Specular sets

Francesco Dolce

Montréal, 8 avril 2016

loint work with

V. Berthé, C. De Felice, V. Delecroix, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone

Generalization of links between Sturmian (Arnoux-Rauzy) sets and Free groups to general objects: Specular sets and Specular groups.

Generalization of links between Sturmian (Arnoux-Rauzy) sets and Free groups to general objects: Specular sets and Specular groups.

Generalization of tree sets.

Generalization of links between Sturmian (Arnoux-Rauzy) sets and Free groups to general objects: Specular sets and Specular groups.

Generalization of tree sets.

Two interesting classes: linear involutions (generalization of interval exchange transformations) and doublings.

Generalization of links between Sturmian (Arnoux-Rauzy) sets and Free groups to general objects: Specular sets and Specular groups.

Generalization of tree sets.

Two interesting classes: linear involutions (generalization of interval exchange transformations) and doublings.

Introduction of new concepts: parity of words (odd and even words).

Generalization of links between Sturmian (Arnoux-Rauzy) sets and Free groups to general objects: Specular sets and Specular groups.

Generalization of tree sets.

Two interesting classes: linear involutions (generalization of interval exchange transformations) and doublings.

Introduction of new concepts: parity of words (odd and even words).

Some results about return words and palindromes.

Outline

Introduction

- 1. Specular groups
- 2. Specular sets
- 3. Return words
- 4. Palindromes Conclusions

Given an involution $\theta:A\to A$ (possibly with some fixed point), let us define

$$G_\theta = \langle a \in A \ | \ a \cdot \theta(a) = 1 \text{ for every } a \in A \rangle.$$

 $G_{\theta}=\mathbb{Z}^{\dot{1}}*(\mathbb{Z}/2\mathbb{Z})^{\dot{j}}$ is a specular group of type (i,j), and $\text{Card}\,(A)=2i+j$ is its symmetric rank.

Example

Let θ : $b \leftrightarrow d$ fixing a, c.

$$G_\theta = \langle a,b,c\,, \textcolor{red}{d} \ | \ a^2 = c^2 = \textcolor{red}{bd} = \textcolor{red}{db} = \textcolor{blue}{1} \rangle.$$

 $G_{\theta} = \mathbb{Z} * (\mathbb{Z}/2\mathbb{Z})^2$ is a specular group of type (1,2) and symmetric rank 4.

Given an involution $\theta:A\to A$ (possibly with some fixed point), let us define

$$G_{\theta} = \langle a \in A \mid a \cdot \theta(a) = 1 \text{ for every } a \in A \rangle.$$

 $G_{\theta}=\mathbb{Z}^{\dot{1}}*(\mathbb{Z}/2\mathbb{Z})^{\dot{j}}$ is a specular group of type (i,j), and $\text{Card}\,(A)=2i+j$ is its symmetric rank.

Example

Let $\theta : \mathbf{b} \leftrightarrow \mathbf{d}$ fixing \mathbf{a}, \mathbf{c} .

$$G_{\theta} = \langle a, b, c, d \mid a^2 = c^2 = bd = db = 1 \rangle.$$

 $G_{\theta} = \mathbb{Z} * (\mathbb{Z}/2\mathbb{Z})^2$ is a specular group of type (1,2) and symmetric rank 4.

Theorem [using Kurosh Subgroup Theorem]

Any subgroup of a specular group is specular.

A word is θ -reduced if it has no factor of the form $a\theta(a)$ for $a \in A$.

Any element of a specular group is represented by a unique reduced word.

5 / 28

A word is θ -reduced if it has no factor of the form $a\theta(a)$ for $a \in A$.

Any element of a specular group is represented by a unique reduced word.

Example

Let $\theta: b \leftrightarrow d$ fixing a, c.

The θ -reduction of the word daaacbd is ???

A word is θ -reduced if it has no factor of the form $a\theta(a)$ for $a \in A$.

Any element of a specular group is represented by a unique reduced word.

Example

Let $\theta : b \leftrightarrow d$ fixing a, c.

The θ -reduction of the word $\frac{d}{dz} \frac{dz}{dz} \frac{dz}{dz}$ is $\frac{dz}{dz}$

A subset of a group G is called *symmetric* if it is closed under taking inverses (under θ).

Example

The set $X = \{a, adc, b, cba, d\}$ is symmetric, for $\theta : b \leftrightarrow d$ fixing a, c.

6 / 28

A subset of a group G is called *symmetric* if it is closed under taking inverses (under θ).

