Tree sets from Combinatorics on Words to Symbolic Dynamics

$Francesco \ Dolce$

Séminaire CANA

Marseille, March 15th, 2018

FRANCESCO DOLCE (LACIM)

TREE SETS

< □ > < □ > < □ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ < ○ Q (~ MARCH 15TH, 2018 1 / 28

Fibonacci

 $x = abaababaabaababa \cdots$

$$x = \lim_{n \to \infty} \varphi^n(a) \qquad \text{where} \qquad \varphi : \left\{ \begin{array}{l} a \mapsto ab \\ b \mapsto a \end{array} \right.$$

FRANCESCO DOLCE (LACIM)

TREE SETS

▲□ ▶ ▲□ ▶ ▲ ■ ▶ ▲ ■ ▶ ■ 少へで MARCH 15TH, 2018 2 / 28

Fibonacci

$x = abaababaabaababa \cdots$

The Fibonacci set (set of factors of x) is a Sturmian set.

A Sturmian set $S \subset A^*$ is a factorial set such that $p_n = \text{Card}(S \cap A^n) = n + 1$.

 $x = ab aa ba ba ab aa ba ba \cdots$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

 $x = ab aa ba ba ab aa ba ba \cdots$

$$f:\left\{\begin{array}{ccc} u & \mapsto & aa \\ v & \mapsto & ab \\ w & \mapsto & ba \end{array}\right.$$

FRANCESCO DOLCE (LACIM)

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

 $x = ab aa ba ba ab aa ba ba \cdots$ $f^{-1}(x) = v u w w v u w w \cdots$

ſ	и	\mapsto	aa
f : {	V	\mapsto	ab
l	w	\mapsto	ba

 $x = ab aa ba ba ab aa ba ba \cdots$ $f^{-1}(x) = v u w w v u w w \cdots$

ſ	и	\mapsto	aa
f : {	v	\mapsto	ab
l	w	\mapsto	ba

FRANCESCO DOLCE (LACIM)

March 15th, 2018 3 / 28

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < @

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_n = (Card (A) - 1)n + 1$ having a unique right special factor for each length.

3

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_n = (Card (A) - 1)n + 1$ having a unique right special factor for each length.

Example (Tribonacci)

 $f^{-1}(x) = v u w w v u w w \cdots$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set?

 $f^{-1}(x) = v u w w v u w w \cdots$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set?

FRANCESCO DOLCE (LACIM)

March 15th, 2018 5 / 28

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

 $f^{-1}(x) = v u w w v u w w \cdots$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set? No!

FRANCESCO DOLCE (LACIM)

TREE SETS

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つ Q () MARCH 15TH, 2018 5 / 28

Let $(I_{\alpha})_{\alpha \in \mathcal{A}}$ and $(J_{\alpha})_{\alpha \in \mathcal{A}}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

(日) (同) (E) (E) (E)

Let $(I_{\alpha})_{\alpha \in \mathcal{A}}$ and $(J_{\alpha})_{\alpha \in \mathcal{A}}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

- -

イロン イヨン イヨン

Let $(I_{\alpha})_{\alpha \in \mathcal{A}}$ and $(J_{\alpha})_{\alpha \in \mathcal{A}}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

- 3

イロン イヨン イヨン

Let $(I_{\alpha})_{\alpha \in \mathcal{A}}$ and $(J_{\alpha})_{\alpha \in \mathcal{A}}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

- 3

イロン 不同と 不同と 不同と

Let $(I_{\alpha})_{\alpha \in \mathcal{A}}$ and $(J_{\alpha})_{\alpha \in \mathcal{A}}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

- 3

イロン 不同と 不同と 不同と

T is said to be minimal if for any point $z \in [0, 1[$ the orbit $\mathcal{O}(z) = \{T^n(z) \mid n \in \mathbb{Z}\}$ is dense in [0, 1[.

T is said *regular* if the orbits of the non-zero separation points are infinite and disjoint.

Theorem [M. Keane (1975)]

A regular interval exchange transformation is minimal.

(日) (同) (目) (日) (日) []

T is said to be minimal if for any point $z \in [0, 1[$ the orbit $\mathcal{O}(z) = \{T^n(z) \mid n \in \mathbb{Z}\}$ is dense in [0, 1[.

T is said *regular* if the orbits of the non-zero separation points are infinite and disjoint.

