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Abstract

A set is called recurrent if its minimal automaton is strongly connected
and birecurrent if it is recurrent as well as its reversal. We prove a se-
ries of results concerning birecurrent sets. It is already known that any
birecurrent set is completely reducible (that is, such that the minimal
representation of its characteristic series is completely reducible). The
main result of this paper characterizes completely reducible sets as linear
combinations of birecurrent sets
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1 Introduction

A recurrent set of words is such that its minimal automaton is strongly con-
nected. A birecurrent set is a recurrent set such that its reversal is also recur-
rent. The recurrent (resp. birecurrent) sets contains the submonoids generated
by prefix (resp. bifix) codes. The automata recognizing birecurrent are a gen-
eralization of well known families of automata such as group automata. There
are more general sets and the general form of birecurrent sets does seem easy
to describe.

Our interest in birecurrent sets is motivated by their relation with completely
reducible sets put in evidence in [7]. Indeed, it is shown in [7] that the syntac-
tic representation of the characteristic series of a birecurrent set is completely
reducible. This generalizes the result of Reutenauer [10] which proves that the
complete reducibility holds for the submonoid generated by a bifix code.

Our main result characterizes completely reducible sets as linear combina-
tions of birecurrent sets (Theorem 4.3.4). We also prove a number of other
results concerning birecurrent sets, and in particular birecurrent sets of finite
type, which are a generalization of the submonoids generated by finite bifix
codes.

The paper is organized as follows.
We first give in Section 2 a number of definitions concerning words, automata

and formal series.
We introduce recurrent and birecurrent sets in Section 3. In Section 3.2

we prove a result which characterizes the minimal automata of birecurrent sets
(Theorem 3.2.1). This result extends a property proved in [7] and allows to con-
struct directly birecurrent automata by choosing an appropriate set of terminal
states of a strongly connected deterministic automaton.

In Section 3.3, we define birecurrent sets of finite type. A recurrent set S is of
the form S = X∗P where X is a prefix code and P a set of proper prefixes of X .
Thus a birecurrent set S has the form X∗P , as above, as well as S = QY ∗ where
Y is a suffix code and Q a set of proper suffixes of Y . We say that S is of finite
type ifX and Y are finite. Thus a birecurrent set of finite type is a generalization
of a submonoid generated by a finite bifix code (which corresponds to the case
where P and Q are reduced to the empty word). We prove a result allowing one
to build birecurrent sets of finite type (Theorem 3.4.2).

In Section 3.6, we define the degree and the index of a dense birecurrent set.
We prove that the density of a dense birecurrent set with respect to a positive
Bernoulli distribution is the inverse of its index (Theorem 3.6.2).
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In Section 3.7, we prove that if a recognizable maximal prefix code is in-
decomposable, then either it is synchronized, or it is the left root of a dense
birecurrent set (Theorem 3.7.1). We relate this result with an old conjecture of
Schützenberger.

In Section 4, we come to the connection with complete reducibility.
We start in Section 4.1 with an introduction to the linear representations

of formal series. In Section 4.2, we prove a statement (Theorem 4.2.1) which
characterizes completely reducible sets by a property of their syntactic monoid.
We derive from this result several corollaries and, in particular, the main result
of [7] asserting that a birecurrent set is completely reducible.

We then present in Section 4.3 our main result which characterizes com-
pletely reducible sets as linear combinations of birecurrent sets (Theorem 4.3.4).

In Section 5, we consider unambiguous automata. We characterize the un-
ambiguous automata recognizing recurrent sets (Theorem 5.2.1). We derive as
a corollary a characterization of unambiguous automata recognizing birecurrent
sets (Corollary 5.2.2). We also give examples of such automata with an itera-
tion of the construction of Section 3.4, using an argument originally developped
in [15].

Acknowledgements The authors wish to thank for their help several col-
leagues, including Clelia De Felice, Andrew Ryzhikov and the anonymous ref-
eree.

2 Preliminaries

We recall briefly some terminology about words, automata and, in some more
detail, formal series. We refer to [2] or [11] for undefined terms.

2.1 Words

Let A be a finite alphabet and let A∗ be the free monoid over A. The elements
of A∗ are called words and the subsets of A∗ formal languages. We denote by ε
the empty word.

The reversal of a word w = a1 · · · an is the word w̃ = an · · · a1. By extension,
the reversal of X ⊂ A∗ is the set X̃ = {w̃ | w ∈ X}.

For u ∈ A∗ and X ⊂ A∗, we denote u−1X = {v ∈ A∗ | uv ∈ X}. Symmetri-
cally, we denote Xv−1 = {u ∈ A∗ | uv ∈ X}.

A set S ⊂ A∗ is said to be dense in A∗ if for any word v ∈ A∗, there are
words u,w ∈ A∗ such that uvw ∈ S. A set which is not dense is said to be thin.

A set S ⊂ A∗ is said to be right dense in A∗ if for any v ∈ A∗, there is
w ∈ A∗ such that vw ∈ S.
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2.2 Automata

We denote by A = (Q, I, T ) an automaton with Q as set of states, I as set of
initial states and T as set of terminal states, given by a set of edges which are
triples (p, a, q) ∈ Q×A×Q. The automaton is said to be finite if Q is finite.

The set recognized by the automaton A = (Q, I, T ) is the set of labels of
paths from I to T . A set is recognizable if it can be recognized by a finite
automaton.

The automaton A = (Q, I, T ) is deterministic if I = {i} and for each p ∈ Q
and a ∈ A there is at most one edge (p, a, q). For p ∈ Q and a ∈ A, we denote
by p ·a the unique state q such that there is an edge from p to q labeled a. Thus,
the set recognized by A is the set of words w such that i · w ∈ T . We denote
A = (Q, i, T ) and (Q, i, t) if T = {t}.

The minimal automaton of a set X ⊂ A∗ is the deterministic automaton
having for states the nonempty sets u−1X for u ∈ A∗, with X as initial state
and the family {u−1X | u ∈ X} as terminal states.

An automaton A = (Q, I, T ) is trim if for any q ∈ Q there are words u, v
such that there is a path from I to q labeled u and a path from q to T labeled
v.

A deterministic automaton A = (Q, i, T ) on the alphabet A is complete if
for any q ∈ Q and any a ∈ A one has q · a 6= ∅. A set S ⊂ A∗ is right dense if
and only if its minimal automaton is complete.

For a deterministic automaton A = (Q, i, T ) and a word w, we denote by
ϕA(w) the map q 7→ q · w from Q into Q. The monoid MA = ϕA(A

∗) is the
transition monoid of the automaton A. For m ∈ MA, denote pm = q if the
image of p by m is q, or equivalently if m = ϕA(w) and p ·w = q. Similarly, for
S ⊂ Q, we denote mS = {p ∈ Q | pm ∈ S}.

The rank of a word w is the rank of the map ϕA(w), that is the cardinality
of the set {p ·w | p ∈ Q}. When A is a strongly connected finite automaton, the
image by ϕA of the set of words of minimal nonzero rank is, together with 0, the
unique 0-minimal ideal J of the monoid ϕA(A

∗). It is the union of all 0-minimal
right (resp. left) ideals. It is formed of 0 and a regular D-class (see [2, Corollary
1.12.10]). Each H-class of J which is a group is a transitive permutation group
on the common image of its elements (see [2, Theorem 9.3.10]).

Let A = (Q, i, T ) be a deterministic automaton. The domain of a word w,
denoted Dom(w), is the set w ·Q, that is, the set of q ∈ Q such that q · w 6= ∅.
The kernel of a word w is the partial equivalence on Dom(w) defined by p ≡ q
if p · w = q · w.

The degree of a strongly connected deterministic automaton A, denoted
d(A), is the minimal nonzero rank of all words. The automaton is synchronized
if its degree is 1.

Example 1 Let A be the automaton represented in Figure 2.1. The word b is
synchronizing since it has rank 1. The 0-minimal ideal of the monoid ϕA(A

∗)
is represented in Figure 2.2. We represent the D-class by an array in which the
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1 2

a

b

a

Figure 2.1: A synchronized automaton.

1 2

1, 2 * a *ab

1 *ba b

Figure 2.2: The 0-minimal ideal of ϕA(A
∗) in Example 1.

rows are the R-classes and the columns are the L-classes. An H-class containing
an idempotent is indicated by a ∗.

2.3 Prefix and bifix codes

A set X ⊂ A+ is a prefix code if no word in X is a proper prefix of another
word in X . The set X is a bifix code if X and X̃ are prefix codes.

Let X ⊂ A+ be a prefix code. The literal automaton of X∗ is the determin-
istic automaton A = (Q, ε, ε) where Q is the set of proper prefixes of X and for
q ∈ Q and a ∈ A, one has

q · a =






qa if qa ∈ Q

ε if qa ∈ X

∅ otherwise.

It is a strongly connected deterministic automaton recognizing X∗.
The degree d(X) of a prefix code X is the degree of the minimal automaton

of X∗. The prefix code X is said to be synchronized if d(X) = 1.

Example 2 The automaton of Example 1 is both the minimal and the literal
automaton of X∗ where X is the synchronized prefix code {a, ba}.

2.4 Formal series

Let K be a field. A formal series on the alphabet A with coefficients in K is
a map σ : A∗ → K. We denote by K〈〈A〉〉 the algebra of these series. For
w ∈ A∗, we denote by (σ,w) the value of σ on w. We denote by K〈A〉 the
corresponding ring of polynomials, which are the series with a finite number of
nonzero coefficients.
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We denote by S the characteristic series of a set S ⊂ A∗.
Let n ≥ 0 be an integer. Let λ be a row n-vector, let µ be a morphism from

A∗ into the monoid of n× n-matrices and let γ be a column n-vector, all with
coefficients in K. The triple (λ, µ, γ) is called a linear representation. It is said
to recognize a series σ if for every w ∈ A∗, one has

(σ,w) = λµ(w)γ. (2.1)

Equivalently, one can define a linear representation as a triple (λ, µ, γ) formed,
for some vector space V , of a vector λ ∈ V , a morphism µ : A∗ → End(V ) and
a linear form γ on V such that Equation (2.1) holds for every w ∈ A∗. The
vector λ is called the initial vector. The endomorphism µ(w) and the linear
form γ act on the right of their argument and thus the expression λµ(w)γ in
Equation (2.1) is read parenthesized from left to right as (λµ(w))γ. It can also
be parenthesized from right to left considering µ(w) as the endomorphism of
the dual V ′ of V defined by the formula ℓ(µ(w)c) = (ℓµ(w))c.

3 Birecurrent sets

In this section, we define birecurrent sets and prove some elementary properties.
We prove a characterization (Theorem 3.2.1) which is used in the next section.
A recognizable set is recurrent if its minimal automaton is strongly connected.

Clearly, a recognizable set is recurrent if and only if it recognized by a
strongly connected deterministic automaton. Indeed, if A is a strongly con-
nected deterministic automaton recognizing X , then the minimal automaton of
X is also strongly connected.

As a simple and well known example, for any recognizable prefix code X ,
the submonoid X∗ generated by X is recurrent.

