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Abstract

A generalized lexicographical order on infinite words is defined by
choosing for each position a total order on the alphabet. This allows
to define generalized Lyndon words. Every word in the free monoid can
be factorized in a unique way as a nonincreasing factorization of general-
ized Lyndon words. We give new characterizations of the first and the last
factor in this factorization as well as new characterization of generalized
Lyndon words. We also give more specific results on two special cases:
the classical one and the one arising from the alternating lexicographical
order.

Keywords: Generalized Lyndon words, nonincreasing Lyndon factor-
ization, Alternating lexicographical order

1 Introduction

Let A be a totally ordered alphabet. A word w is called a Lyndon word if for each
nontrivial factorization w = uv, one has w < vu (here < is the lexicographical
order). Lyndon words were introduced in [15]. It is easy to see that this property
can be expressed in an equivalent way using infinite words, namely wω < (vu)ω

( where wω = www · · · ) for each nontrivial factorization w = uv.
A well-known theorem of Lyndon states that every finite word w can be

decomposed in a unique way as a nonincreasing product w = `1`2 · · · `n of Lyn-
don words. This theorem, which is a combinatorial counterpart of the famous
theorem of Poincaré-Birkhoff-Witt, provides an example of a factorization of
the free monoid (see [13]). It has also many algorithmic applications and it may
be computed in an efficient way. Indeed, Duval proposed in [10] a linear-time
algorithms to compute it, while Apostolico and Crochemore proposed in [1] a
O(lg n)-time parallel algorithm. This factorization is also used in string pro-
cessing algorithms (see [4]) and for the computation of runs in a word (see,
e.g., [9]).

In this paper we consider a variant of this family of words: generalized
Lyndon words. These words were first introduced by the third author in [18].
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Given a generalized order <, i.e., an order in which the comparison between
two words depends on the length of their common prefix (see Section 3 for the
formal definition), a finite word w is called a generalized Lyndon word if for each
nontrivial factorization w = uv we have wω < (vu)ω.

In this paper we present both new results and new proofs proofs of already
published results concerning this family of words. In [18] it is proved that the
family of generalized Lyndon words is a Hall set, and thus that they provide a
factorization of the free monoid. As a consequence, the associated Lie polyno-
mials form a basis of the free Lie algebra (see [17, 18]). In the present paper, we
give a new proof of this factorization theorem (Theorem 16) using only combi-
natorial techniques instead of the heavy machinery of Hall set theory.

Note that Nyldon words, introduced by Grinberg in [11], also provide a
factorization of the free monoid (see [7]), but they are not generalized Lyndon
words. Inverse Lyndon words introduced in [4] are not generalized Lyndon
words neither, while anti-Lyndon words (introduced in the same paper) with
respect to a lexicographical order < can be viewed as classical Lyndon words
with respect to the order <̃ (see also Example 9 later).

With our new combinatorial approach we are able, on one hand, to simplify
several of the proofs from [18] and, on the other hand, to obtain new interesting
results. In particular, we deduce a new characterization of the last factor of the
unique nonincreasing factorization in Lyndon words (Corollary 18). We also
simplify a result of [18], stating that generalized Lyndon words are characterised
by their suffixes and show a new characterization by the prefixes (Theorem 14).
This last result is new even for classical Lyndon words.

Next, we focus on two particular cases of generalized orders: the classical
and the alternating one.

In Theorem 20 we give two new characterizations of the first factor of the
nonincreasing factorization into classical Lyndon words. For a different charac-
terization of the first factor see also [10] and [17, Lemma 7.14 (iii)].

From Theorem 20 we deduce a new proof of a result from Ufnarovskij (Corol-
lary 22) which characterizes Lyndon words by their prefixes.

The second case we focus on, related to continued fractions, is given by Galois
words. These are generalized Lyndon words with respect to the alternating
lexicographical order <alt, that is the order comparing two words in an opposite
way depending on the parity of the length of the common prefix (see Section 6
for the formal definition). The link with continued fractions is that we have
that a1a2a3 · · · <alt b1b2b3 · · · if and only if

a1 +
1

a2 + 1
a3+

1

...

< b1 +
1

b2 + 1
b3+

1

...

where ai, bi ∈ N \ {0} for all i (see also [18]).
In Theorem 32 we give a characterization which generalized Ufnarovskij’s

Theorem to Galois words. Moreover, we also characterize the first factor of the
nonincreasing factorization in Galois words (Theorem 33). This is the analogue
for Galois words of Theorem 20.

We conclude in Section 7 with some remarks and open problems.

Acknowledgement. We thank the anonymous referee for his/her very
detailed report with copious and useful suggestions.
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Dedication. Maurice Nivat has been one of the main figures of French
school of Theoretical Computer Science. Some of his contributions are in the
field of combinatorics on words, as for instance the ones related to discrete
geometry, where paths are coded by words (see [?]). Lyndon words, whose
generalization we focus in this paper, have a significant role in discrete geometry
(see, e.g., [6]).

We want to dedicate this paper, in this very international journal that he
founded, to his memory.

