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Overview

• Families of sets of words verifying a “classical” property (neutrality)
and a less classical one (tree condition).

• Common generalization of Arnoux-Rauzy languages and interval
exchange sets.

• Enumeration formulæ in these sets for bifix codes and return words.

• Unexpected result about recurrence and uniformly recurrence.
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Neutral Sets Basic Definitions

Let A a finite alphabet and S be a factorial set on A.

For a word w ∈ S , we denote

ℓ(w) = the number of letters a such that aw ∈ S ,

r(w) = the number of letters a such that wa ∈ S ,

e(w) = the number of pairs (a,b) such that awb ∈ S .

A word w is left-special if ℓ(w)≥ 2, right-special if r(w)≥ 2 and bispecial if it is both
left and right-special.
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For a word w ∈ S , we denote

ℓ(w) = the number of letters a such that aw ∈ S ,

r(w) = the number of letters a such that wa ∈ S ,

e(w) = the number of pairs (a,b) such that awb ∈ S .

A word w is left-special if ℓ(w)≥ 2, right-special if r(w)≥ 2 and bispecial if it is both
left and right-special.

The multiplicity of a word w is the quantity

m(w) = e(w)− ℓ(w)− r(w) + 1.

A word is called neutral if m(w) = 0.
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Neutral Sets Basic Definitions

A set S is neutral if it is factorial and every word w ∈ S \ {ε} is neutral.

The integer χ(S) = 1−m(ε) (= ℓ(ε) + r(ε) − e(ε)) is called the characteristic of S .
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Neutral Sets Basic Definitions

A set S is neutral if it is factorial and every word w ∈ S \ {ε} is neutral.

The integer χ(S) = 1−m(ε) (= ℓ(ε) + r(ε) − e(ε)) is called the characteristic of S .

Proposition

Neutral
χ = 1

Arnoux-Rauzy

Interval

Exchanges

Binary

Sturmian

Example (Fibonacci)

Factors of ϕω(a) = abaababaaba · · · of the morphism ϕ : a 7→ ab, b 7→ a.
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Neutral Sets Factor Complexity

The factor complexity of a factorial set S ⊂ A

∗ is the sequence p(n) = Card
(

S ∩An).

Proposition [using J. Cassaigne (1997)]

The factor complexity of a neutral set is given by p(0) = 1 and

p(n) = n

(

Card (A)− χ(S)
)

+ χ(S).

Example

The Fibonacci set has factor complexity p(n) = n+ 1.
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Neutral Sets Tree Sets

The extension graph of a word w ∈ S is the undirected bipartite graph G(w) with
vertices the disjoint union of

L(w) = {a ∈ A | aw ∈ S} and R(w) = {a ∈ A|wa ∈ S},

and edges the pairs E (w) = {(a,b) ∈ A×A | awb ∈ S}

Example (Fibonacci)

S = {ε, a,b, aa, ab,ba, aab, aba,baa,bab, . . .}.

E(ε)

a

b

a

b

E (a)

a

b

a

b

E(b)

a a
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Neutral Sets Tree Sets

A factorial and biextendable set S is called a tree set of characteristic 
 if for any
nonempty w ∈ S , the graph E (w) is a tree and if E (ε) is a union of 
 trees.

Example

The Fibonacci set is a tree set of characteristic 1.
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Neutral Sets Tree Sets

A factorial and biextendable set S is called a tree set of characteristic 
 if for any
nonempty w ∈ S , the graph E (w) is a tree and if E (ε) is a union of 
 trees.

Example

The Fibonacci set is a tree set of characteristic 1.

Proposition [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

n (|A|− χ) + χ

Neutral

Interval

Exchanges

Arnoux-Rauzy

BS

Tree
unif. rec. + χ = 1
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Bifix Codes S-Maximal Bifix Codes

A set X ⊂ A

+ of nonempty words over an alphabet A is a bifix code if it does not
contain any proper prefix or suffix of its elements (as defined by Sabrina a couple of
hours ago).

Example

• {aa, ab,ba}

• {aa, ab,bba,bbb}

• {a
,b

,b
b
a}
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Bifix Codes S-Maximal Bifix Codes

A set X ⊂ A

+ of nonempty words over an alphabet A is a bifix code if it does not
contain any proper prefix or suffix of its elements (as defined by Sabrina a couple of
hours ago).

Example

• {aa, ab,ba}

• {aa, ab,bba,bbb}

• {a
,b

,b
b
a}

X ⊂ S is S-maximal if it is not properly contained in a bifix code Y ⊂ S (more general
than Sabrina and Arturo’s definition).

Example (Fibonacci)

The set X = {aa,ab,ba} is an S-maximal bifix code.
It is not an A∗-maximal bifix code, indeed X ⊂ Y = X ∪ {bb}.
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Bifix Codes Parse and Degree

A parse of a word w w.r.t. a bifix code X is a triple (q,x ,p) with w = qxp and such
that q has no suffix in X , x ∈ X

∗ and p has no prefix in X .