A recognizable set is birecurrent if X and its reversal X̃ are both recurrent.
Thus, for example, the submonoid X∗ generated by a bifix code is a bire-

current set.
As a related example, let us consider a reversible automaton, that is a de-

terministic automaton such that every letter defines an injective map on the set
of states. This class of automata has been considered frequently (see for exam-
ple [1], [9] or [8]). The reversal of a reversible automaton A is still deterministic
and thus the set recognized by a strongly connected reversible automaton is
birecurrent.

The two examples of submonoids generated by bifix codes and of sets rec-
ognized by strongly connected reversible automata partially overlap. Indeed, if
A = (Q, i, i) is a reversible automaton with a unique terminal state equal to
the initial state, the set recognized by A is a submonoid generated by a bifix
code. However, there are many examples of submonoids generated by bifix codes
which are not recognizable by a reversible automaton (see for instance the bifix
code of Example 11).

We will see that there are many other examples of birecurrent sets.
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We begin by recalling some basic and well-known facts concerning the re-
versal of an automaton.

3.1 Reversal of an automaton

Let A = (Q, I, T ) be an automaton. The reversal of A is the automaton Ã =
(Q, T, I) obtained by reversing the edges of A and exchanging I and T . Clearly,
the reversal of A recognizes the reversal X̃ of the set X recognized by A.

For an automaton A = (Q, I, T ), we denote by Aδ the determinization of

A. Its states are the nonempty sets I ·w = {q ∈ Q | i
w
→ q for some i ∈ I}. The

initial state is I and the set of terminal states is the family of states U of Aδ

such that U ∩ T 6= ∅.
The deterministic reversal of A is the automaton Ãδ obtained by deter-

minization of the reversal of A. We denote by Q̃ the set of states of Ãδ. Thus
Q̃ is the family of nonempty sets of the form

w · T = {q ∈ Q | q
w
→ t for some t ∈ T}.

The set of terminal states of Ãδ is {U ∈ Q̃ | I ∩ U 6= ∅}. Clearly, Ãδ recognizes
the reversal of the set recognized by A.

The following statement is well known (see [5] p. 48).

Proposition 3.1.1 If A is a trim deterministic automaton recognizing X, then
Ãδ is the minimal automaton of X̃.

Proof Since A is trim, for any word w, one has w·T 6= ∅ if and only if Xw−1 6= ∅.
Moreover, for any w,w′ ∈ A∗, one has

w · T = w′ · T ⇔ Xw−1 = Xw′−1

as one may easily verify. Since the nonempty sets Xw−1 are the reversals of the
states of the minimal automaton of X̃, the map w · T 7→ w̃−1X̃ is a bijection
which identifies Ãδ with the minimal automaton of X̃.

It follows from Proposition 3.1.1 that if A is the minimal automaton of a
recognizable set X , then X is birecurrent if and only if A and Ãδ are strongly
connected.

3.2 A characterization of birecurrent sets

The following statement characterizes birecurrent sets. One direction appears
as [7, Proposition 5.7].

We say that a set S ⊂ Q is saturated by a word w if S is a union of classes
of the kernel of w. Note that S is saturated by w if and only if S = w · U for
some U ⊂ Q.
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Theorem 3.2.1 Let S be a recurrent set and let A = (Q, i, T ) be its minimal
automaton. Then S is birecurrent if and only if T is saturated by a word of
minimal nonzero rank.

Proof Let us first show that the condition is necessary. Let v be a word of
nonzero minimal rank such that i ·v ∈ T . Since v ·T 6= ∅ and since Ãδ is strongly
connected, there is a word u such that (uv) ·T = T . Thus T is saturated by uv.

Conversely, set ϕ = ϕA, M = MA and let J be the 0-minimal ideal of
M . Assume that T is saturated by a word x of minimal nonzero rank. Then
ϕ(x) ∈ J . Let u be a word such that u · T 6= ∅. We have to show that there is a
word w such that (wu) · T = T . This will prove that T is accessible from u · T
in Ã, which implies that Ãδ is strongly connected.

Since u · T 6= ∅, we have ϕ(ux) 6= 0. Since ϕ(x) ∈ J , the left ideal generated
by ϕ(x) is 0-minimal. Thus ϕ(ux) is in the L-class of x. Let v be a word such
that ϕ(vux) = ϕ(x). Since ϕ((vu)nx) = ϕ(x) for all n ≥ 1, the idempotent
e which is a power of ϕ(vu) is such that eϕ(x) = ϕ(x). Since T is saturated
by x, there is a set U such that T = x · U . Then eT = e(x · U) = eϕ(x)U =
ϕ(x)U = T . Finally, let m be such that e = ϕ(vu)m and let w = (vu)m−1v.
Then (wu) · T = eT = T and the proof is complete.

Note that if the minimal automaton A = (Q, i, T ) of a birecurrent set S is
complete and synchronized, then A is the trivial automaton with only one state
and S = A∗. This can of course be proved directly, but it follows easily from
the characterization above. Indeed, in this case, T is saturated by a word of
minimal rank if and only if T = Q, which implies the conclusion S = A∗.

Theorem 3.2.1 gives a method to find birecurrents sets starting with a stongly
connected automaton with an uspecified set of terminal states. Provided one
knows a word x of minimal nonzero rank, one may choose as set of terminal
states a set saturated by x and finally minimize the resulting automaton.

However, this does not give a substantially more efficient algorithm than
the computation of the deterministic reversal. Indeed, it is shown in [12] that
deciding whether a partial automaton is strongly connected as well as its deter-
ministic reversal is PSPACE-complete.

The following examples illustrate Theorem 3.2.1.

Example 3 The automaton represented in Figure 3.1 on the left and its deter-
ministic reversal on the right are both strongly connected. In agreement with

1 2

a

b

a

1 1, 2

1 2

a

a

b
Figure 3.1: A deterministic automaton and its deterministic reversal.
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Theorem 3.2.1, the set T = {1} of terminal states of the first automaton is the
preimage of b, which has rank 1.

We give a second example with a minimal rank larger than 1.

Example 4 Consider the complete deterministic automaton A given in Fig-
ure 3.2 on the left with its deterministic reversal represented on the right. The

1 2

34

a

b
a, b

a

b
a, b

1, 2

2, 3 3, 4

1, 4

a, b
b

a

a, b
b

a

Figure 3.2: The automata A and Ãδ in Example 4.

0-minimal ideal of the monoid ϕA(A
∗) is represented in Figure 3.3. We can

check that the set T = {1, 2} is a class of the kernel of b, which is a word of
minimal rank equal to 2.

1/3 2/4

1, 2/3, 4 * b * ba

1, 4/2, 3 * ab *aba

Figure 3.3: The 0-minimal ideal of ϕA(A
∗) in Example 4.

In the last example, we show a simple case in which T is a union of several
classes of the kernel of a word of minimal nonzero rank.

Example 5 Let A be the deterministic automaton on Q = {1, 2, 3} and with
A = {a} where a is the circular permutation (123). Choosing i = 1 and T =
{1, 2}, we obtain for Ãδ the automaton on the set of states {{1, 2}, {1, 3}, {2, 3}}
on which a acts again as a circular permutation. Thus Ãδ is strongly connected
(see Figure 3.4). Actually, this holds for any strongly connected group automa-
ton.

3.3 Birecurrent sets of finite type

In this section, we define birecurrent sets of finite type and in the next sec-
tion, we prove a statement which allows to build an infinite family of such sets
(Theorem 3.4.2). We first prove the following elementary statement concerning
recurrent sets.
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1

2

3

a

a

a

1, 2

1, 3

2, 3

a

a

a

Figure 3.4: The automata A and Ãδ in Example 5.

Proposition 3.3.1 A set S ⊂ A∗ is recurrent if and only if there is a recog-
nizable prefix code X and a recognizable set P of proper prefixes of X such that
S = X∗P .

Proof Assume first that S is recurrent. Let A = (Q, i, T ) be the minimal
automaton of S. Let X be the prefix code generating the submonoid recognized
by the automaton (Q, i, i) and let P be the set of proper prefixes p of X such
that i · p ∈ T . Then S = X∗P .

Conversely, let A = (Q, ε, ε) be the literal automaton of X∗. Recall from
Section 2 that Q is the set of proper prefixes of X and that A recognizes X∗.
Then S is recognized by the automaton (Q, ε, P ) which is a strongly connected
automaton. Moreover, since X and P are recognizable, S is recognizable. Thus
S is recurrent.

A pair (X,P ) as above is called a decomposition of the recurrent set S. The
prefix code X obtained as above using the minimal automaton of S is called the
left root of S.

Note that a recurrent set has in general several decompositions. However,
the left root X of S is such that for any such pair (X ′, P ′), we have X ′ ⊂ X∗,
that is the submonoid X∗ is maximal for this property. Indeed, let (Q′, ε, ε) be
the literal automaton of X ′∗. Then A′ = (Q′, ε, P ′) recognizes S and thus there
is a reduction from A′ onto the minimal automaton (Q, i, P ) of S which sends
ε to i. The image by this reduction of a path in A′ from ε to ε is a path in A
from i to i and thus X ′ ⊂ X∗.

Proposition 3.3.2 The left root of a recurrent set S is finite if and only if S
has a decomposition (X,P ) with X finite.

Proof Let (X,P ) and (X ′, P ′) be two decompositions of a recurrent set S with
X the left root of S. Assume that X ′ is finite.

Any word of X is a prefix of a word in X ′. Indeed, let x ∈ X and let p be
some element of P . Then xp = x′p′ with x′ ∈ X ′∗ and p′ ∈ P ′. Thus x is a
prefix of a word in X ′∗. Since X ′ ⊂ X∗, this implies that x is a prefix of a word
in X ′. This shows that the length of x is bounded by the maximal length of the
words in X ′. Therefore X is finite.

The other implication is clear.
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For a birecurrent set S, we have

S = X∗P = QY ∗ (3.1)

where Ỹ is the left root of S̃ and Q is a set of proper suffixes of Y . The suffix
code Y is called the right root of S. When S is the submonoid generated by a
bifix code X , then X is the left root of S and X̃ is its right root.

We say that a birecurrent set S is of finite type if its left and right roots are
finite.

For example, for every finite bifix code X , the set S = X∗ is a birecurrent
set of finite type.

On the contrary, the birecurrent set of Example 3 is not of finite type (see
Example 8).

We give two examples of birecurrent sets of finite type. The first one is
Example 4. Recall from Section 2 that Y denotes the characteristic series of a
set Y ⊂ A∗. Note that when (X,P ) is a decomposition of a recurrent set S, we
have S = X∗P . Indeed, since X is a prefix code, we have M = (X)∗ for the
submonoidM = X∗ and S =M P because the product (M,P ) is unambiguous
(see [2]).

Example 6 The birecurrent set S of Example 4 is of finite type. Indeed, its
left root is the finite prefix code X = Z2 with Z = aA ∪ b and its right root
is the finite suffix code X̃ . One has S = X∗P = PX̃∗ with P = {ε, a}. One
has actually S = S̃. This can be checked by comparing the two automata
of Figure 3.2 or directly by observing that Z = a2 + (1 + a)b implies that
Z(1 + a) = (1 + a)Z̃, whence X∗P = PX̃∗ since P = 1 + a.

