Tree sets
 from Combinatorics on Words to Symbolic Dynamics

Francesco Dolce

 UQÃMSéminaire CANA
Marseille, March 15th, 2018

Fibonacci

$$
x=\text { abaababaabaababa } \ldots
$$

$$
x=\lim _{n \rightarrow \infty} \varphi^{n}(a) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto a
\end{array}\right.
$$

Fibonacci

$$
x=\text { abaababaabaababa } \cdots
$$

The Fibonacci set (set of factors of x) is a Sturmian set.

Definition

A Sturmian set $S \subset \mathcal{A}^{*}$ is a factorial set such that $p_{n}=\operatorname{Card}\left(S \cap \mathcal{A}^{n}\right)=n+1$.

2-coded Fibonacci
 $$
x=a b \text { aa ba ba } a b \text { aa ba ba } \cdots
$$

2-coded Fibonacci

$$
x=a b \text { aa ba ba } a b \text { aa ba ba } \cdots
$$

$$
f:\left\{\begin{array}{rll}
u & \mapsto & a a \\
v & \mapsto & a b \\
w & \mapsto & b a
\end{array}\right.
$$

2-coded Fibonacci

$$
\begin{aligned}
& x=a b \text { aa ba ba ab aa ba ba } \cdots \\
& f^{-1}(x)=v u w w v u w w \cdots
\end{aligned}
$$

$$
f:\left\{\begin{array}{lll}
u & \mapsto & a a \\
v & \mapsto & a b \\
w & \mapsto & b a
\end{array}\right.
$$

$$
\begin{aligned}
& \text { 2-coded Fibonacci } \\
& x=a b \text { aa ba ba } a b \text { aa ba ba ... } \\
& f^{-1}(x)=\text { ьиพwvчพw•• } \\
& f:\left\{\begin{array}{rll}
u & \mapsto & a a \\
v & \mapsto & a b \\
w & \mapsto & b a
\end{array}\right.
\end{aligned}
$$

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_{n}=(\operatorname{Card}(\mathcal{A})-1) n+1$ having a unique right special factor for each length.

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_{n}=(\operatorname{Card}(\mathcal{A})-1) n+1$ having a unique right special factor for each length.

Example (Tribonacci)

Factors of the fixed point $\psi^{\omega}(a)$ of the morphism $\quad \psi: a \mapsto a b, \quad b \mapsto a c, \quad c \mapsto a$.

$$
\begin{gathered}
\text { 2-coded Fibonacci } \\
f^{-1}(x)=v u w w v u w w \cdots
\end{gathered}
$$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set ?

$$
\begin{gathered}
\text { 2-coded Fibonacci } \\
f^{-1}(x)=v u w w v u w w \cdots
\end{gathered}
$$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set ?

$$
\begin{gathered}
\text { 2-coded Fibonacci } \\
f^{-1}(x)=v u w w v u w w \cdots
\end{gathered}
$$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set? No!

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in \mathcal{A}}$ and $\left(J_{\alpha}\right)_{\alpha \in \mathcal{A}}$ be two partitions of $[0,1[$.
An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [M. Keane (1975)]
A regular interval exchange transformation is minimal.

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the non-zero separation points are infinite and disjoint.
Theorem [M. Keane (1975)]
A regular interval exchange transformation is minimal.

Example (the converse is not true)

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=a b
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=a b a
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=a b a a
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=a b a a b
$$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in \mathcal{A}^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

$$
\Sigma_{T}(z)=\text { abaaba } \cdots
$$

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in[0,1[} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in[0,1[} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Proposition

Regular interval exchange sets have factor complexity $p_{n}=(\operatorname{Card}(\mathcal{A})-1) n+1$.

Arnoux-Rauzy and Interval exchanges

Arnoux-Rauzy and Interval exchanges

Extension graphs

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in \mathcal{A} \mid a w \in S\} \\
R(w) & =\{a \in \mathcal{A} \mid w a \in S\} \\
B(w) & =\{(a, b) \in \mathcal{A} \times \mathcal{A} \mid a w b \in S .\}
\end{aligned}
$$

Example (Fibonacci, $S=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

Extension graphs

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in \mathcal{A} \mid a w \in S\} \\
R(w) & =\{a \in \mathcal{A} \mid w a \in S\} \\
B(w) & =\{(a, b) \in \mathcal{A} \times \mathcal{A} \mid a w b \in S .\}
\end{aligned}
$$

The multiplicity of a word w is the quantity

$$
m(w)=\operatorname{Card}(B(w))-\operatorname{Card}(L(w))-\operatorname{Card}(R(w))+1 .
$$

Example (Fibonacci, $S=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

Tree and neutral sets

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$ and $\mathcal{E}(\varepsilon)$ a forest.

