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Introduction

Generalization of links between and
to general objects : Specular sets and Specular groups.
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Generalization of tree sets.

Two interesting classes : linear involutions (generalization of interval
exchange transformations) and doublings.

Introduction of new concepts : parity of words (odd and even words).

Some results about return words and palindromes.
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SPECULAR GROUPS ~ GROUPS AND SUBGROUPS

Given an involution 6 : A — A (possibly with some fixed point), let us define

Gog=(ac€A | a-6(a)=1forevery a € A).

Gy = Zix (Z/)2Z) is a specular group of type (i,j), and Card (A)= 2i +j is its
symmetric rank.

Let 6 : b + d fixing a,c.

Gy = (a,b,c,d | a>=c*=bd=db=1).

Gy="7Zx (Z/QZ)2 is a specular group of type (1,2) and symmetric rank 4.
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Given an involution 6 : A — A (possibly with some fixed point), let us define

Gog=(ac€A | a-6(a)=1forevery a € A).

Gy = Zix (z)22)) is a specular group of type (i,j), and Card (A)=2i +j is its

symmetric rank.

Let 6 : b + d fixing a,c.

Gy = (a,b,c,d | a°>=c*=bd=db=1).

Gy="7Zx (Z/2Z)2 is a specular group of type (1,2) and symmetric rank 4.

Theorem [using Kurosh Subgroup Theorem]

Any subgroup of a specular group is specular.
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SPECULAR GROUPS REDUCED WORDS

A word is O-reduced if it has no factor of the form af(a) for a € A.

Any element of a specular group is represented by a unique reduced word.

FRANCEScO DOLCE (PARIs-EsT) SPECULAR SETS MONTREAL, 8 AVRIL 2016 5/ 28



SPECULAR GROUPS ~ REDUCED WORDS

A word is O-reduced if it has no factor of the form af(a) for a € A.

Any element of a specular group is represented by a unique reduced word.

Let 6 : b +» d fixing a,c.

The #-reduction of the word daaachd is 77?
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SPECULAR GROUPS ~ REDUCED WORDS

A word is 0-reduced if it has no factor of the form ad(a) for a € A.

Any element of a specular group is represented by a unique reduced word.

Let 6 : b +» d fixing a,c.

The O-reduction of the word d;if;fac}éd is dac
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SPECULAR GROUPS ~ MONOIDAL BAsis

A subset of a group G is called symmetric if it is closed under taking inverses (under 6).

The set X = {a,adc,b,cba,d} is symmetric, for 6 : b +> d fixing a,c.
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SPECULAR GROUPS ~ MONOIDAL BAsis

A subset of a group G is called symmetric if it is closed under taking inverses (under 6).

The set X = {a,adc,b,cba,d} is symmetric, for 6 : b +> d fixing a,c.

A set X in a specular group G is called a monoidal basis of G if :
® it is symmetric;
® the monoid that it generates is G ;

® any product X1Xz - - - Xm such that xkXk;1 # 1 for every k is distinct of 1.

The alphabet A is a monoidal basis of Gg.

The symmetric rank of a specular group is the cardinality of any monoidal basis.
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SPECULAR SETS  EXTENSION GRAPHS

The extension graph of a word w € S is the undirected bipartite graph G (w) with
vertices the disjoint union of

L(w)={acAlawe S} and R(w)={aec AjwaeS},
and edges the pairs E(w) = {(a,b) € Ax A|lawb € S}.
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SPECULAR SETS  EXTENSION GRAPHS

The extension graph of a word w € S is the undirected bipartite graph G (w) with
vertices the disjoint union of

L(w)={acAlawe S} and R(w)={aec AjwaeS},
and edges the pairs E(w) = {(a,b) € Ax A|lawb € S}.

Example (Fibonacci)

S = {e, a, b, aa, ab, ba, aab, aba, baa, bab, . ..}.

E(e) E () E(b)
@@ @ (&)

OB ONNC A0
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SPECULAR SETS ~ TREES

A tree is a graph that is both acyclic and connected.
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SPECULAR SETS ~ TREES

A tree is a graph that is both acyclic and connected.

%
S

ﬁ
N
7

Theorem [L.N. Tolstoy (1878)]

Tree families are all alike ; every untree family is untree in its own way.
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SPECULAR SETS ~ TREE SETS

A factorial and biextendable set S is called a tree set of characteristic ¢ if for any
nonempty w € S, the graph E (w) is a tree and if E(¢) is a union of ¢ trees.

The Fibonacci set is a tree set of characteristic 1.
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SPECULAR SETS ~ TREE SETS

A factorial and biextendable set S is called a tree set of characteristic ¢ if for any
nonempty w € S, the graph E(w) is a tree and if E (&) is a union of c trees.