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 8 / 28

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 8 / 28

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

TREE SETS

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 8 / 28

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

TREE SETS

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

TREE SETS

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in \mathcal{A}^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 8 / 28

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

The set $\mathcal{L}(T) = \bigcup_{z \in [0,1[} \operatorname{Fac}(\Sigma_T(z)) \text{ is said a (minimal, regular) interval exchange set.}$

<u>Remark</u>. If T is minimal, $Fac(\Sigma_T(z))$ does not depend on the point z.

Francesco Dolce (LaCIM)

◆□> ◆□> ◆三> ◆三> ●三 のへの

March 15th, 2018

9 / 28

The set $\mathcal{L}(T) = \bigcup_{z \in [0,1[} \operatorname{Fac}(\Sigma_T(z)) \text{ is said a } (minimal, regular) interval exchange set.}$

<u>Remark</u>. If T is minimal, $Fac(\Sigma_T(z))$ does not depend on the point z.

Proposition

Regular interval exchange sets have factor complexity $p_n = (Card (A) - 1)n + 1$.

FRANCESCO DOLCE (LACIM)

(日) (同) (目) (日) (日) (日)

Arnoux-Rauzy and Interval exchanges

FRANCESCO DOLCE (LACIM)

TREE SETS

Arnoux-Rauzy and Interval exchanges

FRANCESCO DOLCE (LACIM)

TREE SETS

Extension graphs

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$\begin{array}{lll} L(w) &=& \{a \in \mathcal{A} \mid aw \in S\}, \\ R(w) &=& \{a \in \mathcal{A} \mid wa \in S\}, \\ B(w) &=& \{(a,b) \in \mathcal{A} \times \mathcal{A} \mid awb \in S.\} \end{array}$$

Extension graphs

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

$$L(w) = \{a \in \mathcal{A} \mid aw \in S\},\$$

$$R(w) = \{a \in \mathcal{A} \mid wa \in S\},\$$

$$B(w) = \{(a, b) \in \mathcal{A} \times \mathcal{A} \mid awb \in S.\}$$

The multiplicity of a word w is the quantity

$$m(w) = \operatorname{Card} \left(B(w) \right) - \operatorname{Card} \left(L(w) \right) - \operatorname{Card} \left(R(w) \right) + 1.$$

Definition

A factorial set S is called a *tree set* if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$ and $\mathcal{E}(\varepsilon)$ a forest.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 12 / 28

- 3

イロン 不同と 不同と 不同と

Definition

A factorial set S is called a *tree set* if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$ and $\mathcal{E}(\varepsilon)$ a forest. It is called *neutral* if every nonempty word has multiplicity m(w) = 0.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 12 / 28

・ロト ・回ト ・ヨト ・ヨト 三日

Definition

A factorial set S is called a *tree set* if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$ and $\mathcal{E}(\varepsilon)$ a forest. It is called *neutral* if every nonempty word has multiplicity m(w) = 0.

The *characteristic* of a neutral/tree set S is the quantity $\chi(S) = 1 - m(\varepsilon)$.

Definition

A factorial set S is called a *tree set* if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$ and $\mathcal{E}(\varepsilon)$ a forest. It is called *neutral* if every nonempty word has multiplicity m(w) = 0.

The *characteristic* of a neutral/tree set S is the quantity $\chi(S) = 1 - m(\varepsilon)$.

Definition

A factorial set S is called a *tree set* if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$ and $\mathcal{E}(\varepsilon)$ a forest. It is called *neutral* if every nonempty word has multiplicity m(w) = 0.

The *characteristic* of a neutral/tree set S is the quantity $\chi(S) = 1 - m(\varepsilon)$.

Definition

A factorial set S is *recurrent* if for every $u, v \in S$ there is a $w \in S$ such that uwv is in S.

Example (Fibonacci)

FRANCESCO DOLCE (LACIM)

TREE SETS

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

March 15th, 2018

Definition

A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that uwv is in S.

It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.

イロト イポト イヨト イヨト 二日

Definition

- A factorial set S is *recurrent* if for every $u, v \in S$ there is a $w \in S$ such that uwv is in S.
- It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.
 - Arnoux-Rauzy
 - regular Interval Exchanges

FRANCESCO DOLCE (LACIM)

イロト イボト イヨト イヨト

March 15th, 2018

Definition

- A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that uwv is in S.
- It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.
 - ▷ Arnoux-Rauzy
 - regular Interval Exchanges

Proposition

Uniform recurrence \implies recurrence.

