Return words and bifix codes in eventually dendric sets

Francesco DOLCE and Dominique PERRIN*

*Université Paris-Est Marne-la-Vallée (France)

WORDS 2019

Loughborough, 12 September 2019

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Fibonacci

 $\mathbf{x} = abaababaabaababa \cdots$

$$\mathbf{x} = \lim_{n \to \infty} \varphi^n(\mathbf{a}) \qquad \text{where} \qquad \varphi : \left\{ \begin{array}{l} \mathbf{a} \mapsto \mathbf{a}\mathbf{b} \\ \mathbf{b} \mapsto \mathbf{a} \end{array} \right.$$

FRANCESCO DOLCE (CTU IN PRAGUE)

EVENTUALLY DENDRIC SETS

12 September 2019 2 / 24

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

990

æ

Fibonacci

$\mathbf{x} = abaababaabaababa \cdots$

The Fibonacci set (set of factors of x) is a Sturmian set.

Definition A Sturmian set $S \subset A^*$ is a factorial set such that $p_n = \text{Card}(S \cap A^n) = n + 1$. h ε FRANCESCO DOLCE (CTU IN PRAGUE) EVENTUALLY DENDRIC SETS 12 September 2019 2/24

x = ab aa ba ba ab aa ba ba \cdots

FRANCESCO DOLCE (CTU IN PRAGUE) EVENTUALLY DENDRIC SETS

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … 釣へ(?) 12 September 2019 3/24

 $x = ab aa ba ba ba ab aa ba ba \cdots$

$$f:\left\{\begin{array}{ccc} u & \mapsto & aa \\ v & \mapsto & ab \\ w & \mapsto & ba \end{array}\right.$$

Francesco Dolce (CTU in Prague) Eventually Dendric Sets

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣�� 12 September 2019 3/24

$$x = ab aa ba ba ab aa ba ba \cdots$$
$$f^{-1}(x) = v u w w v u w w \cdots$$

ſ	и	\mapsto	aa
f : {	v	\mapsto	ab
l	w	\mapsto	ba

Francesco Dolce (CTU in Prague) Eventually Dendric Sets

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣A@ 12 September 2019 3/24

$$x = ab aa ba ba ab aa ba ba \cdots$$

 $f^{-1}(x) = v u w w v u w w \cdots$

ſ	и	\mapsto	aa
f : {	v	\mapsto	ab
l	w	\mapsto	ba

Francesco Dolce (CTU in Prague) Eventually Dendric Sets

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 - 釣�� 3/2412 September 2019

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_n = (Card (A) - 1)n + 1$ having a unique right special factor for each length.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

 ← □ → ← ≡ → ← ≡ → へへつ
 ↓ / 24

 12 SEPTEMBER 2019

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_n = (Card (A) - 1)n + 1$ having a unique right special factor for each length.

Example (Tribonacci)

FRANCESCO DOLCE (CTU IN PRAGUE)

EVENTUALLY DENDRIC SETS

12 September 2019

4/24

 $f^{-1}(x) = \mathbf{v} \mathbf{u} \mathbf{w} \mathbf{w} \mathbf{v} \mathbf{u} \mathbf{w} \mathbf{w} \cdots$

Is the set of factors of $f^{-1}(x)$ an Arnoux-Rauzy set?

FRANCESCO DOLCE (CTU IN PRAGUE) EVENTUALLY DENDRIC SETS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで 12 September 2019 5 / 24

 $f^{-1}(x) = v u w w v u w w \cdots$

Is the set of factors of $f^{-1}(x)$ an Arnoux-Rauzy set?

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

 $f^{-1}(x) = v u w w v u w w \cdots$

Is the set of factors of $f^{-1}(x)$ an Arnoux-Rauzy set? No!

