Specular sets

Francesco Dolce

RDMath IdF

Domaine d'Intérêt Majeur (DIM)

* îledeFrance

Lyon, 6 juillet 2016
based on a joint work with
V. Berthé, C. De Felice, V. Delecroix, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone

Outline

1. Specular sets

- Tree sets
- Specular sets
- Specular groups

2. Two examples

- Linear involutions
- Doubling maps

3. Return words and subgroups

- Even and odd words
- Right, complete and mixed return words

The extension graph of a word $\mathrm{w} \in \mathrm{S}$ is the undirected bipartite graph $\mathcal{E}(\mathrm{w})$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in A \mid a w \in S\} \\
R(w) & =\{a \in A \mid w a \in S\} \\
B(w) & =\{(a, b) \in A \times A \mid a w b \in S\}
\end{aligned}
$$

The extension graph of a word $\mathrm{w} \in \mathrm{S}$ is the undirected bipartite graph $\mathcal{E}(\mathrm{w})$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
\mathrm{L}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{aw} \in \mathrm{~S}\} \\
\mathrm{R}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{wa} \in \mathrm{~S}\} \\
\mathrm{B}(\mathrm{w}) & =\{(\mathrm{a}, \mathrm{~b}) \in \mathrm{A} \times \mathrm{A} \mid \mathrm{awb} \in \mathrm{~S}\} .
\end{aligned}
$$

Example (Fibonacci)

$S=\{\varepsilon, a, b, a a, a b, b a, ~ a a b, a b a, b a a, b a b, \ldots\}$.

$\mathcal{E}(\mathrm{b})$
(a)

A factorial set S is called a tree set of characteristic c if $\mathcal{E}(\mathrm{w})$ is a tree for any nonempty $\mathrm{w} \in \mathrm{S}$, and $\mathcal{E}(\varepsilon)$ is a union of c trees.

A factorial set S is called a tree set of characteristic c if $\mathcal{E}(\mathrm{w})$ is a tree for any nonempty $\mathrm{w} \in S$, and $\mathcal{E}(\varepsilon)$ is a union of c trees.

Theorem

Families of (uniformly) recurrent tree sets of characteristic 1 :

- Factors of Arnoux-Rauzy (Sturmian) words;
- Natural coding of regular interval exchanges.

Example (Tribonacci)

Let $\theta: \mathrm{A} \rightarrow \mathrm{A}$ be an involution (possibly with some fixed point).

Let $\theta: \mathrm{A} \rightarrow \mathrm{A}$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $\mathrm{a} \theta(\mathrm{a})$ for $\mathrm{a} \in \mathrm{A}$.

Example

Let $\theta: \mathrm{a} \mapsto \mathrm{a}, \mathrm{b} \mapsto \mathrm{d}, \mathrm{c} \mapsto \mathrm{c}, \mathrm{d} \mapsto \mathrm{b}$.
The θ-reduction of the word $\mathrm{d} \alpha \mathrm{ac} d \mathrm{~b}$ is dac.

Let $\theta: \mathrm{A} \rightarrow \mathrm{A}$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $\mathrm{a} \theta(\mathrm{a})$ for $\mathrm{a} \in \mathrm{A}$.

Example

Let $\theta: \mathrm{a} \mapsto \mathrm{a}, \mathrm{b} \mapsto \mathrm{d}, \mathrm{c} \mapsto \mathrm{c}, \mathrm{d} \mapsto \mathrm{b}$.
The θ-reduction of the word d qaacdb is dac.

A set is called θ-symmetric if it is closed under taking inverses (under θ).

Example

The set $\mathrm{X}=\{\mathrm{a}, \mathrm{adc}, \mathrm{b}, \mathrm{cba}, \mathrm{d}\}$ is symmetric for $\theta: \mathrm{b} \leftrightarrow \mathrm{d}$ fixing a, c.

A specular set on an alphabet A (w.r.t. an involution θ) is a set

- biextendable,
- θ-symmetric,
- θ-reduced,
- tree set of characteristic 2 .

A specular set on an alphabet A (w.r.t. an involution θ) is a set

- biextendable,
- θ-symmetric,
- θ-reduced,
- tree set of characteristic 2 .