2 Definitions and notations

For undefined notation we refer to [12] and [13]. We denote by A a finite
alphabet, by A∗ the free monoid and by A+ the free semigroup. Elements of
A∗ are called words and the identity element, denoted by 1 is called the empty
word. We say that a word u is a factor of the word w if w = xuy for some words
x, y; u is a prefix (resp. suffix) if x = 1 (resp. y = 1); it is nontrivial if u 6= 1 and
proper if u 6= w. We say that w = ps is a nontrivial factorization of w whenever
p, s are both nonempty. The length of a word w = a1a2 · · · an, where ai ∈ A for
all i, is equal to n and it is denoted by |w|.

A period of a word a1a2 · · · an is a natural integer p such that ai = ai+p for
any i such that i, i+ p ∈ {1, . . . , n}; it is called a nontrivial period if 0 < p < n.
A word having a nontrivial period is called periodic.

We say that v is a fractional power of u if u = u1u2 and v = uku1 for some
nonnegative integer k. In this case, one writes v = ur, where r = k + |u1|/|u| is
a positive rational. Note that for k = 0 (or r < 1) this means that v is a prefix
of u. Fractional powers are also known as sesquipowers (see, e.g., [16]).

We say that the v is a strict fractional power of u if v is a fractional power
of u and, with the notations above, k ≥ 1 or, equivalently, that r ≥ 1. In this
case u is a prefix of v.

Example 1. Let u = abcdef . Then u2/3 = abcd and u5/3 = abcdefabcd. The
last one is, in particular, a strict fractional power of u.

We denote by Aω the set of sequences over A, also called infinite words; such
a sequence (an)n≥1 is also written a1a2a3 · · · . If w is a (finite) word of length
n ≥ 1, wω denotes the infinite word having w as a prefix and of period n.

We denote by A∞ = A∗ ∪Aω the set of finite and infinite words.
A border of a word w of length n is a word which is simultaneously a non-

trivial proper prefix and suffix of w. A word is called unbordered if it has no
border. It is well-known that a word has a border if and only if it is periodic.

Suppose that u, v are finite nonempty words. The following fact is well-
known: one has uω = vω if and only if u, v are power of a common word, and
this is true if and only if u and v commute (see, for instance, [13, Corollary
6.2.5]).

Observe also that if for two nonempty words u, v, one has uω 6= vω, then by
Fine and Wilf theorem, their prefixes of length |u|+ |v|−gcd(|u|, |v|) differ (see,
for instance, [12]).

Given an order < on the alphabet A, we can define the lexicographic order
<lex (or simply < when it is clear from the context) on A∞ in the following way
: u <lex v if either u is a proper prefix of v (in which case u must be in A∗) or
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we may write u = pau′, v = pbv′ for some words p ∈ A∗, u′, v′ ∈ A∞ and some
letters a, b ∈ A such that a < b.

Definition 2. Let s, t be two distinct elements of Aω such that we have a
factorization s = u1 · · ·uks0 with u1, · · · , uk finite nonempty words and s0 is an
infinite word. We say that the comparison between s and t takes place within
uk if u1 · · ·uk−1 is a prefix of t, but u1 · · ·uk is not. If moreover u1, u2, . . . , uk

are letters we say that the comparison takes place at position k.

Note that, when the comparison takes place within uk, one may write t =
u1 · · ·uk−1u

′
kt
′, for some t′ ∈ Aω and u′k 6= uk such that |u′k| = |uk|.

Lemma 3. Let u, v be nonempty words such that uω 6= vω. Then the comparison
between uω and vω takes place within the first factor v of vω if and only if v is
not a fractional power of u.

Proof. The comparison between the two infinite words takes place within the
first v if and only if the two prefixes of length |v| of uω and vω are different.
The conclusion follows from the fact that v is a fractional power of u if and only
if v is a prefix of uω.

3 Generalized lexicographical order

Definition 4. For each n ∈ N \ {0}, let <n be a total order on A. To the
sequence (<n)n≥1 we associate a total order on A∞, that we still denote by
< when it is clear from the context, called generalized lexicographical order, as
follows: u < v if either u is a proper prefix of v (in which case u must be in A∗)
or we can write u = pas, v = pbt for some p ∈ A∗, some s, t ∈ A∞ and some
letters a, b ∈ A such that a <|p|+1 b.

Example 5. Let < be the generalized order on {a, b}∞ defined by b <n a if n
is a prime number and a <n b otherwise. Then we have aba < abaaa < aab <
bab < baab and (ab)ω < aω < bω < (ba)ω.

Note that, as for the classical order, when u is a prefix of v we could have
uω � vω, as shown in the next example.

Example 6. Let A = {a, b}, and < as in Example 5. The word ab is a prefix
of aba but (aba)ω < (ab)ω.

Let us consider a generalized lexicographical order < on A∞.

Lemma 7. Let s, t ∈ Aω be as in Definition 2 (and the sentence following it).
Then s < t (resp. s > t) implies u1 · · ·u′ks′ < u1 · · ·ukt

′ (resp. u1 · · ·u′ks′ >
u1 · · ·ukt

′) for any infinite words s′, t′.

Lemma 8. Let u, v be nonempty finite words such that uω < vω and let x, y be
two finite words. Then

(i) if neither u or v is a prefix of the other, then (ux)ω < (vy)ω;

(ii) if v is not a fractional power of u, then (uk+1x)ω < (vy)ω, where k is the
largest integer such that uk is a prefix of v. In particular uω < (vy)ω.
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Proof. In case (i), the comparison between the two infinite words takes place
within the prefix of length min(|u|, |v|). Hence we conclude using Lemma 7.

