Rigidity of Substitutive Tree Words

Francesco DOLCE

work in progress with Valérie BERTHÉ, Fabien DURAND, Julien LEROY, Dominique PERRIN

9 février 2018

Séminaire de Combinatoire et d'Informatique Mathématique du LaCIM

Francesco Dolce (LACIM)

SUBSTITUTIVE TREE WORDS

9 février 2018 1 / 20

Fibonacci

$\mathbf{x} = 0100101001001010\cdots$

$$\mathbf{x} = \lim_{n \to \infty} \varphi^n(\mathbf{0})$$
 where $\varphi : \begin{cases} \mathbf{0} \mapsto \mathbf{0} \mathbf{1} \\ \mathbf{1} \mapsto \mathbf{0} \end{cases}$

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

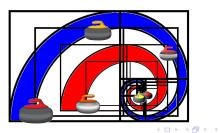
< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 9 fÉVRIER 2018 2 / 20

Fibonacci

$\mathbf{x} = 0100101001001010 \cdots$

$$\mathbf{x} = \lim_{n \to \infty} \varphi^n(\mathbf{0})$$
 where $\varphi : \left\{ egin{array}{c} \mathbf{0} \mapsto \mathbf{0} \mathbf{1} \ \mathbf{1} \mapsto \mathbf{0} \end{array}
ight.$

FRANCESCO DOLCE (LACIM)



SUBSTITUTIVE TREE WORDS

- 2 9 février 2018 2 / 20

∢ 臣 ▶

Fibonacci

$\mathbf{x} = 0100101001001010\cdots$

$$\mathbf{x} = \lim_{n \to \infty} \varphi^n(\mathbf{0})$$
 where $\varphi : \begin{cases} \mathbf{0} \mapsto \mathbf{0}\mathbf{1} \\ \mathbf{1} \mapsto \mathbf{0} \end{cases}$

Can we describe all morphisms σ such that $\sigma(\mathbf{x}) = \mathbf{x}$

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

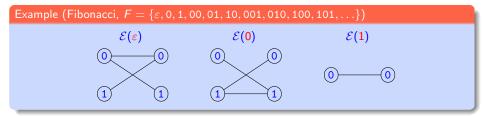
<ロ > < 部 > < 語 > < 語 > < 語 > 通 > < の へ () 9 FÉVRIER 2018 2 / 20

The extension graph of a word $w \in F$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{a \in A \mid aw \in F\},\$$

$$R(w) = \{a \in A \mid wa \in F\},\$$

$$B(w) = \{(a, b) \in A \mid awb \in F\}$$



FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

9 février 2018 3 / 20

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の��

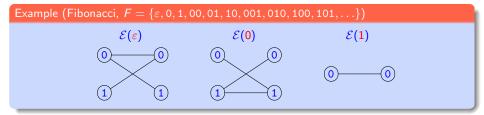
The extension graph of a word $w \in F$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{a \in A \mid aw \in F\},\$$

$$R(w) = \{a \in A \mid wa \in F\},\$$

$$B(w) = \{(a,b) \in A \mid awb \in F\}$$

A factorial set F is called a *tree set* if the graph $\mathcal{E}(w)$ is a tree for any $w \in F$.

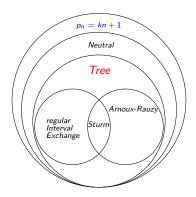


FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

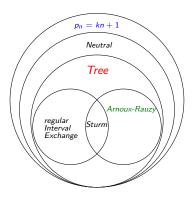
9 février 2018 3 / 20

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●



FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS



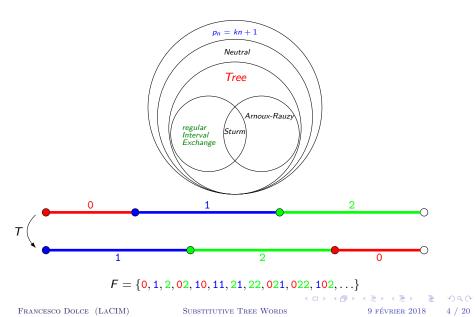
Definition

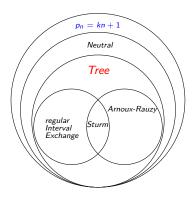
An Arnoux-Rauzy (or strict episturmian) set is a factorial set closed by reversal with $p_n = (Card(A) - 1)n + 1$ having a unique right special factor for each length.

