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2 LIGM, Université Paris Est-Marne-la-Vallée (France)

Abstract

We define a new class of shift spaces which contains a number of classes
of interest, like Sturmian shifts used in discrete geometry. We show that
this class is closed under conjugacy, a natural transformation obtained by
sliding block coding.

1 Introduction

Shift spaces are the sets of two-sided infinite words avoiding the words of a
given language F denoted XF . In this way the traditional hierarchy of classes
of languages translates into a hierarchy of shift spaces. The shift space XF is
called of finite type when one starts with a finite language F and sofic when
one starts with a regular language F . There is a natural equivalence between
shift spaces called conjugacy. Two shift spaces are conjugate if there is a sliding
block coding sending bijectively one upon the other (in this case the inverse map
has the same form). Many basic questions are still open concerning conjugacy.
For example, it is surprisingly not known whether the conjugacy of shifts of
finite type is decidable. The complexity of a shift space X is the function
n 7→ p(n) where p(n) is the number of admissible blocks of length n in X. The
complexities of conjugate shifts of linear complexity have the same growth rate
(see [9, Corollary 5.1.15]).

In this paper, we are interested in shift spaces of at most linear complexity.
This class is important for many reasons and includes the class of Stumian shifts
which are by definition those of complexity n + 1, which play a role as binary
codings of discrete lines. Several books are devoted to the study of such shifts
(see [9] or [11] for example). We define a new class of shifts of at most linear
complexity, called eventually dendric, which includes Sturmian shifts. It extends
the class of dendric shifts introduced in [2] (under the name of tree sets given
to their language) which themselves extend naturally episturmian shifts (also
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called Arnoux-Rauzy shifts) and interval exchange shifts. A dendric shift X is
defined by introducing the extension graph of a word in the language L(X) of X
and by requiring that this graph is a tree for every word in L(X). This kind of
shifts has many interesting properties which involve free groups. In particular,
in a dendric shift X on the alphabet A, the group generated by the set of return
words to some word in L(X) is the free group on the alphabet and, in particular,
has Card (A) free generators. This generalizes a property known for Sturmian
(and episturmian) shifts whose link with automorphisms of the free group was
noted by Arnoux and Rauzy. The class of eventually dendric shifts, introduced
in this paper, is defined by the property that the extension graph of every word
w in the language of the shift is a tree for every long enough word w.

The paper is organized as follows. In the first section, we introduce the def-
inition of the extension graph and of an eventually dendric shift. In Section 3,
we recall some mostly known properties on the complexity of a shift space and
of left- or right-special words. We prove a result which characterizes eventually
dendric shifts by the extension properties of left-special words (Proposition 4).
This result shows us that asymptotically eventually dendric shifts behaves lo-
cally in a way similar to Sturmian shifts. In Section 4, we use the classical
notion of asymptotic equivalence to give a second characterization of eventually
dendric shifts (Proposition 7). In Section 5, we introduce the notion of a simple
tree and we prove that for eventually dendric shift, the extension graph of ev-
ery long enough word is a simple tree (Proposition 8), a property which holds
trivially for every word in a Sturmian shift but that is quite surprising for this
new larger class of shifts.. Finally, in Section 6 we use the previous results to
prove the main result (Theorem 10), namely that the class of eventually dendric
shifts is closed under conjugacy. This result shows the robustness of the class
of eventually dendric shifts, giving a strong motivation for its introduction.

2 Eventually dendric shifts

Let A be a finite alphabet. We consider the set AZ of bi-infinite words on A as
a topological space for the product topology. The shift map σA : AZ → AZ is
defined by y = σA(x) if yi = xi+1 for every i ∈ Z. A shift space on the alphabet
A is a subset X of the set AZ which is closed and invariant under the shift, that
is such that σA(X) = X (for more on shift spaces see, for instance, [9]).