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Let $(I_{\alpha})_{\alpha \in \mathcal{A}}$ and $(J_{\alpha})_{\alpha \in \mathcal{A}}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

4回→ 4 =→ 4 =→ = つへで 12 September 2019 6 / 24

Let $(I_{\alpha})_{\alpha \in \mathcal{A}}$ and $(J_{\alpha})_{\alpha \in \mathcal{A}}$ be two partitions of [0, 1[. An *interval exchange transformation* (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Let $(I_{\alpha})_{\alpha \in \mathcal{A}}$ and $(J_{\alpha})_{\alpha \in \mathcal{A}}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Let $(I_{\alpha})_{\alpha \in \mathcal{A}}$ and $(J_{\alpha})_{\alpha \in \mathcal{A}}$ be two partitions of [0, 1[. An *interval exchange transformation* (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Let $(I_{\alpha})_{\alpha \in \mathcal{A}}$ and $(J_{\alpha})_{\alpha \in \mathcal{A}}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

イロン イボン イヨン 一日

12 September 2019

7/24

T is said to be minimal if for any point $z \in [0, 1[$ the orbit $\mathcal{O}(z) = \{T^n(z) \mid n \in \mathbb{Z}\}$ is dense in [0, 1[.

T is said *regular* if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [Keane (1975)]

A regular interval exchange transformation is minimal.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

T is said to be minimal if for any point $z \in [0, 1[$ the orbit $\mathcal{O}(z) = \{T^n(z) \mid n \in \mathbb{Z}\}$ is dense in [0, 1[.

T is said *regular* if the orbits of the non-zero separation points are infinite and disjoint.

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

The set $\mathcal{L}(T) = \bigcup_{z \in [0,1[} \operatorname{Fac}(\Sigma_T(z)) \text{ is said a (minimal, regular) interval exchange set.}$

<u>Remark</u>. If T is minimal, $Fac(\Sigma_T(z))$ does not depend on the point z.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

9/24

12 September 2019

The set $\mathcal{L}(T) = \bigcup_{z \in [0,1[} \operatorname{Fac}(\Sigma_T(z)) \text{ is said a (minimal, regular) interval exchange set.}$

<u>Remark</u>. If T is minimal, $Fac(\Sigma_T(z))$ does not depend on the point z.

Regular interval exchange sets have factor complexity $p_n = (Card (A) - 1)n + 1$.

Francesco Dolce (CTU in Prague)

Eventually Dendric Sets

12 September 2019 9 / 24

(日) (周) (日) (日) (日)

Arnoux-Rauzy and Interval exchanges

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

12 September 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

10/24

Arnoux-Rauzy and Interval exchanges

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

12 September 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

10/24

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(\mathbf{w}) = \{ u \in \mathcal{A} \mid u\mathbf{w} \in \mathcal{L} \}$$

$$R(\mathbf{w}) = \{ v \in \mathcal{A} \mid \mathbf{w}v \in \mathcal{L} \}$$

$$B(\mathbf{w}) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid u\mathbf{w}v \in \mathcal{L} \}$$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{ u \in \mathcal{A} \mid uw \in \mathcal{L} \}$$

$$R(w) = \{ v \in \mathcal{A} \mid wv \in \mathcal{L} \}$$

$$B(w) = \{ (u, v) \in \mathcal{A} \times \mathcal{A} \mid uwv \in \mathcal{L} \}$$

The multiplicity of a word w is the quantity

$$m(w) = \operatorname{Card} \left(B(w) \right) - \operatorname{Card} \left(L(w) \right) - \operatorname{Card} \left(R(w) \right) + 1.$$

Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.

Definition

A language \mathcal{L} is called (purely) *dendric* if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called *neutral* if every word w has multiplicity m(w) = 0.

Planar dendric sets

Theorem [S. Ferenczi, L. Zamboni (2008)]

A set S is a regular interval exchange set if and only if it is a recurrent *planar dendric set*.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

12 September 2019 14 / 24

Eventually dendric sets

Definition

A language \mathcal{L} is called *eventually dendric* with threshold $m \ge 0$ if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}^{\ge m}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Eventually dendric sets

Definition

A language \mathcal{L} is called *eventually dendric* with threshold $m \ge 0$ if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}^{\ge m}$. It is called *eventually neutral* if every word $w \in \mathcal{L}^{\ge m}$ has multiplicity m(w) = 0.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Eventually dendric sets

Definition

A language \mathcal{L} is called *eventually dendric* with threshold $m \geq 0$ if the graph $\mathcal{E}(w)$ is a tree for any $\mathbf{w} \in \mathcal{L}^{\geq m}$. It is called *eventually neutral* if every word $w \in \mathcal{L}^{\geq m}$ has multiplicity m(w) = 0.