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = ク Q (~ 9 février 2018 4 / 20



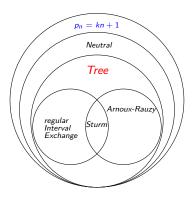


A tree word is an infinite word $\mathbf{x} \in A^{\omega}$ such that its language $\mathcal{L}(\mathbf{x}) \subset A^*$ is a tree set.

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

9 février 2018 4 / 20



A tree word is an infinite word $\mathbf{x} \in A^{\omega}$ such that its language $\mathcal{L}(\mathbf{x}) \subset A^*$ is a tree set.

- Sturmian words,
- Strict episturmian (Arnoux-Rauzy) words,
- Natural coding of regular Interval Exchanges,
- other quirky examples, . . .

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○ ○

9 février 2018

Recurrence and uniformly recurrence

Definition

An infinite word x is *recurrent* if for every $u \in \mathcal{L}(\mathbf{x})$ there is a v such that uvu is in $\mathcal{L}(\mathbf{x})$.

It is *uniformly recurrent* if for every $u \in \mathcal{L}(\mathbf{x})$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in $\mathcal{L}(\mathbf{x})$.

Proposition

Uniform recurrence \implies recurrence.

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

9 FÉVRIER 2018

Recurrence and uniformly recurrence

Definition

An infinite word x is *recurrent* if for every $u \in \mathcal{L}(\mathbf{x})$ there is a v such that uvu is in $\mathcal{L}(\mathbf{x})$.

It is *uniformly recurrent* if for every $u \in \mathcal{L}(\mathbf{x})$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in $\mathcal{L}(\mathbf{x})$.

Proposition

Uniform recurrence \implies recurrence.

Theorem D., Perrin (2016)

A recurrent tree word is uniformly recurrent.

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

9 FÉVRIER 2018

Morphisms and substitutions

A (non-erasing) morphism $\sigma : A^* \to B^*$ is a map s.t. $\sigma(uv) = \sigma(u)\sigma(v)$ for all $u, v \in A^*$ (and $\sigma(u) \in B^+$ for all $u \in A^+$).

A substitution is a morphism from A^* to A^* .

Francesco Dolce (LaCIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● ヨー つへで

9 février 2018

Morphisms and substitutions

A (non-erasing) morphism $\sigma : A^* \to B^*$ is a map s.t. $\sigma(uv) = \sigma(u)\sigma(v)$ for all $u, v \in A^*$ (and $\sigma(u) \in B^+$ for all $u \in A^+$).

A substitution is a morphism from A^* to A^* .

A substitution is *primitive* if there exists a $k \in \mathbb{N}$ s.t. $b \in \mathcal{L}(\sigma^k(a))$ for all $a, b \in A$. An infinite word of the form $\mathbf{x} = \sigma^{\omega}(a) = \lim_{n \to \infty} \sigma^n(a)$, with $a \in A$, is a *fixed point* of σ , that is $\sigma(\mathbf{x}) = \mathbf{x}$.

Francesco Dolce (LaCIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

9 février 2018

Morphisms and substitutions

A (non-erasing) morphism $\sigma : A^* \to B^*$ is a map s.t. $\sigma(uv) = \sigma(u)\sigma(v)$ for all $u, v \in A^*$ (and $\sigma(u) \in B^+$ for all $u \in A^+$).

A substitution is a morphism from A^* to A^* .

A substitution is *primitive* if there exists a $k \in \mathbb{N}$ s.t. $b \in \mathcal{L}(\sigma^k(a))$ for all $a, b \in A$. An infinite word of the form $\mathbf{x} = \sigma^{\omega}(a) = \lim_{n \to \infty} \sigma^n(a)$, with $a \in A$, is a *fixed point* of σ , that is $\sigma(\mathbf{x}) = \mathbf{x}$.

Proposition

If σ is a primitive substitution, there exists a $k \in \mathbb{N}$ such that σ^k admits a fixed point. Moreover, all fixed points of σ (or some power of it) have the same language, called the *language of* σ , and this is uniformly recurrent.

Francesco Dolce (LaCIM)

SUBSTITUTIVE TREE WORDS

9 février 2018

An infinite word $\mathbf{y} \in B^{\omega}$ is substitutive if there exist a substitution σ over B and a morphism $\tau : A^* \to B^*$ such that

 $\mathbf{y} = \tau(\sigma^{\omega}(b))$

with $b \in B$. It is said substitutive primitive whenever σ is primitive.

