrix A is diagonalizable

if and only if it is similar to a diagonal matrix.
Here are some simply properties of similarity.

Proposition 5.46 Let A,B,C ∈Mn,n (R).

1. A ∼ A for all square matrix A.

2. If A ∼ B then B ∼ A.

3. If A ∼ B and B ∼ C, then A ∼ C.

Proof.

• The first point is clear since A = I−1AI, and I is invertible.

• If A ∼ B then there exists an invertible matrix P such that B = P−1AP .
Thus A = PBP−1, with P−1 invertible. That is, B ∼ A.
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• Let P and Q be two invertible matrices such that B = P−1AP and C =
Q−1BQ. Thus

C = Q−1
(
P−1AP

)
Q =

(
Q−1P−1

)
A (PQ) = (PQ)

−1
A (PQ) ,

with PQ invertible. Hence A ∼ C.

The properties in the previous proposition are often expressed by saying that
the similarity relation ∼ is an equivalente relation on the set of n× n-matrices.

Proposition 5.47 Let A,B be two square matrices such that A ∼ B. Then

1. A−1 ∼ B−1.

2. AT ∼ BT .

3. Ak ∼ Bk for all k ≥ 0.

Example 5.48 Let A,B be two square matrices such that A ∼ B. If A is
diagonalizable, then B is also diagonalizable. (Exercise)

Following the previous example, it is possible to prove that if A is diago-
nalizable, then so are also the matrices AT , A−1 (if it exists) and Ak for all
k ≥ 0.

The following theorem easily follows from the Product Theorem and the
Diagonalization Algorithm.

Theorem 5.49 Let A,B be two similar matrices. Then

1. det (A) = det (B).

2. cA(x) = cB(x).

3. A and B have the same eigenvalues.

Example 5.50 Let

A =

0 1 1
1 0 1
1 1 0

 .

Then cA(A) = 0.
Indeed, we saw in Example 5.41 that the characteristic polynomial is

cA(x) = (x− 2)(x+ 1)2

When we evaluate this polynomial at A, we obtain cA(A) = (A− 2I)(A+ I)2.
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Let us prove that this evaluation equals wero. Recall from Example 5.41
that A = PDP−1 with

P =

1 −1 1
1 1 0
1 0 1

 and D =

2 0 0
0 −1 0
0 0 −1

 .

So
cA(A) = (A− 2I) (A+ I)

2

=
(
PDP−1 − 2I

) (
PDP−1 + I

)2
=

(
PDP−1 − 2PIP−1

) (
PDP−1 + PIP−1

)2
=

(
P (D − 2I)P−1

) (
P (D + I)P−1

)2
= P (D − 2I)P−1P (D + I)P−1P (D + I)P−1

= P (D − 2I)(D + I)(D + I)P−1

= P

0 0 0
0 −1 0
0 0 −1

3 0 0
0 0 0
0 0 0

2

P−1

= P

0 0 0
0 −1 0
0 0 −1

9 0 0
0 0 0
0 0 0

P−1

= P

0 0 0
0 0 0
0 0 0

P−1

= 0.

We can generalize the previous example in the following importan theorem

Theorem 5.51 (Cayley-Hamilton Theorem) Let A be a square matrix. Thus
cA(A) = 0.
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