The second example is Example 3.6.13 in [2].

Example 7 Let A = (Q, i, T ) be the automaton given by Table 3.1 with i = 1
and T = {1, 6}. The minimal rank is equal to 3 as one may check by computing

1 2 3 4 5 6 7 8 9
a 2 3 1 1 3 8 9 3 1
b 4 6 7 5 1 4 1 5 1

Table 3.1: The transitions of the automaton A in Example 7.

the minimal images which are {1, 2, 3}, {4, 6, 7}, {1, 4, 5} and {1, 8, 9}. The set
{1, 6} is a class of the kernel of a2 which has image {1, 2, 3} and thus minimal
rank. The automaton Ãδ is thus strongly connected by Theorem 3.2.1 and the
set S recognized by A is birecurrent. The left root of S is the finite maximal
prefix code represented in Figure 3.5 as the set of leaves of a binary tree. In
this figure, as in the following ones, we represent words on the alphabet {a, b}
by nodes of a binary tree. The edges going up are labeled a, those going down
are labeled b.
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1

2

3

7

9

6

8

3

7

9

5

3

7

9

4

5

3

7

9

4

5

3

7

9

Figure 3.5: The left root of the set S i Example 7.

1 2 3 4 5 6 7 8 9

1, 6 3, 4, 9 2, 5, 7, 9 2, 5, 7, 8 1, 7 3, 4, 8 3, 5, 7, 9 2, 5, 6, 8 2, 4, 8

Table 3.2: The states of Ãδ in Example 7.

The deterministic reversal of A has the set of states represented in Table 3.2.

The transitions of Ãδ are given in Table 3.3. The reversal Ỹ of the right

1 2 3 4 5 6 7 8 9

a 2 4 5 1 2 8 4 1 1

b 3 1 6 6 7 1 6 9 1

Table 3.3: The transitions of the automaton Ãδ in Example 7.

root of S is represented in Figure 3.6.
Since Ỹ is finite, S is a birecurrent set of finite type.

We give now two examples of birecurrent sets such that the left root is finite
but the right root is infinite and thus which are not of finite type.

Example 8 Consider again the set S recognized by the automaton of Figure 3.1
on the left with its deterministic reversal on the right (Example 3). The left
root of S is {a, ba} and thus it is finite. However, the right root of S is ba+ and
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Figure 3.6: The reversal of the right root of the set S in Example 7.

it is infinite. Note that the two factorizations of S correspond to the identity

{a, ba}∗ = a∗(ba+)∗

which is itself a particular case of the sumstar identity (x+ y)∗ = x∗(yx∗)∗.

In the second example, the birecurrent set S is dense.

Example 9 Consider the finite maximal prefix code X = {aa, aba, abb, b}2.
The minimal automaton of X∗ is given by its transitions in Table 3.4 on the
left with 1 as initial and terminal state.

1 2 3 4 5 6
a 2 3 4 1 3 1
b 3 5 1 6 3 1

1 2 3 4 5 6

a 2 4 1 6 4 1

b 3 4 5 5 3 1

Table 3.4: The transitions of A and Ãδ in Example 9.

The word ab2 has minimal rank 2 and its kernel is {1, 2, 5}, {3, 4, 6}. Keeping
the same initial state and taking T = {1, 2, 5}, we obtain a deterministic au-
tomaton A recognizing the set S = X∗P with P = {ε, a, ab}. The set of states
of Ãδ is given in Table 3.5. Its transitions are given in Table 3.4 on the right.
The right root of S is the maximal suffix code Ỹ where Y ∗ is the submonoid
recognized by Ãδ with 1 as initial and terminal state. Since, in Ãδ, there is a

loop 3
b
→ 5

b
→ 3, the code Y is infinite.
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1 2 3 4 5 6

1, 2, 5 1, 4, 6 2, 3, 6 3, 4, 6 1, 4, 5 2, 3, 5

Table 3.5: The states of Ãδ in Example 9.

3.4 A construction of birecurrent sets of finite type

Examples 6 and 7 are particular cases of a general construction that we now
describe. Let Z ⊂ A+ be a set of words. A word x ∈ Z is said to be a pure
square for Z if x = w2 for some w ∈ A+ and if Z ∩ wA∗ ∩ A∗w = {x}. The
following result is [2, Exercise 14.1.9 (a)].

Proposition 3.4.1 If Z is a finite maximal prefix code and if w2 is a pure
square for Z, then, denoting G = Zw−1 and D = w−1Z, the expression

(1 + w)(Z − 1 + (G− 1)w(D − 1)) + 1 (3.2)

is the characteristic polynomial of a finite maximal prefix code. Moreover, the
expression

(Z − 1 + (G− 1)w(D − 1))(1 + w) + 1 (3.3)

is the characteristic polynomial of a finite maximal code.

The prefix code defined by Equation (3.2) is denoted δw(Z). The maximal code
defined by Equation (3.3) is denoted γw(Z). If Z is bifix, then γw(Z) is a suffix
code since γw(Z) is the reversal of δw̃(Z̃).

Theorem 3.4.2 Let Z ⊂ A+ be a finite maximal bifix code and let x = w2 be a
pure square for Z. The set S = δw(Z)

∗{ε, w} is a dense birecurrent set of finite
type.

Proof Set X = δw(Z) and Y = γw(Z). Observe that, by defintion of δw(Z) and
γw(Z),

(1 + w)(Y − 1) = (1 + w)(Z − 1 + (G− 1)w(D − 1))(1 + w)

= (X − 1)(1 + w).

Thus, multiplying on the left by X∗ and on the right by Y ∗, we obtain X∗(1 +
w) = (1 + w)Y ∗. This shows that S = X∗{ε, w} = {ε, w}Y ∗.

Since S = X∗{ε, w}, the set S is recurrent by Proposition 3.3.1 and its left
root is finite by Proposition 3.3.2.

Similarly, since S = {ε, w}Y ∗, the set S is birecurrent. Since Y finite, the
right root of S is also finite. Thus S is birecurrent of finite type.

Since X is a maximal prefix code, the submonoid X∗ is right dense. Thus
S is right dense.

14



Observe that if R is the set of proper prefixes of Z and U the set of proper
prefixes of D, the characteristic polynomial of the set P of proper prefixes of
X = δw(Z) is

P = (1 + w)(R + (G− 1)wU). (3.4)

Indeed, since Z,X and D are maximal prefix codes, we have Z − 1 = R(A− 1),
X − 1 = P (A − 1) and D − 1 = U(A− 1). Thus Equations (3.2) and (3.4) are
equivalent.

In the next two examples, we show that Examples 6 and 7 can be obtained
by the contruction decribed in Theorem 3.4.2.

Example 10 Let S be the birecurrent set of Example 4. We have seen in
Example 6 that S = X∗P with X = (aA∪ b)2 and P = {ε, a}. We obtain X as
in Theorem 3.4.2 using Z = A2 and x = a2. Indeed, we have G = D = A and
thus Equation (3.4) gives

(1 + a)(1 + a+ b+ (a+ b− 1)a) = (1 + a)(1 +Aa+ b) = (1 + aA+ b)(1 + a)

which is the characteristic polynomial of the set of proper prefixes of X .

Example 11 Let S be the birecurrent set of Example 7. We start from the
finite maximal bifix code

Z = {aaa, aab, abaa, abab, abb, ba, bbaa, bbab, bbb}

which is represented in Figure 3.7 on the left with its reversal on the right.

Figure 3.7: The bifix code Z and its reversal Z̃ in Example 11.

The word x = w2 with w = ab is a pure square for Z. We haveG = {a, ab, bb}
and D = {aa, ab, b}.

The set R of proper prefixes of Z is R = {ε, a, b, aa, ab, bb, aba, bba} and the
set U of proper prefixes of D is U = {ε, a}.

The setR is represented in Figure 3.8 on the left, the setR\wU is represented
in the middle, and the set Q = (R \ wU) ∪ GwU on the right (the white nodes
being not in the set).

Finally, the set P = {ε, w}Q is represented in Figure 3.9 (with the nodes of
Q in black and those of wQ in red). By Equation (3.4), it is the set of proper
prefixes of the maximal prefix code X = δw(Z) represented in Figure 3.5.
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Figure 3.8: The sets R, R \ wU and Q = (R \ wU) ∪GwU in Example 11.

Figure 3.9: The set P = {ε, w}Q in Example 11.

Theorem 3.4.2 gives an infinite family of examples of birecurrent sets of finite
type which are not submonoids generated by a bifix code. Indeed, for any even
n ≥ 1, the word an is a pure square for the bifix code An.

3.5 Multiple factorizations of noncommutative polynomi-

als

Let S be a dense birecurrent set of finite type. Then S = X∗P = QY ∗ where
X (resp. Y ) is a finite maximal prefix code (resp. a finite maximal suffix code).
Since all products are non ambiguous, we have the equality

(1 −X )Q = P (1− Y ). (3.5)

Let J be the set of proper prefixes of X and let K be the set of proper suffixes
of Y . Then

1−X = J (1−A ), 1− Y = (1−A )K . (3.6)

Combining Equations (3.5) and (3.6), we obtain

J (1−A )Q = P (1−A )K . (3.7)
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We conjecture that, with the above notation there exist sets M,N ⊂ A∗

such that

J = P M , K = N Q , M (1 −A ) = (1− A )N (3.8)

This is true when S is generated by a maximal bifix code and when it is obtained
by the construction of Section 3.4. Indeed, in this case, we have P = Q = 1+w
and by Equation (3.4)

J = (1 + w)(PZ + (G − 1)wPD )

and
K = (1 + w)(SZ + (SG − 1)w(D − 1)).

where PZ , PD denote the set of proper prefixes of Z,D and SZ , SG denote the
set of proper suffixes of Z,G. Thus J = P M with M = PZ + (G − 1)wPD

and K = N Q with N = SZ + (SG − 1)w(D − 1). Moreover M (A − 1) =
Z − 1 + (G − 1)w(D − 1) = (1−A )N .

A weak form of this conjecture is proved in [4, Theorem 3.1].

3.6 Degree of a dense birecurrent set

Let S be a dense birecurrent set. We define its degree as the degree of its
minimal automaton. Recall from Section 2 that the degree d(X) of a prefix
code X is, by definition, the degree of the minimal automaton of X∗. Thus the
degree of a dense birecurrent set is the degree of its left root (this is true even
if the minimal automaton of X∗ is a quotient of the minimal automaton of S,
see [2, Proposition 9.5.2]).

Thus, when S = X∗ with X a maximal bifix code, the degree of S is the
degree of X .

Note that the degree of the right root may be different from the degree of
the left root, and thus of the degree of the reversal, as shown in the following
example.

Example 12 Let S be the dense birecurrent set recognized by the automaton
A represented in Figure 3.10 on the left. The automaton Ãδ is represented on
the right. The degree of S is 4 since the transition monoid of A is the symmetric
group S4 on 4 elements. But the degree of the right root of S is 6 since the
transition monoid of the automaton Ãδ is a representation of S4 on 6 elements.