Example

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}$ and θ be the identity on A . The set of factors of $(\mathrm{ab})^{\omega}$ is a specular set.

A specular set on an alphabet A (w.r.t. an involution θ) is a set

- biextendable,
- θ-symmetric,
- θ-reduced,
- tree set of characteristic 2 .

Example

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}$ and θ be the identity on A . The set of factors of $(\mathrm{ab})^{\omega}$ is a specular set.

\mathcal{E} (baba)

Proposition [using J. Cassaigne (1997)]

The factor complexity of a specular set is given by $\mathrm{pn}=\mathrm{n}(\operatorname{Card}(\mathrm{A})-2)+2$ for all $\mathrm{n} \geq 1$.

Given an involution $\theta: \mathrm{A} \rightarrow \mathrm{A}$ (possibly with some fixed point), let us define

$$
\left.\mathrm{G}_{\theta}=\langle\mathrm{a} \in \mathrm{~A}| \mathrm{a} \cdot \theta(\mathrm{a})=1 \text { for every } \mathrm{a} \in \mathrm{~A}\right\rangle .
$$

$\mathrm{G}_{\theta}=\mathbb{Z}^{* i} *(\mathbb{Z} / 2 \mathbb{Z})^{* j}$ is a specular group of type (i, j), and $\operatorname{Card}(\mathrm{A})=2 \mathrm{i}+\mathrm{j}$ is its symmetric rank.

Example

Let $\theta: \mathrm{b} \leftrightarrow \mathrm{d}$ fixing a, c.

$$
\mathrm{G}_{\theta}=\left\langle\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \mid \mathrm{a}^{2}=\mathrm{c}^{2}=\mathrm{bd}=\mathrm{db}=1\right\rangle .
$$

$\mathrm{G}_{\theta}=\mathbb{Z} *(\mathbb{Z} / 2 \mathbb{Z})^{* 2}$ is a specular group of type $(1,2)$ and symmetric rank 4.

Given an involution $\theta: \mathrm{A} \rightarrow \mathrm{A}$ (possibly with some fixed point), let us define

$$
\left.\mathrm{G}_{\theta}=\langle\mathrm{a} \in \mathrm{~A}| \mathrm{a} \cdot \theta(\mathrm{a})=1 \text { for every } \mathrm{a} \in \mathrm{~A}\right\rangle .
$$

$\mathrm{G}_{\theta}=\mathbb{Z}^{* i} *(\mathbb{Z} / 2 \mathbb{Z})^{* j}$ is a specular group of type (i, j), and $\operatorname{Card}(\mathrm{A})=2 \mathrm{i}+\mathrm{j}$ is its symmetric rank.

Example

Let $\theta: \mathrm{b} \leftrightarrow \mathrm{d}$ fixing a, c.

$$
\mathrm{G}_{\theta}=\left\langle\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d} \mid \mathrm{a}^{2}=\mathrm{c}^{2}=\mathrm{bd}=\mathrm{db}=1\right\rangle .
$$

$\mathrm{G}_{\theta}=\mathbb{Z} *(\mathbb{Z} / 2 \mathbb{Z})^{* 2}$ is a specular group of type $(1,2)$ and symmetric rank 4.

A specular set (w.r.t. θ) is thus a (biextendable, θ-symmetric, tree set of characteristic 2) subset of G_{θ}.

A symmetric basis of G_{θ} is a (monoidal) basis for G_{θ} that is θ-symmetric.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
The natural coding of a linear involution without connections is a specular set.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
The natural coding of a linear involution without connections is a specular set.

$$
\Sigma(\mathrm{z})=\mathrm{ab}^{-1} \mathrm{c}
$$

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
The natural coding of a linear involution without connections is a specular set.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
The natural coding of a linear involution without connections is a specular set.

$$
\Sigma(z)=\mathrm{ab}^{-1} \mathrm{cbc}^{-1} \ldots
$$

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
The natural coding of a linear involution without connections is a specular set.

$$
\mathcal{L}(\mathrm{T})=\bigcup_{\mathrm{Z}} \operatorname{Fac}(\Sigma(\mathrm{z}))
$$

A doubling transducer is a transducer with set of states $\{0,1\}$ such that:

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

Example

$$
\begin{aligned}
& \Sigma=\{\alpha\} \\
& \mathrm{A}=\{\mathrm{a}, \mathrm{~b}\}
\end{aligned}
$$

A doubling transducer is a transducer with set of states $\{0,1\}$ such that:

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

A doubling map is a pair $\delta=\left(\delta_{0}, \delta_{1}\right)$, where $\delta_{\mathrm{i}}(\mathrm{u})=\mathrm{v}$ for a path starting at the state i with input label u and output label v .