Tree and neutral sets

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$ and $\mathcal{E}(\varepsilon)$ a forest. It is called neutral if every nonempty word has multiplicity $m(w)=0$.

Tree and neutral sets

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$ and $\mathcal{E}(\varepsilon)$ a forest. It is called neutral if every nonempty word has multiplicity $m(w)=0$.

The characteristic of a neutral/tree set S is the quantity $\chi(S)=1-m(\varepsilon)$.

Tree and neutral sets

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$ and $\mathcal{E}(\varepsilon)$ a forest. It is called neutral if every nonempty word has multiplicity $m(w)=0$.

The characteristic of a neutral/tree set S is the quantity $\chi(S)=1-m(\varepsilon)$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone : "Acyclic, connected and tree sets" (2014).]

Tree and neutral sets

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$ and $\mathcal{E}(\varepsilon)$ a forest. It is called neutral if every nonempty word has multiplicity $m(w)=0$.

The characteristic of a neutral/tree set S is the quantity $\chi(S)=1-m(\varepsilon)$.

Recurrence and uniformly recurrence

Definition

A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that $u w v$ is in S.

Example (Fibonacci)

$$
x=\text { abaababaabaababaababaabaababa } \ldots
$$

Recurrence and uniformly recurrence

Definition

A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that $u w v$ is in S. It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.

Example (Fibonacci)

$$
x=\underbrace{a b a a}_{4} \text { ba baab } \underbrace{a a b a}_{4} \text { baababaaba } \underbrace{a b a b}_{4} a \cdots
$$

Recurrence and uniformly recurrence

Definition

A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that $u w v$ is in S.
It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.
\triangleright Arnoux-Rauzy
\triangleright regular Interval Exchanges

Recurrence and uniformly recurrence

Definition

A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that $u w v$ is in S. It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.
\triangleright Arnoux-Rauzy
\triangleright regular Interval Exchanges

Proposition

Uniform recurrence \Longrightarrow recurrence.

Recurrence and uniformly recurrence

Definition

A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that $u w v$ is in S. It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.
\triangleright Arnoux-Rauzy
\triangleright regular Interval Exchanges

Proposition

Uniform recurrence \Longrightarrow recurrence.

Theorem [D.. Perrin (2016)]

A recurrent neutral (tree) set is uniformly recurrent.

Planar tree sets

Let $<_{L}$ and $<_{R}$ be two orders on \mathcal{A}.
For a set S and a word $w \in S$, the graph $\mathcal{E}(w)$ is compatible with $<_{L}$ and $<_{R}$ if for any $(a, b),(c, d) \in B(w)$, one has

$$
a<_{L} c \quad \Longrightarrow \quad b \leq_{R} d
$$

Example (Fibonacci, $b<_{L}$ a and $a<_{R} b$)

$\mathcal{E}(b)$

A biextendable set S is a planar tree set w.r.t. $<_{L}$ and $<_{R}$ on \mathcal{A} if for any nonempty $w \in S$ (resp. ε) the graph $\mathcal{E}(w)$ is a tree (resp. forest) compatible with $<_{L}$ and $<_{R}$.

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

Planar tree sets

Example

The Tribonacci set is not a planar tree set.
Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

- $a<_{L} c<_{L} b$

Planar tree sets

Example

The Tribonacci set is not a planar tree set.
Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

- $\underline{a<_{L} c<_{L} b} \Longrightarrow b<_{R} c<_{R} a \quad$ or $c<_{R} b<_{R} a$

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

- $\underline{a<_{L} c<_{L} b} \Longrightarrow b<_{R} c<_{R} a \quad$ or $c<_{R} b<_{R} a$

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

- $a<_{L} c<_{L} b \quad \Longrightarrow \quad b<_{R} c<_{R} a$

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $a<_{L} c<_{L} b \quad \Longrightarrow \quad b<_{R} c<_{R} a$

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

- $a<_{L} c<_{L} b \quad \Longrightarrow \quad$,

Planar tree sets

Theorem [S. Ferenczi, L. Zamboni (2008)]

A set S is a regular interval exchange set on \mathcal{A} if and only if it is a recurrent planar tree set of characteristic 1 .