Suppose now that the hypothesis of (ii) holds. Then we can write u = u′au1

and v = uku′bv1, with u′ ∈ A∗, a, b ∈ A such that a 6= b, and u1, v1 ∈ A∗. Let
m = |uku′|. Since uω = uku′au1u

ω and since uω < vω, we have that a <m+1 b.
The two infinite words uω and (uk+1x)ω share the same prefix of length m + 1,
and the same do vω and (vy)ω. Thus the comparison between between (uk+1x)ω

and (vy)ω takes place at position m + 1. Since a <m+1 b, we can conclude.

We use several times the following observation: the opposite order <̃ of
a generalized order < is also a generalized lexicographical order, obtained by
reversing all the orders <i.

Example 9. Let < be the usual lexicographical order on {a, b}, that is such
that a <i b for all i ≥ 1. Then <̃ is defined by b <̃i a for all i ≥ 1.

Example 10. Let < be the generalized order defined in Example 5. Then we
have (aba)ω < (aab)ω < (bab)ω < (baa)ω and (baa)ω <̃ (bab)ω <̃ (aab)ω <̃ (aba)ω.

Part of the following lemma is stated in [18].

Lemma 11. The following conditions are equivalent for nonempty words u, v ∈
A∗:

(1) uω < vω;

(2) (uv)ω < vω;

(3) uω < (vu)ω;

(4) (uv)ω < (vu)ω.

Proof. The four conditions obtained by replacing in the lemma < by = are
equivalent (see again [13, Corollary 6.2.5]). We may therefore assume that none
of these equalities holds.

Let us assume first that condition (1) holds and prove that the other condi-
tions hold too.

If v is not a fractional power of u, then conditions (2), (3) and (4) hold, by
point (ii) of Lemma 8, with x = u′bv1 and y = 1 for case (2), x = 1 and y = u
for case (3), and x = u′bv1 and y = u for case (4).

Let us suppose that v is a strict fractional power of u. We may therefore
write v = uju1, for some j ≥ 1, and u = u1u2. Using the observation in the
previous section, deduced from the Fine and Wilf theorem, we see that the
prefixes of length |u|+ |v| of uω and vω are distinct, i.e., uj+1u1 6= uju1u. Since
both uω and (uv)ω begin by uj+1u1 and both vω and (vu)ω begin by uju1u, and
since the comparison in all four cases is done in the prefix of length |u|+ |v|, we
can conclude that (2), (3) and (4) hold.

Let us now consider the case when v is a nonstrict fractional power of u, i.e.,
v is a proper prefix of u. That implies that either u is not a fractional power of
v or u is a strict fractional power of v. Let us consider <̃ the opposite order of
<. Since vω <̃ uω, from what we have seen above, we have that (vu)ω <̃ uω,
vω <̃ (uv)ω and (vu)ω <̃ (uv)ω. Thus, conditions (2), (3) and (4) hold.

Finally, let us suppose that the negation of (1) holds, that is that uω <̃v ω

(remember that we supposing uω 6= vω). Then, using the same reasoning as
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above, we have (uv)ω <̃ vω, uω <̃ (vu)ω and (uv)ω <̃ (vu)ω, i.e., the negations
of the three last conditions. This shows that each of the condition (2), (3) or
(4) implies (1).

4 Generalized Lyndon words

In this section we introduce generalized Lyndon words.

Definition 12. Given an alphabet A and a generalized order < on A∞ we say
that a finite word w ∈ A+ is a generalized Lyndon word if for any nontrivial
factorization w = uv one has wω < (vu)ω.

Example 13. Let A = {a, b} and < be the order defined in Example 5. The
word w = abba is a generalized Lyndon word for the order <. Indeed, one can
easily check that (abba)ω < (aabb)ω < (bbaa)ω < (baab)ω.

4.1 Characterization of generalized Lyndon words

In the next theorem we give two characterizations of generalized Lyndon words.
Recall that a classical result due to Lyndon states that a word w is a classical
Lyndon word if and only if w <lex v for any nontrivial proper suffix of w (see [12,
Proposition 5.1.2]).

The second part of the next result has already been proved in [18, Proposition
2.1]. We give here a shorter proof.

Theorem 14. Let us consider a generalized lexicographical order < on A∞.

1. A word w is a generalized Lyndon word if and only if for any nontrivial
factorization w = uv, one has uω < vω.1

2. A word w is a generalized Lyndon word if and only if for any nontrivial
factorization w = uv, one has wω < vω.

Proof. By definition, w is a generalized Lyndon words if and only if for each
nontrivial factorization w = uv, one has (uv)ω < (vu)ω. By Lemma 11, this is
equivalent both to uω < vω and to (uv)ω < vω, i.e. wω < vω.

Example 15. Let w,A and < as in Example 13. Let us consider the nontrivial
factorization w = uv with u = abb and v = a. One has (abb)ω < aω and
(abba)ω < aω.