The Fibonacci set is a tree set of characteristic 1.

Proposition [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

Factors of an Arnoux-Rauzy word and regular interval exchange sets are both (uniformly)
recurrent tree sets of characteristic 1.

v,

Example (Tribonacci)
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SPECULAR SETS ~ DEFINITION AND FACTOR COMPLEXITY

A specular set on an alphabet A (w.r.t. an involution ) is a
- biextendable and
- symmetric set
- of #-reduced words

- which is a tree set of characteristic 2.
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- which is a tree set of characteristic 2.

Let A = {a,b} and 0 be the identity on A. The set of factors of (ab)“ is a specular set.

E(e)
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SPECULAR SETS ~ DEFINITION AND FACTOR COMPLEXITY

A specular set on an alphabet A (w.r.t. an involution ) is a
- biextendable and
- symmetric set

- of #-reduced words

- which is a tree set of characteristic 2.

Let A = {a,b} and 0 be the identity on A. The set of factors of (ab)“ is a specular set.

E(e)

Proposition [using J. Cassaigne (1997)]
The factor complexity of a specular set is given by po =1 and pn=n(Card (A)— 2) + 2.
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SPECULAR SETS LINEAR INVOLUTIONS

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

T=0'2001

o1
a e

g2

FRANCEScO DOLCE (PARIs-EsT) SPECULAR SETS MONTREAL, 8 AVRIL 2016 11 /28



SPECULAR SETS LINEAR INVOLUTIONS
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The natural coding of a linear involution without connections is a specular set.

YT(z)=a
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SPECULAR SETS LINEAR INVOLUTIONS

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The natural coding of a linear involution without connections is a specular set.

—1

0 I b o b O

© ¢ .\_/ ¢t a™t °
YT(z)=ab 'chb
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SPECULAR SETS ~ DOUBLING MAPS

A doubling transducer is a transducer with set of states {0,1} such that :
1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

Y ={a}

o o@iso
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SPECULAR SETS ~ DOUBLING MAPS

A doubling transducer is a transducer with set of states {0,1} such that :
1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

A doubling map is a pair 6 = (do,01), where di(u) = v for a path starting at the state i
with input label u and output label v.

Y ={a}

do (o) = (ab)”

A={ab} b1 () = (ba)”
olliBo
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SPECULAR SETS ~ DOUBLING MAPS

A doubling transducer is a transducer with set of states {0,1} such that :
1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

A doubling map is a pair 6 = (do,01), where di(u) = v for a path starting at the state i
with input label u and output label v.

The image of aset T is 6(T) = do(T)U 61 (T).

Y ={a}

do (o) = (ab)”

A={ab} b1 () = (ba)”
olliBo

alb §(a®) = (ab)” U (ba)”
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SPECULAR SETS ~ DOUBLING MAPS

Proposition [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

The image of a tree set of characteristic 1 closed under reversal is a specular set with
respect to 0.4.

ala
alfa(a)
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SPECULAR SETS ~ DOUBLING MAPS

Example (two doublings of Fibonacci on ¥ = {«, 8})

e Fac(abaababa- --) U Fac(cdcedede - - ) al=9c

b—d

ala alc ) e
d—b
Blb ( K@ 8ld ~
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SPECULAR SETS ~ DOUBLING MAPS

Example (two doublings of Fibonacci on ¥ = {«, 8})

e Fac(abaababa- --) U Fac(cdcedede - - ) al=9c
o4 b—d

ala alc crra
de—b
8|b O@ @Q sld ~

e Fac(abcabcda- - -) U Fac (cdacdabc - - -)

ara

04 b—d

oja 4 ) e

Bld .@.o‘ Alb d—b
ale
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SPECULAR SETS  EVEN AND OpD WORDS

A letter is even if its two occurences (as a element of L(e) and of R(e)) appear in the
same tree of E(¢). Otherwise it is odd.
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SPECULAR SETS  EVEN AND OpD WORDS

A letter is even if its two occurences (as a element of L(e) and of R(e)) appear in the
same tree of E(¢). Otherwise it is odd.

Example (doubling of Fibonacci)
E(e)

ala

J@Gommsogrl

alc

The letters b and d are even,
while a and ¢ are odd.
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SPECULAR SETS  EVEN AND OpD WORDS

A letter is even if its two occurences (as a element of L(e) and of R(e)) appear in the
same tree of E(¢). Otherwise it is odd.

Example (doubling of Fibonacci)
E(e)

ala

J@Gommsogrl

alc

The letters b and d are even,
while a and ¢ are odd.