Let S be a dense birecurrent set of degree d and let A = (Q, i, T ) be its
minimal automaton. By Theorem 3.2.1, the set T is saturated by a word w of
minimal rank. The rank of w is by definition the degree d of S. Let k ≥ 1 be
the number of classes of the kernel of w whose union is T . We define the index
of a dense birecurrent set, denoted i(S), as the rational number d/k.

Since 1 ≤ k ≤ d, we have 1 ≤ i(S) ≤ d.
Note that the index does not depend on the choice of the word w. Indeed,

since S is dense, any minimal image (that is the image of a word of minimal
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Figure 3.10: The automata A and Ãδ in Example 12.

rank) is a set of representatives of any kernel of a word of minimal rank and
thus k is the number of elements of T in each minimal image.

When S = X∗ with X a maximal bifix code, the index of S is the degree of
X .

Example 13 Let S be the dense birecurrent set of Example 12. Since the
degree of S is 4, since ϕA(A

∗) is a group and since Card(T ) = 2, we have
i(S) = 2.

Example 14 Let S be the birecurrent set of Example 5. Then i(S) = 3/2.

Proposition 3.6.1 Let S be a dense birecurrent set and let A be the minimal
automaton of S. Then for every H-class H of the minimal ideal of ϕA(A

∗), one
has

i(S) = Card(H)/Card(H ∩ ϕA(S)). (3.9)

Proof Set A = (Q, i, T ) and let d be the degree of S. Let x be a word of rank
d which saturates T . Let H be the H-class of x and let k be the number of
classes of the kernel of x whose union is T . Let I be the common image of
the elements of H . Since I is a system of representatives of the kernel of x, it
contains k elements of T . Let j be the element of I such that ih = jh for every
h ∈ H . Then, for every h ∈ H , one has ih ∈ T if and only if jh ∈ T . Thus
the set H ∩ ϕA(S) is a union of k cosets of the subgroup of H fixing j. Thus
Card(H ∩ ϕA(S)) = kCard(H)/d = Card(H)/i(S)

Note that, as a consequence, the index of a dense birecurrent set and of its
reversal are the same (contrary to the degree). Indeed, the monoids ϕA(A

∗)
and ϕÃ(A

∗) are antiisomorphic and antiisomorphic groups are isomorphic.
By Equation (3.9), the index of a birecurrent set is a measure of its size.

We will make this idea more precise using probabilities. We begin with some
definitions on Bernoulli distributions (see [2] for more details).

Let π be a positive Bernoulli distribution on A∗. By definition, π is a
morphism from A∗ into the interval ]0, 1] such that

∑
a∈A π(a) = 1. For S ⊂ A∗,

we denote by π(S) the (possibly infinite) sum
∑

x∈S π(x).
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For any code, one has π(X) ≤ 1 and when X is a thin maximal code, one
has π(X) = 1 (see [2, Theorem 2.5.19]). Moreover, if X is prefix, then we have
λ(X) = π(P ) where λ(X) =

∑
x∈X |x|π(x) is the average length of X and where

P is the set of proper prefixes of X (see [2, Corollary 3.7.13]).
The density of a recognizable set S, denoted δ(S) is the Cesaro limit of the

numbers π(S ∩ An). Thus δ(S) = lim 1
n

∑
0≤i<n π(S ∩ Ai). By [2, Theorem

13.2.9], when X is a thin maximal code, we have δ(X∗) = 1/λ(X).
The following result shows that the density of a dense birecurrent set is a

rational number, independent of the Bernoulli ditribution π. This surprising
property was first put in evidence for recognizable bifix codes in [14].

Theorem 3.6.2 The density of a dense birecurrent set is the inverse of its
index.

Proof Let S be a dense birecurrent set and let A be its minimal automaton. Set
ϕ = ϕA and M = ϕ(A∗), and let K be the minimal ideal of M . Let ν = δϕ−1

where δ denotes the density. Then, by [2, Theorem 13.4.7], ν is a probability
measure on the family of subsets of M . Moreover, ν(K) = 1 and for every
m ∈ K, one has

ν(m) =
ν(H)

Card(H)
(3.10)

where H is the H-class of m. Let F denote the family of H-classes of K. Then,
using Proposition 3.6.1,

δ(S) =
∑

m∈ϕ(S)∩K

ν(m)

=
∑

H∈F

Card(H ∩ ϕ(S))
ν(H)

Card(H)

=
1

i(S)

∑

H∈F

ν(H) =
ν(K)

i(S)
=

1

i(S)
.

Theorem 3.6.2 implies the following result for a dense birecurrent set of finite
type.

Corollary 3.6.3 Let S = X∗P be a dense birecurrent set of finite type with left
root X. Then, for any positive Bernoulli distribution π,

λ(X) = i(S)π(P ).

Proof Since S = X∗P , we have δ(S) = δ(X∗)π(P ) by [2, Proposition 13.2.5].
SinceX is a finite maximal prefix code, we have δ(X∗) = 1/λ(X) by [2, Theorem
13.2.9]. Thus, by Theorem 3.6.2 we have λ(X) = π(P )/δ(S) = i(S)π(P ).

Note that when Equation (3.8) holds, we have π(M) = i(S). The fact that π(M)
is a rational number independant of π is itself a consequence of the equation
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M (1−A) = (1−A)N which implies by left Euclidean divisionM = α+(1−A)u
for polynomial u and some scalar α and thus π(M) = α.

By a well-known result, for every d ≥ 1 and any finite alphabet, there is
only a finite number of finite maximal bifix codes of degree d on this alphabet
(see [2, Theorem 6.5.2]). There is no similar property for dense birecurrent sets
of finite type, as shown by the following example.

Example 15 For n ≥ 2, let Z = {an, an−1b, . . . , ab, b}, let X = Z2 and let
P = {ε, a, . . . , an−1}. Then S = X∗P is a birecurent set (the case n = 2 is
Example 4). Indeed, we have Z P = P Z̃ and thus S̃ = P X̃ ∗. The degree of
S is 2 for every n ≥ 1 because (ZP ∪ P )b ⊂ X ∪ Z and thus the rank of b is 2.

3.7 Indecomposable prefix codes

In this section, we relate birecurrent sets with the notion of decomposition of
prefix codes.

A prefix code X ⊂ A∗ is indecomposable if X ⊂ Z∗, with Z ⊂ A∗ a prefix
code, implies Z = A or Z = X . Otherwise X is said to be decomposable over
Z(see [2] for a more detailed presentation).

If X is decomposable over Z, let β : B → Z be a bijection of Z with an
alphabet B, extended to a morphism from B∗ onto Z∗. Then Y = β−1(X) is
a prefix code on the alphabet B. We denote X = Y ◦β Z. The prefix code
X is thin maximal, if and only if Y and Z are also thin maximal prefix codes.
Moreover, one has d(X) = d(Y )d(Z) [2, Proposition 11.1.2]. In particular, X is
synchronized (that is, of degree 1) if and only if Y and Z are synchronised.

We will prove the following result. It singles out two basic building blocks
for recognizable maximal prefix codes: synchronized ones on the one hand, and
left roots of dense birecurrent sets on the other. Note that no nontrivial prefix
code (that is, distinct of the alphabet) can belong to both families.

Theorem 3.7.1 Let X be a recognizable maximal prefix code. If X is inde-
composable, either X is synchronized or it is the left root of a dense birecurrent
set.

To prove Theorem 3.7.1, we introduce the following notion, which plays a role
in the solution of the road coloring problem (see [2, Lemma 10.4.3]).

Let A = (Q, i, T ) be a finite deterministic automaton. A pair of states
p, q ∈ Q is called synchronizable if there is a word v such that p · v = q · v.
It is called strongly synchronizable if for every u ∈ A∗ the pair p · u, q · u is
synchronizable.

We note that the equivalence ρ on Q defined by p ≡ q mod ρ if p, q are
strongly synchronizable is a stable equivalence. This means that if p ≡ q mod ρ,
then p · u ≡ q · u mod ρ for every word u.

Proposition 3.7.2 Let A be a strongly connected and complete finite determin-
istic automaton. Two states p, q of A are strongly synchronizable if and only if
p · x = q · x for every word x of minimal rank.
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Proof The condition is necessary. Indeed, let p, q be strongly synchronizable and
let x be a word of minimal rank. Let y be a word such that p ·xy = q ·xy. Since
ϕA(x) generates a minimal right ideal, there is a word z such that ϕA(xyz) =
ϕA(x). Thus p · x = p · xyz = q · xyz = q · x.

Conversely, assume that the condition is satisfied. Let x be a word of minimal
rank. For every word u, the word ux has minimal rank and thus p · ux = q · ux.
Thus p, q are strongly synchronizable.

Let X be a recognizable maximal prefix code and let A = (Q, i, i) be the
minimal automaton of X∗. If ρ is a stable equivalence on Q, then the set
U = {u ∈ A∗ | i · u ≡ i mod ρ} is a submonoid generated by a prefix code Z
with X ⊂ Z∗. If X = Z, then ρ must be the equality since A is minimal. Thus,
if X is indecomposable, ρ must be the equality.

Proof of Theorem 3.7.1. Assume that X is not synchronized. Let A = (Q, i, i)
be the minimal automaton of X∗. Let x be a word of minimal rank and let T
be a class of the kernel of x. Let A′ = (Q, i, T ). The set S recognized by A′ is
birecurrent by Theorem 3.2.1. Let us verify that A′ is minimal. This will imply
our conclusion since then X is the left root of the birecurrent set S.

We first observe that sinceX is indecomposable, two strongly synchronizable
states are equal. Indeed, this follows from the observation made above that the
equivalence on Q defined by p ≡ q if p, q are strongly synchronizable is a stable
equivalence.

Let p, q be two states such that for every word w, p · w ∈ T if and only if
q · w ∈ T . Let u be a word. Since A is strongly connected, there is some word
v such that p · uv ∈ T . Then q · uv ∈ T and thus p · uvx = q · uvx. This shows
that p, q are strongly synchronizable. Since X is indecomposable, this implies
p = q. Thus A′ is minimal.

Theorem 3.7.1 is related with an old conjecture of Schützenberger asserting
that if a finite maximal prefix code is indecomposable, either it is synchronized
or it is bifix. The conjecture is not true as shown by the left root X of the
birecurrent set S of Example 7 (which appeared originally in [6]). In fact X is
indecomposable (see below), is not bifix and not synchronized since its degree
is 3.

Example 16 Let us show that the left root X of the birecurrent set of Exam-
ple 7 is indecomposable and, more generally, that if Z is a finite maximal bifix
code of prime degree d ≥ 3 and w is a pure square for Z, the prefix code X
given by Equation (3.2) is indecomposable (this is already proved in [6], but we
reproduce the proof for convenience).

We first observe that ad ∈ X for all a ∈ A. Indeed, one has ad ∈ Z as for any
finite maximal bifix code of degree d [2, Proposition 6.5.1]. Next, since d ≥ 3,
it is odd and thus we cannot have w ∈ a∗.

