Enumeration formula in neutral sets

Francesco Dolce and Dominique Perrin

RDMath IdF

Domaine d'Intérêt Majour (DIM)

* * îledeFrance

DLT 2015
Liverpool, $28^{\text {th }}$ July 2015

Overview

- Study of symbolic dynamical systems (essentially factors of infinite words) of linear complexity called "neutral", containing the Sturmian dynamical systems.
- Proof of enumeration formulæ in these sets for bifix codes (and return words).
- Link with interval exchange transformations.

Outline

Overview

1. Neutral sets
2. Bifix codes in neutral sets
3. Interval exchange sets

Conclusions

Outline

Overview

1. Neutral sets

- Basic definitions
- Characteristic of a neutral set
- Factor complexity of a neutral set

2. Bifix codes in neutral sets
3. Interval exchange sets

Conclusions

Let A a finite alphabet and S be a factorial set on A.
For a word $w \in S$, we denote

$$
\begin{array}{llll}
\ell(w) & =\text { the number of letters } & a & \text { such that } \quad a w \in S, \\
r(w) & =\text { the number of letters } & a & \text { such that } \quad w a \in S, \\
e(w) & =\text { the number of pairs } & (a, b) & \text { such that } \quad a w b \in S .
\end{array}
$$

A word w is left-special if $\ell(w) \geq 2$, right-special if $r(w) \geq 2$ and bispecial if it is both left and right-special.

Let A a finite alphabet and S be a factorial set on A.
For a word $w \in S$, we denote

$$
\begin{gathered}
\ell(w)=\text { the number of letters } \quad a \quad \\
r(w)=\text { such that } \quad a w \in S, \\
e(w)=\text { the number of letters } \\
e
\end{gathered} \begin{gathered}
a \\
\text { such that }
\end{gathered} \quad w a \in S,
$$

A word w is left-special if $\ell(w) \geq 2$, right-special if $r(w) \geq 2$ and bispecial if it is both left and right-special.

The multiplicity of a word w is the quantity

$$
m(w)=e(w)-\ell(w)-r(w)+1
$$

A word is called neutral if $m(w)=0$.

A set S is neutral if it is factorial and every nonempty word $w \in S$ is neutral. The integer $\chi(S)=1-m(\varepsilon)=\ell(\varepsilon)+r(\varepsilon)-e(\varepsilon)$ is called the characteristic of S.

A set S is neutral if it is factorial and every nonempty word $w \in S$ is neutral.
The integer $\chi(S)=1-m(\varepsilon)=\ell(\varepsilon)+r(\varepsilon)-e(\varepsilon)$ is called the characteristic of S.

Proposition

The following are neutral sets of characteristic 1 :

- Sturmian sets (sets of factors of an Arnoux-Rauzy word) and
- Regular Interval Exchange sets (see later).

Example

The Fibonacci set is the set of factors of the Fibonacci word, that is the fixed point $\varphi^{\omega}(a)=$ abaababaaba \cdots of the morphism

$$
\varphi: a \mapsto a b, \quad b \mapsto a .
$$

It is a neutral set of characteristic 1 .
Indeed, $m(w)=0$ for every w in the set (including the empty word).

The factor complexity of a factorial set $S \subset A^{*}$ is the sequence $p_{n}=\operatorname{Card}\left(S \cap A^{n}\right)$.

Proposition (J. Cassaigne)

The factor complexity of a neutral set is given by $p_{0}=1$ and

$$
p_{n}=n(\operatorname{Card}(A)-\chi(S))+\chi(S)
$$

Example

The Fibonacci set has factor complexity $p_{n}=n+1$.

Example

Let us consider two doublings of the Fibonacci set :

- the set of factors of the two infinite sequences abaababa... and cdccdcdc... ,

- the set of factors of the two infinite sequences abcabcda... and cdacdabc...

Both are neutral set of characteristic 2 . Their factor complexity is $2 n+2$.

