
ar
X

iv
:1

30
8.

53
96

v4
  [

m
at

h.
C

O
] 

 2
3 

Fe
b 

20
15

Maximal bifix decoding
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Abstract

We consider a class of sets of words which is a natural common gen-

eralization of Sturmian sets and of interval exchange sets. This class of

sets consists of the uniformly recurrent tree sets, where the tree sets are

defined by a condition on the possible extensions of bispecial factors. We

prove that this class is closed under maximal bifix decoding. The proof

uses the fact that the class is also closed under decoding with respect to

return words.
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1 Introduction

This paper studies the properties of a common generalization of Sturmian sets
and regular interval exchange sets. We first give some elements on the back-
ground of these two families of sets.

Sturmian words are infinite words over a binary alphabet that have exactly
n + 1 factors of length n for each n ≥ 0. Their origin can be traced back
to the astronomer J. Bernoulli III. Their first in-depth study is by Morse and
Hedlund [27]. Many combinatorial properties were described in the paper by
Coven and Hedlund [13].

We understand here by Sturmian words the generalization to arbitrary al-
phabets, often called strict episturmian words or Arnoux-Rauzy words (see the
survey [20]), of the classical Sturmian words on two letters. A Sturmian set is
the set of factors of one Sturmian word. For more details, see [19, 26].

Sturmian words are closely related to the free group. This connection is
one of the main points of the series of papers [3, 6, 7] and the present one. A
striking feature of this connection is the fact that our results do not hold only
for two-letter alphabets or for two generators but for any number of letters and
generators.

Interval exchange transformations were introduced by Oseledec [28] following
an earlier idea of Arnold [1]. These transformations form a generalization of
rotations of the circle. The class of regular interval exchange transformations
was introduced by Keane [22] who showed that they are minimal in the sense
of topological dynamics. The set of factors of the natural codings of a regular
interval exchange transformation is called an interval exchange set.

Even though they have the same factor complexity (that is, the same number
of factors of a given length), Sturmian words and codings of interval exchange
transformations have a priori very distinct combinatorial behaviours, whether
for the type of behaviour of their special factors, or for balance properties and
deviations of Birkhoff sums (see [10, 31]).

The class of tree sets, introduced in [6], contains both the Sturmian sets
and the regular interval exchange sets. They are defined by a condition on the
possible extensions of bispecial factors.

In a paper with part of the present list of authors on bifix codes and Sturmian
words [3] we proved that Sturmian sets satisfy the finite index basis property,
in the sense that, given a set S of words on an alphabet A, a finite bifix code
is S-maximal if and only if it is the basis of a subgroup of finite index of the
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free group on A. The main statement of [7] is that uniformly recurrent tree sets
satisfy the finite index basis property. This generalizes the result concerning
Sturmian words of [3] quoted above. As an example of a consequence of this
result, if S is a uniformly recurrent tree set on the alphabet A, then for any
n ≥ 1, the set S ∩ An is a basis of the subgroup formed by the words of length
multiple of n (see Theorem 5.10).

Our main result here is that the class of uniformly recurrent tree sets is
closed under maximal bifix decoding (Theorem 6.1). This means that if S is a
uniformly recurrent tree set and f a coding morphism for a finite S-maximal
bifix code, then f−1(S) is a uniformly recurrent tree set. The family of regular
interval exchange sets is closed under maximal bifix decoding (see [5, Theorem
3.13]) but the family of Sturmian sets is not (see Example 6.2 below). Thus,
this result shows that the family of uniformly recurrent tree sets is the natural
closure of the family of Sturmian sets.

The proof of Theorem 6.1 uses the finite index basis property of uniformly
recurrent tree sets. It also uses the closure of uniformly recurrent tree sets under
decoding with respect to return words (Theorem 5.13). This property, which is
interesting in its own, generalizes the fact that the derived word of a Sturmian
word is Sturmian [21].

The paper is organized as follows. In Section 2, we introduce the notation
and recall some basic results. We define the composition of codes.

In Section 3, we introduce one important subclass of tree sets, namely in-
terval exchange sets. We recall the definitions concerning minimal and regular
interval exchange transformations. We prove in [5] that the class of regular
interval exchange sets is closed under maximal bifix decoding.

In Section 4, we define return words, derived words and derived sets and
prove some elementary properties.

In Section 5, we recall the definition of tree sets. We also recall that a regular
interval exchange set is a tree set (Proposition 5.4). We prove that the family of
uniformly recurrent tree sets is closed under derivation (Theorem 5.13). We fur-
ther prove that all bases of the free group included in a uniformly recurrent tree
set are tame, that is, obtained from the alphabet by composition of elementary
positive automorphisms (Theorem 5.19).

In Section 5.5, we turn to the notion of S-adic representation of sets, in-
troduced in [17], using a terminology initiated by Vershik and coined out by
B. Host. We deduce from the previous result that uniformly recurrent tree sets
have a primitive Se-adic representation (Theorem 5.23) where Se is the finite set
of positive elementary automorphisms of the free group. In the case of a ternary
alphabet, using results from [24], this result can be refined to a characterization
of the S-adic representation of tree sets [25].

In Section 6, we state and prove our main result (Theorem 6.1), namely the
closure under maximal bifix decoding of the family of uniformly recurrent tree
sets.

Finally, in Section 6.3, we use Theorem 6.1 to prove a result concerning the
composition of bifix codes (Theorem 6.12) showing that the degrees of the terms
of a composition are multiplicative.
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2 Preliminaries

In this section, we recall some notions and definitions concerning words, codes
and automata. For a more detailed presentation, see [3]. We also introduce the
notion of composition of codes.

2.1 Words

Let A be a finite nonempty alphabet. All words considered below, unless stated
explicitly, are supposed to be on the alphabet A. We let A∗ denote the set of
all finite words over A and A+ the set of finite nonempty words over A. The
empty word is denoted by 1 or by ε . We let |w| denote the length of a word w.
For a set X of words and a word x, we denote

x−1X = {y ∈ A∗ | xy ∈ X}, Xx−1 = {z ∈ A∗ | zx ∈ X}.

A finite word v is a factor of a (possibly infinite) word x if x = uvw. A set of
words is said to be factorial if it contains the factors of its elements. Let S be
a set of finite words on the alphabet A. For w ∈ S, we denote

L(w) = {a ∈ A | aw ∈ S}, R(w) = {a ∈ A | wa ∈ S},

E(w) = {(a, b) ∈ A×A | awb ∈ S}
and further

ℓ(w) = Card(L(w)), r(w) = Card(R(w)), e(w) = Card(E(w)).

These notions depend upon S but it is assumed from the context. A word w
is right-extendable if r(w) > 0, left-extendable if ℓ(w) > 0 and biextendable if
e(w) > 0. A factorial set S is called right-extendable (resp. left-extendable, resp.
biextendable) if every word in S is right-extendable (resp. left-extendable, resp.
biextendable).

A word w is called right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥
2. It is called bispecial if it is both right and left-special.

We let Fac(x) denote the set of factors of an infinite word x ∈ AN. The set
Fac(x) is factorial and right-extendable. An infinite word x ∈ Aω is recurrent if
for every u ∈ Fac(x) there is a word v such that uvu ∈ Fac(x).
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A factorial set of words S 6= {1} is recurrent if for every u,w ∈ S there is a
word v such that uvw ∈ S. For any recurrent set S there is an infinite word x
such that Fac(x) = S (see [3, Proposition 2.2.1]).

For every infinite word x, the set Fac(x) is recurrent if and only if x is
recurrent (see [3, Proposition 2.2.2]).

A set of words S is said to be uniformly recurrent if it is right-extendable
and if, for any word u ∈ S, there exists an integer n ≥ 1 such that u is a factor
of every word of S of length n. A uniformly recurrent set is recurrent.

A morphism f : A∗ → B∗ is a monoid morphism from A∗ to B∗. If a ∈ A
is such that the word f(a) begins with a and if |fn(a)| tends to infinity with
n, there is a unique infinite word denoted fω(a) which has all words fn(a) as
prefixes. It is called a fixed point of the morphism f .

A morphism f : A∗ → A∗ is called primitive if there is an integer k such that
for all a, b ∈ A, the letter b appears in fk(a). If f is a primitive morphism, the
set of factors of any fixed point of f is uniformly recurrent (see [19, Proposition
1.2.3] for example).

An infinite word is episturmian if the set of its factors is closed under reversal
and contains for each n at most one word of length n which is right-special. It is
a strict episturmian word if it has exactly one right-special word of each length
and moreover each right-special factor u is such that r(u) = Card(A).

A Sturmian set is a set of words which is the set of factors of a strict epistur-
mian word. Any Sturmian set is uniformly recurrent (see [3, Proposition 2.3.3]
for example).

Example 2.1 Let A = {a, b}. The Fibonacci word is the fixed point x =
abaababa . . . of the morphism f : A∗ → A∗ defined by f(a) = ab and f(b) = a.
It is a Sturmian word (see [26]). The set Fac(x) of factors of x is the Fibonacci
set.

Example 2.2 Let A = {a, b, c}. The Tribonacci word is the fixed point x =
fω(a) = abacaba · · · of the morphism f : A∗ → A∗ defined by f(a) = ab,
f(b) = ac, f(c) = a. It is a strict episturmian word (see [21]). The set Fac(x)
of factors of x is the Tribonacci set.