Let T be a prefix code such that X ⊂ T ∗. Then, since d is prime, one has for
any a ∈ A, either a ∈ T or ad ∈ T . Set X = Y ◦β T . Since d(X) = d(Y )d(T ),
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either Y is synchronized or T is synchronized. We show that T = A or T = X .
Assume first that T is synchronized. Then Y has degree d. If ad ∈ T for some

a ∈ A, then Y is synchronized (some power of b = β−1(ad) is a synchronizing
word). This is impossible since d > 1. Therefore a ∈ T for every a ∈ A and
thus T = A.

Assume next that Y is synchronized. Then, since T has degree d, ad ∈ T
for every a ∈ A. Fix some a ∈ A. By inspection of Equation 3.2, the suffixes
of X which are in a∗ are of length at most d and the only proper prefixes p of
X such that pad ∈ X are ε and w. This implies that the only proper prefixes
of X which possibly belong to T ∗ are ε and w. Indeed, if p ∈ T ∗ and an ∈ X ,
then an ∈ T ∗ and thus n is multiple of d. But if w ∈ T ∗, we have D ⊂ T ∗ since
w3D ⊂ X which is impossible since the integer n such that an ∈ D is strictly
less than d. This forces T = X and shows that X is indecomposable.

Note that the statement is not true for d = 2 since the code X of Example
10 is decomposable.

We formulate the following open problem, as an attempt to replace the
conjecture of Schützenberger by a weaker statement: if the prefix code in The-
orem 3.7.1 is additionnaly finite, can one prove that either it is synchronized or
it is the left root of a dense birecurrent set of finite type?

4 Complete reducibility

In this section, we develop the link between birecurrent sets and completely
reducible sets. We begin with an introduction to formal series (see [3] or [13]
for a more detailed presentation).

4.1 Recognizable series

We consider formal series with coefficients in the field K = Q. Recall from
Section 2 that we denote by K〈〈A〉〉 the ring of formal series with coefficients
in K and noncommutative variables in A.

A series is recognizable (or equivalently, by Schützenberger’s theorem, ratio-
nal) if there is a linear representation over a finite dimensional space recognizing
it. There is a unique linear representation of minimal dimension recognizing a
given recognizable series (up to the choice of a basis if the representation is
given in matrix terms). One can compute it following three steps.

1. Start from any linear representation (λ, µ, γ) recognizing σ.

2. Take the representation (λ′, µ′, γ′) obtained by taking λ′ = λ and by
restricting µ and γ to the subspace generated by the vectors λµ(w) for
w ∈ A∗.

3. Take the representation (λ′′, µ′′, γ′′) obtained by taking γ′′ = γ′ and by
restricting µ′ and λ′ to the subspace generated by the vectors µ′(w)γ′ for
w ∈ A∗.
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Example 17 Let A = {a}. The linear representation

λ = [1 0], µ(a) =

[
0 1
0 1

]
, γ =

[
0
1

]

recognizes the characteristic series of the set a+. It is minimal. Choosing
γ = [1 1]t, the representation recognizes a∗. It is not minimal because µ(a)γ = γ.
It is easy to see that the minimal representation of a∗ is of dimension 1.

The computation of the minimal representation of the characteristic series
of a set S ⊂ A∗ is closely related to the computation of the minimal automaton
of S and of its reversal. It can be described as follows.

Consider the vector space KQ as containing Q, identifying q ∈ Q with its
characteristic function. Let (λ, µ, γ) be the following linear representation on
the space V = KQ. Set λ = i. For w ∈ A∗, define µ(w) as the endomorphism of
V such that qµ(w) = q · w. Finally set γ = T where T is the linear form on V
which is the characteristic function of T . Then (λ, µ, γ) obviously recognizes S
and we have performed the first step of the algorithm given above to compute
the minimal representation. Step 2 does not change the representation since
each state of the minimal automaton is accessible from the initial state. To
perform Step 3, we compute the set Q̃ of states of the reversal Ãδ of A. For
w ∈ A∗, the vector µ(w)T is precisely w · T . Thus, the minimal representation
is the restriction of µ to the subspace of KQ generated by the vectors U for
U ∈ Q̃ (considered as a column vector on which each µ(w) acts on the left).

We illustrate this algorithm in the following examples. In the first one, the
representation given by the minimal automaton is the minimal one.

Example 18 The minimal automaton A of S = a+ is represented in Figure 4.1.
The linear representation built from the automaton A is that of Example 17.

1 2
a

a

Figure 4.1: The minimal automaton of a+ in Example 18.

The states of Ãδ are {2} and {1, 2}. Their characteristic functions are linearly
independent. Thus Step 3 does not modify the representation, which is minimal.

In the second example, the representation given by the minimal automaton is
not minimal.

Example 19 Let X be the bifix code represented in Figure 3.7 on the right
(it is the unique maximal bifix code of degree 3 with internal part ab). The
minimal automaton A = (Q, 1, 1) of S = X∗ is defined by its transitions given
in Table 4.1.

The set Q̃ of states of the reversal automaton Ãδ are given in Table 4.2.
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1 2 3 4 5
a 2 3 1 3 1
b 4 1 5 5 1

Table 4.1: The transitions of the minimal automaton A in Example 19.

Q̃ 1 2 3 4 5

1 2, 4 3, 5 2, 5 3, 4

Table 4.2: The states of the automaton Ãδ in Example 19.

The vector space generated by the corresponding characteristic vectors has
dimension 4 because 2 + 3 = 4 + 5 . Choosing the basis formed of 1 ,2 ,3 ,4
the minimal representation (λ, µ, γ) of σ = S is

λ = [1 0 0 0], µ(a) =




0 1 0 1
0 0 1 0
1 0 0 0
0 0 0 0


 , µ(b) =




0 1 0 0
0 0 1 1
0 0 1 1
1 0 −1 −1


 , γ =




1
0
0
0




Let us verify for example the value of the first column of µ(a). We have µ(a)1 =
a · {1} = {3, 5} = 3 . Similarly, the last column of µ(b) is computed as
µ(b)4 = b · {2, 5} = {3, 4} = 5 = 2 + 3 − 4 .

Let µ : A∗ → End(V ) be a morphism. We let the endomorphisms of V act
on the left of the vectors in V . A subspace W of V is said to be invariant with
respect to µ if for every x ∈ W and w ∈ A∗, one has xµ(w) ∈ W . The vector
space V is said to be irreducible with respect to µ if V 6= 0 and if its only in-
variant subspaces are 0 and V . Finally, it is said to be completely reducible with
respect to µ if V = ⊕n

i=1Vi where each Vi is an invariant irreducible subspace of
V . Let µi(w) be the restriction of µ(w) to Vi. The representation µ is the direct
sum of the representations µi which are called the irreducible components of µ.

We also say that a linear representation (λ, µ, γ) is completely reducible if
the underlying vector space is completely reducible with respect to µ.

Example 20 The linear representation of Example 17 is completely reducible.
Indeed, the subspaces generated respectively by [−1 1] and by [0 1] are invariant
and obviously irreducible. In the basis formed by these vectors, the representa-
tion takes the following equivalent form.

λ′ = [−1 1], µ′(a) =

[
0 0
0 1

]
, γ′ =

[
1
1

]
.

For u ∈ A∗, we denote by σ · u the series defined by (σ ·u, v) = (σ, uv) for every
v ∈ A∗.
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The syntactic space of a series σ, denoted Vσ is the vector space generated
by the series σ · u for all u ∈ A∗. The syntactic representation of σ is the linear
representation ψσ : K〈A〉 → End(Vσ) defined for τ ∈ Vσ and u ∈ A∗ by

τψσ(u) = τ · u.

The linear representation defined by the triple (λ, ψσ, γ) with λ = σ and γ
defined by τγ = (τ, ε) recognizes σ. Indeed, one has for every w ∈ A∗,

λψσ(w)γ = (σ · w, ε) = (σ,w).

It can be shown that the syntactic representation of a recognizable series is its
minimal representation (see [3]).

If a series has a completely reducible representation, then its syntactic rep-
resentation is also completely reducible.

Example 21 The syntactic space of the series σ = a+ has dimension 2 and a
basis is formed by σ and σ · a = a∗ . The corresponding linear representation is
given in Example 17.

4.2 Completely reducible sets

A set S ⊂ A∗ is completely reducible over K if the syntactic representation
of the series S is completely reducible. Equivalently, its syntactic algebra is
semi-simple [3, Chapter 12].

Example 22 The set a∗ is completely reducible since its syntactic space has
dimension 1. The set S = a+ is also completely reducible since its syntactic
representation is completely reducible by Examples 20 and 21.

We give a second example, in which S is the submonoid generated by a finite
bifix code.

Example 23 Consider again the set S of Example 19. We have found a minimal
representation of dimension 4. This representation is not irreducible because the
space generated by 1 + 2 + 3 is invariant by µ (with µ(w) acting on the left).
The space generated by 2 − 1 , 3 − 1 and 4 − 1 is a stable complement and
the representation takes in the basis 1 + 2 + 3 , 2 − 1 , 3 − 1 , 4 − 1 the form
of a direct sum of two representations µ′

1 of dimension 1 and µ′
2 of dimension

3. In this basis, the vector λ becomes λ′ = [1 − 1 − 1 − 1] (its components
are the values of the linear form defined by λ on each vector of the basis), and
µ(a), µ(b), γ become

µ′(a) =




1 0 0 0
0 0 1 0
0 −1 −1 −1
0 0 0 0


 , µ′(b) =




1 0 0 0
0 0 1 1
0 0 1 1
0 −1 −2 −2


 , γ′ =




1/3
−1/3
−1/3
0
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The value of γ′ results from the computation of γ = 1 = 1
3 (1 +2 +3 )− 1

3 (2 −
1 )− 1

3 (3 − 1 ). The representations µ′
1 and µ′

2 are irreducible. This is obvious
for µ′

1. For µ′
2 it can be proved directly by verifying that the matrices µ′

2(w)
generate the algebra of 3 × 3-matrices over K or deduced as a consequence of
[7, Theorem 2.2]).

Let S ⊂ A∗ be a recognizable set, let σ = S and let A = (Q, i, T ) be its
minimal automaton. Set ϕ = ϕA, ψ = ψσ and M = ψ(A∗). By [2, Proposition
14.7.1] for all u, v ∈ A∗, one has

ϕ(u) = ϕ(v) ⇔ ψ(u) = ψ(v). (4.1)

In particular, M and ϕ(A∗) are isomorphic.
An element of M = ψ(A∗) is a linear map from Vσ into itself and, as such,

it has a kernel and an image which are subspaces of Vσ.
The eventual kernel of S, denoted EK(S), is the intersection of the kernels

of all elements of minimal nonzero rank of M .
Symmetrically, the eventual range of S, denoted ER(S), is the subspace

spanned by the images of all elements of minimal nonzero rank of M .
Both EK(S) and ER(S) are invariant subspaces of Vσ. Indeed, let x ∈

EK(S) and let w ∈ A∗. For any m ∈ M of minimal nonzero rank, ψ(w)m is
either zero or has minimal nonzero rank . In both cases xψ(w)m = 0. Thus x ∈
EK(S). Similarly, let x ∈ ER(S) and let w ∈ A∗. Since x ∈ ER(S), we have
x =

∑
m∈J xmm where J denotes the set of elements of minimal nonzero rank

in M and xm ∈ Vσ. Then xψ(w) =
∑

m∈J vmmψ(w) and thus xψ(w) ∈ ER(S).

