Enumeration formulæ in neutral sets

Francesco Dolce and Dominique Perrin

イロト 不得下 不良下 不良下 一度

DLT 2015 Liverpool, 28th July 2015

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 1 / 21

Overview

- Study of symbolic dynamical systems (essentially factors of infinite words) of linear complexity called "neutral", containing the Sturmian dynamical systems.
- Proof of enumeration formulæ in these sets for bifix codes (and return words).
- Link with interval exchange transformations.

F. Dolce & D. Perrin (Paris-Est) Enumeration Formulæ in Neutral Sets Liverpool, 28 July 2015 2 / 21

(日本)(同本)(日本)(日本)(日本)

Outline

Overview

- 1. Neutral sets
- 2. Bifix codes in neutral sets
- 3. Interval exchange sets Conclusions

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 3 / 21

- 本間 ト 本臣 ト 本臣 ト

- 2

Neutral Sets

Outline

Overview

1. Neutral sets

- Basic definitions
- Characteristic of a neutral set
- Factor complexity of a neutral set
- 2. Bifix codes in neutral sets
- 3. Interval exchange sets

Conclusions

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 4 / 21

イロト 不同ト 不同ト 不同ト

- 2

Let A a finite alphabet and S be a *factorial* set on A.

For a word $w \in S$, we denote

<i>ℓ</i> (<i>w</i>)	=	the number of letters	а	such that	<i>aw</i> ∈ <i>S</i> ,
r(w)	=	the number of letters	а	such that	<i>wa</i> ∈ <i>S</i> ,
e(w)	=	the number of pairs	(a, b)	such that	$awb \in S$.

A word w is left-special if $\ell(w) \ge 2$, right-special if $r(w) \ge 2$ and bispecial if it is both left and right-special.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 5 / 21

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let A a finite alphabet and S be a *factorial* set on A.

For a word $w \in S$, we denote

<i>ℓ</i> (<i>w</i>)	=	the number of letters	а	such that	<i>aw</i> ∈ <i>S</i> ,
r(w)	=	the number of letters	а	such that	<i>wa</i> ∈ <i>S</i> ,
e(w)	=	the number of pairs	(a, b)	such that	$awb \in S$.

A word w is left-special if $\ell(w) \ge 2$, right-special if $r(w) \ge 2$ and bispecial if it is both left and right-special.

The *multiplicity* of a word w is the quantity

 $m(w) = e(w) - \ell(w) - r(w) + 1.$

A word is called *neutral* if m(w) = 0.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 5 / 21

(ロ)、(同)、(E)、(E)、(E)、(O)へ(O)

A set S is *neutral* if it is factorial and every nonempty word $w \in S$ is neutral.

The integer $\chi(S) = 1 - m(\varepsilon) = \ell(\varepsilon) + r(\varepsilon) - e(\varepsilon)$ is called the *characteristic* of S.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 6 / 21

◆□> ◆□> ◆目> ◆目> ◆目> □目 − のへで

A set S is *neutral* if it is factorial and every nonempty word $w \in S$ is neutral.

The integer $\chi(S) = 1 - m(\varepsilon) = \ell(\varepsilon) + r(\varepsilon) - e(\varepsilon)$ is called the *characteristic* of S.

Proposition

The following are neutral sets of characteristic 1 :

- Sturmian sets (sets of factors of an Arnoux-Rauzy word) and
- Regular Interval Exchange sets (see later).

Example

The Fibonacci set is the set of factors of the Fibonacci word, that is the fixed point $\varphi^{\omega}(a) = abaababaaba \cdots$ of the morphism

 $\varphi: a \mapsto ab, \quad b \mapsto a.$

It is a neutral set of characteristic 1.

Indeed, m(w) = 0 for every w in the set (including the empty word).

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 6 / 21

The factor complexity of a factorial set $S \subset A^*$ is the sequence $p_n = \text{Card}(S \cap A^n)$.

Proposition (J. Cassaigne)

The factor complexity of a neutral set is given by $p_0 = 1$ and

$$p_n = n(\operatorname{Card}(A) - \chi(S)) + \chi(S).$$

Example

The Fibonacci set has factor complexity $p_n = n + 1$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 7 / 21

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → ∃ − のへで

Example

Let us consider two *doublings* of the Fibonacci set :

• the set of factors of the two infinite sequences *abaababa*... and *cdccdcdc*...,

• the set of factors of the two infinite sequences *abcabcda*... and *cdacdabc*....