Example

Let X = {aa,ab,ba} and w = abaaba. The two possible parses of w are

• (ε, ab· aa·ba,ε),

• (a,ba · ab, a).
a b a a b a
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Bifix Codes Parse and Degree

A parse of a word w w.r.t. a bifix code X is a triple (q,x ,p) with w = qxp and such
that q has no suffix in X , x ∈ X

∗ and p has no prefix in X .

Example

Let X = {aa,ab,ba} and w = abaaba. The two possible parses of w are

• (ε, ab· aa·ba,ε),

• (a,ba · ab, a).
a b a a b a

The S-degree of X is the maximal number of parses w.r.t. X of a word of S .

Example

• For S = Fibonacci, the set X = {aa,ab,ba} has S-degree 2 ;

• The set X = S ∩An has S-degree n.
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Bifix Codes Cardinality Theorem

Theorem [D., Perrin, (2016)]

Let S be a neutral set of characteristic χ.
For any finite S-maximal bifix code X of S-degree d , one has

Card (X )= d

(

Card (A)− χ
)

+ χ.
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Bifix Codes Cardinality Theorem

Theorem [D., Perrin, (2016)]

Let S be a neutral set of characteristic χ.
For any finite S-maximal bifix code X of S-degree d , one has

Card (X )= d

(

Card (A)− χ
)

+ χ.

Example (Fibonacci)

The set S-maximal bifix code X = {aa,ab,ba} of S-degree 2 verifies

Card (X )= 2(2− 1) + 1.
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Return Words Definitions

A complete return word to a set X ⊂ S is a word of S which has a proper prefix in X
and a proper suffix in X and no internal factor in X .

The set CR(X ) of complete return words to X is a bifix code.

Example (Fibonacci)

R({aa}) = {aabaa, aababaa}.

ϕ(a)ω = abaababaabaababaababaabaababaabaab· · ·
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Return Words Definitions

A complete return word to a set X ⊂ S is a word of S which has a proper prefix in X
and a proper suffix in X and no internal factor in X .

The set CR(X ) of complete return words to X is a bifix code.

Example (Fibonacci)

R({aa}) = {aabaa, aababaa}.

ϕ(a)ω = abaababaabaababaababaabaababaabaab· · ·

Example

For any n ≥ 1 one has CR(S ∩An) = S ∩An+1.
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Return Words Return Theorem

Theorem [D., Perrin, (2016)]

Let S be a recurrent neutral set and X ⊂ S a bifix code with empty kernel. We have

Card (CR(X ))= Card (X )+ Card (A)− χ.
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Return Words Return Theorem

Theorem [D., Perrin, (2016)]

Let S be a recurrent neutral set and X ⊂ S a bifix code with empty kernel. We have

Card (CR(X ))= Card (X )+ Card (A)− χ.

Corollary

For any w ∈ S , one has Card (R(w)) = Card (A)− χ+ 1.
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Return Words Return Theorem

Theorem [D., Perrin, (2016)]

Let S be a recurrent neutral set and X ⊂ S a bifix code with empty kernel. We have

Card (CR(X ))= Card (X )+ Card (A)− χ.

Corollary

For any w ∈ S , one has Card (R(w)) = Card (A)− χ+ 1.

Remark.(recall Aldo de Luca’s talk)
A recurrent set S is uniformly recurrent ⇐⇒ R(w) is finite for every w ∈ S .

Corollary

A recurrent neutral set is uniformly recurrent.
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Bifix Decoding Coding Morphism

A coding morphism for a bifix code X ⊂ A

+ is a morphism f : B∗ → A

∗ which maps
bijectively B onto X .

Example

Let’s consider the bifix code X = {aa, ab,ba} on A= {a,b} and let B = {u,v,w}.
The map

f :







u 7→ aa

v 7→ ab

w 7→ ba

is a coding morphism for X .

If S is factorial and X is an S-maximal bifix code, we call the set f−1(S) a maximal bifix

decoding of S .

Example (Fibonacci, ϕω(a) = abaababaabab· · · )

The set of factors of f −1(ϕω(a)) = vuwwvv · · · is a maximal bifix decoding of S
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Bifix Decoding Maximal Bifix Decoding Theorem

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

The family of uniformly recurrent tree sets of characteristic 1 is closed under maximal
bifix decoding (and so is the family of regular interval exchange sets).

BS
regular

Interval

Exchanges

Arnoux-Rauzy

Tree
unif. rec. + χ = 1

n(|A|− 1) + 1

Neutral
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Bifix Decoding Maximal Bifix Decoding Theorem

Theorem [D., Perrin, (2016)]

The family of recurrent neutral sets of characteristic 
 is closed under maximal bifix
decoding (and so is the family of recurrent tree sets of characteristic 
).

quasi-regular

Interval

Exchanges

Tree

n(|A|− 
)+ 


Neutral
recurrent + χ = 
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Further research directions

→ Sets with a finite number of elements satisfying m(w ) 6= 0.

→ Bifix decoding for general bifix codes (and for a general neutral set).

→ Return words and basis of the free group.

[S tree of χ = 1 =⇒ for every w , R(w ) is a basis of F
A

.]
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