Theorem 4.2.1 A recurrent set is completely reducible if and only if EK(S) =
{0} .

We first prove the following statement.

Proposition 4.2.2 Let S be a recognizable set. If S is completely reducible,
then EK(S) ∩ER(S) = {0}.

Proof Set σ = S and V = Vσ. Let J be the set of elements of M = ψ(A∗) of
nonzero minimal rank. Set W = EK(S) ∩ ER(S). Since W is invariant, and
since S is completely reducible, there is a complement W ′ of W which is an
invariant subspace of V .

Let v ∈W . Then, as for any element of ER(S), we have v =
∑

m∈J αm(σm)
for some αm ∈ K. Since V = W ⊕W ′, there exist ρ ∈ W and ρ′ ∈ W ′ such
that σ = ρ+ ρ′. Then

v =
∑

m∈J

αm(σm) =
∑

m∈J

αm(ρm) +
∑

m∈J

αm(ρ′m)

=
∑

m∈J

αm(ρ′m).
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Indeed, since ρ ∈ W , we have ρm = 0 for every m ∈ J . This implies that
v ∈W ′, and finally v = 0. Therefore we conclude that EK(S) ∩ER(S) = {0}.

Proof of Theorem 4.2.1. Let A = (Q, i, T ) be the minimal automaton of the
recurrent set S. Set ϕ = ϕA, σ = S , ψ = ψσ and M = ψ(A∗).

Assume first that the eventual kernel of S is 0.
It is enough to prove the property under the hypothesis that S contains

the empty word. Indeed, Let S′ be the set recognized by the automaton A′ =
(Q, t, T ) for some t ∈ T . Then S′ is a set recognized by a strongly connected
deterministic automaton and S′ contains the empty word. Since A is strongly
connected, S is a residual of S′ and S′ is a residual of S. Thus the syntactic
representations of S and S′ only differ by the choice of the initial vector. Thus
S is completely reducible whenever S′ is and the eventual kernel of S′ is also 0.

Since A is strongly connected, the monoid ϕ(A∗) has a unique 0-minimal
ideal K which is a regular D-class plus 0 (see Section 3). Let x ∈ A∗ be such
that ϕ(x) is an idempotent of K. We may assume that i ∈ Q · x. Indeed, since
A is strongly connected, the state i is, as any state of Q, in the image of some
word w of minimal nonzero rank. Since K \ 0 is regular D-class, the L-class
of w contains an idempotent which has the same image as w. Since ϕ(x) is
idempotent, i ∈ Q · x implies that i · x = i. Since M = ψ(A∗) is isomorphic to
ϕ(A∗), e = ψ(x) is an idempotent of M .

Set V = Vσ. We verify that the conditions of [7, Corollary 1] are satisfied
by V and e.

(i) The subspace V e is completely reducible with respect to the restriction
of ψ to xA∗x. This is true by Maschke’s Theorem asserting that any
linear representation of a finite group on a field with characteristic zero is
completely reducible. Indeed, ψ(xA∗x) is a finite group or a finite group
union zero.

(ii) The space V is generated by V eM . Indeed i · x = i implies λe = λ. Thus
V eM contains λeM = λM which generates V .

(iii) We have {v ∈ V | vMe = 0} = 0. Indeed, vme = 0 if and only if v is in
the kernel of me. Since K is 0-minimal, we have K =MeM and thus the
kernel of any element of minimal rank is equal to the kernel of some me.
Hence we have vMe = 0 if and only if v belongs to the intersection of the
kernels of the elements of K.

Thus we can conclude that ψ is completely reducible.
Conversely, since S is recurrent, we have ER(S) = V and thus EK(S) = {0}

by Proposition 4.2.2.

We obtain as a corollary [7, Theorem 5.2], which is a generalization of the re-
sult of [10] asserting that the submonoid generated by a bifix code is completely
reducible.
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Corollary 4.2.3 Any recognizable birecurrent set is completely reducible.

Proof Let A = (Q, i, T ) be the minimal automaton of the set S. Set V = KQ

and let (λ, µ, γ) be the linear representation associated to the automaton A.
Thus γ = T . The minimal representation of S is, as seen before, the restriction
µ′ of µ to the subspace V ′ of column vectors generated by the vectors µ(w)γ. We
consider µ′ as a representation acting on the right on a supplementary subspace
W of the ortogonal of V ′.

By Theorem 3.2.1, T is saturated by a word x of minimal nonzero rank. Let
K be the 0-minimal ideal of the monoid M = µ(A∗). Then µ(x) ∈ K. Let e
be an idempotent of K in the R-class of µ(x) and let y be such that µ(y) = e.
Then ϕA(y) is an idempotent. Since µ(x) and µ(y) belong to the same R-class,
x and y have the same kernel. Thus T is a union of classes of the kernel of y,
which implies y · T = T and thus eγ = γ.

Let v ∈ W be such that vm = 0 for every m ∈ K. Then, for any m ∈ M ,
we have vmγ = vmeγ since eγ = γ. But since me ∈ K ∪ 0, we have vmeγ = 0
and thus vmγ = 0 for all m ∈ M . This shows that v is orthogonal to V ′, and
thus that v = 0.

We conclude that EK(S) = 0 and thus that S is completely reducible by
Theorem 4.2.1.

Note the following precision on Theorem 4.2.1. LetM be a finite monoid having
a unique 0-minimal ideal J . Then all H-classes of J which are groups are
isomorphic. The Suschkevitch group of M is any of them (see [2] or [11]).

Proposition 4.2.4 Let S be a recurrent completely reducible set, let σ = S and
let ψ = ψσ. The number of irreducible constituents of ψ is equal to the number
of irreducible contituents of its restriction to the Suschkevitch group of ψ(A∗).

Proof Let x ∈ A∗ be a word such that e = ψ(x) is an idempotent of the 0-
minimal ideal of the monoid ψ(A∗). Set V = Vσ. The restriction of ψ to group
G = ψ(xA∗x) is a representation of G on V e. Moreover, by [7, Corollary 1],
if V = ⊕m

i=1Vi is a decomposition of V in irreducible subspaces, then V e =
⊕m

i=1Vie is a decomposition of V e in irreducible subspaces. Thus the number of
irreducible components of ψ is equal to the number of irreducible components
of the restriction of ψ to G.

Note that, in particular, if the Suschkevitch group of ψ(A∗) is trivial, then ψ is
irreducible.

The following example shows that the hypothesis of Theorem 4.2.1 can be
satisfied by a set which is not birecurrent.

Example 24 Consider again the strongly connected automaton A of Figure 3.1
on the left with its deterministic reversal on the right (Example 3). We change
the automaton A into an automaton A′ by choosing this time T ′ = {2} as set

of terminal states. The automata A′ and Ã′
δ
are represented in Figure 4.2. Let
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S′ be the set recognized by A′. Since Ã′
δ
is not strongly connected, S′ is not

birecurrent.

1 2

a

b

a

2 1 1, 2

1 2

b
a

a

b
3

Figure 4.2: The automata A′ and Ã′
δ
in Example 24.

1 2

1, 2 * a *ab

1 *ba b

2 1

1,2 * a *ab

2 *ba b

Figure 4.3: The 0-minimal ideals of A and Ãδ in Example 3.

The 0-minimal ideal of the monoid ϕA(A
∗) = ϕA′(A∗) is represented in

Figure 4.3 on the left and the set Q′ of states of Ã′
δ
in Table 4.3. Except {2},

Q̃′ 1 2 3

2 1 1, 2

Table 4.3: The states of the automaton Ã′
δ
in Example 24.

all states of Ã′
δ
are classes of the kernel of an element of minimal rank (see

Figure 4.3). The space generated by the characteristic functions of these states
has dimension 2, as for the same space corresponding to A′. Indeed T = {1} is
an element of Q̃′ and T ′ is in the space generated by the characteristic functions
of the states of A since {2} = {1, 2} − {1} . Thus S′ is completely reducible
althought it is not birecurrent.

We now prove a second corollary of Theorem 4.2.1 (actually of Proposition 4.2.2).
It shows that a completely reducible set which is dense satisfies a property which
is well-known for the submonoid generated by a maximal bifix code.

Corollary 4.2.5 Let S be a set recognized by a strongly connected unambiguous
finite automaton A. If S is completely reducible and dense, then ϕA(S) meets
every H-class of the minimal ideal of the monoid ϕA(A

∗).

Proof We use the same notation as in the proof of Theorem 4.2.1. Since A is
strongly connected and S is dense, the monoid ϕ(A∗) does not contain 0 and
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has a unique minimal ideal which is a union of groups. Moreover ϕ(S) meets
the minimal ideal of ϕ(A∗). Since M = ψ(A∗) is the image of ϕ(A∗) by a
morphism, it has also a unique minimal ideal which meets ψ(S). Let J be the
minimal ideal of the monoid M = ψ(A∗).

For a subset H of M , denote H =
∑

m∈H m.
Note that for any H-class H of J , (σH , ε) = Card(H ∩ ψ(S)). Indeed, let

m ∈ H and let x ∈ A∗ be such that ψ(x) = m. Then (σm, ε) = (σψ(x), ε) =
(σ, x) which is 1 if x ∈ S and 0 otherwise.

Let H,K be two H-classes of J of the monoid M contained in the same
R-class R. Then the vector σH − σK belongs to the eventual range ER(S).

Moreover, it belongs to the eventual kernel EK(S). Indeed, for everym ∈ J ,
we have Hm = Km since both are equal to the H-class R ∩Mm. Thus, by
Theorem 4.2.1, we have σH = σK .

By Proposition 4.2.2, this forces σH − σK = 0 for all H-classes H,K
included in the same R-class.

Since S̃ satisfies the same hypotheses as S (using the automaton Ã), the
conclusion follows.

We give below an example illustrating Corollary 4.2.5

Example 25 Consider again the deterministic automaton A = (Q, i, T ) of Ex-
ample 9. We change the automaton A into an automaton A′ = (Q, i, T ′) by
choosing this time T ′ = {1, 2, 6} as set of terminal states instead of T = {1, 2, 5}.
Let S′ be the set recognized by A′. The minimal ideal of the monoid ϕA(A

∗) =
ϕA′(A∗) is represented in Figure 4.4. The set Q̃′ of states of the automaton

1/3 2/4 5/6

1, 4, 5/2, 3, 6 * b2 *b2a * b2ab

1, 2, 5/3, 4, 6 * ab2 * *

1, 4, 6/2, 3, 5 *a2b2 * *

Figure 4.4: The minimal ideal in Example 25.