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

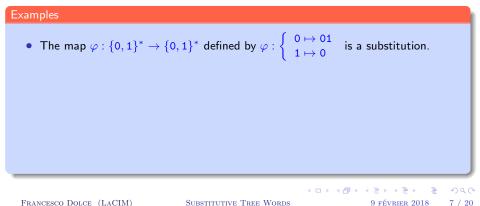
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

9 Février 2018 7 / 20

An infinite word $\mathbf{y} \in B^{\omega}$ is substitutive if there exist a substitution σ over B and a morphism $\tau: A^* \to B^*$ such that

 $\mathbf{y} = \tau(\sigma^{\omega}(b))$

with $b \in B$. It is said substitutive primitive whenever σ is primitive.

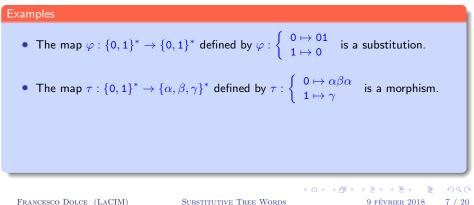


FRANCESCO DOLCE (LACIM)

An infinite word $\mathbf{y} \in B^{\omega}$ is substitutive if there exist a substitution σ over B and a morphism $\tau: A^* \to B^*$ such that

 $\mathbf{v} = \tau(\sigma^{\omega}(b))$

with $b \in B$. It is said substitutive primitive whenever σ is primitive.



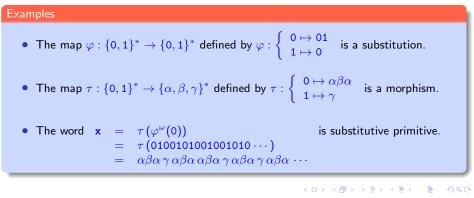
Francesco Dolce (LaCIM)

SUBSTITUTIVE TREE WORDS

An infinite word $\mathbf{y} \in B^{\omega}$ is substitutive if there exist a substitution σ over B and a morphism $\tau : A^* \to B^*$ such that

 $\mathbf{y} = \tau(\sigma^{\omega}(b))$

with $b \in B$. It is said substitutive primitive whenever σ is primitive.



FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

9 Février 2018 7 / 20

Invertible substitutions

Given an alphabet A, the free group \mathbb{F}_A is the set of all words over $A \cup A^{-1}$ which are reduced (i.e., $aa^{-1} \equiv a^{-1}a \equiv \varepsilon$ for every $a \in A$).

A substitution $\sigma : A^* \to A^*$ can be extended to a morphism of the free group by defining $\sigma(a^{-1}) = \sigma(a)^{-1}$.

Francesco Dolce (LaCIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

9 Février 2018 8 / 20

Invertible substitutions

Given an alphabet A, the free group \mathbb{F}_A is the set of all words over $A \cup A^{-1}$ which are reduced (i.e., $aa^{-1} \equiv a^{-1}a \equiv \varepsilon$ for every $a \in A$).

A substitution $\sigma : A^* \to A^*$ can be extended to a morphism of the free group by defining $\sigma(a^{-1}) = \sigma(a)^{-1}$.

A morphism $\sigma : A^* \to A^*$ is *invertible* if its extension $\sigma : \mathbb{F}_A \to \mathbb{F}_A$ is a (positive) automorphism, i.e., if there exists σ^{-1} such that $\sigma\sigma^{-1} = \sigma^{-1}\sigma = Id$.

$\begin{array}{rcccccccccccccccccccccccccccccccccccc$	
$1 \mapsto 0$	
$0^{-1} \mapsto 1^{-1}0^{-1}$	
$1^{-1} \mapsto 0^{-1}$	

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● ヨー つへで

9 février 2018

Invertible substitutions

Given an alphabet A, the free group \mathbb{F}_A is the set of all words over $A \cup A^{-1}$ which are reduced (i.e., $aa^{-1} \equiv a^{-1}a \equiv \varepsilon$ for every $a \in A$).

A substitution $\sigma : A^* \to A^*$ can be extended to a morphism of the free group by defining $\sigma(a^{-1}) = \sigma(a)^{-1}$.

Francesco Dolce (LaCIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

9 Février 2018 8 / 20

Tame substitutions

An automorphism σ is *positive* if $\sigma(a) \in A^+$ for every $a \in A$.

An automorphism is *elementary positive* if it is a permutation of A or of the form $\alpha_{a,b}$ or $\widetilde{\alpha}_{a,b}$, with $a, b \in A$ and $a \neq b$, where

$$\alpha_{a,b}: \left\{ \begin{array}{ll} a \mapsto ab \\ c \mapsto c & \text{if } c \neq a \end{array} \right. \quad \text{and} \quad \widetilde{\alpha}_{a,b}: \left\{ \begin{array}{ll} a \mapsto ba \\ c \mapsto c & \text{if } c \neq a \end{array} \right.$$

The set of elementary automorphisms is denoted S_e . A positive automorphism (resp. substitution) $\sigma \in S_e^*$ is said to be *tame*.