4.2 Factorization into generalized Lyndon words

The following result is already proved in [18, Theorem 2.1] using the theory of
Hall sets. We give here an independent proof, especially for the uniqueness part,
using only combinatorial arguments.

Theorem 16. Each word in A∗ can be factorized in a unique way as a nonin-
creasing product of generalized Lyndon words.

1One may find on Wikipedia the following characterization (without proof nor references):
w is a classical Lyndon word if and only if for each nontrivial factorization w = uv one has
u < v. Our condition is not an extension of this condition to generalized Lyndon words.
Indeed, if one take the usual order a < b, one has b < ba but bω > (ba)ω .
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Proof. Let us consider a generalized lexicographical order < on A∞.
To prove the existence of such a nonincreasing factorization we follow the

proof of [18, Corollary 2.2]. Let w ∈ A+ (if w = 1 there is nothing to prove).
We define z as the shortest among all nontrivial suffixes s of w such that sω is
minimum. By Theorem 14, z is a generalized Lyndon word. If w = z, we have
found our factorization. Otherwise, we can write w = uz and, by induction on
the length of u, we may assume that u = `1`2 · · · `n, where the `i are generalized
Lyndon words with `ω1 ≥ `ω2 ≥ . . . ≥ `ωn . Moreover, we have `ωn ≥ zω. Indeed,
by construction of z we have (`nz)ω ≥ zω, and thus, using Lemma 11, `ωn ≥ zω.

Let us now prove the uniqueness of this factorization. Suppose that we have
w = `1`2 · · · `n, where the `i are generalized Lyndon words with`ω1 ≥ `ω2 ≥ . . . ≥
`ωn . Let us show that `n is uniquely determined by the following condition: it
is the shortest among all nontrivial suffixes s of w such that sω is minimum.
To prove this it is enough to show that if s is a nontrivial proper suffix of `n,
then `ωn < sω; and if s is a suffix of w longer that `n, then `ωn ≤ sω. The
first inequality follows from point 2 of Theorem 14 and the fact that `n is a
generalized Lyndon word. Suppose now that the second one is not true. Thus
there exists some i, with 2 ≤ i ≤ n, and some factorization `i−1 = uv with v
nonempty, such that s = v`i · · · `n, and

(v`i · · · `n−1`n)ω < `ωn .

From this last inequality and from Lemma 11 we deduce that (v`i · · · `n−1)ω <
`ωn . Since `ωn ≤ `ωn−1, we thus have

(v`i · · · `n−1)ω < `ωn−1.

Continuing recursively, we find that (v`i)
ω < `ωi , therefore (v`i)

ω < `ωi and,
since `ωi ≤ `ωi−1, that vω < lωi−1. This gives us a contradiction to Theorem 14,
since `i−1 = uv is a generalized Lyndon word. Thus `n is uniquely determined
and, by proceeding recursively we prove the uniqueness of the factorization.

From the proof of the previous theorem we obtain the two following results.

Corollary 17. Let w = `1`2 · · · `n, with `i generalized Lyndon words such that
`ω1 ≥ `ω2 ≥ . . . ≥ `ωn. Then `n is the shortest among all nontrivial suffixes s of
w such that sω is minimum.

Corollary 18. With the same hypothesis as in Corollary 17, we have that `n
is the longest suffix of w which is a generalized Lyndon word.

Note that the this result is known for classical Lyndon words (see [17, Lemma
7.14 (ii)] and [10]).

Proof of Corollary 18. Indeed, if there exists a suffix s longer than `n which is
a generalized Lyndon word, then, since s has `n as a proper suffix, we would
have sω < `ωn by point 2 of Theorem 14, contradicting Corollary 17.

Example 19. Let us consider the word w = aabaabaabb with the order de-
fined in Example 5. The unique nonincreasing factorization of w in generalized
Lyndon words is w = (a)(aba)(aba)(abb).

Note that every factor ` of the factorization in Lyndon words is primitive,
i.e., if ` = wr with w a finite word and r an integer, then r = 1 and ` = w.
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5 Classical Lyndon words

In this section, we take as generalized lexicographical order the usual lexico-
graphical order <lex, simply denoted by <. Clearly, a generalized Lyndon word
for this order is a usual one, since for two finite words of the same length, one
has u < v if and only if uω < vω. (see [5, Theorem 8]).

5.1 Factorization into Lyndon words

The nonincreasing factorization of a word into Lyndon words, as in Theo-
rem 16, is the usual nonincreasing factorization into Lyndon words (see, for
instance, [12]).

While at the end of Section 4 we gave two characterizations of the last
element of the factorization, here we focus on the first factor. This result is
motivated by point 1 of Theorem 14: the fact that a word w is not a Lyndon
word implies the existence of a prefix u such that uω ≥ vω, where v is the
corresponding suffix. If one chooses the shortest prefix satisfying this property,
this turns out to be the first factor in the Lyndon factorization. In the same
vein, it is motivated by Ufnarovskij’s Theorem (Corollary 22 below).

Theorem 20. Let w = `1`2 · · · `n be the nonincreasing factorization into Lyn-
don words of a finite nonempty word w.

1. The word `1 is the shortest nontrivial prefix p of w such that, when writing
w = ps, one has either s = 1 or pω ≥ sω.

2. The word `1 is the shortest nontrivial prefix p of w such that pω ≥ wω.

In order to prove Theorem 20 we need a preliminary result which refines
Lemma 11 in the case of the usual lexicographical order.

