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Specular Sets Extension Graphs

The extension graph of a word w ∈ S is the undirected bipartite graph E(w) with
vertices L(w)⊔R(w) and edges B(w), where

L(w) = {a ∈ A | aw ∈ S},

R(w) = {a ∈ A |wa ∈ S},

B(w) = {(a,b) ∈ A×A | awb ∈ S}.
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The extension graph of a word w ∈ S is the undirected bipartite graph E(w) with
vertices L(w)⊔R(w) and edges B(w), where

L(w) = {a ∈ A | aw ∈ S},

R(w) = {a ∈ A |wa ∈ S},

B(w) = {(a,b) ∈ A×A | awb ∈ S}.

Example (Fibonacci)

S = {ε, a,b, aa,ab,ba, aab,aba,baa,bab, . . .}.

E(ε)

b

a

a

b

E(a)

b

a

a

b

E(b)

a a
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Specular Sets Tree Sets

A factorial set S is called a tree set of characteristic  if E(w) is a tree for any nonempty
w ∈ S , and E(ε) is a union of  trees.
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Specular Sets Tree Sets

A factorial set S is called a tree set of characteristic  if E(w) is a tree for any nonempty
w ∈ S , and E(ε) is a union of  trees.

Theorem

Families of (uniformly) recurrent tree sets of characteristic 1 :

◮ Factors of Arnoux-Rauzy (Sturmian) words ;

◮ Natural coding of regular interval exchanges.

Example (Tribonacci)

E(ε)

a

b





b

a
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Specular Sets Reduced Words and Symmetric Sets

Let θ : A→ A be an involution (possibly with some fixed point).
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Specular Sets Reduced Words and Symmetric Sets

Let θ : A→ A be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form aθ(a) for a ∈ A.

Example

Let θ : a 7→ a, b 7→ d ,  7→ , d 7→ b.

The θ-reduction of the word d✁a✁aa✁d✁b is da.
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Specular Sets Reduced Words and Symmetric Sets

Let θ : A→ A be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form aθ(a) for a ∈ A.

Example

Let θ : a 7→ a, b 7→ d ,  7→ , d 7→ b.

The θ-reduction of the word d✁a✁aa✁d✁b is da.

A set is called θ-symmetric if it is closed under taking inverses (under θ).

Example

The set X = {a,ad,b,ba,d} is symmetric for θ : b↔ d fixing a,.
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Specular Sets Definition and Factor Complexity

A specular set on an alphabet A (w.r.t. an involution θ) is a set

◮ biextendable,

◮ θ-symmetric,

◮ θ-reduced,

◮ tree set of characteristic 2.
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Specular Sets Definition and Factor Complexity

A specular set on an alphabet A (w.r.t. an involution θ) is a set

◮ biextendable,

◮ θ-symmetric,

◮ θ-reduced,

◮ tree set of characteristic 2.

Example

Let A= {a,b} and θ be the identity on A. The set of factors of (ab)ω is a specular set.

E(ε)

b

a

b

a

E(baba)

a

b
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Specular Sets Definition and Factor Complexity

A specular set on an alphabet A (w.r.t. an involution θ) is a set

◮ biextendable,

◮ θ-symmetric,

◮ θ-reduced,

◮ tree set of characteristic 2.

Example

Let A= {a,b} and θ be the identity on A. The set of factors of (ab)ω is a specular set.

E(ε)

b

a

b

a

E(baba)

a

b

Proposition [using J. Cassaigne (1997)]

The factor complexity of a specular set is given by p
n

= n (Card (A)− 2)+2 for all n ≥ 1.
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Specular Sets Specular Groups

Given an involution θ : A→ A (possibly with some fixed point), let us define

Gθ = 〈a ∈ A | a · θ(a) = 1 for every a ∈ A〉.

Gθ = Z
∗i ∗ (Z/2Z)∗j is a specular group of type (i , j), and Card (A)= 2i + j is its

symmetric rank.

Example

Let θ : b↔ d fixing a,.

Gθ = 〈a,b, ,d | a2 = 

2 = bd= db= 1〉.

Gθ = Z ∗ (Z/2Z)∗2 is a specular group of type (1, 2) and symmetric rank 4.
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Specular Sets Specular Groups

Given an involution θ : A→ A (possibly with some fixed point), let us define

Gθ = 〈a ∈ A | a · θ(a) = 1 for every a ∈ A〉.

Gθ = Z
∗i ∗ (Z/2Z)∗j is a specular group of type (i , j), and Card (A)= 2i + j is its

symmetric rank.

Example

Let θ : b↔ d fixing a,.

Gθ = 〈a,b, ,d | a2 = 

2 = bd= db= 1〉.

Gθ = Z ∗ (Z/2Z)∗2 is a specular group of type (1, 2) and symmetric rank 4.

A specular set (w.r.t. θ) is thus a (biextendable, θ-symmetric, tree set of characteristic 2)
subset of Gθ.