2.2 Bifix codes

Recall that a set X ⊂ A+ of nonempty words over an alphabet A is a code if
the relation

x1 · · ·xn = y1 · · · ym
with n,m ≥ 1 and x1, . . . , xn, y1, . . . , ym ∈ X implies n = m and xi = yi for
i = 1, . . . , n. For the general theory of codes, see [4].

A prefix code is a set of nonempty words which does not contain any proper
prefix of its elements. A prefix code is a code.

A suffix code is defined symmetrically. A bifix code is a set which is both a
prefix code and a suffix code.
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A coding morphism for a code X ⊂ A+ is a morphism f : B∗ → A∗ which
maps bijectively B onto X .

Let S be a set of words. A prefix code X ⊂ S is S-maximal if it is not
properly contained in any prefix code Y ⊂ S. Equivalently, a prefix code X ⊂ S
is S-maximal if every word in S is comparable for the prefix order with some
word of X .

A set of words M is called right unitary if u, uv ∈ M imply v ∈ M . The
submonoid M generated by a prefix code is right unitary. One can show that
conversely, any right unitary submonoid of A∗ is generated by a prefix code
(see [4]). The symmetric notion of a left unitary set is defined by the condition
v, uv ∈M implies u ∈M .

We denote by X∗ the submonoid generated by X . A set X ⊂ S is right
S-complete if every word of S is a prefix of a word in X∗. If S is factorial, a
prefix code is S-maximal if and only if it is right S-complete [3, Proposition
3.3.2].

Similarly a bifix code X ⊂ S is S-maximal if it is not properly contained in
a bifix code Y ⊂ S. For a recurrent set S, a finite bifix code is S-maximal as a
bifix code if and only if it is an S-maximal prefix code [3, Theorem 4.2.2]. For
a uniformly recurrent set S, any finite bifix code X ⊂ S is contained in a finite
S-maximal bifix code [3, Theorem 4.4.3].

A parse of a word w ∈ A∗ with respect to a set X is a triple (v, x, u) such
that w = vxu where v has no suffix in X , u has no prefix in X and x ∈ X∗. We
denote by dX(w) the number of parses of w with respect to X .

Let X be a bifix code. The number of parses of a word w is also equal to the
number of suffixes of w which have no prefix in X and the number of prefixes
of w which have no suffix in X [4, Proposition 6.1.6].

By definition, the S-degree of a bifix code X , denoted dX(S), is the maximal
number of parses of all words in S with respect to X . It can be finite or infinite.

The set of internal factors of a set of words X , denoted I(X), is the set of
words w such that there exist nonempty words u, v with uwv ∈ X .

Let S be a recurrent set and let X be a finite S-maximal bifix code of S-
degree d. A word w ∈ S is such that dX(w) < d if and only if it is an internal
factor of X , that is

I(X) = {w ∈ S | dX(w) < d} (2.1)

[3, Theorem 4.2.8]. Thus any word of X of maximal length has d parses. This
implies that the S-degree d is finite.

Example 2.3 Let S be a recurrent set. For any integer n ≥ 1, the set S ∩ An

is an S-maximal bifix code of S-degree n.

The kernel of a set of words X is the set of words in X which are internal
factors of words in X . We let K(X) denote the kernel of X . Note that K(X) =
I(X) ∩X .

For any recurrent set S, a finite S-maximal bifix code is determined by its
S-degree and its kernel (see [3, Theorem 4.3.11]).
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Example 2.4 Let S be a recurrent set containing the alphabet A. The only
S-maximal bifix code of S-degree 1 is the alphabet A. This is clear since A is
the unique S-maximal bifix code of S-degree 1 with empty kernel.

2.3 Group codes

We let A = (Q, i, T ) denote a deterministic automaton with Q as set of states,
i ∈ Q as initial state and T ⊂ Q as set of terminal states. For p ∈ Q and
w ∈ A∗, we denote p · w = q if there is a path labeled w from p to the state q
and p ·w = ∅ otherwise (for a general introduction to automata theory, see [16]
or [29], for example).

The set recognized by the automaton is the set of words w ∈ A∗ such that
i · w ∈ T . A set of words is rational if it is recognized by a finite automaton.
Two automata are equivalent if they recognize the same set.

All automata considered in this paper are deterministic and we simply call
them ‘automata’ to mean ‘deterministic automata’.

The automaton A is trim if for every q ∈ Q, there is a path from i to q and
a path from q to some t ∈ T .

An automaton is called simple if it is trim and if it has a unique terminal
state which coincides with the initial state.

An automaton A = (Q, i, T ) is complete if for every state p ∈ Q and every
letter a ∈ A, one has p · a 6= ∅.

For a nonempty set L ⊂ A∗, we denote by A(L) the minimal automaton of
L. The states of A(L) are the nonempty sets u−1L = {v ∈ A∗ | uv ∈ L} for
u ∈ A∗ (see Section 2.1 for the notation u−1L). For u ∈ A∗ and a ∈ A, one
defines (u−1L) · a = (ua)−1L. The initial state is the set L and the terminal
states are the sets u−1L for u ∈ L.

LetX ⊂ A∗ be a prefix code. Then there is a simple automatonA = (Q, 1, 1)
that recognizes X∗. Moreover, the minimal automaton of X∗ is simple.

Example 2.5 The automaton A = (Q, 1, 1) represented in Figure 2.1 is the
minimal automaton of X∗ with X = {aa, ab, ac, ba, ca}. We have Q = {1, 2, 3},

3 1 2

a

a, b, cb, c

a

Figure 2.1: The minimal automaton of {aa, ab, ac, ba, ca}∗.

i = 1 and T = {1}. The initial state is indicated by an incoming arrow and the
terminal one by an outgoing arrow.

An automaton A = (Q, 1, 1) is a group automaton if for every letter a ∈ A
the map ϕA(a) : p 7→ p · a is a permutation of Q.

The following result is proved in [3, Proposition 6.1.5].
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Proposition 2.6 The following conditions are equivalent for a submonoid M
of A∗.

(i) M is recognized by a group automaton with d states.
(ii) M = ϕ−1(K), where K is a subgroup of index d of a group G and ϕ is a

surjective morphism from A∗ onto G.
(iii) M = H ∩ A∗, where H is a subgroup of index d of the free group on A.

If one of these conditions holds, the minimal generating set of M is a maximal
bifix code of degree d.

A bifix code Z such that Z∗ satisfies one of the equivalent conditions of
Proposition 2.6 is called a group code of degree d.

2.4 Composition of codes

We introduce the notion of composition of codes (see [4] for a more detailed
presentation).

For a set X ⊂ A∗, we denote by alph(X) the set of letters a ∈ A which
appear in the words of X .

Let Z ⊂ A∗ and Y ⊂ B∗ be two finite codes with B = alph(Y ). Then the
codes Y and Z are composable if there is a bijection from B onto Z. Since Z
is a code, this bijection defines an injective morphism from B∗ into A∗. If f is
such a morphism, then Y and Z are called composable through f . The set

X = f(Y ) ⊂ Z∗ ⊂ A∗ (2.2)

is obtained by composition of Y and Z (by means of f). We denote it by
X = Y ◦f Z, or by X = Y ◦Z when the context permits it. Since f is injective,
X and Y are related by bijection, and in particular Card(X) = Card(Y ). The
words in X are obtained just by replacing, in the words of Y , each letter b by
the word f(b) ∈ Z.

Example 2.7 Let A = {a, b} and B = {u, v, w}. Let f : B∗ → A∗ be the mor-
phism defined by f(u) = aa, f(v) = ab and f(w) = ba. Let Y = {u, vu, vv, w}
and Z = {aa, ab, ba}. Then Y, Z are composable through f and Y ◦f Z =
{aa, abaa, abab, ba}.

If Y and Z are two composable codes, then X = Y ◦Z is a code [4, Proposition
2.6.1] and if Y and Z are prefix (suffix) codes, then X is a prefix (suffix) code.
Conversely, if X is a prefix (suffix) code, then Y is a prefix (suffix) code.

We extend the notation alph as follows. For two codes X,Z ⊂ A∗ we denote
alphZ(X) the set of z ∈ Z such that uzv ∈ X for some u, v ∈ Z∗. The following
is Proposition 2.6.6 in [4].

Proposition 2.8 Let X,Z ⊂ A∗ be codes. There exists a code Y such that
X = Y ◦ Z if and only if X ⊂ Z∗ and alphZ(X) = Z.

The following statement generalizes Propositions 2.6.4 and 2.6.12 of [4] for
prefix codes.
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Proposition 2.9 Let Y, Z be finite prefix codes composable through f and let
X = Y ◦f Z.
(i) For every set T such that Y ⊂ T and Y is a T -maximal prefix code, X is

an f(T )-maximal prefix code.
(ii) For every set S such that X,Z ⊂ S, if X is an S-maximal prefix code,

Y is an f−1(S)-maximal prefix code and Z is an S-maximal prefix code.
The converse is true if S is recurrent.