Example

The set of elementary automorphisms over $A = \{0, 1\}$ is

$$\mathcal{S}_{e} = \left\{ \textit{Id}, \pi_{(01)}, \alpha_{0,1}, \alpha_{1,0}, \widetilde{\alpha}_{0,1}, \widetilde{\alpha}_{1,0} \right\}.$$

The substitution $\varphi = \pi_{(01)} \widetilde{\alpha}_{0,1} : \left\{ \begin{array}{cc} 0 \mapsto 10 \mapsto 01 \\ 1 \mapsto 1 & \mapsto 0 \end{array} \right.$ is tame.

Francesco Dolce (LaCIM)

Substitutive Tree Words

9 février 2018 9 / 20

Tame and invertible substitutions

- Every permutations $\pi \in \mathfrak{S}_A$ is invertible.
- The inverses of

 $\alpha_{a,b}: \begin{cases} a \mapsto ab \\ c \mapsto c & \text{if } c \neq a \end{cases} \quad \text{and} \quad \widetilde{\alpha}_{a,b}: \begin{cases} a \mapsto ba \\ c \mapsto c & \text{if } c \neq a \end{cases}$ are respectively $(a \mapsto c) = 1$

$$\alpha_{a,b}^{-1}: \left\{ \begin{array}{l} a \mapsto ab^{-1} \\ c \mapsto c & \text{if } c \neq a \end{array} \right. \quad \text{and} \quad \widetilde{\alpha}_{a,b}^{-1}: \left\{ \begin{array}{l} a \mapsto b^{-1}a \\ c \mapsto c & \text{if } c \neq a \end{array} \right.$$

Francesco Dolce (LaCIM)

Substitutive Tree Words

9 février 2018 10 / 20

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 $\begin{array}{ccc} epistandard \\ substitutions \end{array} \subset \begin{array}{ccc} episturmian \\ substitutions \end{array} \subset \begin{array}{ccc} tame \\ substitutions \end{array} \subset \begin{array}{ccc} invertible \\ substitutions \end{array}$

The monoid of *episturmian* (or *Arnoux-Rauzy*) substitutions is generated by permutations of A and morphisms of the form ψ_a and $\tilde{\psi}_a$, with $a \in A$, where

$$\psi_a : \left\{ \begin{array}{ll} a \mapsto a \\ b \mapsto ab \end{array} \quad \text{if } b \neq a \end{array} \right. \quad \text{and} \quad \widetilde{\psi}_a : \left\{ \begin{array}{ll} a \mapsto a \\ b \mapsto ba \end{array} \right. \quad \text{if } b \neq a \end{array}$$

The monoid of *epistandard substitutions* is generated by permutations of A and morphisms of the form ψ_a , with $a \in A$ (i.e., no $\tilde{\psi}_b$).

Francesco Dolce (LaCIM)

Substitutive Tree Words

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● ヨー つへで

9 FÉVRIER 2018 11 / 20

 $\begin{array}{cccc} epistandard \\ substitutions \end{array} \subset \begin{array}{cccc} episturmian \\ substitutions \end{array} \subset \begin{array}{cccc} tame \\ substitutions \end{array} \subset \begin{array}{cccc} invertible \\ substitutions \end{array}$

The monoid of *episturmian* (or *Arnoux-Rauzy*) substitutions is generated by permutations of A and morphisms of the form ψ_a and $\tilde{\psi}_a$, with $a \in A$, where

$$\psi_a : \left\{ \begin{array}{ll} a \mapsto a \\ b \mapsto ab \end{array} \quad \text{if } b \neq a \end{array} \right. \quad \text{and} \quad \widetilde{\psi}_a : \left\{ \begin{array}{ll} a \mapsto a \\ b \mapsto ba \end{array} \right. \quad \text{if } b \neq a \end{array}$$

The monoid of *epistandard substitutions* is generated by permutations of A and morphisms of the form ψ_a , with $a \in A$ (i.e., no $\tilde{\psi}_b$).

Example (Fibonacci and Tribonacci)

• The substitution
$$\varphi = \psi_0 \pi_{(01)} : \begin{cases} 0 \mapsto 1 \mapsto 01 \\ 1 \mapsto 0 \mapsto 0 \end{cases}$$
 is epistandard.
• The substitution $\eta = \psi_0 \pi_{(012)} : \begin{cases} 0 \mapsto 1 \mapsto 01 \\ 1 \mapsto 2 \mapsto 02 \\ 2 \mapsto 0 \mapsto 0 \end{cases}$ is epistandard.

