Regular interval exchange sets over a quadratic field

Francesco Dolce

1 / 16

15e Journées Montoises d'Informatique Théorique Nancy, 23th September 2014

Francesco Dolce (Paris Est)

REGULAR IES OVER A QUADRATIC FIELD

Words and morphisms

A morphism $f : A^* \to A^*$ is *primitive* if there exists k > 0 s.t. *a* appears in $f^k(b)$ for every *a*, *b*.

An infinite word y is morphic if $y = \sigma(x)$ with σ a morphism and $x = f^{\omega}(a)$ a fixpoint of a morphism f. If $\sigma = id$, the word is purely morphic. If f is primitive, the word is primitive morphic.

The set of factors F(x) of an infinite word x is said (*purely*, *primitive*) *morphic* if x is (purely, primitive) morphic.

Francesco Dolce (Paris Est)

Regular IES over a Quadratic Field

<□ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○ LD NANCY, 23th SEPT. 2014 2 / 16

Interval exchange transformations

Let $(I_a)_{a \in A}$ be an ordered partition of $[\ell, r[$. An *interval exchange* transformation (IET) is a map $T : [\ell, r[\rightarrow [\ell, r[$ defined by

$$T(z) = z + \alpha_z$$
 if $z \in I_a$.

<u>Remark :</u> The restriction of a coherent orientable linear involution to one of the components is a IET^{1} .

 ^{1.} See Valérie Berthé's talk just next.
 Image: Comparison of the set of the

Regular interval exchange transformations

T is said to be *minimal* if for any $z \in [\ell, r]$ the orbit $\mathcal{O}(z) = \{T^n(z) \mid n \in \mathbb{Z}\}$ is dense in $[\ell, r]$.

T is said regular if the orbits of the separation points $\neq \ell$ are infinite and disjoint.

Theorem [Keane, 1975]

A regular interval exchange transformation is minimal.

FRANCESCO DOLCE (PARIS EST)

Regular IES over a Quadratic Field

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○ NANCY, 23th Sept. 2014

4 / 16

Let T be an IET relative to $(I_a)_{a \in A}$. The *natural coding* of T relative to $z \in [\ell, r[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

 $a_n = a$ si $T^n(z) \in I_a$.

Example

Let T be an IET relative to $(I_a)_{a \in A}$. The *natural coding* of T relative to $z \in [\ell, r[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

 $a_n = a$ si $T^n(z) \in I_a$.

Example

Let *T* be an IET relative to $(I_a)_{a \in A}$. The *natural coding* of *T* relative to $z \in [\ell, r[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

 $a_n = a$ si $T^n(z) \in I_a$.

Example

Let T be an IET relative to $(I_a)_{a \in A}$. The *natural coding* of T relative to $z \in [\ell, r[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

 $a_n = a$ si $T^n(z) \in I_a$.

Example

Let T be an IET relative to $(I_a)_{a \in A}$. The *natural coding* of T relative to $z \in [\ell, r[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

 $a_n = a$ si $T^n(z) \in I_a$.

Example

Let T be an IET relative to $(I_a)_{a \in A}$. The *natural coding* of T relative to $z \in [\ell, r[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

 $a_n = a$ si $T^n(z) \in I_a$.

Example

Let T be an IET relative to $(I_a)_{a \in A}$. The natural coding of T relative to $z \in [\ell, r]$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

 $a_n = a$ si $T^n(z) \in I_a$.

Example

The Fibonacci word is the natural coding of the rotation of angle α = $(3-\sqrt{5})/2$ relative to the point α , i.e. $T(z) = z + \alpha \mod 1$.

FRANCESCO DOLCE (PARIS EST)

REGULAR IES OVER A QUADRATIC FIELD

Regular interval exchange sets

Proposition

If T is minimal, $F(\Sigma_T(z))$ does not depend on z.

When T is regular (minimal), $F(T) = F(\Sigma_T(z))$ is said a regular (minimal) interval exchange set.

Example

The *Fibonacci set* is the set of factors of <u>a</u> natural coding of the rotation of angle $\alpha = (3 - \sqrt{5})/2$.