イロト イポト イヨト イヨト

March 15th, 2018

Definition

A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that uwv is in S.

It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.

- ▷ Arnoux-Rauzy
- regular Interval Exchanges

Proposition

Uniform recurrence \implies recurrence.

Theorem [D., Perrin (2016)]

A recurrent neutral (tree) set is uniformly recurrent.

FRANCESCO DOLCE (LACIM)

Tree sets

March 15th, 2018

Let $<_{L}$ and $<_{R}$ be two orders on \mathcal{A} . For a set S and a word $w \in S$, the graph $\mathcal{E}(w)$ is *compatible* with $<_{L}$ and $<_{R}$ if for any $(a, b), (c, d) \in B(w)$, one has

$$a <_{L} c \implies b \leq_{R} d.$$

A biextendable set *S* is a *planar tree set* w.r.t. $<_{L}$ and $<_{R}$ on A if for any nonempty $w \in S$ (resp. ε) the graph $\mathcal{E}(w)$ is a tree (resp. forest) compatible with $<_{L}$ and $<_{R}$.

Francesco Dolce (LaCIM)

March 15th, 2018 14 / 28

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Example

The *Tribonacci set* is **not** a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

FRANCESCO DOLCE (LACIM)

イロト イポト イヨト イヨト

March 15th, 2018

3

The *Tribonacci set* is **not** a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

a <_L c <_L **b**

FRANCESCO DOLCE (LACIM)

TREE SETS

Example

The *Tribonacci set* is **not** a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

• $\underline{a <_L c <_L b} \implies b <_R c <_R a$ or $c <_R b <_R a$

FRANCESCO DOLCE (LACIM)

э

(日) (同) (目) (日)

Example

The *Tribonacci set* is **not** a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 15 / 28

э

Example

The *Tribonacci set* is **not** a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

• $\underline{a <_L c <_L b} \implies b <_R c <_R a$

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 15 / 28

э

<ロ> (四) (四) (日) (日) (日)

Example

The *Tribonacci set* is **not** a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 15 / 28

э

(< ≥) < ≥)</p>

A B +
A B +
A

Example

The *Tribonacci set* is **not** a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 15 / 28

э

Theorem [S. Ferenczi, L. Zamboni (2008)]

A set S is a regular interval exchange set on A if and only if it is a recurrent planar tree set of characteristic 1.

FRANCESCO DOLCE (LACIM)

March 15th, 2018 17 / 28

FRANCESCO DOLCE (LACIM)

TREE SETS

• Fibonacci

- ? 2-coded Fibonacci
- Tribonacci
- ? 2-coded Tribonacci
- regular IE
- ? 2-coded regular IE

Definition

A *bifix code* is a set $B \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

Example

- \checkmark {aa, ab, ba}
- ✓ {aa, ab, bba, bbb}
- ✓ {ac, bcc, bcbca}

- X { avril, mars, Marseille }
- X { cap, calanque, que }
- X { CANA, nada, Canada }

FRANCESCO DOLCE (LACIM)

TREE SETS

Definition

A *bifix code* is a set $B \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

Example (Fibonacci)

The set $B = \{aa, ab, ba\}$ is an *S*-maximal bifix code. It is not an \mathcal{A}^* -maximal bifix code, since $B \subset B \cup \{bb\}$.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 18 / 28

- 3

Definition

A *bifix code* is a set $B \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

A coding morphism for a bifix code $B \subset A^+$ is a morphism $f : \mathcal{B}^* \to \mathcal{A}^*$ which maps bijectively \mathcal{B} onto B.

Example

The map $f : \{u, v, w\}^* \to \{a, b\}^*$ is a coding morphism for $B = \{aa, ab, ba\}$.

$$f: \left\{ \begin{array}{c} u \mapsto aa \\ v \mapsto ab \\ w \mapsto ba \end{array} \right.$$

Francesco Dol	CE (LACIM)
---------------	------------

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 − のへの

March 15th, 2018 18 / 28

Definition

A *bifix code* is a set $B \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $B \subset S$ is S-maximal if it is not properly contained in a bifix code $C \subset S$.

