Return words and bifix codes in eventually dendric sets

Francesco Dolce and Dominique Perrin*

*Université Paris-Est Marne-la-Vallée (France)

WORDS 2019

Loughborough, 12 September 2019

Fibonacci

$$
\mathbf{x}=\text { abaababaabaababa } \cdots
$$

$$
\mathbf{x}=\lim _{n \rightarrow \infty} \varphi^{n}(a) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto a
\end{array}\right.
$$

Fibonacci

$$
\mathbf{x}=\text { abaababaabaababa } \cdots
$$

The Fibonacci set (set of factors of x) is a Sturmian set.

Definition

A Sturmian set $S \subset \mathcal{A}^{*}$ is a factorial set such that $p_{n}=\operatorname{Card}\left(S \cap \mathcal{A}^{n}\right)=n+1$.

$n:$	0	1	2	3	4	5	\cdots
$p_{n}:$	1	2	3	4	5	6	\cdots

2-coded Fibonacci

$x=a b$ aa ba ba $a b$ aa ba ba ...

2-coded Fibonacci

$$
x=a b \text { aa ba ba } a b \text { aa ba ba } \cdots
$$

$$
f:\left\{\begin{array}{rll}
u & \mapsto & a a \\
v & \mapsto & a b \\
w & \mapsto & b a
\end{array}\right.
$$

2-coded Fibonacci

$$
\begin{gathered}
x=a b \text { aa ba ba } a b \text { aa ba ba } \cdot \\
f^{-1}(x)=v u \text { w w v uww } \cdots \\
f:\left\{\begin{array}{rll}
u & \mapsto & a a \\
v & \mapsto & a b \\
w & \mapsto & b a
\end{array}\right.
\end{gathered}
$$

2-coded Fibonacci

$$
\begin{aligned}
& x=a b \text { aa ba ba ab aa ba ba } \cdots \\
& f^{-1}(x)=v u \text { wwvuww } . .
\end{aligned}
$$

$$
f:\left\{\begin{array}{lll}
u & \mapsto & a a \\
v & \mapsto & a b \\
w & \mapsto & b a
\end{array}\right.
$$

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_{n}=(\operatorname{Card}(\mathcal{A})-1) n+1$ having a unique right special factor for each length.

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_{n}=(\operatorname{Card}(\mathcal{A})-1) n+1$ having a unique right special factor for each length.

Example (Tribonacci)

Factors of the fixed point $\psi^{\omega}(a)$ of the morphism $\quad \psi: a \mapsto a b, \quad b \mapsto a c, \quad c \mapsto a$.

$$
p_{n}=2 n+1
$$

$$
\begin{gathered}
\text { 2-coded Fibonacci } \\
f^{-1}(x)=v u w w v u w w \cdots
\end{gathered}
$$

Is the set of factors of $f^{-1}(x)$ an Arnoux-Rauzy set?

$$
\begin{aligned}
& \text { 2-coded Fibonacci } \\
& f^{-1}(x)=v u w w v u w w \cdots
\end{aligned}
$$

Is the set of factors of $f^{-1}(x)$ an Arnoux-Rauzy set?

$$
\begin{array}{ll}
p_{n}=2 n+1 \\
n: & 0
\end{array} 1 \begin{array}{llllll}
\\
p_{n}: & 1 & 3 & 5 & 7 & 9 \\
\cdots
\end{array}
$$

$$
\begin{gathered}
\text { 2-coded Fibonacci } \\
f^{-1}(x)=v u w w v u w w \cdots
\end{gathered}
$$

Is the set of factors of $f^{-1}(x)$ an Arnoux-Rauzy set? No!

$$
\begin{array}{ll}
p_{n}=2 n+1 \\
n: & 0
\end{array} 1 \begin{array}{llllll}
\\
p_{n}: & 1 & 3 & 5 & 7 & 9 \\
\cdots
\end{array}
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [Keane (1975)]

A regular interval exchange transformation is minimal.

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [Keane (1975)]

A regular interval exchange transformation is minimal.

Example (the converse is not true)

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=a b
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=a b a
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=a b a a
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=a b a a b
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=\text { abaaba } \ldots
$$

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in[0,1[} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in[0,1[} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Proposition

Regular interval exchange sets have factor complexity $p_{n}=(\operatorname{Card}(\mathcal{A})-1) n+1$.

Arnoux-Rauzy and Interval exchanges

Arnoux-Rauzy and Interval exchanges

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

$\mathcal{E}(b)$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

$\mathcal{E}(b)$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

$\mathcal{E}(b)$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

$\mathcal{E}(b)$

Eventually Dendric Sets

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

Extension graphs

The extension graph of a word $w \in \mathcal{L}$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{u \in \mathcal{A} \mid u w \in \mathcal{L}\} \\
R(w) & =\{v \in \mathcal{A} \mid w v \in \mathcal{L}\} \\
B(w) & =\{(u, v) \in \mathcal{A} \times \mathcal{A} \mid u w v \in \mathcal{L}\}
\end{aligned}
$$

The multiplicity of a word w is the quantity

$$
m(w)=\operatorname{Card}(B(w))-\operatorname{Card}(L(w))-\operatorname{Card}(R(w))+1 .
$$

Example (Fibonacci, $\mathcal{L}=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

$$
m(a)=3-2-2+1=0
$$

Dendric and neutral sets

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$.