We denote by L(X) the language of a shift space X, which is the set of finite
factors of the elements of X. A language L on the alphabet A is the language of a
shift if and only if it is factorial (that is contains the factors of its elements) and
extendable (that is for any w ∈ L there are letters a, b ∈ A such that awb ∈ L).
For n ≥ 0 we denote Ln(X) = L(X) ∩ An and L≥n(X) = ∪m≥nLm(X). For
w ∈ L(X) and n ≥ 1, we denote Ln(w,X) = {u ∈ Ln(X) | uw ∈ L(X)},
Rn(w,X) = {v ∈ Ln(X) | wv ∈ L(X)} and En(w,X) = {(u, v) ∈ Ln(w,X) ×
Rn(w,X) | uwv ∈ L(X)}. The extension graph of order n of w, denoted
En(w,X), is the undirected graph with set of vertices the disjoint union of
Ln(w,X) and Rn(w,X) and with edges the elements of En(w,X). When the
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context is clear, we denote Ln(w), Rn(w), En(w) and En(w) instead of Ln(w,X),
Rn(w,X), En(w,X) and En(w,X) A path in an undirected graph is reduced if
it does not contain successive equal edges (such a path is also known as simple).
For any w ∈ L(X), since any vertex of Ln(w) is connected to at least one vertex
of Rn(w), the bipartite graph En(w) is a tree if and only if there is a unique
reduced path between every pair of vertices of Ln(w) (resp. Rn(w)).

The shift X is said to be eventually dendric with threshold m ≥ 0 if E1(w)
is a tree for every word w ∈ L≥m(X). It is said to be dendric if we can choose
m = 0. The languages of dendric shifts were introduced in [2] under the name
of tree sets. An important example of dendric shifts is formed by episturmian
shifts (also called Arnoux-Rauzy shifts), which are by definition such that L(X)
is closed by reversal and such that for every n there exists a unique wn ∈ Ln(X)
such that Card (R1(wn)) = Card (A) and such that for every w ∈ Ln(X)\{wn}
one has Card (R1(w)) = 1.

Example 1 Let X be the Fibonacci shift, which is generated by the morphism
a 7→ ab, b 7→ a. It is well-known that the Fibonacci shift is a Sturmian shift
(see, for example, [9]). The graphs E1(a) and E3(a) are shown in Figure 1.

a

b

a

b

aba

aab

bab

bab

baa

aba

Figure 1: The graphs E1(a) (on the left) and E3(a) (on the right).

The class of tree sets of characteristic c ≥ 1 introduced in [1, 5] give an
example of eventually dendric shifts of threshold 1.

Example 2 Let X be the shift generated by the morphism a 7→ ab, b 7→
cda, c 7→ cd, d 7→ abc [4]. Its language is a tree set of characteristic 2 (see [1]).

3 Complexity of shift spaces

Let X be a shift space. For a word w ∈ L(X), we denote `k(w) = Card (Lk(w)),
rk(w) = Card (Rk(w)), and ek(w) = Card (Ek(w)). For any w ∈ L(X), we have
1 ≤ `k(w), rk(w) ≤ ek(w). The word w is left-k-special if `k(w) > 1, right-k-
special if rk(w) > 1 and k-bispecial if it is both left-k-special and right-k-special.
For k = 1, we use `, r, e and we simply say special instead of k-special. Given
a word w we define the quantity m(w) = e(w)− `(w)− r(w) + 1. We say that
w is strong if m(w) ≥ 0, weak if m(w) ≤ 0 and neutral if m(w) = 0. It is clear
that if E1(w) is acyclic (resp. connected, resp. a tree), then w is weak (resp.
strong, resp. neutral).
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Proposition 1 Let X be a shift space and let w ∈ L(X). If w is neutral, then

`(w)− 1 =
∑

b∈R1(w)

(`(wb)− 1) (1)

Set further pn(X) = Card (Ln(X)), sn(X) = pn+1(X)−pn(X) and bn(X) =
sn+1(X)− sn(X). The sequence pn(X) is called the complexity of X.

The following result is from [3] (see also [2, Lemma 2.12]).

Proposition 2 We have for all n ≥ 0,

sn(X) =
∑

w∈Ln(X)

(`(w)−1) =
∑

w∈Ln(X)

(r(w)−1) and bn(X) =
∑

w∈Ln(X)

m(w).