A coding morphism for a bifix code $B \subset A^+$ is a morphism $f : \mathcal{B}^* \to \mathcal{A}^*$ which maps bijectively \mathcal{B} onto B.

Example

The map $f : \{u, v, w\}^* \rightarrow \{a, b\}^*$ is a coding morphism for $B = \{aa, ab, ba\}$.

 $f: \left\{ \begin{array}{c} u \mapsto aa \\ v \mapsto ab \\ w \mapsto ba \end{array} \right.$

When S is factorial and B is an S-maximal bifix code, the set $f^{-1}(S)$ is called a maximal bifix decoding of S.

FRANCESCO DOLCE (LACIM)

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○ ○

March 15th, 2018 18 / 28

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

The family of recurrent planar tree sets of characteristic 1 (i.e. regular interval exchange sets) is closed under maximal bifix decoding.

FRANCESCO DOLCE (LACIM)

March 15th, 2018 19 / 28

◆□> ◆□> ◆臣> ◆臣> = 三 - つへぐ

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

The family of recurrent tree sets of characteristic 1 is closed under maximal bifix decoding.

FRANCESCO DOLCE (LACIM)

March 15th, 2018 19 / 28

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 の久(で)

Theorem Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016)

The family of recurrent neutral sets (resp. tree sets) of characteristic c is closed under maximal bifix decoding.

FRANCESCO DOLCE (LACIM)

March 15th, 2018 19 / 28

◆□> ◆□> ◆臣> ◆臣> = 三 - つへぐ

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016)]

The family of recurrent neutral sets (resp. tree sets) of characteristic c is closed under maximal bifix decoding.

FRANCESCO DOLCE (LACIM)

March 15th, 2018 19 / 28

Tree sets of characteristic ≥ 1

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 20 / 28

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

Tree sets of characteristic ≥ 1

FRANCESCO DOLCE (LACIM)

TREE SETS

The shift transformation is the function

$$\sigma: \mathcal{A}^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}} (x_n)_{n \in \mathbb{Z}} \mapsto (x_{n+1})_{n \in \mathbb{Z}}$$

FRANCESCO DOLCE (LACIM)

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

March 15th, 2018

The shift transformation is the function

$$\sigma: \begin{array}{ccc} \mathcal{A}^{\mathbb{Z}} & \to & \mathcal{A}^{\mathbb{Z}} \\ (x_n)_{n \in \mathbb{Z}} & \mapsto & (x_{n+1})_{n \in \mathbb{Z}} \end{array}$$

Example (Fibonacci)

 $\mathbf{x} = \cdots a b. a b a a b a b a a b$

FRANCESCO DOLCE (LACIM)

TREE SETS

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ●

March 15th, 2018

The shift transformation is the function

$$\sigma: \begin{array}{ccc} \mathcal{A}^{\mathbb{Z}} & \to & \mathcal{A}^{\mathbb{Z}} \\ (x_n)_{n \in \mathbb{Z}} & \mapsto & (x_{n+1})_{n \in \mathbb{Z}} \end{array}$$

Example (Fibonacci)

FRANCESCO DOLCE (LACIM)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

March 15th, 2018

The shift transformation is the function

$$\sigma: \begin{array}{ccc} \mathcal{A}^{\mathbb{Z}} & \to & \mathcal{A}^{\mathbb{Z}} \\ (x_n)_{n \in \mathbb{Z}} & \mapsto & (x_{n+1})_{n \in \mathbb{Z}} \end{array}$$

Example (Fibonacci)		
$egin{array}{c} \mathbf{x} & \sigma (\mathbf{x}) \ \sigma^2 (\mathbf{x}) \end{array}$	=	···· ab.abaababaabaababaabaabaabaab ···· ··· ba.baababaabaabaabaabaabaabaaba ··· ab.aababaabaababaababaababab ···

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

March 15th, 2018

The shift transformation is the function

$$\begin{array}{rccc} \sigma : & \mathcal{A}^{\mathbb{Z}} & \to & \mathcal{A}^{\mathbb{Z}} \\ & & (x_n)_{n \in \mathbb{Z}} & \mapsto & (x_{n+1})_{n \in \mathbb{Z}} \end{array}$$

Example (Fibonacci)		
$egin{array}{c} \mathbf{x} & \sigma(\mathbf{x}) \ \sigma^2(\mathbf{x}) & \sigma^3(\mathbf{x}) \end{array}$	= = =	···· ab.abaababaababaababaabaabaab ···· ··· ba.baababaabaababaabaabaaba ··· ab.aababaabaababaabaabaabababa ··· ··· ba.ababaabaababaabaabaabaabaabaabaaba

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ● ● ● ●

The shift transformation is the function

$$\sigma: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}} \\ (x_n)_{n \in \mathbb{Z}} \longmapsto (x_{n+1})_{n \in \mathbb{Z}}$$

The pair (X, σ) , with X a closed σ -invariant subset of $\mathcal{A}^{\mathbb{Z}}$ is called a *subshift*.