Both are neutral set of characteristic 2. Their factor complexity is 2n + 2.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 8 / 21

イロト イボト イヨト イヨト

BIFIX CODES IN NEUTRAL SETS

Outline

Overview

- 1. Neutral sets
- 2. Bifix codes in neutral sets
 - Bifix codes and *S*-degree
 - Cardinality Theorem for bifix codes
 - Bifix decoding
- 3. Interval exchange sets

Conclusions

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 9 / 21

・ 同 ト ・ ヨ ト ・ ヨ ト

- 32

A set $X \subset A^+$ of nonempty words over an alphabet A is a *bifix code* if it does not contain any proper prefix or suffix of its elements.

Example	
• { <i>aa</i> , <i>ab</i> , <i>ba</i> }	
• {aa, ab, bba, bbb}	
• { <i>ac</i> , <i>bcc</i> , <i>bcbca</i> }	

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A set $X \subset A^+$ of nonempty words over an alphabet A is a *bifix code* if it does not contain any proper prefix or suffix of its elements.

Example		
• { <i>aa</i> , <i>ab</i> , <i>ba</i> }		
• {aa, ab, bba, bbb}		
• { <i>ac</i> , <i>bcc</i> , <i>bcbca</i> }		

A bifix code $X \subset S$ is S-maximal if it is not properly contained in a bifix code $Y \subset S$.

Example

Let S be the Fibonacci set. The set $X = \{aa, ab, ba\}$ is an S-maximal bifix code. It is not an A^* -maximal bifix code, indeed $X \subset Y = X \cup \{bb\}$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 10 / 21

A parse of a word w with respect to a bifix code X is a triple (q, x, p) such that

- w = qxp,
- q has no suffix in X,
- $x \in X^*$ and
- *p* has no prefix in *X*.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → ∃ − のへで

A parse of a word w with respect to a bifix code X is a triple (q, x, p) such that

- w = qxp,
- q has no suffix in X,
- $x \in X^*$ and
- *p* has no prefix in *X*.

The S-degree of X is the maximal number of parses with respect to X of a word of S.

Example

- For the Fibonacci set S, the set $X = \{aa, ab, ba\}$ has S-degree 2
- The set $X = S \cap A^n$ has S-degree *n*.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 11 / 21

イロト イヨト イヨト

- 3

Theorem

Let S be a neutral set. For any finite S-maximal bifix code X of S-degree n, one has

$$\operatorname{Card} (X) = n(\operatorname{Card} (A) - \chi(S)) + \chi(S).$$

F. Dolce & D. Perrin (Paris-Est) Enumeration Formulæ in Neutral Sets Liverpool, 28 July 2015 12 / 21

・ロト ・ 日 ・ ・ ヨ ト ・ ヨ ト

- 2

Theorem

Let S be a neutral set. For any finite S-maximal bifix code X of S-degree n, one has

$$\operatorname{Card}(X) = n(\operatorname{Card}(A) - \chi(S)) + \chi(S).$$

Example

The set S-maximal bifix code $X = \{aa, ab, ba\}$ of S-degree 2 verifies

Card(X) = 2(2-1) + 1.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 12 / 21

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

Let S be a factorial set and X be a finite S-maximal bifix code. A coding morphism for X is a morphism $f : B^* \to A^*$ which maps bijectively an alphabet B onto X.

The set $f^{-1}(S)$ is called a maximal bifix decoding of S.

Theorem

Any maximal bifix decoding of a recurrent neutral set is a neutral set with the same characteristic.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 13 / 21

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● のへで

Let S be a factorial set and X be a finite S-maximal bifix code. A coding morphism for X is a morphism $f : B^* \to A^*$ which maps bijectively an alphabet B onto X.

The set $f^{-1}(S)$ is called a maximal bifix decoding of S.

Theorem

Any maximal bifix decoding of a recurrent neutral set is a neutral set with the same characteristic.