Note that, for any infinite words s, t such that s < t, with < the classical
order, and for any finite word w, one has ws < wt.

Lemma 21. Let u, v be two nonempty words. Then each of the two following
conditions is equivalent to each of the four conditions in Lemma 11:

(5) uω < (uv)ω;

(6) (vu)ω < vω.

Proof. Condition (3) in Lemma 11 is equivalent to condition (5): indeed uω <
(vu)ω ⇔ uuω < u(vu)ω ⇔ uω < (uv)ω. Similarly, condition (2) is equivalent to
condition (6): indeed, (uv)ω < vω ⇔ v(uv)ω < vvω ⇔ (vu)ω < vω.

Note that the previous lemma implies that if uω < vω, then

uω < (uv)ω < (vu)ω < vω,

a result proved by Bergman in [2, Lemma 5.1] (see also [20, p.34 and pp.101–
102]).

The following result is [20, Theorem 2, p.35].

Corollary 22 (Ufnarovskij). A word w is a Lyndon word if and only if for any
nontrivial factorization w = ps, one has pω < wω.
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Proof. It follows from point 1 of Theorem 14 and from Lemma 21.

Example 23. The word w = aabab is a Lyndon word. We have aω = (aa)ω <
(aaba)ω < (aab)ω < wω.

Corollary 24. If `1, `2, . . . , `n, with n ≥ 2, are Lyndon words such that `ω1 ≥
`ω2 ≥ · · · ≥ `ωn, then `ω1 ≥ (`2 · · · `n)ω.

Proof. The case n = 2, it is trivial. Let consider the case n ≥ 3. By induction
hypothesis we have `ω2 ≥ (`3 · · · `n)ω. From Lemma 21 it follows that `ω2 ≥
(`2 · · · `n)ω. Hence, `ω1 ≥ (`2 · · · `n)ω.

It is well-known that all (classical) Lyndon words are unbordered (see, for
instance, [8]).

Proof of Theorem 20. Let us prove the first assertion. When n = 1, then w = `1
is a Lyndon word and the result is true by point 1 of Theorem 14.

Suppose now that n ≥ 2. Then, by Corollary 24, we have `ω1 ≥ (`2 · · · `n)ω.
Let p be a nontrivial prefix of w shorter then `1. Thus, we have a nontrivial
factorization `1 = pq for some q 6= 1. By Theorem 14, we know that pω < qω.
Since `1 is unbordered, q cannot be a fractional power of p. Thus, by point
(ii) of Lemma 8, one has pω < (q`2 · · · `n)ω, which prove the first part of the
theorem.

The second assertion just follows from the first one. Indeed, using Lemma 21,
we have that if s 6= 1, then pω ≥ sω is equivalent to pω ≥ (ps)ω.

Example 25. Let w = ababaab. Its nonincreasing factorization into Lyndon
words is w = (ab)(ab)(aab). One can check that (ab)ω > wω > (abaab)ω while
aω < wω < (babaab)ω.

6 Galois words

In this section we consider a particular generalized lexicographical order.

Definition 26. Let <1 be an order on A. The alternating lexicographical order
<alt with respect to <1 is the generalized lexicographical order defined by the
sequence (<n)n≥1 with <n=<1 if n is odd, and <n= <̃1 if n is even.

Example 27. Let us consider <1 as the usual order on {a, b}. Then one has
(ab)ω <alt a

ω <alt b
ω <alt (ba)ω.

This order is relevant when one orders real numbers through their continued
fractions, see for example [18, p.1-2].

The terminology in the following definition is justified in [18, p.2].

Definition 28. A Galois word is a generalized Lyndon word for an alternating
lexicographical order.

Example 29. Let us consider <1 the usual order on {a, b, c}. The following
are Galois words: b, ac, bc, aba, abb, abaa, acab.
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6.1 Characterization of Galois words

Similarly to what we saw in Section 5.1 for the classical order, for any infinite
words s, t such that s <alt t, and any finite word w, one has ws <alt wt if |w| is
even, and ws >alt wt if |w| is odd.

Symmetrically, when ws <alt wt one has s <alt t if |w| is even and s >alt t
if |w| is odd.

Example 30. Let us consider the order of Example 27. One has (ab)aω <alt

(ab)bω and baω >alt bb
ω.

Using the previous observation we can prove the next lemma using the same
techniques as in Lemma 21.

Lemma 31. Let u, v be nonempty words. Then each of the two following condi-
tions is equivalent to each of the four conditions in Lemma 11 when considering
the order <alt:

(5) uω <alt (uv)ω if |u| is even and uω >alt (uv)ω if |u| is odd;

(6) (vu)ω <alt v
ω if |v| is even and (vu)ω >alt v

ω if |v| is odd.