In particular, the number of left-special (resp. right-special) words of length n
is bounded by sn(X).

Proposition 3 Let X be a shift space. If X is eventually dendric, then the
sequence sn(X) is eventually constant.

Proof Let N be the threshold of X. By Proposition 2, we have that bn(X) = 0
for all n ≥ N . Thus sn+1(X) = sn(X) for all n ≥ N .

The converse of Proposition 3 is not true, as shown by the following example.

Example 3 Let X be the Chacon ternary shift, which is the substitutive shift
space generated by the morphism ϕ : a 7→ aabc, b 7→ bc, c 7→ abc. It is well
known that the complexity of X is pn(X) = 2n+ 1 and thus that sn = 2 for all
n ≥ 0 (see [9, Section 5.5.2]). The extension graphs of abc and bca are shown in
Figure 2.

a

c

a

b

a

c

a

b

Figure 2: The extension graphs E1(abc) (on the left) and E1(bca) (on the right).

Thus m(abc) = 1 and m(bca) = −1. Let now α be the map on words defined
by α(x) = abcϕ(x). Let us verify that if the extension graph of x is the graph
of Figure 2 on the left, the same holds for the extension graph of y = α(x).
Indeed, since axa ∈ L(X), the word ϕ(axa) = aabcϕ(x)aabc = ayaabc is also in
L(X) and thus (a, a) ∈ E1(y). Since cxa ∈ L(X) and since a letter c is always
preceded by a letter b, we have bcxa ∈ L(X). Thus ϕ(bcxa) = bcyaabc ∈ L(X)
and thus (c, a) ∈ E1(y). The proof of the other cases is similar. The same
property holds for a word x with the extension graph on the right of Figure 2.
This shows that there is an infinity of words whose extension graph is not a tree
and thus the Chacon set is not eventually dendric.
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Let X be a shift space. We define LSn(X) (resp. LS≥n(X)) as the set of left-
special words of L(X) of length n (resp. at least n) and LS(X) =

⋃
n≥0 LSn(X).

The following result expresses the fact that eventually dendric shift spaces
are characterized by an asymptotic property of left-special words which is a
local version of the property defining Sturmian shift spaces.

Proposition 4 A shift space X is eventually dendric if and only if there is an
integer n ≥ 0 such that any word w of LS≥n(X) has exactly one right extension
wb ∈ LS≥n+1(X) with b ∈ A. Moreover, in that case one has `(wb) = `(w).

Proof Assume first that X is eventually dendric with threshold m. Then any
word w in LS≥m(X) has at least one right extension in LS(X). Indeed, since
L1(w) has at least two elements and since the graph E1(w) is connected, there is
at least one element of R1(w) which is connected by an edge to more than one
element of L1(w). Next, Equation (1) shows that for any w ∈ LS≥m(X) which
has more than one right extension in LS(X), one has `(wb) < `(w) for each
such extension. Thus the number of words in LS≥m(X) which are prefix of one
another and which have more than one right extension, is bounded by Card (A).
This proves that there exists an n ≥ m such that for any w ∈ LS≥n(X) there is
exactly one b ∈ A such that wb ∈ LS(X). Moreover, one has then `(wb) = `(w)
by Equation (1).

Conversely, assume that the condition is satisfied for some integer n. For
any word w in L≥n(X), the graph E1(w) is acyclic since all vertices in R1(w)
except at most one have degree 1. Thus w is weak. Let N be the length of
w. Then for every word u of length N and every b ∈ R1(u), one has `(ub) = 1
except for one letter b such that `(ub) = `(u). Thus, by Proposition 2,

sN (X) =
∑

u∈LN (X)

(`(u)− 1) =
∑

v∈LN+1(X)

(`(v)− 1) = sN+1(X).

This shows that bN = 0 for every N ≥ n and thus, by Proposition 2 again, all
words in L≥n(X) are neutral. Since all graphs E1(w) are moreover acyclic, this
forces that these graphs are trees and thus that X is eventually dendric with
threshold n.