Example

$$
\begin{aligned}
& \Sigma=\{\alpha\} \\
& \mathrm{A}=\{\mathrm{a}, \mathrm{~b}\}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{0}\left(\alpha^{\omega}\right)=(\mathrm{ab})^{\omega} \\
& \delta_{1}\left(\alpha^{\omega}\right)=(\mathrm{ba})^{\omega}
\end{aligned}
$$

A doubling transducer is a transducer with set of states $\{0,1\}$ such that:

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

A doubling map is a pair $\delta=\left(\delta_{0}, \delta_{1}\right)$, where $\delta_{\mathrm{i}}(\mathrm{u})=\mathrm{v}$ for a path starting at the state i with input label u and output label v .

The image of a set T is $\delta(\mathrm{T})=\delta_{0}(\mathrm{~T}) \cup \delta_{1}(\mathrm{~T})$.

Example

$$
\begin{aligned}
& \Sigma=\{\alpha\} \\
& \mathrm{A}=\{\mathrm{a}, \mathrm{~b}\}
\end{aligned}
$$

$$
\begin{aligned}
\delta_{0}\left(\alpha^{\omega}\right) & =(\mathrm{ab})^{\omega} \\
\delta_{1}\left(\alpha^{\omega}\right) & =(\mathrm{ba})^{\omega} \\
\delta\left(\operatorname{Fac}\left(\alpha^{\omega}\right)\right) & =\operatorname{Fac}\left((\mathrm{ab})^{\omega}\right)
\end{aligned}
$$

Proposition

The image by a doubling map of a tree set of characteristic 1 closed under reversal is a specular set.

Example (two doublings of Fibonacci on $\Sigma=\{\alpha, \beta\}$)

- the set of factors of the two infinite sequences abaababa... and cdccdcdc...

- the set of factors of the two infinite sequences abcabcda... and cdacdabc \cdots.

A letter is even if its two occurences (as a element of $L(\varepsilon)$ and of $R(\varepsilon)$) appear in the same tree of $\mathcal{E}(\varepsilon)$. Otherwise it is odd.

Three examples

The letters in red are even, while the ones in blue are odd.

A letter is even if its two occurences (as a element of $L(\varepsilon)$ and of $R(\varepsilon)$) appear in the same tree of $\mathcal{E}(\varepsilon)$. Otherwise it is odd.

Three examples

A word is even if it has an even number of odd letters. Otherwise it is odd.

Example (S_{2})

b, ca, dabc are even, while $\mathrm{a}, \mathrm{ab}, \mathrm{abca}$ are odd.

The set of even words in a specular set S has the form $X^{*} \cap S$, where $X \subset S$ is a bifix code (it does not contain any prefix or suffix of its elements) called the even code.

Thus, the set X is the set of even words without a nonempty even prefix (or suffix).

Example (doubling of Fibonacci)

The even code is $\mathrm{X}=\{\mathrm{abc}, \mathrm{ac}, \mathrm{b}, \mathrm{ca}, \mathrm{cda}, \mathrm{d}\}$.

The set of even words in a specular set S has the form $X^{*} \cap S$, where $X \subset S$ is a bifix code (it does not contain any prefix or suffix of its elements) called the even code.

Thus, the set X is the set of even words without a nonempty even prefix (or suffix).

Example (doubling of Fibonacci)

The even code is $\mathrm{X}=\{\mathrm{abc}, \mathrm{ac}, \mathrm{b}, \mathrm{ca}, \mathrm{cda}, \mathrm{d}\}$.

Theorem

Let S be a recurrent specular set.
The even code of S is a symmetric basis of a subgroup (of index 2) of G_{θ} called the even subgroup.