Example

The set $X = \{a, adc, b, cba, d\}$ is symmetric, for $\theta : b \leftrightarrow d$ fixing a, c.

A set X in a specular group G is called a *monoidal basis* of G if :

- it is symmetric;
- the monoid that it generates is G;
- any product $x_1x_2 \cdots x_m$ such that $x_k x_{k+1} \neq 1$ for every k is distinct of 1.

Example

The alphabet A is a monoidal basis of G_{θ} .

The symmetric rank of a specular group is the cardinality of any monoidal basis.

The extension graph of a word $w \in S$ is the undirected bipartite graph G(w) with vertices the disjoint union of

$$L(\textbf{w}) = \{a \in A \,|\, a\textbf{w} \in S\,\} \quad \text{and} \quad R(\textbf{w}) = \{a \in A \,|\, \textbf{w}a \in S\,\},$$

and edges the pairs $E(\mathbf{w}) = \{(a,b) \in A \times A \mid a\mathbf{w}b \in S\}.$

The extension graph of a word $w \in S$ is the undirected bipartite graph $G\left(w\right)$ with vertices the disjoint union of

$$L(\mathbf{w}) = \{a \in A \,|\, a\mathbf{w} \in S\,\} \quad \text{and} \quad R(\mathbf{w}) = \{a \in A \,|\, \mathbf{w}a \in S\,\},$$

and edges the pairs $E(w) = \{(a,b) \in A \times A \mid awb \in S \}.$

8 / 28

Theorem [L.N. Tolstoy (1878)]

Tree families are all alike; every untree family is untree in its own way.

A factorial and biextendable set S is called a *tree set* of *characteristic* c if for any nonempty $w \in S$, the graph E(w) is a tree and if $E(\varepsilon)$ is a union of c trees.

Example

The Fibonacci set is a tree set of characteristic 1.

9 / 28

A factorial and biextendable set S is called a *tree set* of *characteristic* c if for any nonempty $w \in S$, the graph E(w) is a tree and if $E(\varepsilon)$ is a union of c trees.

Example

The Fibonacci set is a tree set of characteristic 1.

Proposition [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

Factors of an Arnoux-Rauzy word and regular interval exchange sets are both (uniformly) recurrent tree sets of characteristic 1.

Example (Tribonacci)

A specular set on an alphabet A (w.r.t. an involution θ) is a

- biextendable and
- symmetric set
- of θ -reduced words
- which is a tree set of characteristic 2.

A specular set on an alphabet A (w.r.t. an involution θ) is a

- biextendable and
- symmetric set
- of θ -reduced words
- which is a tree set of characteristic 2.

Example

Let $A = \{a, b\}$ and θ be the identity on A. The set of factors of $(ab)^{\omega}$ is a specular set.

A specular set on an alphabet A (w.r.t. an involution θ) is a

- biextendable and
- symmetric set
- of θ -reduced words
- which is a tree set of characteristic 2.

Example

Let $A = \{a, b\}$ and θ be the identity on A. The set of factors of $(ab)^{\omega}$ is a specular set.

Proposition [using J. Cassaigne (1997)]

The factor complexity of a specular set is given by $p_0 = 1$ and $p_n = n(Card(A) - 2) + 2$.

$$T=\sigma_2\circ\sigma_1$$

A doubling transducer is a transducer with set of states $\{0,1\}$ such that :

- 1. the input automaton is a group automaton,
- 2. the output labels of the edges are all distinct.

Example

$$\Sigma = \{\alpha\}$$
$$A = \{a, b\}$$

Montréal, 8 avril 2016

A doubling transducer is a transducer with set of states $\{0,1\}$ such that :

- 1. the input automaton is a group automaton,
- 2. the output labels of the edges are all distinct.

A doubling map is a pair $\delta = (\delta_0, \delta_1)$, where $\delta_i(u) = v$ for a path starting at the state i with input label \mathbf{u} and output label \mathbf{v} .

Example

$$\Sigma = {\alpha}$$
$$A = {a, b}$$

$$\delta_0 (\alpha^{\omega}) = (ab)^{\omega}$$

 $\delta_1 (\alpha^{\omega}) = (ba)^{\omega}$

A doubling transducer is a transducer with set of states $\{0,1\}$ such that :

- 1. the input automaton is a group automaton,
- 2. the output labels of the edges are all distinct.

A doubling map is a pair $\delta = (\delta_0, \delta_1)$, where $\delta_i(u) = v$ for a path starting at the state i with input label \mathbf{u} and output label \mathbf{v} .