A word is even if it has an even number of odd letters. Otherwise it is odd.
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RETURN WORDS ~ RIGHT RETURN WORDS

A right return word to w in S is a nonempty word u such that wue S N A*w, but has
no internal factor equal to w.

We denote by R(w) the set of right return words to w in S.

Example (Fibonacci)
R(aa) = {baa, babaa}.

»(a)* = abaababaabaababaababaabaababaabaab- - -
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A right return word to w in S is a nonempty word u such that wue S N A*w, but has
no internal factor equal to w.

We denote by R(w) the set of right return words to w in S.

Example (Fibonacci)

R(aa) = {baa, babaa}.

»(a)* = abaababaabaababaababaabaababaabaab- - -

Proposition [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

For every w in a specular set, every word in R(W) is even.
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RETURN WORDS RIGHT RETURN WORDS

A right return word to w in S is a nonempty word u such that wue S N A*w, but has
no internal factor equal to w.

We denote by R(w) the set of right return words to w in S.

Example (Fibonacci)

R(aa) = {baa, babaa}.

p(a)” = abaababaabaababaababaabaababaabaab- - -

Proposition [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

For every w in a specular set, every word in R(W) is even.

Cardinality Theorem for right return words [BDDDLPRR (2015)]

For any w in a recurrent specular set, Card (R(w)) = Card (A)— 1.
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RETURN WORDS Birix CoDES

A set X C A" of nonempty words over an alphabet A is a bifix code if it does not
contain any proper prefix or suffix of its elements.

e {aa ab,ba}
e {aa, ab, bba, bbb}
e {ac,bcc, bebea}

e {bagnole, char, chariotte}
e {bise, bec, Québec}
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RETURN WORDS Birix CoDES

A set X C A" of nonempty words over an alphabet A is a bifix code if it does not
contain any proper prefix or suffix of its elements.

e {aa ab,ba}
e {aa, ab, bba, bbb}
e {ac,bcc, bebea}

e {bagnole, char, chariotte}
e {bise, bec, Québec}

The kernel of a bifix code is the set of words of X which are internal factors of X.

The kernel of the code {a,b, ba,aba} is the set {b}. l
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RETURN WORDS ~ COMPLETE RETURN WORDS

A complete return word to a set X C S is a word in the set (SN XATNATX )\ ATXA".

We denote by CR(X) the set of complete return words to X.

Example (Fibonacci)

CR({aa}) = {aabaa, aababaa}.

»(a)® = abaababaabaababaababaabaababaabaab- - -
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RETURN WORDS COMPLETE RETURN WORDS

A complete return word to a set X C S is a word in the set (SN XATNATX )\ ATXA".

We denote by CR(X) the set of complete return words to X.

Example (Fibonacci)

CR({aa}) = {aabaa, aababaa}.

»(a)® = abaababaabaababaababaabaababaabaab- - -

In a recurrent specular set, one has Card (CR({w})) = Card (R(w)) = Card (A)— 1.

Cardinality Theorem for complete return words [BDDDLPRR (2015)]

Let S be a recurrent specular set and X C S be a finite bifix code with empty kernel.
Then, Card (CR(X))= Card (X )+ Card (A)— 2.
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PALINDROMES DEFINITION

A palindrome is a word w = W as, for instance :

FRANCEScO DOLCE (PARIs-EsT) SPECULAR SETS MONTREAL, 8 AVRIL 2016 19 / 28



PALINDROMES DEFINITION
A palindrome is a word w = W as, for instance :

. non, 0sso, aveva, rossor, ottetto, ...

FRANCEScO DOLCE (PARIs-EsT) SPECULAR SETS MONTREAL, 8 AVRIL 2016 19 / 28



PALINDROMES DEFINITION
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PALINDROMES DEFINITION
A palindrome is a word w = W as, for instance :
“ non, 0sso, aveva, rossor, ottetto, ...
“ ici, été, coloc, kayak, radar, ...

6:‘ saippuakivikauppias, ...
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PALINDROMES DEFINITION
A palindrome is a word w = W as, for instance :
“ non, 0sso, aveva, rossor, ottetto, ...
“ ici, été, coloc, kayak, radar, ...

6:‘ saippuakivikauppias, ...

(e )
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PALINDROMES FuLL WORDS AND FULL SETS

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most n + 1 palindrome factors.

A word with maximal number of palindromes is full (or rich). A factorial set is full if all
its elements are full.

FRANCEScO DOLCE (PARIs-EsT) SPECULAR SETS MONTREAL, 8 AVRIL 2016 20 / 28



PALINDROMES FuLL WORDS AND FULL SETS

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most n + 1 palindrome factors.

A word with maximal number of palindromes is full (or rich). A factorial set is full if all
its elements are full.