Tree and neutral sets

Tree and neutral sets

Tree and neutral sets

- Fibonacci
? 2-coded Fibonacci
- Tribonacci
? 2-coded Tribonacci
- regular IE
? 2-coded regular IE

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

Example

$$
\begin{aligned}
& \checkmark\{a a, a b, b a\} \\
& \checkmark\{a a, a b, b b a, b b b\} \\
& \checkmark \quad\{a c, b c c, b c b c a\}
\end{aligned}
$$

x \{ avril, mars, Marseille \}
x \{ cap, calanque, que \}
x \{ CANA, nada, Canada \}

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

Example (Fibonacci)

The set $B=\{a a, a b, b a\}$ is an S-maximal bifix code. It is not an \mathcal{A}^{*}-maximal bifix code, since $B \subset B \cup\{b b\}$.

Francesco Dolce (LaCIM)

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

A coding morphism for a bifix code $B \subset A^{+}$is a morphism $f: \mathcal{B}^{*} \rightarrow \mathcal{A}^{*}$ which maps bijectively \mathcal{B} onto B.

Example

The map $f:\{u, v, w\}^{*} \rightarrow\{a, b\}^{*}$ is a coding morphism for $B=\{a a, a b, b a\}$.

$$
f:\left\{\begin{array}{c}
u \mapsto a a \\
v \mapsto a b \\
w \mapsto b a
\end{array}\right.
$$

Bifix codes

Definition

A bifix code is a set $B \subset \mathcal{A}^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

A coding morphism for a bifix code $B \subset A^{+}$is a morphism $f: \mathcal{B}^{*} \rightarrow \mathcal{A}^{*}$ which maps bijectively \mathcal{B} onto B.

Example

The map $f:\{u, v, w\}^{*} \rightarrow\{a, b\}^{*}$ is a coding morphism for $B=\{a a, a b, b a\}$.

$$
f:\left\{\begin{array}{c}
u \mapsto a a \\
v \mapsto a b \\
w \mapsto b a
\end{array}\right.
$$

When S is factorial and B is an S-maximal bifix code, the set $f^{-1}(S)$ is called a maximal bifix decoding of S.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

The family of recurrent planar tree sets of characteristic 1 (i.e. regular interval exchange sets) is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

The family of recurrent tree sets of characteristic 1 is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015) ; D., Perrin (2016)]

The family of recurrent neutral sets (resp. tree sets) of characteristic c is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015) ; D., Perrin (2016)]

The family of recurrent neutral sets (resp. tree sets) of characteristic c is closed under maximal bifix decoding.

- Fibonacci
- 2-coded Fibonacci
- Tribonacci
- 2-coded Tribonacci

Tree sets of characteristic ≥ 1

Example (Multiplying transducer over a*)

Tree sets of characteristic ≥ 1

Example (Multiplying transducer over a*)

Example (Linear involution $T=\sigma_{2} \circ \sigma_{1}$)

Tree subshifts

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

Tree subshifts

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow & \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

Example (Fibonacci)

$$
\mathbf{x}=\cdots a b . a b a a b a b a a b a a b a b a a b a b a a b a a b \cdots
$$

Tree subshifts

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow & \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

Example (Fibonacci)

$$
\begin{aligned}
\mathbf{x} & =\cdots \text { ab.abaababaabaababaababaabaab } \cdots \\
\sigma(\mathbf{x}) & =\cdots \text { ba.baababaabaababaababaabaaba } \cdots
\end{aligned}
$$

Tree subshifts

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

Example (Fibonacci)

$$
\begin{aligned}
\mathbf{x} & =\cdots \text { ab.abaababaabaababaababaabaab } \cdots \\
\sigma(\mathbf{x}) & =\cdots \text { ba.baababaabaababaababaabaaba } \cdots \\
\sigma^{2}(\mathbf{x}) & =\cdots \text { ab.aababaabaababaababaabaabab } \cdots
\end{aligned}
$$

Tree subshifts

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

Example (Fibonacci)

$$
\begin{aligned}
\mathbf{x} & =\cdots \text { ab.abaababaabaababaababaabaab } \cdots \\
\sigma(\mathbf{x}) & =\cdots \text { ba.baababaabaababaababaabaaba } \cdots \\
\sigma^{2}(\mathbf{x}) & =\cdots \text { ab.aababaabaababaababaabaabab } \cdots \\
\sigma^{3}(\mathbf{x}) & =\cdots \text { ba.ababaabaababaababaabaababa } \cdots
\end{aligned}
$$

Tree subshifts

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

The pair (X, σ), with X a closed σ-invariant subset of $\mathcal{A}^{\mathbb{Z}}$ is called a subshift.