The *image* of a set T is $\delta(T) = \delta_0(T) \cup \delta_1(T)$.

Example $\Sigma = \{\alpha\}$ $\delta_0 (\alpha^{\omega}) = (ab)^{\omega}$ $\alpha \mid a$ $\delta_1 (\alpha^{\omega}) = (ba)^{\omega}$ $A = \{a, b\}$ $\alpha \mid b$ $\delta(\alpha^{\omega}) = (ab)^{\omega} \cup (ba)^{\omega}$

The image of a tree set of characteristic 1 closed under reversal is a specular set with respect to θ_A .

Example (two doublings of Fibonacci on $\Sigma = \{\alpha, \beta\}$)

• $Fac(abaababa \cdots) \cup Fac(cdccdcdc \cdots)$

$$\frac{\alpha|\mathbf{a}}{\beta|\mathbf{b}}$$

$$\frac{\alpha|c}{\beta|d}$$

$$\theta_{\mathcal{A}}: \left\{ \begin{array}{l} \mathbf{a} \mapsto \mathbf{c} \\ \mathbf{b} \mapsto \mathbf{d} \\ \mathbf{c} \mapsto \mathbf{a} \\ \mathbf{d} \mapsto \mathbf{b} \end{array} \right.$$

Example (two doublings of Fibonacci on $\Sigma = \{\alpha, \beta\}$)

• $Fac(abaababa\cdots) \cup Fac(cdccdcdc\cdots)$

$$\frac{\alpha|\mathbf{a}}{\beta|\mathbf{b}}$$

$$\frac{\alpha|c}{\beta|d}$$

$$\theta_{\mathcal{A}}: \left\{ \begin{array}{l} \mathbf{a} \mapsto \mathbf{c} \\ \mathbf{b} \mapsto \mathbf{d} \\ \mathbf{c} \mapsto \mathbf{a} \\ \mathbf{d} \mapsto \mathbf{b} \end{array} \right.$$

• $Fac(abcabcda\cdots) \cup Fac(cdacdabc\cdots)$

$$\theta_{\mathcal{A}}: \left\{ \begin{array}{l} \mathbf{a} \mapsto \mathbf{a} \\ \mathbf{b} \mapsto \mathbf{d} \\ \mathbf{c} \mapsto \mathbf{c} \\ \mathbf{d} \mapsto \mathbf{b} \end{array} \right.$$

Montréal, 8 avril 2016

A letter is even if its two occurrences (as a element of $L(\varepsilon)$ and of $R(\varepsilon)$) appear in the same tree of $E(\varepsilon)$. Otherwise it is *odd*.

A letter is *even* if its two occurences (as a element of $L(\varepsilon)$ and of $R(\varepsilon)$) appear in the same tree of $E(\varepsilon)$. Otherwise it is *odd*.

A letter is even if its two occurrences (as a element of $L(\varepsilon)$ and of $R(\varepsilon)$) appear in the same tree of $E(\varepsilon)$. Otherwise it is *odd*.

A word is even if it has an even number of odd letters. Otherwise it is odd.

A right return word to w in S is a nonempty word u such that $wu \in S \cap A^*w$, but has no internal factor equal to w.

We denote by $\mathcal{R}(w)$ the set of right return words to w in S.

Example (Fibonacci)

$$\mathcal{R}(aa) = \{b\underline{aa}, bab\underline{aa}\}.$$

A right return word to w in S is a nonempty word u such that $wu \in S \cap A^*w$, but has no internal factor equal to w.

We denote by $\mathcal{R}(w)$ the set of right return words to w in S.

Example (Fibonacci)

$$\mathcal{R}(\mathbf{aa}) = \{\mathbf{b}\underline{\mathbf{aa}}, \mathbf{bab}\underline{\mathbf{aa}}\}.$$

Proposition [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

For every w in a specular set, every word in $\mathcal{R}(w)$ is even.

A right return word to w in S is a nonempty word u such that $wu \in S \cap A^*w$, but has no internal factor equal to w.

We denote by $\mathcal{R}(w)$ the set of right return words to w in S.

Example (Fibonacci)

$$\mathcal{R}(aa) = \{b\underline{aa}, bab\underline{aa}\}.$$

Proposition [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

For every w in a specular set, every word in $\mathcal{R}(w)$ is even.

Cardinality Theorem for right return words [BDDDLPRR (2015)]

For any w in a recurrent specular set, $Card(\mathcal{R}(w)) = Card(A) - 1$.