Outline

Overview

1. Neutral sets

2. Bifix codes in neutral sets

- Bifix codes and S-degree
- Cardinality Theorem for bifix codes
- Bifix decoding

3. Interval exchange sets Conclusions

A set $X \subset A^{+}$of nonempty words over an alphabet A is a bifix code if it does not contain any proper prefix or suffix of its elements.

Example

- $\{a a, a b, b a\}$
- $\{a a, a b, b b a, b b b\}$
- $\{a c, b c c, b c b c a\}$

A set $X \subset A^{+}$of nonempty words over an alphabet A is a bifix code if it does not contain any proper prefix or suffix of its elements.

Example

- $\{a a, a b, b a\}$
- $\{a a, a b, b b a, b b b\}$
- $\{a c, b c c, b c b c a\}$

A bifix code $X \subset S$ is S-maximal if it is not properly contained in a bifix code $Y \subset S$.

Example

Let S be the Fibonacci set. The set $X=\{a a, a b, b a\}$ is an S-maximal bifix code. It is not an A^{*}-maximal bifix code, indeed $X \subset Y=X \cup\{b b\}$.

A parse of a word w with respect to a bifix code X is a triple (q, x, p) such that

- $w=q \times p$,
- q has no suffix in X,
- $x \in X^{*}$ and
- p has no prefix in X.

Example

Let $X=\{a a, a b, b a\}$ and $w=a b a a b a$. The two possible parses of w are

- ($\varepsilon, a b$ aa $b a, \varepsilon)$,
- ($a, b a a b, a)$.

ababab

A parse of a word w with respect to a bifix code X is a triple (q, x, p) such that

- $w=q \times p$,
- q has no suffix in X,
- $x \in X^{*}$ and
- p has no prefix in X.

Example

Let $X=\{a a, a b, b a\}$ and $w=a b a a b a$. The two possible parses of w are

- ($\varepsilon, a b$ aa $b a, \varepsilon)$,
- ($a, b a a b, a)$.

abaaba

The S-degree of X is the maximal number of parses with respect to X of a word of S.

Example

- For the Fibonacci set S, the set $X=\{a a, a b, b a\}$ has S-degree 2
- The set $X=S \cap A^{n}$ has S-degree n.

Theorem

Let S be a neutral set. For any finite S-maximal bifix code X of S-degree n, one has

$$
\operatorname{Card}(X)=n(\operatorname{Card}(A)-\chi(S))+\chi(S)
$$

Theorem

Let S be a neutral set. For any finite S-maximal bifix code X of S-degree n, one has

$$
\operatorname{Card}(X)=n(\operatorname{Card}(A)-\chi(S))+\chi(S)
$$

Example

The set S-maximal bifix code $X=\{a a, a b, b a\}$ of S-degree 2 verifies

$$
\operatorname{Card}(X)=2(2-1)+1
$$

Let S be a factorial set and X be a finite S-maximal bifix code. A coding morphism for X is a morphism $f: B^{*} \rightarrow A^{*}$ which maps bijectively an alphabet B onto X.

The set $f^{-1}(S)$ is called a maximal bifix decoding of S.

Theorem

Any maximal bifix decoding of a recurrent neutral set is a neutral set with the same characteristic.

Let S be a factorial set and X be a finite S-maximal bifix code.
A coding morphism for X is a morphism $f: B^{*} \rightarrow A^{*}$ which maps bijectively an alphabet B onto X.

The set $f^{-1}(S)$ is called a maximal bifix decoding of S.

Theorem

Any maximal bifix decoding of a recurrent neutral set is a neutral set with the same characteristic.

Example

Let us consider the Fibonacci set S, the S-maximal bifix code $X=\{a a, a b, b a\}$, the alphabet $B=\{u, v, w\}$, and the coding morphism

$$
f: u \mapsto a a, \quad v \mapsto a b, \quad w \mapsto b a .
$$

Both S and $f^{-1}(S)$ are neutral sets of characteristic 1.