Proof. (i) Let w ∈ f(T ) and set w = f(v) with v ∈ T . Since Y is T -maximal,
there is a word y ∈ Y which is prefix-comparable with v. Then f(y) is prefix-
comparable with w. Thus X is f(T )-maximal.
(ii) Since X is an S-maximal prefix code, any word in S is prefix-comparable
with some element of X and thus with some element of Z. Therefore, Z is
S-maximal. Next if u ∈ f−1(S), v = f(u) is in S and is prefix-comparable with
a word x in X . Assume that v = xt. Then t is in Z∗ since v, x ∈ Z∗. Set
w = f−1(t) and y = f−1(x). Since u = yw, u is prefix-comparable with y which
is in Y . The other case is similar.

Conversely, assume that S is recurrent. Let w be a word in S of length
strictly larger than the sum of the maximal length of the words of X and Z.
Since S is recurrent, the set Z is right S-complete, and consequently the word
w is a prefix of a word in Z∗. Thus w = up with u ∈ Z∗ and p a proper prefix
of a word in Z. The hypothesis on w implies that u is longer than any word of
X . Let v = f−1(u). Since u ∈ S, we have v ∈ f−1(S). It is not possible that
v is a proper prefix of a word of Y since otherwise u would be shorter than a
word of X . Thus v has a prefix in Y . Consequently u, and thus w, has a prefix
in X . Thus X is S-maximal.

Note that the converse of (ii) is not true if the hypothesis that S is recurrent
is replaced by factorial. Indeed, for S = {1, a, b, aa, ab, ba}, Z = {a, ba}, Y =
{uu, v}, f(u) = a and f(v) = ba, one has f−1(S) = {1, u, uu, v} and X =
{aa, ba}, which is not an S-maximal prefix code.

Note also that when S is recurrent (or even uniformly recurrent), the set
T = f−1(S) need not be recurrent. Indeed, let S be the set of factors of (ab)∗,
let B = {u, v} and let f : B∗ → A∗ be defined by f(u) = ab, f(v) = ba. Then
T = u∗ ∪ v∗ which is not recurrent.

3 Interval exchange sets

In this section, we recall the definition and the basic properties of interval ex-
change transformations.

3.1 Interval exchange transformations

Let us recall the definition of an interval exchange transformation (see [12]
or [8]).
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A semi-interval is a nonempty subset of the real line of the form [α, β) =
{z ∈ R | α ≤ z < β}. Thus it is a left-closed and right-open interval. For two
semi-intervals ∆,Γ, we denote ∆ < Γ if x < y for any x ∈ ∆ and y ∈ Γ.

Let (A,<) be an ordered set. A partition (Ia)a∈A of [0, 1) in semi-intervals
is ordered if a < b implies Ia < Ib.

Let A be a finite set ordered by two total orders <1 and <2. Let (Ia)a∈A be
a partition of [0, 1) in semi-intervals ordered for <1. Let λa be the length of Ia.
Let µa =

∑

b≤1a
λb and νa =

∑

b≤2a
λb. Set αa = νa−µa. The interval exchange

transformation relative to (Ia)a∈A is the map T : [0, 1) → [0, 1) defined by

T (z) = z + αa if z ∈ Ia.

Observe that the restriction of T to Ia is a translation onto Ja = T (Ia), that
µa is the right boundary of Ia and that νa is the right boundary of Ja. We
additionally denote by γa the left boundary of Ia and by δa the left boundary
of Ja. Thus Ia = [γa, µa), Ja = [δa, νa).

Since a <2 b implies Ja <2 Jb, the family (Ja)a∈A is a partition of [0, 1)
ordered for <2. In particular, the transformation T defines a bijection from
[0, 1) onto itself.

An interval exchange transformation relative to (Ia)a∈A is also said to be
on the alphabet A. The values (αa)a∈A are called the translation values of the
transformation T .

Example 3.1 Let R be the interval exchange transformation corresponding to
A = {a, b}, a <1 b, b <2 a, Ia = [0, 1− α), Ib = [1 − α, 1) with 0 < α < 1. The
transformation R is the rotation of angle α on the semi-interval [0, 1) defined
by R(z) = z + α mod 1.

Since <1 and <2 are total orders, there exists a unique permutation π of A such
that a <1 b if and only if π(a) <2 π(b). Conversely, <2 is determined by <1

and π, and <1 is determined by <2 and π. The permutation π is said to be
associated with T .

Let s ≥ 2 be an integer. If we set A = {a1, a2, . . . , as} with a1 <1 a2 <1

· · · <1 as, the pair (λ, π) formed by the family λ = (λa)a∈A and the permutation
π determines the map T . We will also denote T as Tλ,π. The transformation T
is also said to be an s-interval exchange transformation.

It is easy to verify that the family of s-interval exchange transformations is
closed by composition and by taking inverses.

Example 3.2 A 3-interval exchange transformation is represented in Figure 3.1.
One has A = {a, b, c} with a <1 b <1 c and b <2 c <2 a. The associated permu-
tation is the cycle π = (abc).

3.2 Regular interval exchange transformations

The orbit of a point z ∈ [0, 1) is the set {T n(z) | n ∈ Z}. The transformation T
is said to be minimal if for any z ∈ [0, 1), the orbit of z is dense in [0, 1).
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µa µb µc

νb νc νa

Figure 3.1: A 3-interval exchange transformation.

Set A = {a1, a2, . . . , as} with a1 <1 a2 <1 . . . <1 as, µi = µai
and δi =

δai
. The points 0, µ1, . . . , µs−1 form the set of separation points of T , denoted

Sep(T ).
An interval exchange transformation Tλ,π is called regular if the orbits of

the nonzero separation points µ1, . . . , µs−1 are infinite and disjoint. Note that
the orbit of 0 cannot be disjoint of the others since one has T (µi) = 0 for some
i with 1 ≤ i ≤ s.

Example 3.3 The 2-interval exchange transformation R of Example 3.1 which
is the rotation of angle α is regular if and only if α is irrational.

The following result is due to Keane [22].

Theorem 3.4 A regular interval exchange transformation is minimal.

Note that the converse is not true (see [5] for an example).

3.3 Natural coding

Let T be an interval exchange transformation relative to (Ia)a∈A. For a given
real number z ∈ [0, 1), the natural coding of T relative to z is the infinite word
ΣT (z) = a0a1 · · · on the alphabet A defined by

an = a if T n(z) ∈ Ia.

Example 3.5 Let α = (3−
√
5)/2 and let R be the rotation of angle α on [0, 1)

as in Example 3.1. The natural coding of R with respect to α is the Fibonacci
word (see [26, Chapter 2] for example).

For a word w = b0b1 · · · bm−1, let Iw be the set

Iw = Ib0 ∩ T−1(Ib1) ∩ · · · ∩ T−m+1(Ibm−1
). (3.1)

Note that each Iw is a semi-interval. Indeed, this is true if w is a letter. Next,
assume that Iw is a semi-interval. Then for any a ∈ A, T (Iaw) = T (Ia)∩ Iw is a
semi-interval since T (Ia) is a semi-interval by definition of an interval exchange
transformation. Since Iaw ⊂ Ia, T (Iaw) is a translate of Iaw, which is therefore
also a semi-interval. This proves the property by induction on the length.

11



Then one has for any n ≥ 0

anan+1 · · ·an+m−1 = w ⇐⇒ T n(z) ∈ Iw. (3.2)

If T is minimal, one has w ∈ Fac(ΣT (z)) if and only if Iw 6= ∅. Thus the
set Fac(ΣT (z)) does not depend on z (as for Sturmian words, see [26]). Since it
depends only on T , we denote it by Fac(T ). When T is regular (resp. minimal),
such a set is called a regular interval exchange set (resp. a minimal interval
exchange set).

The following statement is well known (see [5]).

Proposition 3.6 For any minimal interval exchange transformation T , the set
Fac(T ) is uniformly recurrent.

Example 3.7 Set α = (3 −
√
5)/2 and A = {a, b, c}. Let T be the interval

exchange transformation on [0, 1) which is the rotation of angle 2α mod 1 on
the three intervals Ia = [0, 1 − 2α), Ib = [1 − 2α, 1 − α), Ic = [1 − α, 1) (see
Figure 3.2). The transformation T is regular since α is irrational. The words of

0 1− 2α 1− α 1

a b c

0 α 2α 1

b c a

Figure 3.2: A regular 3-interval exchange transformation.

length at most 5 of the set S = Fac(T ) are represented in Figure 3.3 on the left.
Since T = R2, where R is the transformation of Example 3.5, the natural coding

a

b

c

c

a

b

b

c

b
c

c

a

a
b

b

b

b

b
c

c

c

a c

a

a
b

b

b

b
c

c

c

a
b

c

a

a

b

c

c

b
c

a
b

a
b

b
c

c

c

b

Figure 3.3: The words of length ≤ 5 of the set S and the words of length ≤ 3
of its derived set.

of T relative to α is the infinite word y = γ−1(x) where x is the Fibonacci word
and γ is the morphism defined by γ(a) = aa, γ(b) = ab, γ(c) = ba. One has

y = baccbaccbbacbbacbbacc · · · (3.3)
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Actually, the word y is the fixed point gω(b) of the morphism g : a 7→ baccb, b 7→
bacc, c 7→ bacb. This follows from the fact that the cube of the Fibonacci
morphism f : a 7→ ab, b 7→ a sends each letter on a word of odd length and
thus sends words of even length on words of even length.