Francesco Dolce (LaCIM)

SUBSTITUTIVE TREE WORDS

epistandard substitutions = episturmian = tame = invertible substitutions = substitutions = substitutions $A = \{0, 1\}$

Theorem Mignosi, Séébold (1993); Wen, Wen (1994)

In the binary case (*Sturmian substitutions*) the four monoids coincide. <u>Proof.</u> (of the first two inequalities)

• $\alpha_{0,1} = \pi_{(0,1)} \psi_0$, $\alpha_{1,0} = \pi_{(0,1)} \psi_1 \pi_{(0,1)}$, $\widetilde{\alpha}_{0,1} = \psi_1$, $\widetilde{\alpha}_{1,0} = \psi_0$.

Francesco Dolce (LaCIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● ヨー つへで

9 février 2018

epistandard substitutions = episturmian = tame = invertible substitutions = substitutions = substitutions $A = \{0, 1\}$

Theorem Mignosi, Séébold (1993); Wen, Wen (1994)

In the binary case (*Sturmian substitutions*) the four monoids coincide. <u>Proof.</u> (of the first two inequalities)

• For every
$$a \in \{0, 1\}$$
, one has $\psi_a = \pi_{(0,1)} \psi_a \pi_{(0,1)}$.

• $\alpha_{0,1} = \pi_{(0,1)} \psi_0$, $\alpha_{1,0} = \pi_{(0,1)} \psi_1 \pi_{(0,1)}$, $\widetilde{\alpha}_{0,1} = \psi_1$, $\widetilde{\alpha}_{1,0} = \psi_0$.

Corollary

The monoid of positive automorphisms over a binary alphabet is finitely generated.

Francesco Dolce (LaCIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

9 FÉVRIER 2018 11 / 20

epistandard substitutions \subsetneq episturmian \subsetneq tame tame invertible substitutions \bigcirc card $(A) \ge 3$

Theorem [Wen, Zhang (1999); Richomme (2003)]

The monoid of invertible substitutions over a ternary alphabet is <u>not</u> finitely generated.

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

9 FÉVRIER 2018 11 / 20

Fixed point of substitutions

Theorem

Every Sturmian substitution generates a Sturmian word.

Example

The substitution φ generates the Fibonacci word

 $\varphi^{\omega}(0)=0100101001001010\cdots$

which is Sturmian.

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

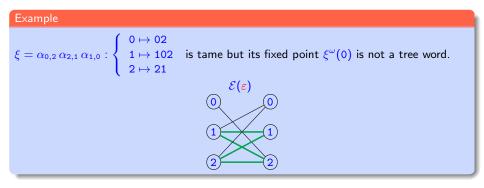
9 février 2018 12 / 20

Fixed point of substitutions

Theorem

Every Sturmian substitution generates a Sturmian word.

 $\underline{B}\underline{U}\underline{T}$ not every tame substitution admits as a fixed point a tree word.



QUESTION : Can we characterize among substitutive tree words the fixed points?

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

Stabilizer

The *stabilizer* of an infinite word $\mathbf{x} \in A^{\omega}$ is the submonoid of substitutions

 $\mathsf{Stab}(\mathbf{x}) = \{ \sigma : A^* \to A^* \, | \, \sigma(\mathbf{x}) = \mathbf{x} \}$

A word x such that Stab(x) is cyclic is said to be *rigid*.

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

9 FÉVRIER 2018 13 / 20

Stabilizer

The *stabilizer* of an infinite word $\mathbf{x} \in A^{\omega}$ is the submonoid of substitutions

 $\mathsf{Stab}(\mathbf{x}) = \{ \sigma : A^* \to A^* \, | \, \sigma(\mathbf{x}) = \mathbf{x} \}$

A word x such that Stab(x) is cyclic is said to be *rigid*.

Theorem [Séébold (1998)]

Words generated by Sturmian substitutions are rigid.

Example (Fibonacci)

The stabilizer of the Fibonacci word **x** is $Stab(\mathbf{x}) = \{\varphi^i \mid i \in \mathbb{N}\}.$

Francesco Dolce (LaCIM)

Substitutive Tree Words

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

9 FÉVRIER 2018 13 / 20

Stabilizer

The *stabilizer* of an infinite word $\mathbf{x} \in A^{\omega}$ is the submonoid of substitutions

 $\mathsf{Stab}(\mathbf{x}) = \{ \sigma : A^* \to A^* \, | \, \sigma(\mathbf{x}) = \mathbf{x} \}$

A word x such that Stab(x) is cyclic is said to be *rigid*.