A symmetric basis of Gθ is a (monoidal) basis for Gθ that is θ-symmetric.
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Two examples Linear Involutions

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

T = σ2 ◦ σ1

a b b

−1





−1
a

−1

σ1

σ1

σ1

σ2
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Two examples Linear Involutions

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

a b b

−1





−1
a

−1

Σ(z) =a
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a b b
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The natural coding of a linear involution without connections is a specular set.

a b b

−1
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a

−1

Σ(z) =ab
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Two examples Linear Involutions

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
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Two examples Linear Involutions

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

a b b

−1





−1
a

−1

Σ(z) =ab

−1
 b

−1· · ·
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Two examples Linear Involutions

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

a b b

−1





−1
a

−1

Σ(z) =ab

−1
 b

−1· · ·

L(T ) =
⋃

z

Fac
(

Σ(z)
)
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Two examples Doubling Maps

A doubling transducer is a transducer with set of states {0, 1} such that :

1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

Example

0 1

α | a

α |b

Σ = {α}
A= {a,b}
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Two examples Doubling Maps

A doubling transducer is a transducer with set of states {0, 1} such that :

1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

A doubling map is a pair δ = (δ0, δ1), where δ
i

(u) = v for a path starting at the state i
with input label u and output label v .

Example

0 1

α | a

α |b

Σ = {α}
A= {a,b}

δ0 (α
ω) = (ab)ω

δ1 (α
ω) = (ba)ω
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Two examples Doubling Maps

A doubling transducer is a transducer with set of states {0, 1} such that :

1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

A doubling map is a pair δ = (δ0, δ1), where δ
i

(u) = v for a path starting at the state i
with input label u and output label v .

The image of a set T is δ(T) = δ0(T) ∪ δ1(T).

Example

0 1

α | a

α |b

Σ = {α}
A= {a,b}

δ0 (α
ω) = (ab)ω

δ1 (α
ω) = (ba)ω

δ
(

Fac (αω)
)

= Fac
(

(ab)ω
)
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Two examples Doubling Maps

Proposition

The image by a doubling map of a tree set of characteristic 1 closed under reversal is a
specular set.

Example (two doublings of Fibonacci on Σ = {α, β})

• the set of factors of the two infinite sequences abaababa· · · and ddd · · ·

0 1
α | a
β |b

α | 
β |d

• the set of factors of the two infinite sequences ababda· · · and dadab · · · .

0 1

α | a

α | 

β |d β |b
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Return words and subgroups Even and Odd Words

A letter is even if its two occurences (as a element of L(ε) and of R(ε)) appear in the
same tree of E(ε). Otherwise it is odd.

Three examples

E1(ε)

a

b

b

a

E2(ε)

a

b

b





d

d

a

E3(ε)

b

b

−1

a

−1

a

−1



−1





−1



a

a

b

b

−1

The letters in red are even, while the ones in blue are odd.
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Return words and subgroups Even and Odd Words

A letter is even if its two occurences (as a element of L(ε) and of R(ε)) appear in the
same tree of E(ε). Otherwise it is odd.

Three examples

E1(ε)

a

b

b

a

E2(ε)

a

b

b





d

d

a

E3(ε)

b

b

−1

a

−1

a

−1



−1





−1



a

a

b

b

−1

The letters in red are even, while the ones in blue are odd.

A word is even if it has an even number of odd letters. Otherwise it is odd.

Example (S2)

b, a,dab are even, while a,ab, aba are odd.
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Return words and subgroups Even Code and Even Subgroup

The set of even words in a specular set S has the form X

∗∩ S , where X ⊂ S is a bifix

code (it does not contain any prefix or suffix of its elements) called the even code.

Thus, the set X is the set of even words without a nonempty even prefix (or suffix).

Example (doubling of Fibonacci)

0 1

α|a

α|

β|d β|b

E(ε)

a

b

b





d

d

a

The even code is X = {ab,a,b, a,da,d}.
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Return words and subgroups Even Code and Even Subgroup

The set of even words in a specular set S has the form X

∗∩ S , where X ⊂ S is a bifix

code (it does not contain any prefix or suffix of its elements) called the even code.

Thus, the set X is the set of even words without a nonempty even prefix (or suffix).

Example (doubling of Fibonacci)

0 1

α|a

α|

β|d β|b

E(ε)

a

b

b





d

d

a

The even code is X = {ab,a,b, a,da,d}.

Theorem

Let S be a recurrent specular set.
The even code of S is a symmetric basis of a subgroup (of index 2) of Gθ called the even

subgroup.
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Return words and subgroups Right Return Words

A right return word to w in S is a nonempty word u such that wu∈ S , starts and ends
with w but has no w as an internal factor. Formally,

R(w) =
{

u ∈ A

+ | wu ∈
(

A

+
w \A+

wA

+
)

∩ S
}

.

Francesco Dolce (Paris-Est) Specular Sets Lyon, 6 juillet 2016 13 / 18



Return words and subgroups Right Return Words

A right return word to w in S is a nonempty word u such that wu∈ S , starts and ends
with w but has no w as an internal factor. Formally,

R(w) =
{

u ∈ A

+ | wu ∈
(

A

+
w \A+

wA

+
)

∩ S
}

.