4 Return words

In this section, we introduce the notion of return and first return words. We
prove elementary results about return words which essentially already appear
in [14].

Let S be a set of words. For w ∈ S, let ΓS(w) = {x ∈ S | wx ∈ S ∩ A+w}
be the set of right return words to w and let RS(w) = ΓS(w) \ΓS(w)A

+ be the
set of first right return words to w. By definition, the set RS(w) is, for every
w ∈ S, a prefix code. If S is recurrent, it is a w−1S-maximal prefix code.

Similarly, for w ∈ S, we let Γ′
S(w) = {x ∈ S | xw ∈ S ∩ wA+} denote the

set of left return words to w and R′
S(w) = Γ′

S(w) \A+Γ′
S(w) the set of first left

return words to w. By definition, the set R′
S(w) is, for every w ∈ S, a suffix

code. If S is recurrent, it is an Sw−1-maximal suffix code. The relation between
RS(w) and R′

S(w) is simply

wRS(w) = R′
S(w)w . (4.1)

Let f : B∗ → A∗ be a coding morphism forRS(w). The morphism f ′ : B∗ → A∗

defined for b ∈ B by f ′(b)w = wf(b) is a coding morphism for R′
S(w) called the

coding morphism associated with f .

Example 4.1 Let S be the uniformly recurrent set of Example 3.7. We have

RS(a) = {cbba, ccba, ccbba}, RS(b) = {acb, accb, b}, RS(c) = {bac, bbac, c}.

These sets can be read from the word y given in Equation (3.3). A coding
morphism f : B∗ → A∗ with B = A for the set RS(c) is given by f(a) = bac,
f(b) = bbac, f(c) = c.

Note that ΓS(w) ∪ {1} is right unitary and that

ΓS(w) ∪ {1} = RS(w)
∗ ∩ w−1S. (4.2)

Indeed, if x ∈ ΓS(w) is not in RS(w), we have x = zu with z ∈ ΓS(w) and
u nonempty. Since ΓS(w) is right unitary, we have u ∈ ΓS(w), whence the
conclusion by induction on the length of x. The converse inclusion is obvious.

Proposition 4.2 A recurrent set S is uniformly recurrent if and only if the set
RS(w) is finite for all w ∈ S.

Proof. Assume that all sets RS(w) for w ∈ S are finite. Let n ≥ 1. Let N be
the maximal length of the words in RS(w) for a word w of length n. Then any
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word of length N + n contains an occurrence of w . Indeed, assume that u is a
word of length N + n without factor equal to w. Let r be a word of minimal
length such that ru begins with w and set ru = ws. Then |s| ≥ N although s
is a proper prefix of a word in R(w), a contradiction. Conversely, for w ∈ S, let
N be such that w is a factor of any word in S of length N . Then the words of
RS(w) have length at most N .

Let S be a recurrent set and let w ∈ S. Let f be a coding morphism for RS(w).
The set f−1(w−1S), denoted Df (S), is called the derived set of S with respect
to f . Note that if f ′ is the coding morphism for R′

S(w) associated with f , then
Df (S) = f ′−1(Sw−1).

The following result gives an equivalent definition of the derived set.

Proposition 4.3 Let S be a recurrent set. For w ∈ S, let f be a coding mor-
phism for the set RS(w). Then

Df (S) = f−1(ΓS(w)) ∪ {1}. (4.3)

Moreover the set Df (S) is recurrent.

Proof. Let z ∈ Df (S). Then f(z) ∈ w−1S∩RS(w)
∗ and thus f(z) ∈ ΓS(w)∪{1}.

Conversely, if x ∈ ΓS(w), then x ∈ RS(w)
∗ by Equation (4.2) and thus x = f(z)

for some z ∈ Df(S). This proves (4.3).
Consider two nonempty words u, v ∈ Df (S). By (4.3), we have f(u), f(v) ∈

ΓS(w). Since S is recurrent, there is a word t such that wf(u)twf(v) ∈ S.
Then tw ∈ ΓS(w) and thus uf−1(tw)v ∈ Df (S) by (4.3) again. This shows that
Df (S) is recurrent.

Let S be a recurrent set and x be an infinite word such that S = Fac(x).
Let w ∈ S and let f be a coding morphism for the set RS(w). Since w appears
infinitely often in x, there is a unique factorization x = vwz with z ∈ RS(w)

ω

and v such that vw has no proper prefix ending with w. The infinite word
f−1(z) is called the derived word of x relative to f , denoted Df (x). If f

′ is the
coding morphism for R′

S(w) associated with f , we have f−1(z) = f ′−1(wz) and
thus f, f ′ define the same derived word.

The following statement results easily from Proposition 4.3.

Proposition 4.4 Let S be a recurrent set and let x be a recurrent infinite word
such that S = Fac(x). Let w ∈ S and let f be a coding morphism for RS(w).
The derived set of S with respect to f is the set of factors of the derived word
of x with respect to f , that is, Df (S) = Fac(Df (x)).

Example 4.5 Let S be the uniformly recurrent set of Example 3.7. Let f
be the coding morphism for the set RS(c) given by f(a) = bac, f(b) = bbac,
f(c) = c. Then the derived set of S with respect to f is represented in Figure 3.3
on the right.
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5 Uniformly recurrent tree sets

In this section, we recall the notion of tree set introduced in [6]. We recall that
the factor complexity of a tree set on k + 1 letters is pn = kn+ 1.

We recall a result concerning the decoding of tree sets (Theorem 5.8). We
also recall the finite index basis property of uniformly recurrent tree sets (The-
orems 5.9 and 5.10) that we will use in Section 6. We prove that the family
of uniformly recurrent tree sets is closed under derivation (Theorem 5.13). We
further prove that all bases of the free group included in a uniformly recurrent
tree set are tame (Theorem 5.19).

5.1 Tree sets

Let S be a fixed factorial set. For a word w ∈ S, we consider the undirected
graph G(w) on the set of vertices which is the disjoint union of L(w) and R(w)
with edges the pairs (a, b) ∈ E(w). The graph G(w) is called the extension
graph of w in S.

Example 5.1 Let S be the Fibonacci set. The extension graphs of ε, a, b, ab
respectively are shown in Figure 5.1.

b

a b

a b

a b

a

a a

a

b

a

Figure 5.1: The extension graphs of ε, a, b, ab in the Fibonacci set.

Recall that an undirected graph is a tree if it is connected and acyclic.
We say that S is a tree set (resp. an acyclic set) if it is biextendable and if

for every word w ∈ S, the graph G(w) is a tree (resp. is acyclic).
It is not difficult to verify the following statement (see [6, Proposition 3.3]),

which shows that the factor complexity of a tree set is linear.

Proposition 5.2 Let S be a tree set on the alphabet A and let k = Card(A ∩
S)− 1. Then Card(S ∩ An) = kn+ 1 for all n ≥ 0.

The following result is also easy to prove.

Proposition 5.3 A Sturmian set S is a uniformly recurrent tree set.

Proof. We have already seen that a Sturmian set is uniformly recurrent. Let
us show that it is a tree set. Consider w ∈ S. If w is not left-special there is a
unique a ∈ A such that aw ∈ S. Then E(w) ⊂ {a}×A and thus G(w) is a tree.
The case where w is not right-special is symmetrical. Finally, assume that w is
bispecial. Let a, b ∈ A be such that aw is right-special and wb is left-special.
Then E(w) = ({a} ×A) ∪ (A× {b}) and thus G(w) is a tree.
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Putting together Proposition 3.6 and [5, Proposition 4.2], we have the similar
statement.

Proposition 5.4 A regular interval exchange set is a uniformly recurrent tree
set.

Proposition 5.4 is actually a particular case of a result of [18] which charac-
terizes the regular interval exchange sets.

We give two examples of a uniformly recurrent tree set which is neither a
Sturmian set nor an interval exchange set. The first one is a maximal bifix
decoding of a Sturmian set (see Example 6.2 below).

Example 5.5 Let S be the Tribonacci set on the alphabet A = {a, b, c} (see
Example 2.2). Let X = A2 ∩ S. Then X = {aa, ab, ac, ba, ca} is an S-maximal
bifix code of S-degree 2. Let B = {x, y, z, t, u} and let f : B∗ → A∗ be the
morphism defined by f(x) = aa, f(y) = ab, f(z) = ac, f(t) = ba, f(u) = ca.
Then f is a coding morphism for X . We will see that the set T = f−1(S) is
a uniformly recurrent tree set (this follows from Theorem 6.1 below). It is not
Sturmian since y and t are two right-special words of length 1. It is neither
an interval exchange set. Indeed, for every right-special word w of T , one has
r(w) = 3. This is not possible in a regular interval exchange set since, ΣT the
length of the intervals Jw tends to 0 as |w| tends to infinity. This implies that
any long enough right-special word w is such that r(w) = 2.

The second example is a fixed point of a morphism obtained using S-adic rep-
resentations of tree sets (see Section 5.5 below).