Theorem [Séébold (1998)]	
Words generated by Sturmian substitutions are rigid.	J

Theorem [Krieger (2008)]

Fixed points of strict epistandard morphisms are rigid.

Example (Tribonacci)

The stabilizer of the Tribonacci word $\mathbf{y} = \eta^{\omega}(\mathbf{0})$ is $\mathsf{Stab}(\mathbf{y}) = \{\eta^i \mid i \in \mathbb{N}\}.$

Francesco Dolce (LaCIM) Substitut

Substitutive Tree Words

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

9 FÉVRIER 2018 13 / 20

Stabilizers of tree words

QUESTION : Are tree words rigid?

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

9 février 2018 14 / 20

QUESTION : Are tree words rigid?

ANSWER : Dunno!

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

9 février 2018 14 / 20

QUESTION : Are tree words rigid?

ANSWER : Dunno! But...

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の��

9 février 2018

14 / 20

Theorem [Berthé, D., Durand, Leroy, Perrin (2018)]
Let x be a tree word and $\sigma, \tau \in Stab(x)$ primitive substitutions.
Then, there exist $i, j \ge 1$ such that $\sigma^i = \overline{\tau^j}$.

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

 QUESTION : Are tree words rigid?
 Answer : Dunno! But...

Theorem [Berthé, D., Durand, Leroy, Perrin (2018)]					
Let x be a tree word and $\sigma, \tau \in Stab(x)$ primitive substitutions.					
Then, there exist $i, j \ge 1$ such that $\sigma^i = \overline{\tau^j}$.					
Let x be a recurrent tree word.					
There exists a <i>primitive tame</i> substitution θ such that for any <u>primitive</u> $\sigma \in Stab(x)$, one					
can find a <i>positive tame automorphism</i> τ and integers $i, j \ge 1$ such that $\sigma^i = \tau \theta^j \tau^{-1}$.					

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

9 février 2018

14 / 20

QUESTION : Are tree words rigid? <u>ANSWER</u> : Dunno! But...

Theorem [Berthé, D., Durand, Leroy, Perrin (2018)]					
Let x be a tree word and $\sigma, \tau \in Stab(x)$ primitive substitutions.					
Then, there exist $i, j \ge 1$ such that $\sigma^i = \overline{\tau^j}$.					
Let x be a recurrent tree word.					
There exists a <i>primitive tame</i> substitution θ such that for any <u>primitive</u> $\sigma \in Stab(x)$, one					
can find a <i>positive tame automorphism</i> τ and integers $i, j \ge 1$ such that $\sigma^i = \tau \theta^j \tau^{-1}$.					

Corollary

If x is a recurrent tree word, then any primitive $\sigma \in \text{Stab}(x)$ is invertible (and thus tame).

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 − のへの

9 Février 2018 14 / 20

QUESTION : Are tree words rigid? <u>ANSWER</u> : Dunno! But...

Theorem [Berthé, D., Durand, Leroy, Perrin (2018)]					
Let x be a tree word and $\sigma, \tau \in Stab(x)$ primitive substitutions.					
Then, there exist $i, j \ge 1$ such that $\sigma^i = \overline{\tau^j}$.					
Let x be a recurrent tree word.					
There exists a <i>primitive tame</i> substitution θ such that for any <u>primitive</u> $\sigma \in Stab(x)$, one					
can find a <i>positive tame automorphism</i> τ and integers $i, j \ge 1$ such that $\sigma^i = \tau \theta^j \tau^{-1}$.					

Corollary

If x is a recurrent tree word, then any primitive $\sigma \in \text{Stab}(x)$ is invertible (and thus tame).

QUESTION : Is any non-trivial element of Stab(x) primitive when x is recurrent tree?

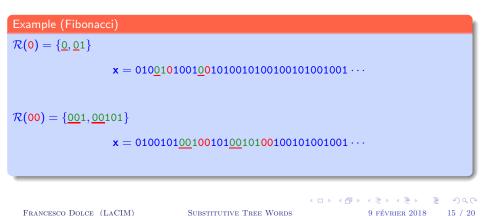
FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

Return words

A left return word to w in an infinite word x is a nonempty word u such that $uw \in \mathcal{L}(x)$ starts and ends with w but has no w as an internal factor. Formally,

$$\mathcal{R}(\mathbf{w}) = \{ u \in A^+ \mid u\mathbf{w} \in \mathcal{L}(\mathbf{x}) \cap (\mathbf{w}A^+ \setminus A^+ \mathbf{w}A^+) \}$$



FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

Let us decode with respect to the first letter of the infinite word.