Example 4 Let X be the Tribonacci shift, which is the episturmian shift gen-
erated by the substitution ϕ : a 7→ ab, b 7→ ac, c 7→ a and let α be the morphism
α : a 7→ a, b 7→ a, c 7→ c. It can be verified that α(X) satisfies the condition of
Proposition 4 with n = 4 and thus it is dendric with threshold at most 4. The
threshold is actually 4 since m(a3) = 1 in α(X).

4 Asymptotic equivalence

The orbit of x ∈ AZ is the equivalence class of x under the action of the shift
transformation. Thus y is in the orbit of x if there is an n ∈ Z such that
x = σn(y). We say that x is a shift of y if they belong to the same orbit.

5



For x ∈ AZ, denote x− = · · ·x−2x−1 and x+ = x0x1 · · · and x = x− · x+.
When X is a shift space, we denote X+ the set of right infinite words u such that
u = x+ for some x ∈ X. A right infinite word u ∈ AN is a tail of the two-sided
infinite word x ∈ AZ if u = y+ for some shift y of x, that is u = xnxn+1 · · ·
for some n ∈ Z. The right asymptotic equivalence on a shift space X is the
equivalence defined as follows. Two elements x, y of X are right asymptotically
equivalent if there exists two shifts x′, y′ of x, y such that x′+ = y′+. In other
words, x, y are right asymptotic equivalent if they have a common tail (see
Figure 3, where, for simplicity, we suppose x = x′ and y = y′). The classes of
the right asymptotic equivalence not coinciding with only one orbit are called
right asymptotic classes (they are called asymptotic components in [7]).

x−

y−
x+ = y+

Figure 3: Two right asymptotic sequences x, y.

Example 5 The Fibonacci shift X has only one right asymptotic class. It is
formed of the orbits of the two elements x, y ∈ X such that x+ = y+ = ϕω(a)
where ϕω(a) is the Fibonacci word, that is the right infinite word having all
ϕn(a) for n ≥ 1 as prefixes. Indeed, let x, y ∈ X be such that x+ = y+ with
x 6= y. Then all finite prefixes of x+ = y+ are left-special and thus are prefixes
of ϕω(a) (see, for instance, [9]). Thus x+ = y+ = ϕω(a).

If C is a right asymptotic class, it is a union of orbits. The following result
is proved in [7, Lemma 3.2] under a weaker hypothesis that we shall not need
here. We give a proof for the sake of completeness.

Proposition 5 Let X be a shift space such that the sequence sn(X) is bounded
by k. The number of right asymptotic classes is finite and at most equal to k.

Proof Let (x1, y1), . . . , (xh, yh) be h pairs of distinct elements of X belonging
to asymptotic classes C1, . . . , Ch such that for all 1 ≤ i ≤ h one has x+i = y+i
and (xi)−1 6= (yi)−1. For n large enough the prefixes of length n of the x+i
are h distinct left-special words and thus h ≤ sn(X) since by Proposition 2 the
number of left-special words is bounded by sn(X). This shows that the number
of right asymptotic classes is finite and bounded by k.

Let X be a shift space. For a right asymptotic class C of X, we denote
ω(C) = Card (o(C)) − 1 where o(C) is the set of orbits contained in C. For a
right infinite word u ∈ X+, let `C(u) = Card (a ∈ A | x+ = au for some x ∈ C).
We denote by LS(C) the set of right infinite words u such that `C(u) ≥ 2.
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Proposition 6 Let X be a shift space and let C be a right asymptotic class.
Then

ω(C) =
∑

u∈LS(C)

(`C(u)− 1) (2)

where both sides are simultaneously finite.

