Enumeration formuld in neutral sets

Francesco Dolce

RDMath IdF

Domaine d'Intérêt Majour (DIM)
en Mathématiques

\author{

* îledeFrance
}

Réunion EQINOCS
 Grenoble, 7 octobre 2015

Joint work with :
Valérie Berthé (Université Paris-Diderot)
Clelia De Felice (Universitá degli Studi di Salerno)
Vincent Delecroix (Université de Bordeaux) Julien Leroy (Université de Liège)
Dominique Perrin and Giuseppina Rindone (Université Paris-Est)
Christophe Reutenauer (Université du Québec á Montréal)

Outline

1. Neutral sets
2. Interval exchange sets
3. Bifix codes in neutral sets

Outline

1. Neutral sets

- Multiplicity and characteristic
- Factor complexity
- Tree sets

2. Interval exchange sets
3. Bifix codes in neutral sets

Let A a finite alphabet and S be a factorial set on A.
For a word $w \in S$, we denote

$$
\begin{array}{llccc}
\ell(w) & =\text { the number of letters } & a & \text { such that } & a w \in S, \\
r(w) & =\text { the number of letters } & a & \text { such that } \\
e(w) & =\text { the number of pairs } & (a, b) & \text { such that } & a w b \in S .
\end{array}
$$

A word w is left-special if $\ell(w) \geq 2$, right-special if $r(w) \geq 2$ and bispecial if it is both left and right-special.

Let A a finite alphabet and S be actorial set on A.
For a word $w \in S$, we denote

$$
\begin{gathered}
\ell(w)=\text { the number of letters } \quad a \quad \\
r(w)=\text { such that } \quad a w \in S, \\
e(w)=\text { the number of letters } \\
e
\end{gathered} \begin{gathered}
a \\
\text { such that }
\end{gathered} \quad w a \in S,
$$

A word w is left-special if $\ell(w) \geq 2$, right-special if $r(w) \geq 2$ and bispecial if it is both left and right-special.

The multiplicity of a word w is the quantity

$$
m(w)=e(w)-\ell(w)-r(w)+1
$$

A word is called neutral if $m(w)=0$.

A set S is neutral if it is factorial and every nonempty word $w \in S$ is neutral. The integer $\chi(S)=1-m(\varepsilon)=\ell(\varepsilon)+r(\varepsilon)-e(\varepsilon)$ is called the characteristic of S.

A set S is neutral if it is factorial and every nonempty word $w \in S$ is neutral.
The integer $\chi(S)=1-m(\varepsilon)=\ell(\varepsilon)+r(\varepsilon)-e(\varepsilon)$ is called the characteristic of S.

Proposition

The following are neutral sets of characteristic 1 :

- Sturmian sets (sets of factors of an Arnoux-Rauzy word) and
- Regular Interval Exchange sets (see later).

Example

The Fibonacci set is the set of factors of the Fibonacci word, that is the fixed point $\varphi^{\omega}(a)=$ abaababaaba \cdots of the morphism

$$
\varphi: a \mapsto a b, \quad b \mapsto a .
$$

It is a neutral set of characteristic 1.
Indeed, $m(w)=0$ for every w in the set (including the empty word).

The factor complexity of a factorial set $S \subset A^{*}$ is the sequence $p_{n}=\operatorname{Card}\left(S \cap A^{n}\right)$. Its entropy is defined as $\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(p_{n}\right)$.

Proposition [J. Cassaigne (1997)]

The factor complexity of a neutral set is given by $p_{0}=1$ and

$$
p_{n}=n(\operatorname{Card}(A)-\chi(S))+\chi(S) .
$$

Its entropy is then 0 .

Example

The Fibonacci set has factor complexity $p_{n}=n+1$.

The extension graph of a word $w \in S$ is the undirected bipartite graph $G(w)$ with vertices the disjoint union of

$$
L(w)=\{a \in A \mid a w \in S\} \quad \text { and } \quad R(w)=\{a \in A \mid w a \in S\},
$$

and edges the pairs $E(w)=\{(a, b) \in A \times A \mid a w b \in S\}$.