A right return word to w in S is a nonempty word u such that $\mathrm{wu} \in \mathrm{S}$, starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{R}(\mathrm{w})=\left\{\mathrm{u} \in \mathrm{~A}^{+} \quad \mid \mathrm{w} u \in\left(\mathrm{~A}^{+} \mathrm{w} \backslash \mathrm{~A}^{+} \mathrm{w} \mathrm{~A}^{+}\right) \cap \mathrm{S}\right\} .
$$

A right return word to w in S is a nonempty word u such that $\mathrm{wu} \in \mathrm{S}$, starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{R}(\mathrm{w})=\left\{\mathrm{u} \in \mathrm{~A}^{+} \mid \mathrm{w} u \in\left(\mathrm{~A}^{+} \mathrm{w} \backslash \mathrm{~A}^{+} \mathrm{w} \mathrm{~A}^{+}\right) \cap \mathrm{S}\right\} .
$$

Right Return Theorem

For any w in a recurrent specular set, the set $\mathcal{R}(\mathrm{w})$ is a basis of the even subgroup. In particular,

$$
\operatorname{Card}(\mathcal{R}(\mathrm{w}))=\operatorname{Card}(\mathrm{A})-1
$$

A right return word to w in S is a nonempty word u such that $\mathrm{wu} \in \mathrm{S}$, starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{R}(\mathrm{w})=\left\{\mathrm{u} \in \mathrm{~A}^{+} \mid \mathrm{w} u \in\left(\mathrm{~A}^{+} \mathrm{w} \backslash \mathrm{~A}^{+} \mathrm{w} \mathrm{~A}^{+}\right) \cap \mathrm{S}\right\} .
$$

Right Return Theorem

For any w in a recurrent specular set, the set $\mathcal{R}(\mathrm{w})$ is a basis of the even subgroup. In particular,

$$
\operatorname{Card}(\mathcal{R}(\mathrm{w}))=\operatorname{Card}(\mathrm{A})-1
$$

Example (doubling of Fibonacci)

The even code is $\mathrm{X}=\{\mathrm{abc}, \mathrm{ac}, \mathrm{b}, \mathrm{ca}, \mathrm{cda}, \mathrm{d}\}$, while $\mathcal{R}(\mathrm{a})=\{\mathrm{bca}, \mathrm{bc} \mathrm{da}, \mathrm{cda}\}$. One has $\langle\mathcal{R}(\mathrm{a})\rangle=\langle\mathrm{X}\rangle$, indeed

$$
\begin{cases}c d a=c d a & c a=(b)^{-1}(b c a) \\ a b c=(c d a)^{-1} & a c=(c a)^{-1} \\ b=(b c d a)(a b c) & d=b^{-1}\end{cases}
$$

A complete return word to a set $\mathrm{X} \subset \mathrm{S}$ is a word starting and ending with a word of X but having no internal factor in X. Formally,

$$
\mathcal{C R}(\mathrm{X})=\mathrm{S} \cap\left(\mathrm{XA}^{+} \cap \mathrm{A}^{+} \mathrm{X}\right) \backslash \mathrm{A}^{+} \mathrm{XA}^{+} .
$$

A complete return word to a set $\mathrm{X} \subset \mathrm{S}$ is a word starting and ending with a word of X but having no internal factor in X. Formally,

$$
\mathcal{C R}(\mathrm{X})=\mathrm{S} \cap\left(\mathrm{XA}^{+} \cap \mathrm{A}^{+} \mathrm{X}\right) \backslash \mathrm{A}^{+} \mathrm{XA}^{+} .
$$

Cardinality Theorem for Complete Return Words

Let S be a recurrent specular set and $\mathrm{X} \subset \mathrm{S}$ be a finite bifix code ${ }^{1}$ with empty kernel ${ }^{2}$. Then,

$$
\operatorname{Card}(\mathcal{C R}(\mathrm{X}))=\operatorname{Card}(\mathrm{X})+\operatorname{Card}(\mathrm{A})-2 .
$$

In particular, $\operatorname{Card}(\mathcal{C R}(\{\mathrm{w}\}))=\operatorname{Card}(\mathcal{R}(w))=\operatorname{Card}(\mathrm{A})-1$.

1. bifix code : set that does not contain any proper prefix or suffix of its elements. 2. kernel : set of words of X which are also internal factors of X .