FRANCESCO DOLCE (CTU IN PRAGUE)

EVENTUALLY DENDRIC SETS

Eventually dendric sets Complexity

Let us consider the function $s_n = p_{n+1} - p_n$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Eventually dendric sets Complexity

Let us consider the function $s_n = p_{n+1} - p_n$.

Proposition [D., Perrin (2019)]

Let \mathcal{L} be eventually dendric. Then s_n is eventually constant.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Eventually dendric sets Complexity

Let us consider the function $s_n = p_{n+1} - p_n$.

Proposition [D., Perrin (2019)]

Let \mathcal{L} be eventually dendric. Then s_n is eventually constant.

Example (the converse is not true)

The Chacon ternary set is the language arising from the morphism

$$\varphi: a \mapsto aabc, b \mapsto bc, c \mapsto abc.$$

One has $p_n = 2n + 1 \iff s_n = 2$. But for infinitly many pairs of words:

Eventually dendric and eventually neutral sets

FRANCESCO DOLCE (CTU IN PRAGUE)

EVENTUALLY DENDRIC SETS

12 September 2019

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへで

17/24

Eventually dendric and eventually neutral sets

Eventually dendric and eventually neutral sets

Francesco Dolce (CTU in Prague)

Eventually Dendric Sets

- Fibonacci
- ? 2-coded Fibonacci
- Tribonacci
- ? 2-coded Tribonacci
- regular IE
- ? 2-coded regular IE

12 September 2019

17/24

Definition

A *bifix code* is a set $B \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

Example

- ✓ {aa, ab, ba}
- ✓ {aa, ab, bba, bbb}
- ✓ {ac, bcc, bcbca}

- X { even, eventually, dendric }
- X { borough, district, loughborough }
- X { stone, stoneywell, well }

Francesco Dolce (CTU in Prague)

Eventually Dendric Sets

Definition

A *bifix code* is a set $B \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

Example (Fibonacci)

The set $B = \{aa, ab, ba\}$ is an S-maximal bifix code. It is not an \mathcal{A}^* -maximal bifix code, since $B \subset B \cup \{bb\}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

• < ☐ > < ≣ > < ≣ > 12 September 2019

18/24

Definition

A *bifix code* is a set $B \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

A coding morphism for a bifix code $B \subset A^+$ is a morphism $f : \mathcal{B}^* \to \mathcal{A}^*$ which maps bijectively \mathcal{B} onto B.

Example

The map $f : \{u, v, w\}^* \rightarrow \{a, b\}^*$ is a coding morphism for $B = \{aa, ab, ba\}$.

$$f: \left\{ \begin{array}{c} u \mapsto aa \\ v \mapsto ab \\ w \mapsto ba \end{array} \right.$$

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Definition

A *bifix code* is a set $B \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

A coding morphism for a bifix code $B \subset A^+$ is a morphism $f : \mathcal{B}^* \to \mathcal{A}^*$ which maps bijectively \mathcal{B} onto B.

Example

The map $f : \{u, v, w\}^* \to \{a, b\}^*$ is a coding morphism for $B = \{aa, ab, ba\}$.

 $f: \left\{ \begin{array}{c} u \mapsto aa \\ v \mapsto ab \\ w \mapsto ba \end{array} \right.$

When S is factorial and B is an S-maximal bifix code, the set $f^{-1}(S)$ is called a maximal bifix decoding of S.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition

A language \mathcal{L} is *recurrent* if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that uwv is in \mathcal{L} .

Example (Fibonacci)

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Definition

A language \mathcal{L} is *recurrent* if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that uwv is in \mathcal{L} .

 \mathcal{L} is *uniformly recurrent* if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.