Example 5.6 Let A = {a, b, c} and let f be the morphism from A∗ into itself
defined by f(a) = ac, f(b) = bac, f(c) = cbac. Let S be the set of factors of
fω(a). Since f is primitive, S is uniformly recurrent. The right-special words
are the suffixes of the words fn(c) for n ≥ 1 and the left-special words are the
prefixes of the words fn(a) or fn(c) for n ≥ 1, as one may verify. Any right-
special word w is such that r(w) = 3 and thus S is not an interval exchange set.
There are two left-special words of each length and thus S is not a Sturmian
set. Let us show by induction on the length of w that for any bispecial word
w ∈ S, the graph G(w) is a tree. It is true for w = c and w = ac. Assume
that |w| ≥ 2. Either w begins with a or with c. Assume the first case. Then w
begins and ends with ac. We must have w = acf(u) where u is a bispecial word
beginning and ending with c. In the second case, w begins with cbac and ends
with ac. We must have w = cbacf(u) where u is a bispecial word beginning
with a. In both cases, by induction hypothesis, G(u) is a tree and thus G(w) is
a tree. This method for computing the bispecial factors has been developed for
a large class of morphisms in [23], inspired by Cassaigne’s work [9]. The fact
that S is a tree set is also a consequence of the results of [25].

Let S be a set of words. For w ∈ S, and U, V ⊂ S, let U(w) = {ℓ ∈ U | ℓw ∈
S} and let V (w) = {r ∈ V | wr ∈ S}. The generalized extension graph of w
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relative to U, V is the following undirected graph GU,V (w). The set of vertices
is made of two disjoint copies of U(w) and V (w). The edges are the pairs (ℓ, r)
for ℓ ∈ U(w) and r ∈ V (w) such that ℓwr ∈ S. The extension graph G(w)
defined previously corresponds to the case where U, V = A.

The following result is proved in [6, Proposition 3.9].

Proposition 5.7 Let S be a tree set. For any w ∈ S, any finite S-maximal
suffix code U ⊂ S and any finite S-maximal prefix code V ⊂ S, the generalized
extension graph GU,V (w) is a tree.

Let S be a recurrent set and let f be a coding morphism for a finite S-
maximal bifix code. The set f−1(S) is called a maximal bifix decoding of S.

The following result is in [6, Theorem 3.13].

Theorem 5.8 Any maximal bifix decoding of a recurrent tree set is a tree set.

We have no example of a maximal bifix decoding of a recurrent tree set which
is not recurrent (in view of Theorem 6.1 to be proved hereafter, such a set would
be the decoding of a recurrent tree set which is not uniformly recurrent).

5.2 The finite index basis property

Let S be a recurrent set containing the alphabet A. We say that S has the
finite index basis property if the following holds. A finite bifix code X ⊂ S is
an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup
of index d of the free group on A.

We recall the main result of [7, Theorem 4.4].

Theorem 5.9 A uniformly recurrent tree set containing the alphabet A has the
finite index basis property.

Recall from Section 2.3 that a group code of degree d is a bifix code X such
that X∗ = ϕ−1(H) for a surjective morphism ϕ : A∗ → G from A∗ onto a finite
group G and a subgroup H of index d of G.

We will use the following result. It is stated for a Sturmian set S in [3,
Theorem 7.2.5] but the proof only uses the fact that S is uniformly recurrent
and satisfies the finite index basis property. We reproduce the proof for the sake
of clarity.

For a set of words X , we denote by 〈X〉 the subgroup of the free group on
A generated by X . The free group on A itself is denoted FA.

Theorem 5.10 Let Z ⊂ A+ be a group code of degree d. For every uniformly
recurrent tree set S containing the alphabet A, the set X = Z ∩ S is a basis of
a subgroup of index d of FA.
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Proof. By [3, Theorem 4.2.11], the code X is an S-maximal bifix code of S-
degree e ≤ d. Since S is a uniformly recurrent, by [3, Theorem 4.4.3], X is
finite. By Theorem 5.9, X is a basis of a subgroup of index e. Since 〈X〉 ⊂ 〈Z〉,
the index e of the subgroup 〈X〉 is a multiple of the index d of the subgroup
〈Z〉. Since e ≤ d, this implies that e = d.

As an example of this result, if S is a uniformly recurrent tree set, then
S ∩ An is a basis of the subgroup of the free group which is the kernel of the
morphism onto Z/nZ sending any letter to 1.

We will use the following results from [6]. The first one is [6, Theorem 4.5].

Theorem 5.11 Let S be a uniformly recurrent tree set containing the alphabet
A. For any word w ∈ S, the set RS(w) is a basis of the free group on A.

The next result is [6, Theorem 5.2]. A submonoid M of A∗ is saturated in a
set S if M ∩ S = 〈M〉 ∩ S.

Theorem 5.12 Let S be an acyclic set. The submonoid generated by any bifix
code X ⊂ S is saturated in S.

5.3 Derived sets of tree sets

We will use the following closure property of the family of uniformly recurrent
tree sets. It generalizes the fact that the derived word of a Sturmian word is
Sturmian (see [21]).

Theorem 5.13 Any derived set of a uniformly recurrent tree set is a uniformly
recurrent tree set.

Proof. Let S be a uniformly recurrent tree set containing A, let v ∈ S and let
f be a coding morphism for X = RS(v). By Theorem 5.11, X is a basis of the
free group on A. Thus f : B∗ → A∗ extends to an isomorphism from FB onto
FA.

Set H = f−1(v−1S). By Proposition 4.3, the set H is recurrent and H =
f−1(ΓS(v)) ∪ {1}.

Consider x ∈ H and set y = f(x). Let f ′ be the coding morphism for
X ′ = R′

S(v) associated with f . For a, b ∈ B, we have

(a, b) ∈ G(x) ⇔ (f ′(a), f(b)) ∈ GX′,X(vy),

whereGX′,X(vy) denotes the generalized extension graph of vy relative toX ′, X .
Indeed,

axb ∈ H ⇔ f(a)yf(b) ∈ ΓS(v) ⇔ vf(a)yf(b) ∈ S ⇔ f ′(a)vyf(b) ∈ S.

The set X ′ is an Sv−1-maximal suffix code and the set X is a v−1S-maximal
prefix code. By Proposition 5.7 the generalized extension graph GX′,X(vy) is a
tree. Thus the graph G(x) is a tree. This shows that H is a tree set.
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Consider now x ∈ H \ 1. Set y = f(x). Let us show that ΓH(x) =
f−1(ΓS(vy)) or equivalently f(ΓH(x)) = ΓS(vy). Consider first r ∈ ΓH(x).
Set s = f(r). Then xr = ux with u, ux ∈ H . Thus ys = wy with w = f(u).

Since u ∈ H \ {1}, w = f(u) is in ΓS(v), we have vw ∈ A+v ∩ S. This
implies that vys = vwy ∈ A+vy ∩ S and thus that s ∈ ΓS(vy). Conversely,
consider s ∈ ΓS(vy). Since y = f(x), we have s ∈ ΓS(v). Set s = f(r). Since
vys ∈ A+vy∩S, we have ys ∈ A+y∩S. Set ys = wy. Then vwy ∈ A+vy implies
vw ∈ A+v and therefore w ∈ ΓS(v). Setting w = f(u), we obtain f(xr) = ys =
wy ∈ X+y ∩ ΓS(v). Thus r ∈ ΓH(x). This shows that f(ΓH(x)) = ΓS(vy) and
thus that RH(x) = f−1(RS(vy)).

Since S is uniformly recurrent, the set RS(vy) is finite. Since f is an isomor-
phism, RH(x) is also finite, which shows that H is uniformly recurrent.

Example 5.14 Let S be the Tribonacci set (see Example 2.2). It is the set
of factors of the infinite word x = abacaba · · · which is the fixed point of the
morphism f defined by f(a) = ab, f(b) = ac, f(c) = a. We have RS(a) =
{a, ba, ca}. Let g be the coding morphism for RS(a) defined by g(a) = a,
g(b) = ba, g(c) = ca and let g′ be the associated coding morphism for R′

S(a).
We have f = g′π where π is the circular permutation π = (abc). Set z = g′−1(x).
Since g′π(x) = x, we have z = π(x). Thus the derived set of S with respect to
a is the set π(S).

5.4 Tame bases

An automorphism α of the free group on A is positive if α(a) ∈ A+ for every
a ∈ A. We say that a positive automorphism of the free group on A is tame1

if it belongs to the submonoid generated by the permutations of A and the
automorphisms αa,b, α̃a,b defined for a, b ∈ A with a 6= b by

αa,b(c) =

{

ab if c = a,

c otherwise
and α̃a,b(c) =

{

ba if c = a,

c otherwise.

Thus αa,b places a letter b after each a and α̃a,b places a letter b before each a.
The above automorphisms and the permutations of A are called the elementary
positive automorphisms on A. The monoid of positive automorphisms is not
finitely generated as soon as the alphabet has at least three generators (see [30]).

A basis X of the free group is positive if X ⊂ A+. A positive basis X of the
free group is tame if there exists a tame automorphism α such that X = α(A).

Example 5.15 The set X = {ba, cba, cca} is a tame basis of the free group on
{a, b, c}. Indeed, one has the following sequence of elementary automorphisms.

(b, c, a)
αc,b−−→ (b, cb, a)

α̃2

a,c−−−→ (b, cb, cca)
αb,a−−−→ (ba, cba, cca).