Outline

Overview

1. Neutral sets

2. Bifix codes in neutral sets
3. Interval exchange sets

- Interval exchange transformations
- Natural coding
- Connections

Conclusions

Let $\left(I_{a}\right)_{a \in A}$ and $\left(J_{a}\right)_{a \in A}$ be two open partitions of the open set I (minus Card $(A)-1$ points), such that $\left|I_{a}\right|=\left|J_{a}\right|$ for every $a \in A$.

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+\alpha_{z} \quad \text { if } z \in I_{a} .
$$

Let $\left(I_{a}\right)_{a \in A}$ and $\left(J_{a}\right)_{a \in A}$ be two open partitions of the open set I (minus Card $(A)-1$ points), such that $\left|I_{a}\right|=\left|J_{a}\right|$ for every $a \in A$.

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+\alpha_{z} \quad \text { if } z \in I_{a} .
$$

Let $\left(I_{a}\right)_{a \in A}$ and $\left(J_{a}\right)_{a \in A}$ be two open partitions of the open set I (minus Card $(A)-1$ points), such that $\left|I_{a}\right|=\left|J_{a}\right|$ for every $a \in A$.

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+\alpha_{z} \quad \text { if } z \in I_{a}
$$

Let $\left(I_{a}\right)_{a \in A}$ and $\left(J_{a}\right)_{a \in A}$ be two open partitions of the open set I (minus Card $(A)-1$ points), such that $\left|I_{a}\right|=\left|J_{a}\right|$ for every $a \in A$.

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+\alpha_{z} \quad \text { if } z \in I_{a}
$$

Let $\left(I_{a}\right)_{a \in A}$ and $\left(J_{a}\right)_{a \in A}$ be two open partitions of the open set I (minus Card $(A)-1$ points), such that $\left|I_{a}\right|=\left|J_{a}\right|$ for every $a \in A$.

An interval exchange transformation is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+\alpha_{z} \quad \text { if } z \in I_{a}
$$

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, i.e. $T(z)=z+\alpha \bmod 1$.

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, i.e. $T(z)=z+\alpha \bmod 1$.

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, i.e. $T(z)=z+\alpha \bmod 1$.

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, i.e. $T(z)=z+\alpha \bmod 1$.

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, i.e. $T(z)=z+\alpha \bmod 1$.

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, ie. $T(z)=z+\alpha \bmod 1$.

$$
\Sigma_{T}(\alpha)=a b a a b
$$

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=a \quad \text { if } T^{n}(z) \in I_{a}
$$

Example

The Fibonacci word is the natural coding of the rotation on the circle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$ relative to the point α, ie. $T(z)=z+\alpha \bmod 1$.

$$
\Sigma_{T}(\alpha)=a b a a b a \cdots
$$

The interval exchange set $\mathcal{L}(T)$ is the set of factors of all natural codings of T.

Example

The Fibonacci set is the set of factors of all natural codings of the rotation on the cirle (minus 2 points) by angle $\alpha=(3-\sqrt{5}) / 2$.

A connection of length $n \geq 0$ of an interval exchange T is a triple (x, y, n) with

- x is a singularity of T^{-1},
- y is a singularity of T, and
- $T^{n}(x)=y$.

When $n=0$, we say that $x=y$ is a connection.

The point z is a connection of length 0 .

An interval exchange without connections is said to be regular.

Theorem

Let T be an interval exchange with exactly c connections, all of length 0 . Then, $\mathcal{L}(T)$ is a neutral set of characteristic $c+1$.

Example

while $m(w)=0$ for every $w \in A^{+}$.

Further research directions

- Specular sets, i.e. neutral sets of characteristic 2 satisfying additional "symmetric" properties.
- Tree sets of arbitrary characteristic, i.e. neutral sets with extra constraints of the extensions.
- Sets with a finite number of elements satisfying $m(w) \neq 0$.

THANKS

FOR YOUR