Example (Fibonacci)

The Fibonacci subshift is the set $X=\overline{\mathcal{O}(\mathbf{x})}=\overline{\left\{\sigma^{n}(\mathbf{x}) \mid n \in \mathbb{Z}\right\}} \subset \mathcal{A}^{\mathbb{Z}}$, with

$$
\mathbf{x}=\cdots \text { ab.abaababaabaababaababaabaab } \cdots
$$

Tree subshifts

The shift transformation is the function

$$
\begin{array}{llll}
\sigma: & \mathcal{A}^{\mathbb{Z}} & \rightarrow \mathcal{A}^{\mathbb{Z}} \\
& \left(x_{n}\right)_{n \in \mathbb{Z}} & \mapsto & \left(x_{n+1}\right)_{n \in \mathbb{Z}}
\end{array}
$$

The pair (X, σ), with X a closed σ-invariant subset of $\mathcal{A}^{\mathbb{Z}}$ is called a subshift.

Example (Fibonacci)

The Fibonacci subshift is the set $X=\overline{\mathcal{O}(\mathbf{x})}=\overline{\left\{\sigma^{n}(\mathbf{x}) \mid n \in \mathbb{Z}\right\}} \subset \mathcal{A}^{\mathbb{Z}}$, with

$$
\mathbf{x}=\cdots \text { ab.abaababaabaababaababaabaab } \cdots
$$

(X, σ) is a tree subshift if its language $\mathcal{L}(X)=\bigcup_{\mathrm{x} \in X} \mathrm{Fac}(\mathrm{x})$ is a tree set.

Entropy of tree subshifts

The entropy of a shift (X, σ) having language $\mathcal{L}(X) \subset \mathcal{A}^{*}$ is defined as

$$
h(X)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\mathcal{L}(X) \cap \mathcal{A}^{n}\right)
$$

Entropy of tree subshifts

The entropy of a shift (X, σ) having language $\mathcal{L}(X) \subset \mathcal{A}^{*}$ is defined as

$$
h(X)=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\mathcal{L}(X) \cap \mathcal{A}^{n}\right)
$$

Proposition

All tree subshifts have entropy zero.

Ergodicity of tree subshifts

A probability measure μ on (X, σ) is said to be invariant if $\mu\left(\sigma^{-1}(U)\right)=\mu(U)$ for every Borel subset U of X.

Ergodicity of tree subshifts

A probability measure μ on (X, σ) is said to be invariant if $\mu\left(\sigma^{-1}(U)\right)=\mu(U)$ for every Borel subset U of X.

A subshift having only one invariant probability measure is said to be uniquely ergodic.

Ergodicity of tree subshifts

A probability measure μ on (X, σ) is said to be invariant if $\mu\left(\sigma^{-1}(U)\right)=\mu(U)$ for every Borel subset U of X.

A subshift having only one invariant probability measure is said to be uniquely ergodic.
Theorem [P. Arnoux, G. Rauzy (1991)]
Subshifts associated to Arnoux-Rauzy sets are uniquely ergodic.

Example (Fibonacci, $\rho=(\sqrt{5}-1) / 2)$

Ergodicity of tree subshifts

Given an interval exchange transformation T and a word $w=a_{0} a_{1} \cdots a_{m-1} \in \mathcal{A}^{*}$, let

$$
I_{w}=I_{a_{0}} \cap T^{-1}\left(I_{a_{1}}\right) \cap \ldots \cap T^{-m+1}\left(I_{a_{m-1}}\right)
$$

Example

Ergodicity of tree subshifts

Given an interval exchange transformation T and a word $w=a_{0} a_{1} \cdots a_{m-1} \in \mathcal{A}^{*}$, let

$$
I_{w}=I_{a_{0}} \cap T^{-1}\left(I_{a_{1}}\right) \cap \ldots \cap T^{-m+1}\left(I_{a_{m-1}}\right)
$$

Example

Ergodicity of tree subshifts

Given an interval exchange transformation T and a word $w=a_{0} a_{1} \cdots a_{m-1} \in \mathcal{A}^{*}$, let

$$
I_{w}=I_{a_{0}} \cap T^{-1}\left(I_{a_{1}}\right) \cap \ldots \cap T^{-m+1}\left(I_{a_{m-1}}\right)
$$

Example

The map λ defined by $\lambda([w])=\left|I_{w}\right|$ is an invariant probability measure.