Francesco Dolce (Paris Est)

Regular IES over a Quadratic Field Nancy, 23th Sept. 2014

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

6 / 16

Regular interval exchange sets over a quadratic field

Theorem

Let T be a regular IET defined over a quadratic field. Then the interval exchange set F(T) is primitive morphic.

Francesco Dolce (Paris Est)

Regular IES over a Quadratic Field

NANCY, 23th Sept. 2014

7 / 16

Two-sided Rauzy induction

Rauzy induction and natural coding

 $\Sigma_{\mathcal{S}}(\alpha) = a b a b b a b a b b \cdots$

Francesco Dolce (Paris Est)

REGULAR IES OVER A QUADRATIC FIELD

< □ > < □ > < □ > < □ > < □
NANCY, 23th SEPT. 2014

9 / 16

Rauzy induction and natural coding

Theorem

Let T be a regular IET and S a IET obtained by Rauzy induction. There exists an automorphism θ of the free group A° s.t. $\Sigma_T(z) = \theta(\Sigma_S(z))$ for every $z \in D(S)$.

FRANCESCO DOLCE (PARIS EST) REGULAR IES OVER A QUADRATIC FIELD

NANCY, 23th SEPT. 2014 9 / 16

Equivalent IETs

FRANCESCO DOLCE (PARIS EST)

Regular IES over a Quadratic Field

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - 釣A@ NANCY, 23th SEPT. 2014 10 / 16

Equivalent IETs

Equivalent IETs

Theorem (Lagrange, 1770)

Quadratic irrationals have a periodic continued fraction expansion.

Francesco Dolce (Paris Est)

Regular IES over a Quadratic Field

Theorem (Lagrange, 1770)

Quadratic irrationals have a periodic continued fraction expansion.

Theorem (Boshernitzan and Carrol, 1997)

Starting from a regular IET and inducing over a particular kind of subinterval, we obtain a finite number of distinct equivalence classes.

Francesco Dolce (Paris Est)

Regular IES over a Quadratic Field

(ロ) (同) (正) (日) (日)

NANCY, 23th SEPT. 2014 11 / 16

Theorem (Lagrange, 1770)

Quadratic irrationals have a periodic continued fraction expansion.

Theorem (Boshernitzan and Carrol, 1997)

Starting from a regular IET and inducing over a particular kind of subinterval, we obtain a finite number of distinct equivalence classes.

Theorem (D., 2014)

Starting from a regular IET we obtain, by two-sided Rauzy induction, a finite number of distinct equivalence classes.

FRANCESCO DOLCE (PARIS EST)

Regular IES over a Quadratic Field

<□ ▶ < □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ○ Q ○ LD NANCY, 23th SEPT. 2014 11 / 16

$$\frac{|l_a|}{|l_b|} = \frac{4 + \sqrt{2}}{2} = 2 + \frac{1}{1 + \frac{1}{2 + \frac{1}{2 + \dots}}} = [2; 1, 2, 2, 2, \dots]$$

FRANCESCO DOLCE (PARIS EST)

Regular IES over a Quadratic Field

◆□> ◆□> ◆三> ◆三> ● 三 のへの NANCY, 23th SEPT. 2014 12 / 16

Corollary

Let T be a regular IET defined over a quadratic field. In the equivalence graph we can find a path from [T] to a node [S] followed by a cycle.

FRANCESCO DOLCE (PARIS EST)

REGULAR IES OVER A QUADRATIC FIELD

NANCY, 23th SEPT. 2014 14 / 16

Regular interval exchange sets over a quadratic field

Theorem

Let T be a regular IET defined over a quadratic field. Then the interval exchange set F(T) is [primitive] morphic. Proof.

$$([T]) \xrightarrow{\theta} ([S]) \eta$$

There exists a point $z \in D(S)$ and two automorphisms θ , η of the free group s.t.

$$\Sigma_T(z) = \theta(\Sigma_S(z))$$

with $\Sigma_{S}(z)$ fixpoint of η .

Francesco Dolce (Paris Est)

Regular IES over a Quadratic Field

FRANCESCO DOLCE (PARIS EST)

Regular IES over a Quadratic Field

NANCY, 23th SEPT. 2014 16 / 16

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○