A set $X \subset A^+$ of nonempty words over an alphabet A is a *bifix code* if it does not contain any proper prefix or suffix of its elements.

Example

- {aa, ab, ba}
- {aa, ab, bba, bbb}
- {ac, bcc, bcbca}

- {bagnole, char, chariotte}
- {bise, bec, Québec}

A set $X \subset A^+$ of nonempty words over an alphabet A is a bifix code if it does not contain any proper prefix or suffix of its elements.

Example

- {aa, ab, ba}
- {aa, ab, bba, bbb}
- {ac, bcc, bcbca}

- {bagnole, char, <u>char</u>iotte}
- {bise, bec, Québec}

The kernel of a hifix code is the set of words of X which are internal factors of X

Example

The kernel of the code $\{a, b, ba, aba\}$ is the set $\{b\}$.

A complete return word to a set $X \subset S$ is a word in the set $(S \cap XA^+ \cap A^+X) \setminus A^+XA^+$.

We denote by $\mathcal{CR}(X)$ the set of complete return words to X.

Example (Fibonacci)

$$CR({aa}) = {\underline{aa}b\underline{aa}, \underline{aa}b\underline{abaa}}.$$

$$\varphi(a)^{\omega} = ab\underline{aa}bab\underline{aa}baababaababaababaabaabaab \underline{aa}$$

A complete return word to a set $X \subset S$ is a word in the set $(S \cap XA^+ \cap A^+X) \setminus A^+XA^+$.

We denote by $\mathcal{CR}(X)$ the set of complete return words to X.

Example (Fibonacci)

$$CR({aa}) = {\underline{aa}b\underline{aa}, \underline{aa}b\underline{abaa}}.$$

In a recurrent specular set, one has $Card(\mathcal{CR}(\{w\})) = Card(\mathcal{R}(w)) = Card(A) - 1$.

A complete return word to a set $X \subset S$ is a word in the set $(S \cap XA^+ \cap A^+X) \setminus A^+XA^+$.

We denote by $\mathcal{CR}(X)$ the set of complete return words to X.

Example (Fibonacci)

$$CR(\{aa\}) = \{\underline{aa}b\underline{aa}, \underline{aa}bab\underline{aa}\}.$$

$$\varphi(a)^{\omega}=ab\underline{aa}bab\underline{aa}baababaabab\underline{aa}b\underline{aa}babaabaab\cdots$$

In a recurrent specular set, one has $Card(\mathcal{CR}(\{w\})) = Card(\mathcal{R}(w)) = Card(A) - 1$.

Cardinality Theorem for complete return words [BDDDLPRR (2015)]

Let S be a recurrent specular set and $X \subset S$ be a finite bifix code with empty kernel. Then, $Card(\mathcal{CR}(X)) = Card(X) + Card(A) - 2$.

non, osso, aveva, rossor, ottetto, ...

non, osso, aveva, rossor, ottetto, ...

ici, été, coloc, kayak, radar, ...

non, osso, aveva, rossor, ottetto, ...

ici, été, coloc, kayak, radar, ...

saippuakivikauppias, ...

non, osso, aveva, rossor, ottetto, ...

ici, été, coloc, kayak, radar, ...

saippuakivikauppias, ...

A word of length n has at most n+1 palindrome factors.

A word with maximal number of palindromes is *full* (or *rich*). A factorial set is *full* if all its elements are full.

A word of length n has at most $n+1\mbox{ palindrome}$ factors.

A word with maximal number of palindromes is *full* (or *rich*). A factorial set is *full* if all its elements are full.

Example (Fibonacci)

 $Pal(abaab) = \{\varepsilon, a, b, aa, aba, baab\}.$

A word of length n has at most n + 1 palindrome factors.

A word with maximal number of palindromes is full (or rich). A factorial set is full if all its elements are full.

Example (Fibonacci)

 $Pal(abaab) = \{\varepsilon, a, b, aa, aba, baab\}.$

Theorem [A. Glen, J. Justin, S. Widmer, L.Q. Zamboni (2009)]

A recurrent set closed under reversal is full iff every complete return word to a palindrome is a palindrome.

Arnoux-Rauzy sets are full.

21 / 28

Arnoux-Rauzy sets are full.

Theorem [P. Balázi, Z. Masáková, E. Pelantová (2007)]

Natural codings of interval exchanges defined by a symmetric permutation are full.

Arnoux-Rauzy sets are full.