Example

Let us consider the Fibonacci set *S*, the *S*-maximal bifix code $X = \{aa, ab, ba\}$, the alphabet $B = \{u, v, w\}$, and the coding morphism

 $f: \mathbf{u} \mapsto aa, \mathbf{v} \mapsto ab, \mathbf{w} \mapsto ba.$

Both S and $f^{-1}(S)$ are neutral sets of characteristic 1.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 13 / 21

INTERVAL EXCHANGES

Outline

Overview

- 1. Neutral sets
- 2. Bifix codes in neutral sets
- 3. Interval exchange sets
 - Interval exchange transformations
 - Natural coding
 - Connections

Conclusions

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 14 / 21

- 本間 ト 本臣 ト 本臣 ト

- 32

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$T(z) = z + lpha_z$$
 if $z \in I_a$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 15 / 21

イロト イボト イヨト イヨト

- 32

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$T(z) = z + lpha_z$$
 if $z \in I_a$.

向下 イヨト イヨト

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$T(z) = z + \alpha_z$$
 if $z \in I_a$.

F. Dolce & D. Perrin (Paris-Est) Enumeration Formulæ in Neutral Sets Liverpool, 28 July 2015 15 / 21

・ 同下 ・ ヨト ・ ヨト

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$T(z) = z + \alpha_z$$
 if $z \in I_a$.

向下 イヨト イヨト

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$T(z) = z + \alpha_z$$
 if $z \in I_a$.

向下 イヨト イヨト

$$a_n = a$$
 if $T^n(z) \in I_a$.

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α , i.e. $T(z) = z + \alpha \mod 1$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 16 / 21

$$a_n = a$$
 if $T^n(z) \in I_a$.

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α , i.e. $T(z) = z + \alpha \mod 1$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 16 / 21

$$a_n = a$$
 if $T^n(z) \in I_a$.

Example

The *Fibonacci word* is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α , i.e. $T(z) = z + \alpha \mod 1$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 16 / 21

$$a_n = a$$
 if $T^n(z) \in I_a$.

Example

The *Fibonacci word* is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α , i.e. $T(z) = z + \alpha \mod 1$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 16 / 21

$$a_n = a$$
 if $T^n(z) \in I_a$.

Example

The *Fibonacci word* is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α , i.e. $T(z) = z + \alpha \mod 1$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 16 / 21

イロト イポト イヨト イヨト 二日

$$a_n = a$$
 if $T^n(z) \in I_a$.

Example

The *Fibonacci word* is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α , i.e. $T(z) = z + \alpha \mod 1$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 16 / 21

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● ヨー つへで

$$a_n = a$$
 if $T^n(z) \in I_a$.

Example

The *Fibonacci word* is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha = (3 - \sqrt{5})/2$ relative to the point α , i.e. $T(z) = z + \alpha \mod 1$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 16 / 21

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 − のへの

The *interval exchange set* $\mathcal{L}(T)$ is the set of factors of all natural codings of T.

Example

The *Fibonacci set* is the set of factors of all natural codings of the rotation on the cirle (minus 2 points) by angle $\alpha = (3 - \sqrt{5})/2$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULE IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 17 / 21

A connection of length $n \ge 0$ of an interval exchange T is a triple (x, y, n) with

- x is a singularity of T^{-1} ,
- y is a singularity of T, and
- $T^n(x) = y$.

When n = 0, we say that x = y is a connection.

An interval exchange without connections is said to be *regular*.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 18 / 21

Theorem

Let T be an interval exchange with exactly c connections, all of length 0. Then, $\mathcal{L}(T)$ is a neutral set of characteristic c + 1.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 19 / 21

- 不得下 イヨト イヨト 三日

Further research directions

- *Specular sets*, i.e. neutral sets of characteristic 2 satisfying additional "symmetric" properties.
- *Tree sets* of arbitrary characteristic, i.e. neutral sets with extra constraints of the extensions.
- Sets with a finite number of elements satisfying $m(w) \neq 0$.

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 20 / 21

THANKS **FOR YOUR** ATTENTION

F. DOLCE & D. PERRIN (PARIS-EST) ENUMERATION FORMULÆ IN NEUTRAL SETS LIVERPOOL, 28 JULY 2015 21 / 21

イロト イポト イヨト イヨト