Example (Fibonacci)

The Fibonacci subshift is the set $X = \overline{\mathcal{O}(\mathbf{x})} = \overline{\{\sigma^n(\mathbf{x}) \mid n \in \mathbb{Z}\}} \subset \mathcal{A}^{\mathbb{Z}}$, with

 $\mathbf{x} = \cdots ab.abaabaabaabaabaabaabaabaabaab \cdots$

FRANCESCO DOLCE (LACIM)

TREE SETS

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 − のへの

March 15th, 2018

The shift transformation is the function

$$\sigma: \mathcal{A}^{\mathbb{Z}} \longrightarrow \mathcal{A}^{\mathbb{Z}} \\ (x_n)_{n \in \mathbb{Z}} \longmapsto (x_{n+1})_{n \in \mathbb{Z}}$$

The pair (X, σ) , with X a closed σ -invariant subset of $\mathcal{A}^{\mathbb{Z}}$ is called a *subshift*.

Example (Fibonacci)

The Fibonacci subshift is the set $X = \overline{\mathcal{O}(\mathbf{x})} = \overline{\{\sigma^n(\mathbf{x}) \mid n \in \mathbb{Z}\}} \subset \mathcal{A}^{\mathbb{Z}}$, with

 $\mathbf{x} = \cdots a b. a b a a b a b a a b$

 (X, σ) is a tree subshift if its language $\mathcal{L}(X) = \bigcup_{\mathbf{x} \in X} Fac(\mathbf{x})$ is a tree set.

FRANCESCO DOLCE (LACIM)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

March 15th, 2018

Entropy of tree subshifts

The *entropy* of a shift (X, σ) having language $\mathcal{L}(X) \subset \mathcal{A}^*$ is defined as

$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log(\mathcal{L}(X) \cap \mathcal{A}^n)$$

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

March 15th, 2018 22 / 28
Entropy of tree subshifts

The *entropy* of a shift (X, σ) having language $\mathcal{L}(X) \subset \mathcal{A}^*$ is defined as

$$h(X) = \lim_{n \to \infty} \frac{1}{n} \log(\mathcal{L}(X) \cap \mathcal{A}^n)$$

Proposition

All tree subshifts have entropy zero.

FRANCESCO DOLCE (LACIM)

TREE SETS

◆□> ◆□> ◆目> ◆目> ◆目> 目 のへで

March 15th, 2018

A probability measure μ on (X, σ) is said to be *invariant* if $\mu(\sigma^{-1}(U)) = \mu(U)$ for every Borel subset U of X.

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●

A probability measure μ on (X, σ) is said to be *invariant* if $\mu(\sigma^{-1}(U)) = \mu(U)$ for every Borel subset U of X.

A subshift having only one invariant probability measure is said to be uniquely ergodic.

March 15th, 2018 23 / 28

A probability measure μ on (X, σ) is said to be *invariant* if $\mu(\sigma^{-1}(U)) = \mu(U)$ for every Borel subset U of X.

A subshift having only one invariant probability measure is said to be uniquely ergodic.

Theorem [P. Arnoux, G. Rauzy (1991)]

Subshifts associated to Arnoux-Rauzy sets are uniquely ergodic.