Proof. Let us first suppose that |u| is even. By the remark at the beginning of
the section, one has uω <alt (vu)ω ⇔ uω = uuω <alt u(vu)ω = (uv)ω. Using the
same remark we have, in the case |u| is odd, uω <alt (vu)ω ⇔ uω = uuω >alt

u(vu)ω = (uv)ω. Thus condition (3) of Lemma 11 is equivalent to condition (5).
Similarly, condition (2) of Lemma 11 is equivalent to condition (6). Indeed,

whenever |v| is even one has (uv)ω <alt v
ω ⇔ (vu)ω = v(uv)ω <alt vv

ω = vω,
and whenever |v| is odd one has (uv)ω <alt v

ω ⇔ (vu)ω = v(uv)ω >alt vv
ω =

vω.

The following characterization of Galois words can be seen as a generalization
of Ufnarovskij’s Theorem (Corollary 22).

Theorem 32. A word w is a Galois word if and only if for any nontrivial
factorization w = ps, one has the following condition: pω <alt w

ω if |p| is even
and pω >alt w

ω if |p| is odd.

Proof. The result immediately follow from point 1 in Theorem 14 and from
Lemma 31.

6.2 Factorization into Galois words

Suppose that w = g1g2 · · · gn is the nonincreasing factorization of w in Galois
words. We call multiplicity of g1 the number m = Card{i | gi = g1}. In other
words w = gm1 gi+1 · · · gn, with gω1 >alt g

ω
i+1.

The following result is a generalization of Theorem 20 to Galois words. This
result is motivated by Theorems 14 and 32.

Theorem 33. Let w = g1g2 · · · gn with gi Galois words satisfying gω1 ≥alt

gω2 ≥alt · · · ≥alt gωn . Let m be the multiplicity of g1. Let p be the shortest
nontrivial prefix of w such that

pω ≥alt w
ω if |p| is even and pω ≤alt w

ω if |p| is odd. (?)

Then
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(i) if |g1| is odd, m is even, and m < n, then p = g21;

(ii) otherwise, p = g1.

Note that we can give an equivalent condition on p in the previous statement.

Lemma 34. Let w = ps be a finite word, with p 6= 1. Then p satisfies condition
(?) if and only if p is such that one has either s = 1 or pω ≥alt s

ω.

Proof. From Lemma 31 it follows that one has pω ≥alt s
ω ⇔ pω ≥alt w

ω when
|p| is even and pω ≥alt s

ω ⇔ pω ≤alt w
ω when |p| is odd.

In order to prove Theorem 33 we need several lemmata.
Recall, from Section 5.1 that classical Lyndon words have no border. This

is no more true for Galois words, as shown in the next lemma.

Lemma 35. ([18, Proposition 3.1] If a Galois word has a border, then it has
odd length.

Lemma 36. Let g, h be Galois words with gω <alt h
ω and g a prefix of h. Then

|g| is even.

Proof. Let g be a prefix of h with |g| odd. Then by Theorem 32, one has
gω >alt h

ω.

Lemma 37. Let g, h be Galois words with gω <alt h
ω. If g is a strict fractional

power of h then |g| is even.

Proof. Let k ≥ 1 and h′ a prefix of h such that g = hkh′. The factorization
h = h′h′′ is not trivial since hω 6= gω. Both gω and hω have g as a prefix,
and since gω <alt hω, we have gh′h′′s <alt gh′′h′t, where s = hk−1h′gω and
t = h′′hω.

Let us suppose by contradiction that |g| is odd. By the remark at the
beginning of Section 6.1, we have h′h′′s >alt h

′′h′t. Since |h′h′′| = |h′′h′| = |h|
but h′h′′ 6= h′′h′, the comparison of the last inequality takes place within the
prefix of length |h|. Thus, by Lemma 7, one has hω >alt (h′′h′)ω, which is
impossible since h is a Galois word.

Lemma 38. Let w = g1g2 · · · gn with gi Galois words satisfying gω1 ≥alt g
ω
2 ≥alt

· · · ≥ gωn . Let m be the multiplicity of g1 and assume that m < n and that n ≥ 2.
Then:

(i) if |g1| is odd and m is even, then gω1 <alt (g2 · · · gn)ω;

(ii) otherwise, gω1 >alt (g2 · · · gn)ω.

Proof. If n = 2 then we have m = 1 and thus gω1 >alt gω2 ., i.e., m is odd and
condition (ii) holds.

Suppose now that n ≥ 3. Let us first suppose that |g2| is even. If g2 =
· · · = gn, then necessarily we have g1 6= g2, since m < n. Therefore, gω1 >alt

gω2 = (g2 . . . gn)ω and m = 1 is odd, so we are in case (ii). If g2, . . . , gn are
not all equal, we can argue by induction on n. Thus since |g2| is even we have
gω2 >alt (g3 · · · gn)ω. By applying Lemmata 11 and 31 we find that gω2 >alt

(g2g3 · · · gn)ω. Finally, since gω1 ≥alt g
ω
2 , we have gω1 >alt (g2 · · · gn)ω; moreover,

11



either m is odd, or m is even and then g1 = g2 and |g1| is even, so that we are
in case (ii).

Suppose now that |g2| is odd. We assume first that g1 6= g2, i.e., m = 1.
We have gω1 >alt g

ω
2 . We show that g2 is not a fractional power of g1. Indeed,

g2 is not a prefix of g1 by Lemma 36; moreover, by Lemma 37, g2 is not a strict
fractional power of g1; since being a fractional power is equivalent to be a prefix,
or a strict fractional power, we are done.