Example

Here are the extensions graphs of the words of length at most 1 inside the Fibonacci set.

Indeed one has $S=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\}$.

A biextendable set S is called a tree set of characteristic c if for any nonempty $w \in S$, the graph $E(w)$ is a tree (acyclic and connected) and if $E(\varepsilon)$ is a union of c trees.

Example

The Fibonacci set is a tree set of characteristic 1.

A tree set of characteristic c is clearly a neutral set of characteristic c.

A biextendable set S is called a tree set of characteristic c if for any nonempty $w \in S$, the graph $E(w)$ is a tree (acyclic and connected) and if $E(\varepsilon)$ is a union of c trees.

Example

The Fibonacci set is a tree set of characteristic 1.

A tree set of characteristic c is clearly a neutral set of characteristic c.

Proposition [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, Monatsh. Math.)]
A Sturmian set is a uniformly recurrent tree set of characteristic 1.

Example

The Tribonacci set is a tree set of characteristic 1.

Outline

1. Neutral sets

2. Interval exchange sets

- Interval exchange transformations
- Natural coding
- Connections

3. Bifix codes in neutral sets

Let $\left(I_{a}\right)_{a \in A}$ and $\left(J_{a}\right)_{a \in A}$ be two open partitions of the open set I (minus Card $(A)-1$ points), such that $\left|I_{a}\right|=\left|J_{a}\right|$ for every $a \in A$.

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+\alpha_{z} \quad \text { if } z \in I_{a} .
$$

Let $\left(I_{a}\right)_{a \in A}$ and $\left(J_{a}\right)_{a \in A}$ be two open partitions of the open set I (minus Card $(A)-1$ points), such that $\left|I_{a}\right|=\left|J_{a}\right|$ for every $a \in A$.

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+\alpha_{z} \quad \text { if } z \in I_{a} .
$$

Let $\left(I_{a}\right)_{a \in A}$ and $\left(J_{a}\right)_{a \in A}$ be two open partitions of the open set I (minus Card $(A)-1$ points), such that $\left|I_{a}\right|=\left|J_{a}\right|$ for every $a \in A$.

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+\alpha_{z} \quad \text { if } z \in I_{a}
$$

Let $\left(I_{a}\right)_{a \in A}$ and $\left(J_{a}\right)_{a \in A}$ be two open partitions of the open set I (minus Card $(A)-1$ points), such that $\left|I_{a}\right|=\left|J_{a}\right|$ for every $a \in A$.

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+\alpha_{z} \quad \text { if } z \in I_{a} .
$$

Let $\left(I_{a}\right)_{a \in A}$ and $\left(J_{a}\right)_{a \in A}$ be two open partitions of the open set I (minus Card $(A)-1$ points), such that $\left|I_{a}\right|=\left|J_{a}\right|$ for every $a \in A$.

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+\alpha_{z} \quad \text { if } z \in I_{a}
$$

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, i.e. $T(z)=z+\alpha \bmod 1$.

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, i.e. $T(z)=z+\alpha \bmod 1$.

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, i.e. $T(z)=z+\alpha \bmod 1$.

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, i.e. $T(z)=z+\alpha \bmod 1$.

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, i.e. $T(z)=z+\alpha \bmod 1$.

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, i.e. $T(z)=z+\alpha \bmod 1$.

$$
\Sigma_{T}(\alpha)=a b a a b
$$

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, ie. $T(z)=z+\alpha \bmod 1$.

$$
\Sigma_{T}(\alpha)=a b a a b a \cdots
$$

The interval exchange set $\mathcal{L}(T)$ is the set of factors of all natural codings of T.

Example

The Fibonacci set is the set of factors of all natural codings of the rotation on the cirle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$.

A connection of length $n \geq 0$ of an interval exchange T is a triple (x, y, n) with

- x is a singularity of T^{-1},
- y is a singularity of T, and
- $T^{n}(x)=y$.

When $n=0$, we say that $x=y$ is a connection.

Example

The point z is a connection of length 0 .

An interval exchange without connections is said to be regular.

Proposition [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, J.P.P.A.)]