Substitutive Tree Words

9 février 2018

16 / 20

Let us decode with respect to the first letter of the infinite word.

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

9 février 2018 16 / 20

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Let us decode with respect to the first letter of the infinite word.

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

9 février 2018 16 / 20

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 − のへの

Let us decode with respect to the first letter of the infinite word.

Example						
z	=	0110100110010110100101100110010110 · · ·				
$\mathcal{D}(z)$	=	0120210121020120210201210120210121020121 · · ·				
$\mathcal{D}^2(\mathbf{z})$	=	0123013201232013012301320130123201230132 · · ·				
$\mathcal{D}^{3}(\mathbf{z})$	=	0123013201232013012301320130123201230132 · · ·				
$\mathcal{D}^4(z)$	=	0123013201232013012301320130123201230132 · · ·				

The sequence $(\mathcal{D}^n(\mathbf{z}))_{n\in\mathbb{N}}$ is called *derived sequence* of \mathbf{z} .

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

◆□> ◆□> ◆目> ◆目> ◆目> □目 − のへで

9 Février 2018 16 / 20

Let us decode with respect to the first letter of the infinite word.

Example		
z	=	0110100110010110100101100110010110 $\cdots \in \{0,1\}^\infty$
$\mathcal{D}(z)$	=	$0120210121020120210201210120210121020121 \dots \in \{0, 1, 2\}^{\infty}$
$\mathcal{D}^2(\mathbf{z})$	=	0123013201232013012301320130123201230132 $\cdots \in \{0, 1, 2, 3\}^{\infty}$
$\mathcal{D}^{3}(\mathbf{z})$	=	0123013201232013012301320130123201230132 $\cdots \in \{0, 1, 2, 3\}^{\infty}$
$\mathcal{D}^{4}(z)$	=	0123013201232013012301320130123201230132 $\cdots \in \{0, 1, 2, 3\}^{\infty}$

The sequence $(\mathcal{D}^n(\mathbf{z}))_{n\in\mathbb{N}}$ is called *derived sequence* of \mathbf{z} .

<u>REMARK</u> : The alphabets are, in general, different.

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 − のへの

9 FÉVRIER 2018 16 / 20

Return Theorem

Theorem Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)

Let x be a recurrent tree word. For any $w \in \mathcal{L}(x)$, the set $\mathcal{R}(w)$ is a basis of the free group \mathbb{F}_A .

Example (Fibonacci)

The set $\mathcal{R}(00) = \{001, 00101\}$ is a basis of the free group. Indeed,

$$0 = 001 (00101)^{-1} 001$$

1 = 0⁻¹ 0⁻¹ 001

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

9 FÉVRIER 2018 17 / 20

Return Theorem

Theorem Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)

Let x be a recurrent tree word. For any $w \in \mathcal{L}(x)$, the set $\mathcal{R}(w)$ is a basis of the free group \mathbb{F}_A .

Example (Fibonacci)

The set $\mathcal{R}(00) = \{001, 00101\}$ is a basis of the free group. Indeed,

$$0 = 001 (00101)^{-1} 001$$

1 = 0⁻¹ 0⁻¹ 001

Corollary

For a recurrent tree word x one has $Card(\mathcal{R}(w)) = Card(A)$ for any $w \in \mathcal{L}(x)$. Thus all $\mathcal{D}^{n}(x)$ are in A^{ω} .

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

9 FÉVRIER 2018 17 / 20

Number of derived sequence

Theorem [Durand (1998)]

A uniformly recurrent word $\mathbf{x} \in A^{\omega}$ is primitive substitutive if and only if the set of its derived sequences $\{\mathcal{D}^n(\mathbf{x}) \mid n \in \mathbb{N}\}$ is finite.

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

9 février 2018

18 / 20

Number of derived sequence

Theorem [Durand (1998)]

A uniformly recurrent word $\mathbf{x} \in A^{\omega}$ is primitive substitutive if and only if the set of its derived sequences $\{\mathcal{D}^n(\mathbf{x}) \mid n \in \mathbb{N}\}$ is finite.