Ã′
δ
is represented in Table 4.4. Except {1, 2, 6}, all states of Ã′

δ
are classes

Q̃′ 1 2 3 4 5 6 7

1, 2, 6 1, 4, 6 3, 4, 6 2, 3, 5 1, 4, 5 2, 3, 6 1, 2, 5

Table 4.4: The states of the automaton Ã′
δ
.

of the kernel of an element of minimal rank (see Figure 4.4). The space gen-
erated by the characteristic functions of these states has dimension 4, as for
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the same space corresponding to A′. Indeed T = {1, 2, 5} is an element of Q̃′

and T ′ is in the space generated by the characteristic functions of the states
of A since {1, 2, 6} = {1, 2, 5} − {1, 4, 5} + {1, 4, 6} . Thus S′ is completely

reducible althought it is not birecurrent. To see that S′ is not birecurrent, one
may either use the fact that T ′ is not saturated by any word of minimal rank

and apply Theorem 3.2.1 or compute directly Ã′
δ
(see Figure 4.5). Note that

1

2

3

4

5 6

7
a

b
a, b
a

b

a

a, b

b

b

a b

a

Figure 4.5: The automaton Ã′

the hypothesis of Theorem 4.2.1 is satisfied because it is already satisfied by the
minimal representation of S , which is the same as that of S′ except for the
vectors γ = T and γ′ = T ′ .

We finally deduce from Corollary 4.2.5 the following result, originally proved
in [10] (see also [2, Theorem 14.7.7]).

Corollary 4.2.6 Let X be a recognizable maximal code. If X∗ is completely
reducible, then X is bifix.

Proof Let A be the minimal automaton of X∗. Since X is a recognizable code,
it is thin by [2, Proposition 2.5.20]. Since X is a thin maximal code, X∗ is
dense by [2, Theorem 2.5.5]. As for any recognizable code, there is a trim
unambiguous finite automaton A = (Q, i, i) recognizing X∗ (see [2, Proposition
4.1.2]). Since A is trim with a unique initial state equal to the unique terminal
state, it is strongly connected. By Corollary 4.2.5, ϕA(X

∗) meets every H-class
of the minimal ideal of ϕA(A

∗). This implies that X∗ is recurrent and thus
X is prefix by [2, Proposition 3.3.11]. Symmetrically, X is suffix, whence the
conclusion.

4.3 A characterization of completely reducible sets

In this section, we consider rational series over Q whose set of coefficients is
finite. It is known that the minimal representation (λ, µ, γ) of such a series
satisfies the following finiteness property: the matrix monoid µ(A∗) is finite.
This follows from a theorem of Schützenberger, see [3, Corollary 2.3].

Moreover, such a series is a linear combination over Q of characteristic series
of rational languages. This follows from the fact that for any α ∈ Q, the set
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{w ∈ A∗ | (S,w) = α} is rational. For this, see [3, Theorem 2.10], another
theorem of Schützenberger.

For a rational series S whose set of coefficients is finite, we may construct a
special kind of deterministic automaton, called an automaton with scalar output
function. It is a deterministic automaton A = (Q, i, τ) where τ : Q → Q is a
mapping called the terminal function, which recognizes S in the following sense.
For each word w, one has (S,w) = τ(i · w). In other words, one reads w on the
automaton, starting from the initial state i and one reaches a state q = i · w.
The coefficient (S,w) of w in S is τ(q). If there is no path from i labeled w, we
let (S,w) = 0.

The notions of trim automaton and of minimal automaton extend easily to
these automata.

For a word u ∈ A∗ and a series S, we denote here u−1S the series defined by
(u−1S, v) = (S, uv) (this series is denoted S ·u in Section 4.1) and symmetrically
Su−1 the series defined by (Su−1, v) = (S, vu).

There is also a Nerode criterium for these series. Indeed, a series S is rational
(and has a finite set of coefficients) if and only if the set {u−1S | u ∈ A∗} is
finite.

We say that a rational series with a finite number of coefficients is recurrent
if its minimal automaton with scalar output function is strongly connected.

Clearly, a series S is recurrent if and only if it is recognized by a strongly
connected automaton with scalar output function. Moreover, if S is recurrent,
then so are u−1S and Su−1 for any word u, since they are recognized by the
minimal automaton with output function of S.

It is called birecurrent if S and S̃ are both recurrent, where S̃ is the series
such that (S̃, w) = (S, w̃) for all w ∈ A∗.

Proposition 4.3.1 Let S be a birecurrent series. Then S is a linear combina-
tion over Q of characteristic series of birecurrent sets.

Proof Let I = {α ∈ Q \ 0 | (S,w) = α for some w ∈ A∗}. Then I is finite. It
is enough to show that for any α ∈ I, the set L = {w ∈ A∗ | (S,w) = α} is
recurrent.

Let (Q, i, τ) be a strongly connected automaton with scalar output function
recognizing S. Let (Q, i, T ) be the automaton defined by T = {q ∈ Q | τ(q) =
α}. Then this automaton recognizes L. It is deterministic and strongly con-
nected and thus L is recurrent.

Proposition 4.3.2 Let S be a completely reducible series. Then S is a linear
combination over Q of birecurrent series.

Proof Let (λ, µ, γ) be a minimal representation of S. Since the set of coefficients
of S is finite, we know that µ(A∗) is a finite monoid.

Since the representation is completely reducible, it is isomorphic to a direct
sum of representations (λi, µi, γi) which are irreducible over Q.
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It follows that S is the corresponding sum of irreducible series. We may
therefore assume that (λ, µ, γ) is irreducible. Note that µ(A∗) is finite.

The set R(λ) = {λµ(u) | u ∈ A∗} is finite. One obtains a right action of A∗

on this set by λµ(u) · w = λµ(uw). There exists therefore a word u such that
the set R(λµ(u)) is a minimal invariant subset for this action.

Similarly, A∗ acts on the left on the finite set L(γ) = {µ(v)γ | v ∈ A∗} by
w · µ(v)γ = µ(wv)γ. There exists similarly a word v such that the set L(µ(v)γ)
is minimal for this action.

Consider the linear representation (λµ(u), µ, µ(v)γ). It recognizes a rational
series, call it T , whose set of coefficients is finite since µ(A∗) is finite.

For this series T , we may construct the following deterministic automaton
with scalar output function. Its set of states is R(λµ(u)), its initial state is
λµ(u) and its terminal function is defined by τ(λ′) = λ′µ(v)γ for any state
λ′ ∈ R(λµ(u)).

Clearly this automaton recognizes T . Since its set of states is a minimal
invariant subset for the right action of A∗, this automaton is strongly connected.
Thus T is recurrent.

By symmetry, T̃ is also recurrent. Hence T is birecurrent.
Turning back to the representation (λ, µ, γ), there exists, since it is irre-

ducible, polynomialsX,Y ∈ Q〈A〉 such that λµ(u)µ(X) = λ and µ(Y )µ(v)γ = γ
where the monoid morphism µ : A∗ → Qn×n is extended to an algebra mor-
phism still denoted µ from Q〈A〉 into Qn×n.

Finally, for any word w, one has

(S,w) = = λµ(w)γ

= λµ(u)µ(X)µ(w)µ(Y )µ(v)γ

= λµ(u)

(
∑

x∈A∗

(X, x)µ(x)

)
µ(w)



∑

y∈A∗

(Y, y)µ(y)


µ(v)γ

=
∑

x,y

(X, x)(Y, y)λµ(u)µ(x)µ(w)µ(y)µ(v)γ

Thus, since T =
∑

w λµ(u)µ(w)µ(v)γ, we have x
−1Ty−1 =

∑
w λµ(u)µ(x)µ(w)µ(y)µ(v)γ,

and therefore S =
∑

x,y(X, x)(Y, y)x
−1Ty−1. Since T is birecurrent, each

x−1Ty−1 is birecurrent. Hence S is a linear combination of birecurrent se-
ries.

Proposition 4.3.3 Let S ∈ Q〈〈A〉〉 be a rational series whose set of coefficients
is finite. Then S is completely reducible if and only if it is a linear combination
over Q of characteristic series of birecurrent sets.

Proof Suppose that S is completely reducible. Then the conclusion follows by
Propositions 4.3.1 and 4.3.2.

Conversely, suppose that S is a linear combination over Q of characteristic
series of birecurrent sets. By Corollary 4.2.3, each such series is completely
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reducible. By [7, Proposition 4.1], a linear combination over Q of completely
reducible series is completely reducible. Thus S is completely reducible.

We thus obtain as a main result of this section.

Theorem 4.3.4 A language is completely reducible if and only if its character-
istic series is Q-linear combination of characteristic series of birecurrent lan-
guages.

The following example shows that the linear combination need not have coeffi-
cients in Z.

Example 26 Let A = (Q, i, T ) be the automaton represented in Figure 4.6 on
the left with its reversal on the right.

1 2

3

a

c

c

b

b

a 1 1, 2 2, 3

1, 3

a

a

b

b

c

c

a

Figure 4.6: A finite automaton and its deterministic reversal.

Let X be the set recognized by A. Since A is strongly connected, X is
recurrent. Since Ãδ is not strongly connected, X is not birecurrent. Let Xi

be the set recognized using, instead of T = {1}, the set of terminal states Ti
for 1 ≤ i ≤ 3 with T1 = {2, 3}, T2 = {1, 3} and T3 = {1, 2}. Since these
sets are saturated respectively by b, c and a, which have rank 1, the sets Xi

are birecurrent (this can also be seen easily in Figure 4.6). Since T = T3 −
T1 − T2 , we have X = 1

2 (X3 − X1 + X2). Note that, by Proposition 4.2.4,
the linear representation (λ, µ, γ) associated to the automaton A is irreducible.
Indeed, this representation is clearly minimal and since the letters are of rank
1, the Suschkevitch group of the monoid µ(A∗) is trivial. Thus we obtain a
decomposition of an irreducible set X as a Q-linear combination of birecurrent
sets. We conjecture that X cannot be obtained as a linear combination of
birecurrent sets with coefficients in Z.

5 Unambiguous automata

In this section, we generalize some of the results concerning birecurrent sets us-
ing unambiguous automata, which are nondeterministic automata closely linked
with linear representation of series. For an introduction to this class of au-
tomata, see [2].
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5.1 Unambiguous automata and linear representations

An automaton A = (Q, I, T ) is unambiguous if for any word w ∈ A∗ there is at
most one path from a state i ∈ I to a state t ∈ T labeled w.

A trim unambiguous automaton has the following property (used in [2] as a
definition of unambiguous automata). For every word w ∈ A∗ and every pair
(p, q) ∈ Q of states there is at most one path from p to q labeled w. Indeed,

since A is trim, there is a path i
u
→ p with i ∈ I and a path q

v
→ t with t ∈ T .

Since there is at most one path from i to t labeled uwv, there is at most one
path from p to q labeled w.

Clearly a deterministic automaton is unambiguous.

Example 27 The automaton A = (Q, 1, 1) represented in Figure 5.1 is un-
ambiguous. One can check this by computing the automaton of pairs and by
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Figure 5.1: An unambiguous automaton.

checking that there is no path from a pair (p, p) to a pair (q, q) using a pair
(r, s) with r 6= s.

To every unambiguous automaton A = (Q, I, T ) recognizing a set S, we may
associate a linear representation recognizing the characteristic series S of the
set S. We consider, as in Section 2 a field K and the vector space V = KQ.
Consider the representation (λ, µ, γ) where λ ∈ V is the characteristic function
I of I considered as a row vector, γ = T considered as a column vector and for
a ∈ A, µ(a) is the Q×Q-matrix µA(a) defined by

(p, µA(a), q) =

{
1 if p

a
→ q

0 otherwise.