In order to prove Proposition 6, we use the following notion. A cluster of
trees is a directed graph which is the union of a (non-trivial) cycle Γ and a
family of disjoint trees (oriented from child to father) Tv with root v indexed
by the vertices v on Γ (see Figure 4). It is easy to verify that a finite connected
graph is a cluster of trees if and only if every vertex has outdegree 1 and there
is a unique strongly connected component. In a cluster of trees, the number of
leaves (that is, the leaves of the trees Tv not reduced to their root) is equal to∑

u(d−(u) − 1), where d− stands for the indegree function and the sum runs
over the set of internal nodes. Indeed, this is true for one cycle alone since there
are no leaves and every internal node has indegree 1. The formula remains valid
when suppressing a leaf in one of the trees not reduced to its root.

Figure 4: A cluster of trees.

Proof [of Proposition 6] We first suppose that C does not contain periodic points
which implies that LS(C) does not contain periodic points either. It is easy to
verify that if u, v ∈ LS(C), there exist n,m ≥ 0 such that σn(u) = σm(v). We
build a graph T (C) as follows. The set of vertices of T (C) is o(C) ∪ LS(C).
There will be for each vertex u of T (C) at most one edge going out of u, called
its father.

Let first x ∈ C and let u be the orbit of x. There is, up to a shift of x, at
least one y ∈ C with x 6= y such that y+ = x+. Let n ≥ 0 be the minimal
integer such that x−n 6= y−n. Then v = σ−n+1(x)+ is in LS(C) and depends
only on the orbit u of x. We choose the vertex v as the father of u. Next,
for every u ∈ LS(C), we consider the minimal integer, if it exists, such that
v = σn(u) is in LS(C). Then we choose v as the father of u.

Assume now that ω(C) is finite. Then LS(C) is also finite and T (C) is a
finite tree. Indeed, if u ∈ LS(C), there is at least one x ∈ C such that x+ = u
and thus such that u is an ancestor of the orbit of x. By the claim made
above, any two elements of LS(C) have a common ancestor. Since C does not
contain periodic points, two vertices cannot be ancestors of one another. Thus
there is a unique element of LS(C) which has no father, namely the unique
u ∈ LS(C) with a maximal number of elements of o(C) as descendants. Since
it is an ancestor of all vertices of T (C), this shows that T (C) is a finite tree.
Formula (2) now follows from the fact that in any finite tree with n leaves and
and a set V of internal vertices, one has n− 1 =

∑
v∈V (d−(v)− 1).
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Assume next that the right hand side of Equation (2) is finite. Then the set
LS(C) is finite and thus T (C) is again a tree with a finite number of internal
nodes. Since the degree of each node is finite, it implies that it has also a finite
number of leaves. Thus ω(C) is finite and Equation (2) also holds.

Finally, assume that C contains a periodic point. It follows from the defi-
nition of a right asymptotic class that there is exactly one such periodic orbit,
since two periodic points having a common tail are in the same orbit. The proof
follows the same lines as in the first case, but this time T (C) will be a cluster
of trees instead of a tree. The set of leaves of T (C) is, as above, the set o(C) of
non periodic orbits and the the other vertices are the elements of LS(C). The
unique father of a vertex is defined in the same way as above. The fact that
there is a unique strongly connected component is a consequence of the fact
that there is a unique periodic orbit in C. Finally, Formula (2) holds with since
the number of leaves is equal to

∑
(d−(u)− 1)− 1, where the sum runs over the

set of internal nodes and the −1 corresponds to the unique periodic orbit.

Example 6 Consider again the image α(X) of the Tribonacci shift by the mor-
phism α : a 7→ a, b 7→ a, c 7→ c (Example 4). There is one right asymptotic class
C made of three orbits represented in Figure 5 on the left. The class is formed
of the orbits of x, y, z where x+ = α(ϕω(a)) and y+ = z+ = aax+. The tree
T (C) is shown on the right.

x
y

z

y

z
aax+

x
x+

Figure 5: The right asymptotic class C and the tree T (C).

Using Proposition 6 we can give a characterization of eventually dendric shift
spaces in terms of right asymptotic classes (for the proof, see [6]). We denote
ω(X) =

∑
ω(C), where the sum is over the right asymptotic classes C of X.