Example (Fibonacci)

Pal(abaab) = {¢, a,b,aa,aba, baab}.
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PALINDROMES FuLL WORDS AND FULL SETS

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most n + 1 palindrome factors.

A word with maximal number of palindromes is full (or rich). A factorial set is full if all
its elements are full.

Example (Fibonacci)

Pal(abaab) = {¢, a,b,aa,aba, baab}.

Theorem [A. Glen, J. Justin, S. Widmer, L.Q. Zamboni (2009)]

A recurrent set closed under reversal is full iff every complete return word to a palindrome
is a palindrome.
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PALINDROMES TREE SETS

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

Arnoux-Rauzy sets are full.
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PALINDROMES TREE SETS

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

Arnoux-Rauzy sets are full.

Theorem [P. Balazi, Z. Masikov3, E. Pelantova (2007)]

Natural codings of interval exchanges defined by a symmetric permutation are full.
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PALINDROMES TREE SETS

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

Arnoux-Rauzy sets are full.

Theorem [P. Balazi, Z. Masikov3, E. Pelantova (2007)]

Natural codings of interval exchanges defined by a symmetric permutation are full.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

Recurrent tree sets of characteristic 1 closed under reversal are full.
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PALINDROMES 0 -PALINDROMES

Let o be an antimorphism.
A word W is a o-palindrome if w = o(w).
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Theorem [S. Starosta (2011), S. Brlek, N. Lafreniere (2014)]
Card (Pal,(w)) < n+1— v,(w).

A word (set) is o-full if the equality holds (for all its elements).
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A word (set) is o-full if the equality holds (for all its elements).

Example

Letoc:A«<> T,E<+> N, and 7 :B <> K,E <> R.

Card (Pal, (REUTENAUER)) = Card ({¢,R, U, EN, TENA, UTENAU})
6<9=10+1-2.
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Card (Pal,(w)) < n+1— v,(w).

A word (set) is o-full if the equality holds (for all its elements).

Example

Letoc:A«<> T,E<+> N, and 7 :B <> K,E <> R.

Card (Pal, (REUTENAUER))

Card ({¢,R, U, EN, TENA, UTENAU })
6<9=10+1-2.

Card (Pal;(BRLEK)) Card ({e, L, RLE, BRLEK })

= 4=5+1-2

v
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PALINDROMES G»PALII\'DRO]\IES

Let G be a group containing at least an antimorphism.
A word w is a G-palindrome if there exists g € G s.t. w = g(w).
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Example

Let G = (o, 1), with 0:C<+EP< RS+ T,I<0and
7T:C< E KRS+ O0.
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A word w is a G -palindrome if there exists g € G s.t. w = g(w).

Example

Let G = (o, 1), with 0:C<+EP< RS+ T,I<0and
7T:C< E KRS+ O0.

The following words are G -palindromes :
® CHRISTOPHE, fixed by o,
® SRECKO, fixed by T,
® RESSASSER, fixed by id.

A word (set) is G-full * if... “the number of G-palindromes if maximal”.

% G-richin [E. Pelantova, 5. Starosta (2014)].
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PALINDROMES ~ SPECULAR SETS

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

Let T be a recurrent tree set of characteristic 1 closed under reversal.
The image of T under a doubling map A is G 4-full.

Ga={id,o, 7,07} ~(Z/27) x (Z/2Z)

with ¢ an antimorphism and 7 a morphism.

FRANCEScO DOLCE (PARIs-EsT)
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PALINDROMES ~ SPECULAR SETS

Theorem [E. Pelantovs, S. Starosta (2014)]

A set S closed under G is G-full if for every w € S, every complete return word to the
G-orbit of w is fixed by a nontrivial element of G.
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PALINDROMES ~ SPECULAR SETS

Theorem [E. Pelantovs, S. Starosta (2014)]

A set S closed under G is G-full if for every w € S, every complete return word to the
G-orbit of w is fixed by a nontrivial element of G.

Example (doubling of Fibonacci)

ala o: bed
Bld .o.e‘ Blb T aoc
alc b+« d

OT = TO @ a<r C
The G s-orbit of ais {a,c}.

All elements of CR({a,c}) = {abc,ac,ca,cda} are fixed by o7 € G 4.
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Conclusions

Summing up

Tree and specular sets.

Connections to specular groups.

Doubling maps.

Cardinality Theorems for return words.

Palindromes and (G-)full sets.
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Further Research Directions

and other works in progress

Decidability of the tree (and specular) condition.

Tree set and free groups

Tree set of x =1 = R(W) is a basis of the free group for every w
Explicit formula for number of G -palindromes.

Generalization towards larger classes of groups (virtually free)
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