1 The word tame (as opposed to wild) is used here on analogy with its use in ring theory
(see [11]). The tame automorphisms as introduced here should, strictly speaking, be called
positive tame automophisms since the group of all automorphisms, positive or not, is tame in
the sense that it is generated by the elementary automorphisms.
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The fact that X is a basis can be checked directly by the fact that (cba)(ba)−1 =
c, c−2(cca) = a and finally (ba)a−1 = b.

The following result will play a key role in the proof of the main result of this
section (Theorem 5.19).

Proposition 5.16 A set X ⊂ A+ is a tame basis of the free group on A if and
only if X = A or there is a tame basis Y of the free group on A and u, v ∈ Y
such that X = (Y \ v) ∪ uv or X = (Y \ u) ∪ uv.

Proof. Assume first that X is a tame basis of the free group on A. Then
X = α(A) where α is a tame automorphism of 〈A〉. Then α = α1α2 · · ·αn where
the αi are elementary positive automorphisms. We use an induction on n. If
n = 0, then X = A. If αn is a permutation of A, then X = α1α2 · · ·αn−1(A)
and the result holds by induction hypothesis. Otherwise, set β = α1 · · ·αn−1

and Y = β(A). By induction hypothesis, Y is tame. If αn = αa,b, set u = β(a)
and v = β(b) = α(b). Then X = (Y \u)∪uv and thus the condition is satisfied.
The case were αn = α̃a,b is symmetrical.

Conversely, assume that Y is a tame basis and that u, v ∈ Y are such that
X = (Y \ u) ∪ uv. Then, there is a tame automorphism β of 〈A〉 such that
Y = β(A). Set a = β−1(u) and b = β−1(v). Then X = βαa,b(A) and thus X is
a tame basis.

We note the following corollary.

Corollary 5.17 A tame basis of the free group which is a bifix code is the
alphabet.

Proof. Assume that X is a tame basis which is not the alphabet. By Proposi-
tion 5.16 there is a tame basis Y and u, v ∈ Y such that X = (Y \ v) ∪ uv or
X = (Y \ u) ∪ uv. In the first case, X is not prefix. In the second one, it is not
suffix.

The following example is from [30].

Example 5.18 The set X = {ab, acb, acc} is a basis of the free group on
{a, b, c}. Indeed, accb = (acb)(ab)−1(acb) ∈ 〈X〉 and thus b = (acc)−1accb ∈
〈X〉, which implies easily that a, c ∈ 〈X〉. The set X is bifix and thus it is not
a tame basis by Corollary 5.17.

The following result is a remarkable consequence of Theorem 5.9.

Theorem 5.19 Any basis of the free group included in a uniformly recurrent
tree set is tame.

Proof. Let S be a uniformly recurrent tree set. Let X ⊂ S be a basis of the free
group on A. Since A is finite, X is finite (and of the same cardinality as A).
We use an induction on the sum λ(X) of the lengths of the words of X . If X is
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bifix, by Theorem 5.9, it is an S-maximal bifix code of S-degree 1. Thus X = A
(see Example 2.4). Next assume for example that X is not prefix. Then there
are nonempty words u, v such that u, uv ∈ X . Let Y = (X \ uv) ∪ v. Then Y
is a basis of the free group and λ(Y ) < λ(X). By induction hypothesis, Y is
tame. Since X = (Y \ v) ∪ uv, X is tame by Proposition 5.16.

Example 5.20 The set X = {ab, acb, acc} is a basis of the free group which is
not tame (see Example 5.18). Accordingly, the extension graph G(ε) relative to
the set of factors of X is not a tree (see Figure 5.2).

a

c

b

c

Figure 5.2: The graph G(ε).

5.5 S-adic representations

In this section we study S-adic representations of tree sets. This notion was
introduced in [17], using a terminology initiated by Vershik and coined out by
B. Host. We first recall a general construction allowing to build S-adic rep-
resentations of any uniformly recurrent aperiodic set (Proposition 5.22) which
is based on return words. Using Theorem 5.19, we show that this construc-
tion actually provides Se-representations of uniformly recurrent tree sets (The-
orem 5.23), where Se is the set of elementary positive automorphisms of the free
group on A.

Let S be a set of morphisms and h = (σn)n∈N be a sequence in SN with σn :
A∗

n+1 → A∗
n and A0 = A. We let Th denote the set of words

⋂

n∈N
Fac(σ0 · · ·σn(A∗

n+1)).
We call a factorial set T an S-adic set if there exists h ∈ SN such that T = Th.
In this case, the sequence h is called an S-adic representation of T .

Example 5.21 Any Sturmian set is S-adic with a finite set S. This results
from the fact that any Sturmian word is obtained by iterating a sequence of
morphism of the form ψa for a ∈ A defined by ψa(a) = a and ψa(b) = ab for
b 6= a (see [2] or [3]).

A sequence of morphisms (σn)n∈N is said to be everywhere growing if mina∈An

|σ0 · · ·σn−1(a)| goes to infinity as n increases. A sequence of morphisms (σn)n∈N

is said to be primitive if for all r ≥ 0 there exists s > r such that all letters of
Ar occur in all images σr · · ·σs−1(a), a ∈ As. Obviously any primitive sequence
of morphisms is everywhere growing.

A uniformly recurrent set T is said to be aperiodic if it contains at least one
right-special factor of each length. The next (well-known) proposition provides
a general construction to get a primitive S-adic representation of any aperiodic
uniformly recurrent set T .
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Proposition 5.22 An aperiodic factorial set T ⊂ A∗ is uniformly recurrent if
and only if it has a primitive S-adic representation for some (possibly infinite)
set S of morphisms.

Proof. Let S be a set of morphisms and h = (σn : A∗
n+1 → A∗

n)n∈N ∈ SN be
a primitive sequence of morphisms such that T =

⋂

n∈N
Fac(σ0 · · ·σn(A∗

n+1)).
Consider a word u ∈ T and let us prove that u ∈ Fac(v) for all long enough
v ∈ T . The sequence h being everywhere growing, there is an integer r > 0
such that mina∈Ar

|σ0 · · ·σr−1(a)| > |u|. As T =
⋂

n∈N
Fac(σ0 · · ·σn(A∗

n+1)),
there is an integer s > r, two letters a, b ∈ Ar and a letter c ∈ As such that u ∈
Fac(σ0 · · ·σr−1(ab)) and ab ∈ Fac(σr · · ·σs−1(c)). The sequence h being primi-
tive, there is an integer t > s such that c occurs in σs · · ·σt−1(d) for all d ∈ At.
Thus u is a factor of all words v ∈ T such that |v| ≥ 2maxd∈At

|σ0 · · ·σt−1(d)|
and T is uniformly recurrent.

Let us prove the converse. Let (un)n∈N ∈ TN be a non-ultimately periodic
sequence such that un is suffix of un+1. By assumption, T is uniformly recurrent
so RT (un+1) is finite for all n. The set T being aperiodic, RT (un+1) also has
cardinality at least 2 for all n. For all n, let An = {0, . . . ,Card(RT (un))−1} and
let αn : A∗

n → A∗ be a coding morphism forRT (un). The word un being suffix of
un+1, we have αn+1(An+1) ⊂ αn(A

+
n ). Since αn(An) = RT (un) is a prefix code,

there is a unique morphism σn : A∗
n+1 → A∗

n such that αnσn = αn+1. For all n
we get RT (un) = α0σ0σ1 · · ·σn−1(An) and T =

⋂

n∈N
Fac(α0σ0 · · ·σn(A∗

n+1)).
Without loss of generality, we can suppose that u0 = ε and A0 = A. In that
case we get α0 = id and the set S thus has an S-adic representation with
S = {σn | n ∈ N}.

Let us show that h = (σn)n∈N is everywhere growing. If not, there is a
sequence of letters (an ∈ An)n≥N such that σn(an+1) = an for all n ≥ N for
some N ≥ 1. This means that the word v = σ0 · · ·σn(an) ∈ T is a first return
word to un for all n ≥ N . The sequence (|un|)n∈N being unbounded, the word vk

belongs to T for all positive integers k, which contradicts the uniform recurrence
of T .

Let us show that h is primitive. The set T being uniformly recurrent, for
all n ∈ N there exists Nn such that all words of T ∩ A≤n occur in all words of
T∩A≥Nn . Let r ∈ N and let u = σ0 · · ·σr−1(a) for some a ∈ Ar. Let s > r be an
integer such that minb∈As

|σ0 · · ·σs−1(b)| ≥ N|u|. Thus u occurs in σ0 · · ·σs−1(b)
for all b ∈ As. As σ0 · · ·σs−1(As) ⊂ σ0 · · ·σr−1(A

+
r ) and as σ0 · · ·σr−1(Ar) =

RT (ur) is a prefix code, the letter a ∈ Ar occurs in σr · · ·σs−1(b) for all b ∈ Ar.

Even for uniformly recurrent sets with linear factor complexity, the set of
morphisms S = {σn | n ∈ N} considered in Proposition 5.22 is usually infinite
as well as the sequence of alphabets (An)n∈N is usually unbounded (see [15]).
For tree sets T , the next theorem significantly improves the only if part of
Proposition 5.22: For such sets, the set S can be replaced by the set Se of
elementary positive automorphisms. In particular, An is equal to A for all n.
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Theorem 5.23 If T is a uniformly recurrent tree set over an alphabet A, then
it has a primitive Se-adic representation.