Hence, by Lemma 8 (ii) (applied to the opposite order), it follows that
gω1 >alt (g2 · · · gn)ω.

Finally, let us consider the case g1 = g2 and |g2| odd. We have m ≥ 2 and
w = gm1 gm+1 · · · gn, with gω1 >alt g

ω
m+1. By induction applied to g1gm+1 · · · gn

we have gω1 >alt (gm+1 · · · gn)ω, i.e., condition (ii) holds. Since |g1| = |g2| is odd,
one deduces, by using Lemmata 11 and 31, that gω1 <alt (gm−11 gm+1 · · · gn)ω

when m is even and gω1 >alt (gm−11 gm+1 · · · gn)ω when m is odd.

An interesting consequence of the previous lemma is the following.

Corollary 39. Let w = g1g2 · · · gn with gi Galois words satisfying gω1 ≥alt

gω2 ≥alt · · · ≥ gωn . Let m be the multiplicity of g1. One has gω1 >alt w
ω if |gm1 | is

even and gω1 <alt w
ω if |gm1 | is odd.

Proof. This follows from Lemma 31 with v = gm1 and u = (gm+1 · · · gn).

We can now prove the main result of the section.

Proof of Theorem 33. Let us prove first that the two prefixes, g1 for the case
(ii) and g21 for the case (i) satisfy condition (?). If we are under the hypotheses
of case (ii), i.e., if |g1| is even or m is odd (the two conditions are not mutually
exclusive), then gω1 >alt (g2 · · · gn)ω by Lemma 38. If we are under the hypothe-
ses of case (i), then we have n − 1 ≥ 2 and the multiplicity of g1 in g1g3 · · · gn
is odd. Hence, applying Lemma 38 we find that (g1)ω = (g21)ω >alt (g3 · · · gn)ω.
In both cases the result follows from Lemma 34.

Let us now prove that any nontrivial proper prefix of g1 in case (ii) and of
g21 in case (i) does not satisfy condition (?).

Let g1 = pt be a non trivial factorization of g1 and s = tg2 . . . gn. By
Theorem 14, we have pω <alt t

ω. If the comparison in the last inequality takes
place within the first t of tω, then pω <alt sω, and we can conclude by using
Lemma 34.

Otherwise, by Lemma 3, t is a fractional power of p, i.e., we can write t = pr,
r ∈ Q \ N (since g1 = pt is primitive). We claim that |t| is odd. Indeed, if we
suppose that r < 1, then t is a prefix of p, hence of g1, so that |t| is odd by
Lemma 35. If we suppose that r > 1, then we can write t = php′, with h ≥ 1
and p = p′p′′. Thus g1 = (p′p′′)h+1p′ and p′, pp′ are both borders of g1. This
implies by Lemma 35 that |p′| is odd and |p| even, hence |t| is odd. This implies
that |p| is even if and only if |g1| is odd.

Let us suppose first that |g1| is odd. Then pω <alt gω1 by Theorem 32. If
we are in case (ii), we have gω1 ≤alt wω by Corollary 39, hence pω <alt wω,
as we wanted to prove. If we are in case (i), then g1 = g2. If the comparison
between pω and gω1 takes place within the first g1 of gω1 , we conclude that
pω <alt (g1g2 · · · gn)ω = wω. Otherwise, by Lemma 3, we can write g1 = pkp1,
with k ≥ 1, and p = p1p2. Since g1 = (p1p2)kp1 is a Galois word, we have
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((p1p2)kp1)ω <alt ((p2p1)kp1)ω. Since |(p1p2)kp1| = |(p2p1)kp1|, the comparison
in the previous (strict) inequality takes place in the prefix of their common
length, hence in their prefix of length |p| = |p1p2| = |p2p1|. Thus, (p1p2)s0 <alt

(p2p1)t0 for all infinite words s0, t0.
Since g2 has p1p2 as a prefix, we deduce that (g2 · · · gng1)ω <alt (p2p1)ω.

Therefore, since |g1| is odd, we have

pω = (p1p2)kp1(p2p1)ω = g1(p2p1)ω <alt g1(g2 · · · gng1)ω = wω.

Let us suppose now that |g1| is even (and thus |p| is odd). From Theorem 32 it
follows that pω >alt g

ω
1 and from Corollary 39 it follows that gω1 ≥alt w

ω. Thus
pω >alt w

ω.
We have proved that no nontrivial proper prefix of g1 satisfy condition (?).

It remains to prove that, under the hypotheses of case (i), each proper prefix of
g21 of length at least |g1| does not satisfy condition (?).

Since we are in case (i), |g1| is odd, m is even and g1 6= gn. Using Lemma 38
we have that gω1 <alt (g2 · · · gn)ω. Thus it follows from Lemma 34 that g1 does
not satisfy condition (?).

Let now consider p = g1q with g1 = qt a nontrivial factorization of g1. If
|q| is even, and thus |p| is odd, we have qω <alt gω1 by Theorem 32. Using
Lemma 31 and Corollary 39 we find

pω = (g1q)ω >alt g
ω
1 ≥alt w

ω.