Two words u, v overlap if a nonempty suffix of one of them is a prefix of the other.

Two words u, v overlap if a nonempty suffix of one of them is a prefix of the other.

Consider a word w not overlapping with w^{-1} (i.e. $\theta(\mathrm{w})$).

Two words u, v overlap if a nonempty suffix of one of them is a prefix of the other.

Consider a word w not overlapping with w^{-1} (i.e. $\theta(\mathrm{w})$).
A mixed return word to w is the word $\mathrm{N}(\mathrm{u})$ obtained from $\mathrm{u} \in \mathcal{C} \mathcal{R}\left(\left\{\mathrm{w}, \mathrm{w}^{-1}\right\}\right)$ erasing the prefix if it is w and the suffix if it is w^{-1}.

Two words u, v overlap if a nonempty suffix of one of them is a prefix of the other.

Consider a word w not overlapping with w^{-1} (i.e. $\theta(\mathrm{w})$).
A mixed return word to w is the word $N(u)$ obtained from $u \in \mathcal{C} \mathcal{R}\left(\left\{w, w^{-1}\right\}\right)$ erasing the prefix if it is w and the suffix if it is w^{-1}.

Mixed Return Theorem

Let S be a recurrent specular set and $\mathrm{w} \in \mathrm{S}$ such that $\mathrm{w}, \mathrm{w}^{-1}$ do not overlap. Then, $\mathcal{M} \mathcal{R}(\mathrm{w})$ is a symmetric basis of G_{θ}. In particular,

$$
\operatorname{Card}(\mathcal{M R}(\mathrm{w}))=\operatorname{Card}(\mathrm{A})
$$

Conclusions

Summing up

- Tree and specular sets

Linear involutions and Doubling maps

Conclusions

Summing up

- Tree and specular sets

Linear involutions and Doubling maps

- Cardinality Theorems

$$
\begin{aligned}
\operatorname{Card}(\mathcal{R}(\mathrm{w})) & =\operatorname{Card}(\mathrm{A})-1 \\
\operatorname{Card}(\mathcal{C R}(\mathrm{X})) & =\operatorname{Card}(\mathrm{X})+\operatorname{Card}(\mathrm{A})-2 \\
\operatorname{Card}(\mathcal{M R}(\mathrm{w})) & =\operatorname{Card}(\mathrm{A})
\end{aligned}
$$

Conclusions

Summing up

- Tree and specular sets

Linear involutions and Doubling maps

- Cardinality Theorems

$$
\begin{aligned}
\operatorname{Card}(\mathcal{R}(\mathrm{w})) & =\operatorname{Card}(\mathrm{A})-1 \\
\operatorname{Card}(\mathcal{C R}(\mathrm{X})) & =\operatorname{Card}(\mathrm{X})+\operatorname{Card}(\mathrm{A})-2 \\
\operatorname{Card}(\mathcal{M R}(\mathrm{w})) & =\operatorname{Card}(\mathrm{A})
\end{aligned}
$$

- Return Theorems
$\mathcal{R}(\mathrm{w})$ basis of the even subgroup
$\mathcal{M R}(\mathrm{w})$ symmetric basis of G_{θ} (provided that $\mathrm{w}, \mathrm{w}^{-1}$ does not overlap)

Further Research Directions and other works in progress

- Decidability of the tree condition
[work in progress with Revekka Kyriakoglou and Julien Leroy]

Further Research Directions and other works in progress

- Decidability of the tree condition
[work in progress with Revekka Kyriakoglou and Julien Leroy]
- Tree set and free groups

Recurrent tree set of characteristic $1 \Longrightarrow \mathcal{R}(\mathrm{w})$ a basis of the free group
Conjecture : \Longleftarrow

Further Research Directions and other works in progress

- Decidability of the tree condition
[work in progress with Revekka Kyriakoglou and Julien Leroy]
- Tree set and free groups

Recurrent tree set of characteristic $1 \Longrightarrow \mathcal{R}(w)$ a basis of the free group
Conjecture : \Longleftarrow

- Tree sets and palindromes

Tree sets of characteristic 1 closed under reversal are rich
Specular sets obtained by doubling maps are G-rich

Merci