Theorem 7 A shift space X is eventually dendric if and only if:

1. The sequence sn(X) is eventually constant, and

2. We have lim sn(X) = ω(X).

For example, the Tribonacci shift is such that sn(X) = 2 for every n ≥ 0
and ω(X) = 2 since there is only one asymptotic class made of 3 orbits. Note
that the Chacon shift X satisfies condition 1 of Proposition 7 but not condition
2. Indeed, one can verify that sn(X) = 2 for all n ≥ 0 but ω(X) = 1.
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5 Simple trees

The diameter of a tree is the maximal length of simple paths. We call a tree
simple if its diameter is at most 3. Note that if a simple tree is the extension
graph En(w) in some shift space X of a bispecial word w, then the diameter of
En(w) is at least 3, and it is exactly 3 if and only if any two vertices of En(w)
on the same side (that is, both in Ln(x) or both in Rn(w)) are connected to a
common vertex on the opposite side. For example, if X is the Fibonacci shift,
then E1(a) is simple while E3(a) is not (see Example 1).

We prove the following additional property of the graphs Ek(w).

Proposition 8 Let X be an eventually dendric shift space. For any k ≥ 1 there
exists an n ≥ 1 such that Ek(w) is a simple tree for every w ∈ L≥n(X).

We first prove the following lemma.

Lemma 9 Let X be an eventually dendric shift space. For every k ≥ 1 there
is an n ≥ 1 such that if p, w ∈ L(X) with |p| ≤ k and |w| ≥ n are such that
pw,w ∈ LS(X), then pw, w have a unique right extension in LS(X) for some
letter b ∈ A which is moreover such that `(pwb) = `(pw) and `(wb) = `(w).

Proof Consider two right asymptotic classes C,D and let u ∈ LS(C), v ∈
LS(D). If C,D are distinct, we cannot have pu = v for some word p. Thus
there is an integer n such that if w is the prefix of length n of u, then pw is not
a prefix of v. Since there is a finite number of words p of length at most k, a
finite number of right asymptotic classes (by Proposition 5) and since for each
such class the set LS(C) is finite (by Proposition 6), we infer that for every k
there exists an n such that for every pair of right asymptotic classes C,D and
any u ∈ LS(C), v ∈ LS(D), if w is a prefix of u and pw a prefix of v, with
|p| ≤ k and |w| = n, then C = D.

Next, assume that w is a prefix of u and pw a prefix of v with u, v ∈ LS(C)
for some right asymptotic class C. If v 6= pu, then there is a right extension w′

of w such that pw′ is not a prefix of v. By contraposition, if n is large enough, we
have v = pu. We thus choose n large enough so that: all elements of LS(C) for
all right asymptotic components C have distinct prefixes of length n and such
that for every pair of asymptotic classes C,D and any u ∈ LS(C), v ∈ LS(D),
if w is prefix of u and pw is prefix of v with |p| ≤ k and |w| = n then C = D
and pu = v. We moreover assume that n is large enough so that the condition
of Proposition 4 holds. Consider p, w with |p| ≤ k and |w| = n such that pw,w
are left-special. By condition 1, there are right asymptotic components C,D
and elements u ∈ LS(C) and v ∈ LS(D) such that w is a prefix of u and pw a
prefix of v. Because of condition 2, we must have σk(v) = u (and in particular
C = D). Thus there is a unique letter b ∈ A such that wb, pwb ∈ LS(X) which
is moreover such that `(wb) = `(w) and `(pwb) = `(pw) by Proposition 4.

Proof [of Proposition 8] We choose n such that Proposition 4 and Lemma 9
hold. We prove by induction on h with 1 ≤ h ≤ k that for any p, q ∈ Lh(w)
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there is an r ∈ Rk(w) such that pwr, qwr ∈ L(X). This implies that every
reduced path in the tree E`(w) has length at most three, and thus that E`(w)
is a simple tree. The property is true for h = 1. Indeed, set p = a and
q = b. Apply iteratively Proposition 4 to obtain letters c1, . . . , ck such that
`(wc1 · · · ci) = `(wc1 · · · cici+1) and set r = c1 · · · ck. Then awr, bwr ∈ L(X).