A regular interval exchange set is a tree set of characteristic 1 .

Theorem [D., Perrin (2015, DLT)]

Let T be an interval exchange with exactly c connections, all of length 0 . $\mathcal{L}(T)$ is a tree set of characteristic $c+1$ (and then a neutral set of characteristic $c+1$).

Example

The set $\mathcal{L}(T)$ is a tree set of characteristic 2 .

Outline

1. Neutral sets

2. Interval exchange sets
3. Bifix codes in neutral sets

- Bifix codes and S-degree
- Cardinality Theorem for bifix codes
- Bifix decoding

A set $X \subset A^{+}$of nonempty words over an alphabet A is a bifix code if it does not contain any proper prefix or suffix of its elements.

Example

- $\{a a, a b, b a\}$
- $\{a a, a b, b b a, b b b\}$
- $\{a c, b c c, b c b c a\}$

A bifix code $X \subset S$ is S-maximal if it is not properly contained in a bifix code $Y \subset S$.

Example

Let S be the Fibonacci set. The set $X=\{a a, a b, b a\}$ is an S-maximal bifix code. It is not an A^{*}-maximal bifix code, indeed $X \subset Y=X \cup\{b b\}$.

A parse of a word w with respect to a bifix code X is a triple (q, x, p) such that :

- $w=q \times p$,
- q has no suffix in X,
- $x \in X^{*}$ and
- p has no prefix in X.

Example

Let $X=\{a a, a b, b a\}$ and $w=a b a a b a$. The two possible parses of w are

- ($\varepsilon, a b$ aa $b a, \varepsilon)$,
- ($a, b a a b, a)$.

ababab

A parse of a word w with respect to a bifix code X is a triple (q, x, p) such that :

- $w=q \times p$,
- q has no suffix in X,
- $x \in X^{*}$ and
- p has no prefix in X.

Example

Let $X=\{a a, a b, b a\}$ and $w=a b a a b a$. The two possible parses of w are

- ($\varepsilon, a b$ aa $b a, \varepsilon)$,
- (a, ba $a b, a)$.

abaaba

The S-degree of X is the maximal number of parses with respect to X of a word of S.

Example

- For the Fibonacci set S, the set $X=\{a a, a b, b a\}$ has S-degree 2
- The set $X=S \cap A^{n}$ has S-degree n.

Theorem [D., Perrin (2015, DLT)]

Let S be a neutral set. For any finite S-maximal bifix code X of S-degree n, one has

$$
\operatorname{Card}(X)=n(\operatorname{Card}(A)-\chi(S))+\chi(S) .
$$

Example

Let S be the Fibonacci set. The set S-maximal bifix code $X=\{a a, a b, b a\}$ of S-degree 2 verifies

$$
\operatorname{Card}(X)=2(2-1)+1=3 .
$$

A coding morphism for a bifix code $X \subset A^{+}$is a morphism $f: B^{*} \rightarrow A^{*}$ which maps bijectively B onto X.

Example

Let us consider the bifix code $X=\{a a, a b, b a\}$ on $A=\{a, b\}$ and let $B=\{u, v, w\}$. The map

$$
f:\left\{\begin{array}{c}
u \mapsto a a \\
v \mapsto a b \\
w \mapsto b a
\end{array}\right.
$$

is a coding morphism for X.

If S is factorial and X is an S-maximal bifix code, we call the set $f^{-1}(S)$ a maximal bifix decoding of S.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, J.P.A.A.)]
The family of regular interval exchange sets is closed by maximal bifix decoding (the cardinality of the alphabet might change).

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015, Discrete Math.)]

The family of uniformly recurrent tree sets of characteristic 1 is closed by maximal bifix decoding.

Theorem [D., Perrin (2015, DLT)]

Any maximal bifix decoding of a recurrent neutral set is a neutral set with the same characteristic.

Conjecture [D., Perrin]

Any maximal bifix decoding of a (uniformly) recurrent tree set is a tree set with the same characteristic.

Francesco Dolce (Paris-Est)
Enumeration Formule in Neutral Sets Grenoble, 7 octobre 2015
$24 / 24$