Right Return Theorem

For any w in a recurrent specular set, the set R(w) is a basis of the even subgroup.
In particular,

Card (R(w)) = Card (A)− 1.
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Return words and subgroups Right Return Words

A right return word to w in S is a nonempty word u such that wu∈ S , starts and ends
with w but has no w as an internal factor. Formally,

R(w) =
{

u ∈ A

+ | wu ∈
(

A

+
w \A+

wA

+
)

∩ S
}

.

Right Return Theorem

For any w in a recurrent specular set, the set R(w) is a basis of the even subgroup.
In particular,

Card (R(w)) = Card (A)− 1.

Example (doubling of Fibonacci)

The even code is X = {ab,a,b, a,da,d}, while R(a) = {ba,bda,da}.
One has

〈

R(a)
〉

= 〈X 〉, indeed







da = da

ab = (da)−1

b= (bda)(ab)

a= (b)−1(ba)
a = (a)−1

d = b

−1
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Return words and subgroups Complete Return Words

A complete return word to a set X ⊂ S is a word starting and ending with a word of X
but having no internal factor in X . Formally,

CR (X) = S ∩
(

XA

+∩A+
X

)

\A+
XA

+.
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Return words and subgroups Complete Return Words

A complete return word to a set X ⊂ S is a word starting and ending with a word of X
but having no internal factor in X . Formally,

CR (X) = S ∩
(

XA

+∩A+
X

)

\A+
XA

+.

Cardinality Theorem for Complete Return Words

Let S be a recurrent specular set and X ⊂ S be a finite bifix code 1 with empty kernel 2.
Then,

Card (CR(X ))= Card (X )+ Card (A)− 2.

In particular, Card (CR({w})) = Card (R(w))= Card (A)− 1.

1. bifix code : set that does not contain any proper prefix or suffix of its elements.
2. kernel : set of words of X which are also internal factors of X .
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Return words and subgroups Mixed Return Words

Two words u,v overlap if a nonempty suffix of one of them is a prefix of the other.

u

v
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Return words and subgroups Mixed Return Words

Two words u,v overlap if a nonempty suffix of one of them is a prefix of the other.

u

v

Consider a word w not overlapping with w−1 (i.e. θ(w)).
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Return words and subgroups Mixed Return Words

Two words u,v overlap if a nonempty suffix of one of them is a prefix of the other.

u

v

Consider a word w not overlapping with w−1 (i.e. θ(w)).

A mixed return word to w is the word N(u) obtained from u ∈ CR
(

{w ,w−1}
)

erasing
the prefix if it is w and the suffix if it is w−1.

u

N(u)

w

−1
w

−1
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Return words and subgroups Mixed Return Words

Two words u,v overlap if a nonempty suffix of one of them is a prefix of the other.

u

v

Consider a word w not overlapping with w−1 (i.e. θ(w)).

A mixed return word to w is the word N(u) obtained from u ∈ CR
(

{w ,w−1}
)

erasing
the prefix if it is w and the suffix if it is w−1.

u

N(u)

w

−1
w

−1

Mixed Return Theorem

Let S be a recurrent specular set and w ∈ S such that w , w−1 do not overlap.
Then, MR(w) is a symmetric basis of Gθ. In particular,

Card (MR(w)) = Card (A).
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Conclusions
Summing up

◮ Tree and specular sets

Linear involutions and Doubling maps
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Conclusions
Summing up

◮ Tree and specular sets

Linear involutions and Doubling maps

◮ Cardinality Theorems

Card (R(w)) = Card (A)− 1

Card (CR(X )) = Card (X )+ Card (A)− 2

Card (MR(w)) = Card (A)
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Conclusions
Summing up

◮ Tree and specular sets

Linear involutions and Doubling maps

◮ Cardinality Theorems

Card (R(w)) = Card (A)− 1

Card (CR(X )) = Card (X )+ Card (A)− 2

Card (MR(w)) = Card (A)

◮ Return Theorems

R(w) basis of the even subgroup

MR(w) symmetric basis of Gθ (provided that w ,w−1 does not overlap)
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Further Research Directions
and other works in progress

◮ Decidability of the tree condition

[work in progress with Revekka Kyriakoglou and Julien Leroy]
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and other works in progress

◮ Decidability of the tree condition

[work in progress with Revekka Kyriakoglou and Julien Leroy]

◮ Tree set and free groups

Recurrent tree set of characteristic 1 =⇒ R(w) a basis of the free group

Conjecture : ⇐=
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Further Research Directions
and other works in progress

◮ Decidability of the tree condition

[work in progress with Revekka Kyriakoglou and Julien Leroy]

◮ Tree set and free groups

Recurrent tree set of characteristic 1 =⇒ R(w) a basis of the free group

Conjecture : ⇐=

◮ Tree sets and palindromes

Tree sets of characteristic 1 closed under reversal are rich

Specular sets obtained by doubling maps are G -rich
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