Assume next that the property is true for h− 1 and consider ap, bq ∈ Lh(w)
with a, b ∈ A. Replacing if necessary w by some longer word, we may assume
that p, q end with different letters and thus that w is left-special. By the in-
duction hypothesis, there is a word r ∈ Rk(w) such that pwr, qwr ∈ L(X). By
Lemma 9, the first letter of r is the unique letter c such that `(pwc) = `(pw)
and `(qwc) = `(qw). Thus apwc, bqwc ∈ L(X). Applying Lemma 9 iteratively
in this way, we obtain that apwr, bqwr ∈ L(X).

6 Conjugacy

Let A,B be two alphabets, and X ⊂ AZ and Y ⊂ BZ be two shift spaces. A
map φ : X → Y is called a sliding block code if there exists m,n ∈ N and a
map f : Lm+n+1(X) → B such that φ(x)i = f(xi−m · · ·xi+n) for all i ∈ Z and
x = (xi) ∈ X. It can be shown that a map φ : X → Y is a sliding block code if
and only if it is continuous and commutes with the shift, that is φ◦σA = σB ◦φ
(see, for instance, [10]). Two shift spaces X,Y are said to be conjugate when
there is a bijective sliding block code φ : X → Y . The following result shows
that the property of being eventually dendric is a dynamical property, in the
sense that it only depends on the class of a shift space under conjugacy.

Theorem 10 The class of eventually dendric shift spaces is closed under con-
jugacy.

We first treat the following particular case of conjugacy. Let X be a shift
space on the alphabet A and let k ≥ 1. Let f : Lk(X)→ Ak be a bijection from
the set Lk(X) of blocks of length k ofX onto an alphabetAk. The map γk : X →
AZ

k defined for x ∈ X by y = γk(x) if, for every n ∈ Z, yn = f(xn · · ·xn+k−1) is
the k-th higher block code on X. The shift space X(k) = γk(X) is called the k-th
higher block shift space of X. It is well known that the k-th higher block code is
a conjugacy. We extend the bijection f : Lk(X)→ Ak to a map still denoted f
from L≥k(X) to L≥1(X(k)) by f(a1a2 · · · an) = f(a1 · · · ak) · · · f(an−k+1 · · · an).
Note that all nonempty elements of L(X(k)) are image by f of elements of L(X),
that is, L(X(k)) = {f(w) | w ∈ L≥k(X)} ∪ {ε}.

Example 7 Let X be the Fibonacci shift. We show that the 2-block extension
X(2) of X is eventually dendric with threshold 1. Set A2 = {u, v, w} with
f : aa 7→ u, ab 7→ v, ba 7→ w. Since X is dendric, the graph E1(w) is a tree for
every word w ∈ L(X(2)) of length at least 1 (but not for w = ε). Thus X(2) is
eventually dendric. It is actually a tree shift space of characteristic 2 since the
graph E1(ε) is the union of two trees (see Figure 6).
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Figure 6: The extension graphs E1(ε) (on the left) and E1(vw) (on the right).

Lemma 11 For every k ≥ 1, the k-th higher block shift space X(k) is eventually
dendric if and only if X is eventually dendric.

Proof We define for every w ∈ L≥k(X) a map from E1(w) to E1(f(w)) as
follows. To every a ∈ L1(w), we associate the first letter λ(a) of f(aw) and
to every b ∈ R1(w), we associate the last letter ρ(b) of f(wb). Then, since
f(awb) = λ(a)f(w)ρ(b), the pair (a, b) is in E1(w) if and only if (λ(a), ρ(b))
is in E1(f(w)). Thus, the maps λ, ρ define an isomorphism from E1(w) onto
E1(f(w)).

Thus we conclude that X is eventually dendric with threshold m if and only
if X(k) is eventually dendric with threshold M with 0 ≤M ≤ max(1,m−k+1).

Example 8 Let X be the Fibonacci shift. For all k ≥ 2, X(k) is an eventually
dendric shift space with threshold 1.

A morphism α : A∗ → B∗ is called alphabetic if α(A) ⊆ B.