Dendric and neutral sets

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

Dendric and neutral sets

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

Dendric and neutral sets

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: "Acyclic, connected and tree sets" (2014).]

Dendric and neutral sets

Definition

A language \mathcal{L} is called (purely) dendric if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}$. It is called neutral if every word w has multiplicity $m(w)=0$.

Planar dendric sets

Theorem [S. Ferenczi, L. Zamboni (2008)]
A set S is a regular interval exchange set if and only if it is a recurrent planar dendric set.

Eventually dendric sets

Definition

A language \mathcal{L} is called eventually dendric with threshold $m \geq 0$ if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}^{\geq m}$.

Eventually dendric sets

Definition

A language \mathcal{L} is called eventually dendric with threshold $m \geq 0$ if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}^{\geq m}$.
It is called eventually neutral if every word $w \in \mathcal{L}^{\geq m}$ has multiplicity $m(w)=0$.

Eventually dendric sets

Definition

A language \mathcal{L} is called eventually dendric with threshold $m \geq 0$ if the graph $\mathcal{E}(w)$ is a tree for any $w \in \mathcal{L}^{\geq m}$.
It is called eventually neutral if every word $w \in \mathcal{L}^{\geq m}$ has multiplicity $m(w)=0$.

Example (coding of Tribonacci)

Let us consider the set $\alpha(S)$, where $\quad \alpha: a, b \mapsto a, \quad c \mapsto c$.

The extension graph of all words of length at least 4 is a tree. (Just trust me!)

Eventually dendric sets
 Complexity

Let us consider the function $s_{n}=p_{n+1}-p_{n}$.

Eventually dendric sets
 Complexity

Let us consider the function $s_{n}=p_{n+1}-p_{n}$.

Proposition [D., Perrin (2019)]

Let \mathcal{L} be eventually dendric. Then s_{n} is eventually constant.

Eventually dendric sets
 Complexity

Let us consider the function $s_{n}=p_{n+1}-p_{n}$.

Proposition [D., Perrin (2019)]

Let \mathcal{L} be eventually dendric. Then s_{n} is eventually constant.

Example (the converse is not true)

The Chacon ternary set is the language arising from the morphism

$$
\varphi: a \mapsto a a b c, \quad b \mapsto b c, \quad c \mapsto a b c
$$

One has $p_{n}=2 n+1\left(\Rightarrow s_{n}=2\right)$. BuT for infinitly many pairs of words:

12 September 2019

Eventually dendric and eventually neutral sets

Eventually dendric and eventually neutral sets

- Fibonacci
- Tribonacci
- regular IE

Eventually Dendric Sets
12 September 2019

Eventually dendric and eventually neutral sets

- Fibonacci
? 2-coded Fibonacci
- Tribonacci
? 2-coded Tribonacci
- regular IE
? 2-coded regular IE

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

Example

$$
\begin{aligned}
& \checkmark \quad\{a a, a b, b a\} \\
& \checkmark \quad\{a a, a b, b b a, b b b\} \\
& \checkmark \quad\{a c, b c c, b c b c a\}
\end{aligned}
$$

$x\{$ even, eventually, dendric $\}$
$x\{$ borough, district, loughborough \}
$X\{$ stone, stoneywell, well $\}$

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

Example (Fibonacci)

The set $B=\{a a, a b, b a\}$ is an S-maximal bifix code. It is not an \mathcal{A}^{*}-maximal bifix code, since $B \subset B \cup\{b b\}$.

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

A coding morphism for a bifix code $B \subset A^{+}$is a morphism $f: \mathcal{B}^{*} \rightarrow \mathcal{A}^{*}$ which maps bijectively \mathcal{B} onto B.

Example

The map $f:\{u, v, w\}^{*} \rightarrow\{a, b\}^{*}$ is a coding morphism for $B=\{a a, a b, b a\}$.

$$
f:\left\{\begin{aligned}
u & \mapsto a a \\
v & \mapsto a b \\
w & \mapsto b a
\end{aligned}\right.
$$

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

A coding morphism for a bifix code $B \subset A^{+}$is a morphism $f: \mathcal{B}^{*} \rightarrow \mathcal{A}^{*}$ which maps bijectively \mathcal{B} onto B.