Proof. For any non-ultimately periodic sequence (un)n∈N ∈ TN such that u0 = ε
and un is suffix of un+1, the sequence of morphisms (σn)n∈N built in the proof of
Proposition 5.22 is a primitive S-adic representation of T with S = {σn | n ∈ N}.
Therefore, all we need to do is to consider such a sequence (un)n∈N such that
σn is tame for all n.

Let u1 = a(0) be a letter in A. Set A0 = A and let σ0 : A∗
1 → A∗

0 be a coding
morphism for RT (u1). By Theorem 5.11, the set RT (u1) is a basis of the free
group on A. By Theorem 5.19, the morphism σ0 : A∗

1 → A∗
0 is tame (A0 = A).

Let a(1) ∈ A1 be a letter and set u2 = σ0(a
(1)). Thus u2 ∈ RT (u1) and u1 is

a suffix of u2. By Theorem 5.13, the derived set T (1) = σ−1
0 (S) is a uniformly

recurrent tree set on the alphabet A. We thus reiterate the process with a(1)

and we conclude by induction with un = σ0 · · ·σn−2(a
(n−1)) for all n ≥ 2.

We illustrate Theorem 5.23 by the following example.

Example 5.24 Let f and S be as in Example 5.6. We have f = αa,cαb,aαc,b.
Thus the tree set S has the Se-adic representation (σn)n≥0 given by the periodic
sequence σ3n = αa,c, σ3n+1 = αb,a, σ3n+2 = αc,b.

The converse of Theorem 5.23 is not true, as shown by Example 5.25 below.

Example 5.25 Let A = {a, b, c} and let f : a 7→ ac, b 7→ bac, c 7→ cb. The set S
of factors of the fixed point fω(a) is not a tree set since bb, bc, cb, cc ∈ S and thus
G(ε) has a cycle although f is a tame automorphism since f = αa,cαc,bαb,a.

In the case of a ternary alphabet, a characterization of tree sets by their S-adic
representation can be proved [25], showing that there exists a Büchi automaton
on the alphabet Se recognizing the set of S-adic representations of uniformly
recurrent tree sets.

6 Maximal bifix decoding

In this section, we state and prove the main result of this paper (Theorem 6.1).
In the first part, we prove two results concerning morphisms onto a finite group.
In the second one we prove a sequence of lemmas leading to a proof of the main
result.

6.1 Main result

The family of uniformly recurrent tree sets contains both the Sturmian sets and
the regular interval exchange sets. The second family is closed under maximal
bifix decoding (see [5, Theorem 3.13]) but the first family is not (see Example 6.2
below). The following result shows that the family of uniformly recurrent tree
sets is a natural closure of the family of Sturmian sets.
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Theorem 6.1 The family of uniformly recurrent tree sets is closed under max-
imal bifix decoding.

Thus, for any uniformly recurrent tree set and any coding morphism f for a
finite S-maximal bifix code, the set f−1(S) is a uniformly recurrent tree set.
This statement has a stronger hypothesis than Theorem 6.1 and a stronger
conclusion.

We illustrate Theorem 6.1 by the following example.

Example 6.2 Let T be as in Example 5.5. The set T is a uniformly recurrent
tree set by Theorem 6.1.

We prove two preliminary results concerning the restriction to a uniformly re-
current tree set of a morphism onto a finite group (Propositions 6.3 and 6.5).

Proposition 6.3 Let S be a uniformly recurrent tree set containing the alphabet
A and let ϕ : A∗ → G be a morphism from A∗ onto a finite group G. Then
ϕ(S) = G.

Proof. Since the submonoid ϕ−1(1) is right and left unitary, there is a bifix code
Z such that Z∗ = ϕ−1(1). Let X = Z ∩ S. By Theorem 5.10, X is a basis of a
subgroup of index Card(G). Let x be a word of X of maximal length (since X
is a basis of a subgroup of finite index, it is finite). Then x is not an internal
factor of X and thus it has Card(G) parses. Let S(x) be the set of suffixes of x
which are prefixes of X . If s, t ∈ S(x), then they are comparable for the suffix
order. Assume for example that s = ut. If ϕ(s) = ϕ(t), then u ∈ X∗ which
implies u = 1 since s is a prefix of X . Thus all elements of S(x) have distinct
images by ϕ. Since S(x) has Card(G) elements, this forces ϕ(S(x)) = G and
thus ϕ(S) = G since S(x) ⊂ S.

We illustrate the proof on the following example.

Example 6.4 Let A = {a, b} and let ϕ be the morphism from A∗ onto the
symmetric groupG on 3 elements defined by ϕ(a) = (12) and ϕ(b) = (13). Let Z
be the group code such that Z∗ = ϕ−1(1). The group automaton corresponding
to the regular representation of G is represented in Figure 6.1 (this automaton
has G as set of states and g · a = gϕ(a) for every g ∈ G and a ∈ A). Let S be
the Fibonacci set. The code X = Z ∩ S is represented in Figure 6.2. The word
w = ababa is not an internal factor of X . All its 6 suffixes (indicated in black in
Figure 6.2) are proper prefixes of X and their images by ϕ are the 6 elements
of the group G.

Proposition 6.5 Let S be a uniformly recurrent tree set containing the alphabet
A and let ϕ : A∗ → G be a morphism from A∗ onto a finite group G. For any
w ∈ S, one has ϕ(ΓS(w) ∪ {1}) = G.
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Figure 6.1: The group automaton corresponding to the regular representation
of G.
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Figure 6.2: The code X = Z ∩ S.

Proof. Let α : B∗ → A∗ be a coding morphism for RS(w). Then β = ϕ ◦ α :
B∗ → G is a morphism from B∗ to G. By Theorem 5.11, the setRS(w) is a basis
of the free group on A. Thus 〈α(B)〉 = FA. This implies that β(FB) = G. This
implies that β(B) generates G. Since G is a finite group, β(B∗) is a subgroup
of G and thus β(B∗) = G. By Theorem 5.13, the set H = α−1(w−1S) is a
uniformly recurrent tree set. Thus β(H) = G by Proposition 6.3. This implies
that ϕ(ΓS(w) ∪ {1}) = G.

6.2 Proof of the main result

Let S be a uniformly recurrent tree set containing A and let f : B∗ → A∗ be a
coding morphism for a finite S-maximal bifix code Z. By Theorem 5.9, Z is a
basis of a subgroup of index dZ(S) and, by Theorem 5.12, the submonoid Z∗ is
saturated in S.

We first prove the following lemma.

Lemma 6.6 Let S be a uniformly recurrent tree set containing A and let f :
B∗ → A∗ be a coding morphism for an S-maximal bifix code Z. The set T =
f−1(S) is recurrent.

Proof. Since S is factorial, the set T is factorial. Let r, s ∈ T . Since S is
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recurrent, there exists u ∈ S such that f(r)uf(s) ∈ S. Set t = f(r)uf(s). Let
G be the representation of FA on the right cosets of 〈Z〉. Let ϕ : A∗ → G be the
natural morphism from A∗ ontoG. By Proposition 6.5, we have ϕ(ΓS(t)∪{1}) =
G. Let v ∈ ΓS(t) be such that ϕ(v) is the inverse of ϕ(t). Then ϕ(tv) is the
identity of G and thus tv ∈ 〈Z〉.

Since S is a tree set, it is acyclic and thus Z∗ is saturated in S by Theo-
rem 5.12. Thus Z∗ ∩ S = 〈Z〉 ∩ S. This implies that tv ∈ Z∗. Since tv ∈ A∗t,
we have f(r)uf(s)v = f(r)qf(s) and thus uf(s)v = qf(s) for some q ∈ S. Since
Z∗ is right unitary, f(r), f(r)uf(s)v ∈ Z∗ imply uf(s)v = qf(s) ∈ Z∗. In turn,
since Z∗ is left unitary, qf(s), f(s) ∈ Z∗ imply q ∈ Z∗ and thus q ∈ Z∗ ∩ S.
Let w ∈ T be such that f(w) = q. Then rws is in T . This shows that T is
recurrent.

We prove a series of lemmas. In each of them, we consider a uniformly
recurrent tree set S containing A and a coding morphism f : B∗ → A∗ for an S-
maximal bifix code Z. We set T = f−1(S). We choose w ∈ T and set v = f(w).
Let also Y = RT (w). Then Y is a w−1T -maximal prefix code. Let X = f(Y )
or equivalently X = Y ◦f Z. Then, since f(w−1T ) = v−1S, by Proposition 2.9
(i), X is a v−1S-maximal prefix code.

Finally we set U = RS(v). Let α : C∗ → A∗ be a coding morphism for U .
Since X ⊂ ΓS(v), we have X ⊂ U∗. Since uU∗ ∩X 6= ∅ for any u ∈ U , we have
alphU (X) = U . Thus, by Proposition 2.8, we have X =W ◦αU where W is the
prefix code such that α(W ) = X .

Lemma 6.7 We have X∗ ∩ v−1S = U∗ ∩ Z∗ ∩ v−1S.