Example (Fibonacci)

$$x = \frac{abaa}{4} ba \frac{baab}{4} \frac{aaba}{4} baababaaba \frac{abab}{4} a \cdots$$

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

12 September 2019 19 / 24

3

Definition

A language \mathcal{L} is *recurrent* if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that uwv is in \mathcal{L} .

 \mathcal{L} is uniformly recurrent if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.

- Arnoux-Rauzy
- regular Interval Exchanges

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

12 September 2019 19 / 24

3

Definition

A language \mathcal{L} is *recurrent* if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that uwv is in \mathcal{L} .

 \mathcal{L} is uniformly recurrent if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.

- Arnoux-Rauzy
- regular Interval Exchanges

Proposition

Uniform recurrence \implies Recurrence.

FRANCESCO DOLCE (CTU IN PRAGUE)

EVENTUALLY DENDRIC SETS

12 September 2019 19 / 24

= nan

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

The family of regular interval exchanges sets is closed under maximal bifix decoding.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

The family of recurrent dendric sets is closed under maximal bifix decoding.

FRANCESCO DOLCE (CTU IN PRAGUE)

EVENTUALLY DENDRIC SETS

イロト イヨト イヨト イヨト ニヨー わらで 12 September 2019

20/24

Theorem Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016)

The family of *recurrent* neutral sets is closed under maximal bifix decoding.

FRANCESCO DOLCE (CTU IN PRAGUE)

EVENTUALLY DENDRIC SETS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・のへで 12 September 2019

20/24

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016, 2019)]

The family of *recurrent* eventually dendric sets of threshold m is closed under maximal bifix decoding.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

12 September 2019 20 / 24

イロン イボン イヨン 一日

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016, 2019)]

The family of *recurrent* eventually dendric sets of threshold m is closed under maximal bifix decoding.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

< □ > < □ > < □ > < □ > < □ > < □ >
 12 September 2019

20/24

Return words

A (*right*) return word to w in \mathcal{L} is a nonempty word u such that $wu \in \mathcal{L}$ starts and ends with w but has no w as an internal factor. Formally,

 $\mathcal{R}(w) = \{ u \in A^+ \mid wu \in \mathcal{L} \cap (A^+w \setminus A^+wA^+) \}$

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Return words

A (*right*) return word to w in \mathcal{L} is a nonempty word u such that $wu \in \mathcal{L}$ starts and ends with w but has no w as an internal factor. Formally,

 $\mathcal{R}(w) = \{ u \in A^+ \mid wu \in \mathcal{L} \cap (A^+w \setminus A^+wA^+) \}$

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Cardinality of return words

Theorem [Vuillon (2001)]

Let \mathcal{L} be a Sturmian set. For every $w \in \mathcal{L}$, one has

 $\operatorname{Card}\left(\mathcal{R}(w)\right)=2.$

FRANCESCO DOLCE (CTU IN PRAGUE)

EVENTUALLY DENDRIC SETS

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで 12 September 2019

22/24

Cardinality of return words

Theorem [Vuillon (2001); Balková, Pelantová, Steiner (2008)]

Let \mathcal{L} be a recurrent neutral set. For every $w \in \mathcal{L}$, one has

 $Card(\mathcal{R}(w)) = Card(A).$

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

12 September 2019

3

22/24

イロト イボト イヨト イヨト

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

22/24

Corollary

An eventually neutral (dendric) set is recurrent if and only if it is uniformly recurrent

<u>**Proof.**</u> A recurrent set \mathcal{L} is uniformly recurrent if and only if $\mathcal{R}(w)$ is finite for all $w \in \mathcal{L}$.

FRANCESCO DOLCE (CTU IN PRAGUE)

Eventually Dendric Sets

Open questions

- Is there a finite S-adic representation for recurrent eventually dendric sets ?
 [When the set is *purely* dendric, there is one.]
- Subgroup generated by sets of return words in an eventually dendric set ? [For a dendric set, R(w) is a basis of the free group on A.]
- Decidability of the (eventually) dendric condition.

[Work in progress with Revekka Kyriakoglou and Julien Leroy]

FRANCESCO DOLCE (CTU IN PRAGUE)

EVENTUALLY DENDRIC SETS

12 September 2019

23/24