Then µ extends to a morphism from A∗ into End(V ) and λµ(w)γ = (S ,w)
for every w ∈ A∗. When A is trim, all the matrices µA(w) for w ∈ A∗ have
coefficients 0 or 1.

Example 28 The linear representation corresponding to the unambiguous au-
tomaton of Figure 5.1 is

λ = [1 0 0], µ(a) =




0 1 0
1 0 0
1 1 0



 , µ(b) =




0 0 1
0 0 0
1 1 0



 , γ =




1
0
0



 .
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For a set U ⊂ Q of states and a word w, we denote

U · w = {q ∈ Q | u
w
→ q for some u ∈ U},

w · U = {q ∈ Q | q
w
→ u for some u ∈ U}.

Let A be an unambiguous automaton. Recall that we denote by Aδ the
determinization of A. Thus the states of Aδ are the nonempty sets I · w for
w ∈ A∗. The initial state is I and the set of terminal states is the set of U = I ·w
such that U ∩T 6= ∅. Note that since A is unambiguous, U ∩T contains at most
one element and that A and Aδ recognize the same set of words.

When A is trim, the action of A∗ on the states of Aδ is the same as the right
multiplication by the matrices µA(w) on the characteristic vectors. Indeed, one
has U = I · w if and only if U = I µA(w).

Also recall that we denote by Ãδ the deterministic reversal of the automaton
A.

Example 29 Let A be the unambiguous automaton of Figure 5.1. The au-
tomaton Aδ is represented in Figure 5.2 on the left and the automaton Ãδ on
the right.
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Figure 5.2: The automata Aδ and Ãδ.

The rank of a word w with respect to an unambiguous automaton A is the
rank of the linear map µA(w). This definition is consistent with the one given
for a deterministic automaton in Section 3. Indeed, when A is deterministic,
the matrix µA(w) is the matrix of a partial map from Q into itself and the
rank of µA(w) is equal to the rank of the map. The definition of rank for an
unambiguous automaton given in [2] is different but equivalent to this one (see
[2, Exercise 9.3.2]).

Let A = (Q, I, T ) be a trim unambiguous automaton. Then the monoid
µA(A

∗) is formed of {0, 1}-matrices and thus it is finite. As for a deterministic
automaton, the set of elements of minimal nonzero rank of the monoid M =
µA(A

∗) is the unique 0-minimal ideal J of M . It is the union of all 0-minimal
right (resp. left) ideals. It is formed of a regular D-class, plus possibly 0. Each
R-class of J \ {0} is formed of elements which have the same set of rows. Each
H-class of J \ {0} which is a group is a transitive permutation group on the
common set of rows of its elements.

Example 30 Let A be the automaton represented in Figure 5.1. The minimal
ideal J of the monoid M = µA(A

∗) is represented in Figure 5.3. There is no
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3 1, 2

2, 3 * ab *aba

1, 3 *bab * ba

Figure 5.3: The minimal ideal of M .

word of rank 0 and the minimal rank is 1. For example, we have

µA(a) =



0 1 0
1 0 0
1 1 0


 , µA(ab) =



0 0 0
0 0 1
0 0 1


 ,

the first one being of rank 2 and the second of rank 1. We represent for each
R-class of J the set of rows of the elements (representing a row as a set of states)
and for each L-class its set of columns.

5.2 Unambiguous automata and birecurrent sets of finite

type

The following result is a generalization of Theorem 3.2.1 which gives a sufficient
condition for the set recognized by an unambiguous automaton to be recurrent.
The proof is quite similar.

Theorem 5.2.1 Let A = (Q, I, T ) be a strongly connected unambiguous finite
automaton. The automaton Aδ is strongly connected if and only if there is a
word x of minimal nonzero rank such that I · w = I.

Proof Assume first that Aδ is strongly connected. Let x be a word of minimal
nonzero rank. Since x has nonzero rank there exist p, q such that p

x
→ q. Since

A is strongly connected, there is a word u such that i
u
→ p for some i ∈ I. Then

y = ux is a word of minimal nonzero rank such that I ·y 6= ∅. Thus I ·y is a state
of Aδ. Since Aδ is strongly connected, there is a word z such that I · yz = I.
Since yz has minimal nonzero rank, the conclusion follows.

Conversely, assume that I = I ·w with w of minimal nonzero rank. Consider
a state U of Aδ. Then U = I · u for some u ∈ A∗ such that I · u 6= ∅. Then
I · wu = I · u and thus wu is a word of minimal nonzero rank. Set µ = µA.
Since the right ideal generated by µ(w) is 0-minimal, there is a word v ∈ A∗

such that µ(wuv) = µ(w). Let e = µ(uv)n with n ≥ 1 be the idempotent
which is a power of µ(uv). Since µ(wuv) = µ(w), we have µ(w)e = µ(w). Then
I e = I · we = I µ(w)e = I µ(w) = I . Set x = v(uv)n−1. Then I µ(ux) = I e = I
and thus I · ux = I. This shows that I and I · u belong to the same strongly
connected component and thus that Aδ is strongly connected.

A symmetric result holds for the automaton Ãδ, which is strongly conected if
and only if there is a word x of minimal nonzero rank such that x · T = T .
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Theorem 3.2.1 follows easily from the symmetric version of Theorem 5.2.1.
In fact, assume that A is deterministic. A set U is saturated by a word of
minimal nonzero rank if and only if there is a word x of minimal nonzero rank
such that x ·U = U . Indeed, the condition is sufficient. Conversely, if U = x ·V
for some V ⊂ Q and some x of minimal nonzero rank, let y be a word such that
ϕA(y) is a nonzero idempotent in the right ideal generated by ϕA(x). Then
ϕA(yx) = ϕA(x) and thus y · U = yx · V = x · V = U .

Corollary 5.2.2 Let A = (Q, I, T ) be a strongly connected unambiguous finite
automaton recognizing a set S. If there are words x, y of 0-minimal rank such
that I · x = I and y · T = T , then S is birecurrent.

Proof By Theorem 5.2.1, since I ·x = I, the automaton Aδ is strongly connected
and conversely. Symmetrically, since y · T = T , the automaton Ãδ is strongly
connected and conversely.

Iterating the construction of Section 3.4, one obtains examples of birecurrent
sets defined by unambiguous automata as in Corollary 5.2.2. The iteration relies
on the following result from [15] (see [2, Exercise 14.1.9]) where we use again
the notation δw and γw introduced after Proposition 3.4.1.

Proposition 5.2.3 Let Z be a finite maximal prefix code and let w2 be a pure
square for Z. Then w4 is a pure square for X = δw(Z) and for Y = γw(Z).
The sets G′ = X(w2)−1 and D′ = (w2)−1X satisfy

G′ − 1 = (1 + w)(G − 1), D′ − 1 = (1 + w)(D − 1)

and the sets G′′ = Y (w2)−1 and D′′ = (w2)−1Y satisfy

G′′ − 1 = (G − 1)(1 + w), D′′ − 1 = (D − 1)(1 + w).

We deduce from Proposition 5.2.3 the following result.

Theorem 5.2.4 Let Z be a finite maximal bifix code, let w be a pure square for
Z and let U = γw2(δw(Z)). Then {ε, w2}U∗{ε, w} is a birecurrent set of finite
type.

Proof Set X = δw(Z), Y = γw(Z), L = δw2(X) and R = γw2(Y ). Since Z is a
finite maximal prefix code, X and L are finite maximal prefix codes. Symmetri-
cally, since Z is a finite maximal suffix code, Y and R are finite maximal suffix
codes.

Let G,D,G′, D′ be as in Proposition 5.2.3. We have by Equation (3.3)

U − 1 = (X − 1 + (G′ − 1)w2(D′ − 1))(1 + w2)

and by Equation (3.2)

L − 1 = (1 + w2)(X − 1 + (G′ − 1)w2(D′ − 1)).
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Thus

(1 + w2)(U − 1) = (L − 1)(1 + w2).

Therefore (1 + w2)U ∗(1 + w) = L ∗(1 + w2)(1 + w). This shows that V =
{ε, w2}U∗{ε, w} is recurrent with a finite left root. Similarly

R − 1 = (Y − 1 + (G′′ − 1)w2(D′′ − 1))(1 + w2).

Since (X − 1)(1 + w) = (1 + w)(Y − 1) and (G′ − 1)w2(D′ − 1)(1 + w) =
(1 + w)(G′′ − 1)w2(D′′ − 1), we have

(1 + w)(R − 1) = (X − 1 + (G′ − 1)w2(D′ − 1))(1 + w)(1 + w2)

showing that

(1 + w2)(1 + w)(R − 1) = (L − 1)(1 + w)(1 + w2).

This implies that V is birecurrent and that its right root is finite.

Example 31 Let A = (Q, I, T ) be the nondeterministic automaton with tran-
sitions given in Table 5.1 with I = {1, 14} and T = {1, 4}. One may verify

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
a 2 6, 10 4 2 6 8 10 1, 14 12 14 16 1
b 3 1, 14 7, 11 5 7, 11 7 9 11 1, 14 13 15 17
a2 6, 10 1, 14 2 6, 10 1, 14 2 2

Table 5.1: The transitions of the automaton A.

that this automaton is unambiguous. The word a2 has rank 3 since the ma-
trix µA(a

2) has 3 distinct nonzero rows which are the characteristic vectors of
{1, 14}, {6, 10} and {2}.

This rank is minimal as one can check by computing the 9 images of this 3-
element set by the action of the letters. Since I is a row of µ(a2), the hypothesis
of Theorem 5.2.1 are satisfied. The automaton Aδ is strongly connected and has
also 17 states represented in Table 5.2. The transitions of Aδ are represented

1 2 3 4 5 6 7 8 9 10 11 12

1, 14 2 3, 15 6, 10 4, 16 7, 11 5, 17 8, 12 1, 6 9, 13 3, 7 10, 14
13 14 15 16 17

4, 8 11, 15 5, 9 12, 16 13, 17

Table 5.2: The states of the automaton Aδ.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

a 2 4 5 1 2 8 9 1 2 12 13 1 2 1 4 1 1

b 3 1 6 6 7 1 6 10 11 1 6 14 15 6 6 17 1

Table 5.3: The transitions of the automaton Aδ.

in Table 5.3. The set T = {1, 4} is a column of µA(a
2) (the columns of index 6

and 10). Thus, by the symmetric of Theorem 5.2.1, the automaton Ãδ is also
strongly connected. Thus the set S recognized by A is birecurrent.

The set S is an instance of Theorem 5.2.4. To see this, we start with the
finite maximal bifix code Z̃ represented in Figure 3.7 on the right. We choose the
word x = (ba)2 which is a pure square for Z̃. Then Ỹ = δw(Z̃) is the maximal
prefix code represented in Figure 3.6. The word w2 = (ba)4 is a pure square for
Ỹ and the set X = γw2 is a maximal code generating the set recognized by the
automaton A with 1 as initial and terminal state.
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