Proof. Indeed, the left handside is clearly included in the right one. Conversely,
consider x ∈ U∗ ∩ Z∗ ∩ v−1S. Since x ∈ U∗ ∩ v−1S, α−1(x) is in α−1(v−1S) =
α−1(ΓS(v)) ∪ {1} by Proposition 4.3. Thus x ∈ ΓS(v) ∪ {1}. Since x ∈ Z∗,
f−1(x) ∈ ΓT (w) ∪ {1} ⊂ Y ∗. Therefore x is in f(Y ∗) = X∗.

We set for simplicity d = dZ(S). Set H = α−1(v−1S). By Theorem 5.13, H is
a uniformly recurrent tree set.

Lemma 6.8 The set W is a finite H-maximal bifix code and dW (H) = d.

Proof. Since X is a prefix code, W is a prefix code. Since X is v−1S-maximal,
W is α−1(v−1S)-maximal by Proposition 2.9 (ii) and thus H-maximal since
H = α−1(v−1S).

Let x, y ∈ C∗ be such that xy, y ∈ W . Then α(xy), α(y) ∈ X imply α(x) ∈
Z∗. Since on the other hand, α(x) ∈ U∗ ∩ v−1S, we obtain by Lemma 6.7 that
α(x) ∈ X∗. This implies x ∈W ∗ and thus x = 1 since W is a prefix code. This
shows that W is a suffix code.

To show that dW (H) = d, we consider the morphism ϕ from A∗ onto the
group G which is the representation of FA on the right cosets of 〈Z〉. Set
J = ϕ(Z∗). Thus J is a subgroup of index d of G. By Theorem 5.11, the set
U is a basis of the free group on A. Therefore, since G is a finite group, the
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restriction of ϕ to U∗ is surjective. Set ψ = ϕ ◦ α. Then ψ : C∗ → G is a
morphism which is onto since U = α(C) generates the free group on A. Let V
be the group code of degree d such that V ∗ = ψ−1(J). Then W = V ∩ H , as
we will show now.

Indeed, set W ′ = V ∩ H . If t ∈ W , then α(t) ∈ X and thus α(t) ∈ Z∗.
Therefore ψ(t) ∈ J and t ∈ V ∗. This shows that W ⊂ W ′∗. Conversely, if
t ∈ W ′, then ψ(t) ∈ J and thus α(t) ∈ Z∗. Since on the other hand α(t) ∈
U∗ ∩ S, we obtain α(t) ∈ X∗ by Lemma 6.7. This implies t ∈ W ∗ and shows
that W ′ ⊂W ∗.

Thus, since H is a uniformly recurrent tree set, by Theorem 5.10, W is a
basis of a subgroup of index d. Thus dW (H) = d by Theorem 5.9.

Lemma 6.9 The set Y is finite.

Proof. SinceW and U are finite, the set X =W ◦U is finite. Thus Y = f−1(X)
is finite.

Proof of Theorem 6.1. Let S be a uniformly recurrent tree set containing A and
let f : B∗ → A∗ be a coding morphism for a finite S-maximal bifix code Z. Set
T = f−1(S).

By Lemma 6.6, T is recurrent. By Lemma 6.9 any set of first return words
Y = RT (w) is finite. Thus, by Proposition 4.2, T is uniformly recurrent. By
Theorem 5.8, T is a tree set.

Thus we conclude that T is a uniformly recurrent tree set.

Note that since T is a uniformly recurrent tree set, the set Y is not only
finite as asserted in Lemma 6.9 but is in fact a basis of the free group on B, by
Theorem 5.11.

We illustrate the proof with the following example.

Example 6.10 Let S be the Fibonacci set on A = {a, b} and let Z = S ∩A2 =
{aa, ab, ba}. Thus Z is an S-maximal bifix code of S-degree 2. Let B = {c, d, e}
and let f : B∗ → A∗ be the coding morphism defined by f(c) = aa, f(d) = ab
and f(e) = ba. Part of the set T = f−1(S) is represented in Figure 6.3 on the
left (this set is the same as the set of Example 3.7 with a, b, c replaced by c, d, e).

The sets Y = RT (c) and X = f(Y ) are

Y = {eddc, eedc, eeddc}, X = {baababaa, babaabaa, babaababaa}.

On the other hand, the set U = RS(aa) is U = {baa, babaa}. Let C = {r, s}
and let α : C∗ → A∗ be the coding morphism for U defined by α(r) = baa,
α(s) = babaa. Part of the set H = α−1((aa)−1S) is represented in Figure 6.3
on the right. Then we have W = {rs, sr, ss} which is an H-maximal bifix code
of H-degree 2 in agreement with Lemma 6.8.

The following example shows that the condition that S is a tree set is nec-
essary.
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Figure 6.3: The sets T and H .

Example 6.11 Let S be the set of factors of (ab)∗. The set S does not satisfy
the tree condition since G(ǫ) is not connected. Let X = {ab, ba}. The set X is
a finite S-maximal bifix code. Let f : {u, v}∗ → A∗ be the coding morphism for
X defined by f(u) = ab, f(v) = ba. Then f−1(S) = u∗ ∪ v∗ is not recurrent.

6.3 Composition of bifix codes

In this section, we use Theorem 6.1 to prove a result showing that in a uniformly
recurrent tree set, the degrees of the terms of a composition of maximal bifix
codes are multiplicative (Theorem 6.12).

The following result is proved in [4, Proposition 11.1.2] for a more general
class of codes (including all finite codes and not only finite bifix codes), but in
the case of S = A∗.

Theorem 6.12 Let S be a uniformly recurrent tree set and let X,Z ⊂ S be
finite bifix codes such that X decomposes into X = Y ◦f Z where f is a coding
morphism for Z. Set T = f−1(S). Then X is an S-maximal bifix code if and
only if Y is a T -maximal bifix code and Z is an S-maximal bifix code. Moreover,
in this case

dX(S) = dY (T )dZ(S). (6.1)

Proof. Assume first that X is an S-maximal bifix code. By Proposition 2.9 (ii),
Y is a T -maximal prefix code and Z is an S-maximal prefix code. This implies
that Y is a T -maximal bifix code and that Z is an S-maximal bifix code.

The converse also holds by Proposition 2.9.
To show Formula (6.1), let us first observe that there exist words w ∈ S such

that for every parse (v, x, u) of w with respect to X , the word x is not a factor
of X . Indeed, let n be the maximal length of the words of X . Assume that the
length of w ∈ S is larger than 3n . Then if (v, x, u) is a parse of w, we have
|u|, |v| < n and thus |x| > n. This implies that x is not a factor of X .

Next, we observe that by Theorem 6.1, the set T is a uniformly recurrent
tree set and thus in particular, it is recurrent.
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Let w ∈ S be a word with the above property. Let ΠX(w) denote the set of
parses of w with respect to X and ΠZ(w) the set of its parses with respect to Z.
We define a map ϕ : ΠX(w) → ΠZ(w) as follows. Let π = (v, x, u) ∈ ΠX(w).
Since Z is a bifix code, there is a unique way to write v = sy and u = zr with
s ∈ A∗\A∗Z, y, z ∈ Z∗ and r ∈ A∗\ZA∗. We set ϕ(π) = (s, yxz, r). The triples
(y, x, z) are in bijection with the parses of f−1(yxz) with respect to Y . Since
x is not a factor of X by the hypothesis made on w, and since T is recurrent,
there are dY (T ) such triples. This shows Formula (6.1).

Example 6.13 Let S be the Fibonacci set. Let B = {u, v, w} and A = {a, b}.
Let f : B∗ → A∗ be the morphism defined by f(u) = a, f(v) = baab and
f(w) = bab. Set T = f−1(S). The words of length at most 3 of T are represented
on Figure 6.4.

u

v

w

u
v
w

u

u

v
w

u

u

u
v

u

Figure 6.4: The words of length at most 3 in T .

The set Z = f(B) is an S-maximal bifix code of S-degree 2 (it is the unique
S-maximal bifix code of S-degree 2 with kernel {a}). Let Y = {uu, uvu, uw, v, wu},
which is a T -maximal bifix code of T -degree 2 (it is the unique T -maximal bifix
code of T -degree 2 with kernel {v}).

The code X = f(Y ) is the S-maximal bifix code of S-degree 4 shown on
Figure 6.5.

a

b

a

b

a

a

a

b

a

b

b

a

b a

Figure 6.5: An S-maximal bifix code of S-degree 4.

Example 6.14 shows that Formula (6.1) does not hold if S is not a tree set.
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Example 6.14 Let S = F (ab)∗ (see Example 6.11). Let Z = {ab, ba} and let
X = {abab, ba}. We have X = Y ◦f Z for B = {u, v}, f : B∗ → A∗ defined by
f(u) = ab and f(v) = ba with Y = {uu, v}. The codes X and Z are S-maximal
bifix codes and dZ(S) = 2. We have dX(S) = 3 since abab has three parses.
Thus dZ(S) does not divide dX(S).
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volume 245 of Grundlehren der Mathematischen Wissenschaften [Funda-
mental Principles of Mathematical Sciences]. Springer-Verlag, New York,
1982. Translated from the Russian by A. B. Sosinskĭı.
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[17] Sébastien Ferenczi. Rank and symbolic complexity. Ergodic Theory Dynam.
Systems, 16(4):663–682, 1996.
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