Finally, let us suppose that |q| is odd, and thus |p| and |t| are even. By Theo-
rem 14 we have (qt)ω = gω1 <alt t

ω. Since t is not a prefix of g1 (being of even
length, it cannot be a border of g1), the comparison is within the first t of tω.
Thus we have (qtq)ω <alt (tg3 · · · gnqtq)ω. Since |qtq| is even and g1 = g2 = qt,
we deduce that

pω = (g1q)ω = (qtq)ω <alt (qtqtg3 · · · gn)ω = wω.

Therefore, in both cases p does not satisfy condition (?).

Example 40. Let us consider the word w = abbabbabaa using the alternating
order of Example 25. The nonincreasing factorization of w in Galois words is
w = (abb)(abb)(abaa). One can check that ((abb)2)ω >alt wω, and that each
nontrivial proper prefix of (abb)2 does not satisfy condition (?) of Theorem 33.

7 Remarks and open problems

Generalized Lyndon words, defined by using orders different than the usual
lexicographical one, have different behaviors than classical Lyndon words.

For instance, we have seen that generalized Lyndon words are not, in general,
unbordered, as is the case for classical Lyndon words. Moreover, it is known
that for each primitive word w, its unique conjugate which is a classical Lyndon
word, is one of the elements in the nonincreasing factorization of ww into Lyn-
don words (see, e.g. [17, Section 7.4.1] and [14] where are given algorithms to
compute this unique conjugate). This is no more true for generalized Lyndon
words, as shown in the next example.
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Example 41. Let us consider the primitive word w = baa. Let us consider the
alternating order on {a, b}∞ with a <1 b. The unique Galois word conjugate
to w is u = aba. The nonincreasing factorization of ww into Galois words is
ww = (b)(a)(abaa).

In the classical case it is easy to show that we have a symmetric result of
Corollary 17, namely that `ω1 is maximum along all pω, with p a nontrivial prefix
of w. This is not true for general orders, as shown in the next example.

Example 42. Let us consider the word w = abab and the alternating order of
Example 41. Its nonincreasing factorization in Galois word is w = (ab)(ab). If
we consider the nontrivial proper prefix a, we have aω >alt (ab)ω.

Moreover, using the same notation as before, it is not true in general that `1
is the longest among all prefixes of w which are generalized Lyndon words (this
is true for classical Lyndon words, see, e.g., [17, Lemma 7.14 (iii)]).

Example 43. Let w = abab as in Example 42. The prefix aba is longer than
ab and it is also a Galois word.

For classical Lyndon words, it is known that the unique nonincreasing factor-
ization of a word in Lyndon words is also the factorization into Lyndon words
which has the less number of factors2. This is no more true for generalized
Lyndon words, as shown in the next example.

Example 44. Let us consider the alternating lexicographical order of Exam-
ple 41. Then w = (ab)(ab)(ab) is a word with its nonincreasing factorization
in Galois words. The word w admits a shorter factorization into Galois words,
namely w = (ababa)(b).

In [10], Duval shows that given a finite word w, it is possible to compute in
linear time its nonincreasing factorization into classical Lyndon words.

Open Problem 1. Generalize Duval’s algorithm to generalized Lyndon words.

In the same paper, Duval also proposed a second algorithm generating all
Lyndon words of length ≤ n. A consequence of this algorithm is that the number
of Lyndon words of length at most n is equal to the number of words of length
n that are prefixes of a Lyndon word plus 1. This property is no more true for
a generalized order, as shown in the next example.

Example 45. Let us consider A = {a, b, c} with the usual order. The only 6
Lyndon words of length at most 2 are a, b, c, ab, ac and bc. It is easy to check
that there are exactly 5 words of length 2 which are prefixes of a Lyndon word,
namely aa, ab, ac, bb and bc.

Let us now consider A with the alternating order given by a <1 b <1 c.
There are 6 Galois words of length at most 2 (namely a, b, c, ab, ac and bc) but
only 3 words of length 2 which are prefixes of Galois words (namely ab, ac and
bc).

2This follows easily from the property: if u, v are Lyndon words and u <lex v, then uv is
a Lyndon word, see [12, Proposition 5.1.3]
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Finally, all along the paper we only considered finite Lyndon words. In [19]
are defined infinite Lyndon words: these are the infinite words which have in-
finitely many prefixes that are (finite) Lyndon words. Then the authors of [19]
prove that x is an infinite Lyndon word if and only if x is smaller than any of its
nontrivial proper suffixes (Proposition 2.2). They prove also that each infinite
word x is equal to a nondecreasing product of finite Lyndon words and perhaps
one infinite one (Proposition 2.3). This means that either x = `1`2 · · · `n, with
`1, . . . , `n−1 finite Lyndon words and `n an infinite one, or x = `1`2 · · · is an
infinite product of finite Lyndon words; in both cases, `1 ≥ `2 ≥ . . ..

Thus, following [3] and [19], we say that an infinite word x is a generalized
infinite Lyndon word if x is smaller that any of its nontrivial proper suffixes. It
would be interesting to generalize this result to Galois words and other gener-
alized Lyndon words.

Open Problem 2. Prove that each infinite word can be factorized in a unique
way as a nonincreasing product of finite and infinite generalized Lyndon words.
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[6] Srečko Brlek, Jacques-Olivier Lachaud, Xavier Provençal, and Christophe
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