Theorem [P. Balázi, Z. Masáková, E. Pelantová (2007)]

Natural codings of interval exchanges defined by a symmetric permutation are full.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

Recurrent tree sets of characteristic 1 closed under reversal are full.

A word w is a σ -palindrome if $w = \sigma(w)$.

A word w is a σ -palindrome if $w = \sigma(w)$.

Example

Let $\sigma : A \leftrightarrow T, C \leftrightarrow G$. The word CTTAAG is a σ -palindrome.

A word w is a σ -palindrome if $w = \sigma(w)$.

Example

Let $\sigma : A \leftrightarrow T, C \leftrightarrow G$. The word CTTAAG is a σ -palindrome.

Theorem [Š. Starosta (2011), S. Brlek, N. Lafrenière (2014)]

Card (Pal_{σ}(w)) < n + 1 - γ_{σ} (w).

A word (set) is σ -full if the equality holds (for all its elements).

A word w is a σ -palindrome if $w = \sigma(w)$.

Example

Let $\sigma: A \leftrightarrow T, C \leftrightarrow G$. The word CTTAAG is a σ -palindrome.

Theorem [Š. Starosta (2011), S. Brlek, N. Lafrenière (2014)]

 $\operatorname{\mathsf{Card}}\left(\operatorname{\mathsf{Pal}}_{\sigma}(\mathbf{w})\right) \leq \mathbf{n} + 1 - \gamma_{\sigma}(\mathbf{w}).$

A word (set) is σ -full if the equality holds (for all its elements).

Example

Let $\sigma: A \leftrightarrow T, E \leftrightarrow N$, and $\tau: B \leftrightarrow K, E \leftrightarrow R$.

A word w is a σ -palindrome if $w = \sigma(w)$.

Example

Let $\sigma: A \leftrightarrow T, C \leftrightarrow G$. The word CTTAAG is a σ -palindrome.

Theorem [Š. Starosta (2011), S. Brlek, N. Lafrenière (2014)]

 $\operatorname{\mathsf{Card}}\left(\operatorname{\mathsf{Pal}}_{\sigma}(\mathbf{w})\right) \leq \mathbf{n} + 1 - \gamma_{\sigma}(\mathbf{w}).$

A word (set) is σ -full if the equality holds (for all its elements).

Example

Let $\sigma: \mathtt{A} \leftrightarrow \mathtt{T}, \mathtt{E} \leftrightarrow \mathtt{N}$, and $\tau: \mathtt{B} \leftrightarrow \mathtt{K}, \mathtt{E} \leftrightarrow \mathtt{R}$.

Card (Pal_{$$\sigma$$}(REUTENAUER)) = Card ($\{\varepsilon, R, U, EN, TENA, UTENAU\}$)
= $6 < 9 = 10 + 1 - 2$.

A word w is a σ -palindrome if $w = \sigma(w)$.

Example

Let $\sigma : A \leftrightarrow T, C \leftrightarrow G$. The word CTTAAG is a σ -palindrome.

Theorem [Š. Starosta (2011), S. Brlek, N. Lafrenière (2014)]

Card (Pal_{\sigma}(w)) < n + 1 - \gamma_\sigma(w).

A word (set) is σ -full if the equality holds (for all its elements).

Example

Let
$$\sigma: \mathtt{A} \leftrightarrow \mathtt{T}, \mathtt{E} \leftrightarrow \mathtt{N}$$
, and $\tau: \mathtt{B} \leftrightarrow \mathtt{K}, \mathtt{E} \leftrightarrow \mathtt{R}$.

Card (Pal_{\sigma}(REUTENAUER)) = Card (
$$\{\varepsilon, R, U, EN, TENA, UTENAU\}$$
)
= 6 < 9 = 10 + 1 - 2.

$$\mathsf{Card}\left(\mathsf{Pal}_{ au}(\mathsf{BRLEK})\right) \ = \ \mathsf{Card}\left(\left\{arepsilon,\mathsf{L},\mathsf{RLE},\mathsf{BRLEK}\right\}\right)$$

$$= 4 = 5 + 1 - 2.$$

A word w is a G-palindrome if there exists $g \in G$ s.t. w = g(w).

A word w is a G -palindrome if there exists $g \in G$ s.t. w = g(w).

Example

Let
$$G = \langle \sigma, \tau \rangle$$
, with
$$\begin{split} \sigma: \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{P} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{T}, \mathtt{I} \leftrightarrow \mathtt{0} \text{ and} \\ \tau: \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{K} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{0}. \end{split}$$

The following words are G-palindromes:

A word w is a G -palindrome if there exists $g \in G$ s.t. w = g(w).