Example (Fibonacci, $\rho = (\sqrt{5} - 1)/2$)

э

イロン イヨン イヨン

Given an interval exchange transformation T and a word $w = a_0 a_1 \cdots a_{m-1} \in \mathcal{A}^*$, let

$$I_w = I_{a_0} \cap T^{-1}(I_{a_1}) \cap \ldots \cap T^{-m+1}(I_{a_{m-1}})$$

- 32

イロン イヨン イヨン

Given an interval exchange transformation T and a word $w = a_0 a_1 \cdots a_{m-1} \in \mathcal{A}^*$, let

$$I_{w} = I_{a_{0}} \cap T^{-1}(I_{a_{1}}) \cap \ldots \cap T^{-m+1}(I_{a_{m-1}})$$

- 32

イロン イヨン イヨン

Given an interval exchange transformation T and a word $w = a_0 a_1 \cdots a_{m-1} \in \mathcal{A}^*$, let

$$I_w = I_{a_0} \cap T^{-1}(I_{a_1}) \cap \ldots \cap T^{-m+1}(I_{a_{m-1}})$$

The map λ defined by $\lambda([w]) = |I_w|$ is an invariant probability measure.

FRANCESCO DOLCE (LACIM)

TREE SETS

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 − のへの

March 15th, 2018

Given an interval exchange transformation T and a word $w = a_0 a_1 \cdots a_{m-1} \in \mathcal{A}^*$, let

$$I_w = I_{a_0} \cap T^{-1}(I_{a_1}) \cap \ldots \cap T^{-m+1}(I_{a_{m-1}})$$

The map λ defined by $\lambda([w]) = |I_w|$ is an invariant probability measure.

QUESTION : Is it the only one?

FRANCESCO DOLCE (LACIM)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

March 15th, 2018

Conjecture [M. Keane (1975)]

Every regular IE is uniquely ergodic.

FRANCESCO DOLCE (LACIM)

TREE SETS

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

March 15th, 2018

3

25 / 28

March 15th, 2018

Conjecture [M. Keane (1975)]

Every regular IE is uniquely ergodic.

Theorem [H. Masur (1982), W. Veech (1982)]

Almost all regular IE are uniquely ergodic.

FRANCESCO DOLCE (LACIM)

TREE SETS

Conjecture [M. Keane (1975)]

Every regular IE is uniquely ergodic. False !

Theorem [H. Masur (1982), W. Veech (1982)]

Almost all regular IE are uniquely ergodic.

Theorem [H.B. Keynes, D. Newton (1976)]

There exist regular IE not uniquely ergodic.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 25 / 28

イロト 不得 トイヨト イヨト

Conjecture [M. Keane (1975)]

Every regular IE is uniquely ergodic. False !

Theorem [H. Masur (1982), W. Veech (1982)]

Almost all regular IE are uniquely ergodic.

Theorem [H.B. Keynes, D. Newton (1976)]

There exist regular IE not uniquely ergodic.

Corollary

Tree subshift are **not** in general uniquely ergodic (even when minimal).

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 25 / 28

(日) (同) (目) (日) (日) []

Ergodicity of a tree subshiftTheorem [M. Boshernitzan (1984)]A minimal symbolic system such that $\limsup_{n \to \infty} \left(\frac{p_n}{n}\right) < 3$ is uniquely ergodic.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 26 / 28

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Corollary

Minimal tree subshift over an alphabet of size ≤ 3 are uniquely ergodic.

FRANCESCO DOLCE (LACIM)

TREE SETS

March 15th, 2018 26 / 28

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● 三 ● ○○○

Corollary

Minimal tree subshift over an alphabet of size ≤ 3 are uniquely ergodic.

FRANCESCO DOLCE (LACIM)

Minimal tree subshifts on a 3-letter alphabet

Two subshifts $(X, \sigma), (Y, \sigma)$ are *orbit equivalent* if there exists a homeomorphism $\eta : X \to Y$ such that for all $x \in X$ one has

 $\eta\left(\mathcal{O}(\mathbf{x})\right) = \mathcal{O}\left(\eta(\mathbf{x})\right).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ○日 - のへで

March 15th, 2018 27 / 28

Minimal tree subshifts on a 3-letter alphabet

Two subshifts $(X, \sigma), (Y, \sigma)$ are orbit equivalent if there exists a homeomorphism $\eta: X \to Y$ such that for all $\mathbf{x} \in X$ one has

 $\eta \left(\mathcal{O}(\mathbf{x}) \right) = \mathcal{O} \left(\eta(\mathbf{x}) \right).$

Theorem V. Berthé, P. Cecchi, F.D., F. Durand, J. Leroy, D. Perrin, S. Petite (2018+)

All minimal tree subshifts on a 3 letter alphabet having the same letter frequency are orbit equivalent.

FRANCESCO DOLCE (LACIM)