Lemma 12 Let X be an eventually dendric shift space on the alphabet A and
let α : A∗ → B∗ be an alphabetic morphism which induces a conjugacy from X
onto a shift space Y . Then Y is eventually dendric.

Proof Since α is invertible, there exists map f : L2r+1(Y ) → A, with r ≥ 0,
such that for x = (xk)k∈Z and y = (yk)k∈Z, one has y = α(x) if and only if
for every k ∈ Z, one has xk = f(yk−r · · · yk−1ykyk+1 · · · yk+r). We extend the
definition of f to a map from L≥2r+1 to A: for w = b1−r · · · bn+r ∈ L≥2r+1(Y ),
set f(w) = a1 · · · an where ai = f(bi−r · · · bi · · · bi+r). Note that if u = f(w)
and w = svt with s, t ∈ Lr(Y ), then v = α(u). Let n be the integer given by
Proposition 8 for k = r + 1. We claim that every graph E1(w) for |w| ≥ n+ 2r
is a tree. Let indeed s, t ∈ Lr(Y ) and v ∈ L≥n(Y ) be such that w = svt.
Let u = f(svt). Let E′k(u) = {(p, q) ∈ Lk(u) × Rk(u) | α(puq) ∈ BwB} and
let L′k(u) (resp. R′k(u)) be the set of p ∈ Lk(u) (resp. q ∈ Rk(u)) which
are connected to Lk(u) (resp. Rk(u)) by an edge in E′k(u). Let E ′k(u) be the
subgraph of Ek(u) obtained by restriction to the set of vertices which is the
disjoint union of L′k(u) and R′k(u) (and that thus has E′k(u) as set of edges).

The graph E ′k(u) is a simple tree. Indeed, by Proposition 8, the graph Ek(u)
is a simple tree. We may assume that u is k-bispecial (otherwise, the property
is obviously true). Let (p, q) be an edge of E ′k(u). Then (p, q) is an edge of
Ek(u) and since the latter is a simple tree either p is the unique vertex in Lk(u)
such that pu is right-special or q is the unique vertex in Rk(u) such that uq is
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left-special (both cases can occur simultaneously). Assume the first case, the
other being proved in a symmetric way. If (p′, q′) is another edge of E ′(u), then
(p, q′) is an edge of Ek(u). Since α(p) ∈ Bs and α(q) ∈ tB, we have actually
(p, q′) ∈ E′k(u). Thus E ′k(u) contains the two vertices of Ek(u) connected to
more than one other vertex and this implies that E ′k(u) is a simple tree. For
p ∈ L′k(u), let λ(p) be the first letter of α(p) and for q ∈ R′k(u), let ρ(q) be the
last letter of α(q).

The graph E1(w) is the image by the maps λ, ρ of the graph E ′k(u). Indeed,
one has (a, b) ∈ E1(w) iff there exist (p, q) ∈ E′k(u) such that λ(p) = a and
ρ(q) = b. Let us consider a graph homomorphism φ preserving bipartiteness
and such such that left vertices are sent to left vertices and right vertices to
right ones: Then, it is easy to verify that the image of a simple tree by φ is
again a simple tree. Thus E1(w) is a simple tree, which concludes the proof.

Proof [of Theorem 10] Every conjugacy is a composition of a higher block code
and an alphabetic morphism (see [10, Proposition 1.5.12]). Thus Theorem 10 is
a direct consequence of Lemmas 11 and 12.

Example 9 The fact that the image of the Tribonacci shift by the morphism
α given in Example 4 is eventually dendric is actually a consequence of Theo-
rem 10. Indeed α is an alphabetic morphism and thus a conjugacy. Images of
episturmian shift spaces by non trivial alphabetic morphisms have been inves-
tigated in [12].

An interesting open question is whether the class of eventually dendric shifts
is closed under taking factors, that is, images by a sliding block code not neces-
sarily bijective. It would also be interesting to know whether the conjugacy of
effectively given eventually dendric shifts is decidable (the conjugacy of substi-
tutive shifts was recently shown to be decidable [8]).
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