Theorem Klouda, Medková, Pelantová, Starosta (2018)

Let **x** be a fixed point of a Sturmian substitution $\sigma = \sigma_1 \sigma_2 \cdots \sigma_q \pi$, with $\sigma_i \in (S_e \setminus \mathfrak{S}_A)^*$ and $\pi \in \mathfrak{S}_A$ (decomposition in a *normal* form). Then

 $1 \leq \operatorname{Card}\left(\{\mathcal{D}^n(\mathbf{x})\}_{n \in \mathbb{N}}\right) \leq 3\boldsymbol{q} - 4.$

Francesco Dolce (LaCIM)

SUBSTITUTIVE TREE WORDS

9 FÉVRIER 2018 18 / 20

Number of derived sequence

Theorem [Durand (1998)]

A uniformly recurrent word $\mathbf{x} \in A^{\omega}$ is primitive substitutive if and only if the set of its derived sequences $\{\mathcal{D}^n(\mathbf{x}) \mid n \in \mathbb{N}\}$ is finite.

Theorem [Klouda, Medková, Pelantová, Starosta (2018)]

Let **x** be a fixed point of a Sturmian substitution $\sigma = \sigma_1 \sigma_2 \cdots \sigma_q \pi$, with $\sigma_i \in (S_e \setminus \mathfrak{S}_A)^*$ and $\pi \in \mathfrak{S}_A$ (decomposition in a *normal* form). Then

 $1 \leq \operatorname{Card}\left(\{\mathcal{D}^n(\mathbf{x})\}_{n \in \mathbb{N}}\right) \leq 3q - 4.$

QUESTION : Can we bound $Card(\{\mathcal{D}^n(\mathbf{x})\}_{n\in\mathbb{N}})$ when \mathbf{x} is recurrent tree?

FRANCESCO DOLCE (LACIM)

Substitutive Tree Words

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

9 FÉVRIER 2018 18 / 20

\mathcal{S} -adic representation Let's conclude with some \mathcal{S} -adic notions...

Let S be a set of morphisms. An infinite word x is said S-adic if

 $\mathbf{x} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_n (\mathbf{a}_{n+1})$

with $\sigma_n : A_{n+1}^* \to A_n^* \in S$ and $a_n \in A_n$ for all $n \in \mathbb{N}$.

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

9 FÉVRIER 2018 19 / 20

\mathcal{S} -adic representation Let's conclude with some \mathcal{S} -adic notions...

Let S be a set of morphisms. An infinite word x is said S-adic if

 $\mathbf{x} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_n (\mathbf{a}_{n+1})$

with $\sigma_n : A_{n+1}^* \to A_n^* \in S$ and $a_n \in A_n$ for all $n \in \mathbb{N}$.

An S-adic representation $((\sigma_n)_n, (a_n)_n)$ of x is

- eventually periodic, if there exist n_0, p s.t. $(\sigma_{m+p}, a_{m+p}) = (\sigma_m, a_m)$ for all $m \ge n_0$
- primitive, if for all m there exists k s.t. $A_m \subset \mathcal{L}(\sigma_m \sigma_{m+1} \cdots \sigma_k(a))$ for all $a \in A_{k+1}$.

Substitutive Tree Words

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● ヨー つへで

9 FÉVRIER 2018 19 / 20

\mathcal{S} -adic representation Let's conclude with some \mathcal{S} -adic notions...

Let S be a set of morphisms. An infinite word x is said S-adic if

 $\mathbf{x} = \lim_{n \to \infty} \sigma_0 \sigma_1 \cdots \sigma_n (\mathbf{a}_{n+1})$

with $\sigma_n : A_{n+1}^* \to A_n^* \in S$ and $a_n \in A_n$ for all $n \in \mathbb{N}$.

An S-adic representation $((\sigma_n)_n, (a_n)_n)$ of x is

- eventually periodic, if there exist n_0, p s.t. $(\sigma_{m+p}, a_{m+p}) = (\sigma_m, a_m)$ for all $m \ge n_0$
- primitive, if for all m there exists k s.t. $A_m \subset \mathcal{L}(\sigma_m \sigma_{m+1} \cdots \sigma_k(a))$ for all $a \in A_{k+1}$.

Theorem Berthé, D., Durand, Leroy, Perrin (2018)

A recurrent tree word is primitive substitutive if and only if it has an eventually periodic primitive S_{e} -adic representation.

 $\mathcal{S}_e = \mathfrak{S}_A \sqcup \{ \alpha_{a,b} \}_{a \neq b} \sqcup \{ \widetilde{\alpha}_{a,b} \}_{a \neq b}$

Francesco Dolce (LaCIM)

Substitutive Tree Words

9 FÉVRIER 2018 19 / 20

Merci

FRANCESCO DOLCE (LACIM)

SUBSTITUTIVE TREE WORDS

9 février 2018 20 / 20