Example

Let
$$G = \langle \sigma, \tau \rangle$$
, with
$$\begin{split} \sigma: \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{P} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{T}, \mathtt{I} \leftrightarrow \mathtt{0} \text{ and} \\ \tau: \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{K} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{0}. \end{split}$$

The following words are G-palindromes:

• CHRISTOPHE, fixed by σ ,

A word w is a G-palindrome if there exists $g \in G$ s.t. w = g(w).

Example

Let
$$G = \langle \sigma, \tau \rangle$$
, with $\sigma: \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{P} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{T}, \mathtt{I} \leftrightarrow \mathtt{0}$ and $\tau: \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{K} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{0}.$

The following words are G-palindromes:

- CHRISTOPHE, fixed by σ ,
- SRECKO, fixed by τ ,

A word w is a G -palindrome if there exists $g \in G$ s.t. w = g(w).

Example

Let
$$G = \langle \sigma, \tau \rangle$$
, with $\sigma: \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{P} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{T}, \mathtt{I} \leftrightarrow \mathtt{0}$ and $\tau: \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{K} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{0}.$

The following words are G-palindromes:

- CHRISTOPHE, fixed by σ ,
- SRECKO, fixed by au,
- RESSASSER, fixed by id.

A word w is a G-palindrome if there exists $g \in G$ s.t. w = g(w).

Example

Let
$$G = \langle \sigma, \tau \rangle$$
, with $\sigma: \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{P} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{T}, \mathtt{I} \leftrightarrow \mathtt{0}$ and $\tau: \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{K} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{0}.$

The following words are G-palindromes:

- CHRISTOPHE, fixed by σ ,
 - SRECKO, fixed by τ ,
 - RESSASSER, fixed by id.

A word (set) is G-full * if...

* G -rich in [E. Pelantová, Š. Starosta (2014)].

A word w is a G -palindrome if there exists $g\in G$ s.t. w=g(w).

Example

Let
$$G = \langle \sigma, \tau \rangle$$
, with $\sigma : \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{P} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{T}, \mathtt{I} \leftrightarrow \mathtt{0}$ and $\tau : \mathtt{C} \leftrightarrow \mathtt{E}, \mathtt{K} \leftrightarrow \mathtt{R}, \mathtt{S} \leftrightarrow \mathtt{0}.$

The following words are G-palindromes:

- CHRISTOPHE, fixed by σ ,
 - SRECKO, fixed by τ ,
 - RESSASSER, fixed by id.

A word (set) is G-full* if... "the number of G-palindromes if maximal".

* G -rich in [E. Pelantová, Š. Starosta (2014)].

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

Let T be a recurrent tree set of characteristic 1 closed under reversal.

The image of T under a doubling map A is G_A -full.

$$G_{\mathcal{A}} = \{ \mathrm{id}, \sigma, \tau, \sigma \tau \} \simeq (\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$$

with σ an antimorphism and τ a morphism.

Theorem [E. Pelantová, Š. Starosta (2014)]

A set S closed under G is G -full if for every $w\in S$, every complete return word to the G -orbit of w is fixed by a nontrivial element of G .

Theorem [E. Pelantová, Š. Starosta (2014)]

A set S closed under G is G-full if for every $w \in S$, every complete return word to the G-orbit of w is fixed by a nontrivial element of G.

Example (doubling of Fibonacci)

 $\sigma: b \leftrightarrow d$

 $\tau: \mathbf{a} \leftrightarrow \mathbf{c}$ $b \leftrightarrow d$

$$\sigma \tau = \tau \sigma$$
: $\mathbf{a} \leftrightarrow \mathbf{c}$

The G_A -orbit of a is $\{a,c\}$.

All elements of $\mathcal{CR}(\{a,c\}) = \{abc, ac, ca, cda\}$ are fixed by $\sigma\tau \in G_A$.

Conclusions Summing up

- Tree and specular sets.
- Connections to specular groups.
- · Doubling maps.
- Cardinality Theorems for return words.
- Palindromes and (G-)full sets.

Further Research Directions and other works in progress

- Decidability of the tree (and specular) condition.
- Tree set and free groups Tree set of $\chi=1\Longrightarrow \mathcal{R}(w)$ is a basis of the free group for every w
- Explicit formula for number of G-palindromes.
- Generalization towards larger classes of groups (virtually free)