Example

The map $f:\{u, v, w\}^{*} \rightarrow\{a, b\}^{*}$ is a coding morphism for $B=\{a a, a b, b a\}$.

$$
f:\left\{\begin{array}{c}
u \mapsto a a \\
v \mapsto a b \\
w \mapsto b a
\end{array}\right.
$$

When S is factorial and B is an S-maximal bifix code, the set $f^{-1}(S)$ is called a maximal bifix decoding of S.

Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.

Example (Fibonacci)

$$
x=a b a a b a b a a b a a b a b a a b a b a a b a a b a b a \cdot
$$

Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.

Example (Fibonacci)

$$
x=\underset{4}{a b a a} \text { ba }{\underset{4}{b a b}}_{4}^{\underbrace{}_{4}} \text { aaba baababaaba } a b a b a \cdot \cdots
$$

Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.
\triangleright Arnoux-Rauzy
\triangleright regular Interval Exchanges

Recurrence and uniform recurrence

Definition

A language \mathcal{L} is recurrent if for every $u, v \in \mathcal{L}$ there is a $w \in \mathcal{L}$ such that $u w v$ is in \mathcal{L}.
\mathcal{L} is uniformly recurrent if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.
\triangleright Arnoux-Rauzy
\triangleright regular Interval Exchanges

Proposition

Uniform recurrence \Longrightarrow Recurrence.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

The family of regular interval exchanges sets is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

The family of recurrent dendric sets is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016)]

The family of recurrent neutral sets is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016, 2019)]

The family of recurrent eventually dendric sets of threshold m is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016, 2019)]

The family of recurrent eventually dendric sets of threshold m is closed under maximal bifix decoding.

- Fibonacci
- 2-coded Fibonacci
- Tribonacci
- 2-coded Tribonacci
- α (Tribonacci)
- 2-coded α (Tribonacci)

Return words

A (right) return word to w in \mathcal{L} is a nonempty word u such that $w u \in \mathcal{L}$ starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{R}(w)=\left\{u \in A^{+} \mid w u \in \mathcal{L} \cap\left(A^{+} w \backslash A^{+} w A^{+}\right)\right\}
$$

Example (Fibonacci)

$$
\mathcal{R}(b)=\{a \underline{b}, a a \underline{b}\}
$$

$$
\varphi(a)^{\omega}=\text { abaababababaababaababaababababaabaab } \ldots
$$

Return words

A (right) return word to w in \mathcal{L} is a nonempty word u such that $w u \in \mathcal{L}$ starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{R}(w)=\left\{u \in A^{+} \mid w u \in \mathcal{L} \cap\left(A^{+} w \backslash A^{+} w A^{+}\right)\right\}
$$

Example (Fibonacci)

$$
\mathcal{R}(a a)=\{b \underline{a a}, \text { bababa }\}
$$

$$
\varphi(a)^{\omega}=\text { abaababaabaababaababaabaababaabaab... }
$$

Cardinality of return words

Theorem [Vuillon (2001)]

Let \mathcal{L} be a Sturmian set. For every $w \in \mathcal{L}$, one has

$$
\operatorname{Card}(\mathcal{R}(w))=2
$$

Cardinality of return words

Theorem [Vuillon (2001); Balková, Pelantová, Steiner (2008)]
Let \mathcal{L} be a recurrent neutral set. For every $w \in \mathcal{L}$, one has

$$
\operatorname{Card}(\mathcal{R}(w))=\operatorname{Card}(A)
$$

Cardinality of return words

Theorem [Vuillon (2001); Balková, Pelantová, Steiner (2008); D., Perrin (2019)]

Let \mathcal{L} be a recurrent eventually neutral set with threshold m. For every $w \in \mathcal{L}^{\geq m}$, one has

$$
\operatorname{Card}(\mathcal{R}(w))=1+\sum_{|u|<m}(\operatorname{Card}(R(u))-1)
$$

Cardinality of return words

```
Theorem [Vuillon (2001); Balková, Pelantová, Steiner (2008); D., Perrin (2019)]
```

Let \mathcal{L} be a recurrent eventually neutral set with threshold m. For every $w \in \mathcal{L}^{\geq m}$, one has

$$
\operatorname{Card}(\mathcal{R}(w))=1+\sum_{|u|<m}(\operatorname{Card}(R(u))-1)
$$

Corollary

An eventually neutral (dendric) set is recurrent if and only if it is uniformly recurrent
Proof. A recurrent set \mathcal{L} is uniformly recurrent if and only if $\mathcal{R}(w)$ is finite for all $w \in \mathcal{L}$.

Open questions

- Is there a finite \mathcal{S}-adic representation for recurrent eventually dendric sets ?
[When the set is purely dendric, there is one.]
- Subgroup generated by sets of return words in an eventually dendric set ?
[For a dendric set, $\mathcal{R}(w)$ is a basis of the free group on \mathcal{A}.]
- Decidability of the (eventually) dendric condition.
[Work in progress with Revekka Kyriakoglou and Julien Leroy]