Ergodicity of tree subshifts

Given an interval exchange transformation T and a word $w=a_{0} a_{1} \cdots a_{m-1} \in \mathcal{A}^{*}$, let

$$
I_{w}=I_{a_{0}} \cap T^{-1}\left(I_{a_{1}}\right) \cap \ldots \cap T^{-m+1}\left(I_{a_{m-1}}\right)
$$

Example

The map λ defined by $\lambda([w])=\left|I_{w}\right|$ is an invariant probability measure.
Question: Is it the only one?

Ergodicity of a tree subshift

Conjecture [M. Keane (1975)]

Every regular IE is uniquely ergodic.

Ergodicity of a tree subshift

Conjecture [M. Keane (1975)]
Every regular IE is uniquely ergodic.

Theorem [H. Masur (1982), W. Veech (1982)]
Almost all regular IE are uniquely ergodic.

Ergodicity of a tree subshift

Conjecture [M. Keane (1975)]

Every regular IE is uniquely ergodic. False !

Theorem [H. Masur (1982), W. Veech (1982)]
Almost all regular IE are uniquely ergodic.

Theorem [H.B. Keynes, D. Newton (1976)]

There exist regular IE not uniquely ergodic.

Ergodicity of a tree subshift

Conjecture [M. Keane (1975)]

Every regular IE is uniquely ergodic. False !

Theorem [H. Masur (1982), W. Veech (1982)]
Almost all regular IE are uniquely ergodic.

Theorem [H.B. Keynes, D. Newton (1976)]

There exist regular IE not uniquely ergodic.

Corollary

Tree subshift are not in general uniquely ergodic (even when minimal).

Ergodicity of a tree subshift

Theorem [M. Boshernitzan (1984)]

A minimal symbolic system such that $\limsup _{n \rightarrow \infty}\left(\frac{p_{n}}{n}\right)<3$ is uniquely ergodic.

Ergodicity of a tree subshift

Theorem [M. Boshernitzan (1984)]

A minimal symbolic system such that $\limsup _{n \rightarrow \infty}\left(\frac{p_{n}}{n}\right)<3$ is uniquely ergodic.

Corollary

Minimal tree subshift over an alphabet of size ≤ 3 are uniquely ergodic.

Ergodicity of a tree subshift

Theorem [M. Boshernitzan (1984)]

A minimal symbolic system such that $\limsup _{n \rightarrow \infty}\left(\frac{p_{n}}{n}\right)<3$ is uniquely ergodic.

Corollary

Minimal tree subshift over an alphabet of size ≤ 3 are uniquely ergodic.

Minimal tree subshifts on a 3-letter alphabet

Two subshifts $(X, \sigma),(Y, \sigma)$ are orbit equivalent if there exists a homeomorphism $\eta: X \rightarrow Y$ such that for all $\mathrm{x} \in X$ one has

$$
\eta(\mathcal{O}(\mathbf{x}))=\mathcal{O}(\eta(\mathbf{x})) .
$$

Minimal tree subshifts on a 3-letter alphabet

Two subshifts $(X, \sigma),(Y, \sigma)$ are orbit equivalent if there exists a homeomorphism $\eta: X \rightarrow Y$ such that for all $\mathrm{x} \in X$ one has

$$
\eta(\mathcal{O}(\mathbf{x}))=\mathcal{O}(\eta(\mathbf{x}))
$$

Theorem [V. Berthé, P. Cecchi, F.D., F. Durand, J. Leroy, D. Perrin, S. Petite (2018+)]

All minimal tree subshifts on a 3 letter alphabet having the same letter frequency are orbit equivalent.

$$
\text { Example }\left(\alpha+\alpha^{2}+\alpha^{3}=1\right)
$$

