Neutral sets of arbitrary characteristic

Francesco Dolce

イロト イボト イヨト イヨト

Felice e Lieto Anniversario al migliore maestro e amico

In honour of Antonio Restivo

Napoli, 14 Gennaio 2016

Joint work with Dominique Perrin

Francesco Dolce (Paris-Est)

NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016

1 / 23

- 3

Overview

- Families of sets of words verifying a "classical" property (neutrality) and a less classical one (tree condition).
- Common generalization of Arnoux-Rauzy languages and interval exchange sets.
- Enumeration formulæ in these sets for bifix codes and return words.
- Unexpected result about recurrence and uniformly recurrence.

FRANCESCO DOLCE (PARIS-EST) NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016 2 / 23

Outline

Introduction

- θ . Neutral sets
- 1. Bifix codes
- 2. Return words
- 3. Bifix decoding Conclusions

Francesco Dolce (Paris-Est)

(신문) 신문)

A ►

- 21

Neutral Sets

Outline

Introduction

θ . Neutral sets

- Basic definitions
- Factor complexity
- Tree sets
- 1. Bifix codes
- 2. Return words
- 3. Bifix decoding

Conclusions

Francesco Dolce (Paris-Est)

(本語)と (本語)と (本語)と

- 32

Let A a finite alphabet and S be a *factorial* set on A.

For a word $w \in S$, we denote

$\ell(w)$	=	the number of letters	\mathbf{a}	such that	$\mathbf{aw} \in \mathbf{S}$,
r (w)	=	the number of letters	\mathbf{a}	such that	$\mathbf{wa} \in S$,
e(w)	=	the number of pairs	(a, b)	such that	$awb \in S$.

A word w is *left-special* if $\ell(w) \ge 2$, *right-special* if $r(w) \ge 2$ and *bispecial* if it is both left and right-special.

Let A a finite alphabet and S be a *factorial* set on A.

For a word $w \in S$, we denote

<i>ℓ</i> (w)	=	the number of letters	\mathbf{a}	such that	$\mathbf{aw} \in \mathbf{S}$,
r(w)	=	the number of letters	\mathbf{a}	such that	$\mathbf{wa} \in S$,
e(w)	=	the number of pairs	(a, b)	such that	$awb \in S$.

A word w is *left-special* if $\ell(w) \ge 2$, *right-special* if $r(w) \ge 2$ and *bispecial* if it is both left and right-special.

The *multiplicity* of a word w is the quantity

$$m(w) = e(w) - \ell(w) - r(w) + 1.$$

A word is called *neutral* if m(w) = 0.

FRANCESCO DOLCE (PARIS-EST) NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016

5 / 23

・ロト ・周 ト ・ヨ ト ・ヨ ・ りへの

A set S is *neutral* if it is factorial and every word $w \in S \setminus \{\varepsilon\}$ is neutral.

The integer $\chi(S) = 1 - m(\varepsilon) (= \ell(\varepsilon) + r(\varepsilon) - e(\varepsilon))$ is called the *characteristic* of S.

◆□> ◆□> ◆目> ◆目> ◆目> □目 − のへで

A set S is *neutral* if it is factorial and every word $w \in S \setminus \{\varepsilon\}$ is neutral.

The integer $\chi(S) = 1 - m(\varepsilon) (= \ell(\varepsilon) + r(\varepsilon) - e(\varepsilon))$ is called the *characteristic* of S.

The factor complexity of a factorial set $S \subset A^*$ is the sequence $p(n) = Card (S \cap A^n)$.

Example

The Fibonacci set has factor complexity p(n) = n + 1.

Francesco Dolce (Paris-Est) Neutral Sets of Arbitrary Characteristic Napoli, 14 Jan. 2016 7 / 23

・ロト ・周 ト ・ヨ ト ・ヨ ・ りへの

The extension graph of a word $w\in S$ is the undirected bipartite graph $G\left(w\right)$ with vertices the disjoint union of

 $L(w)=\{a\in A\,|\,aw\in S\,\} \quad \text{and} \quad R(w)=\{a\in A\,|\,wa\in S\,\},$

and edges the pairs $E\left(w\right)=\left\{\left(a,b\right)\in A\times A\,|\,awb\in S\,\right\}$

Francesco Dolce (Paris-Est)

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 − のへの

A factorial and biextendable set S is called a *tree set* of *characteristic* c if for any nonempty $w \in S$, the graph E(w) is a tree and if $E(\varepsilon)$ is a union of c trees.

Example

The Fibonacci set is a tree set of characteristic 1.

(日) (同) (王) (日) (王)

A factorial and biextendable set S is called a *tree set* of *characteristic* c if for any nonempty $w \in S$, the graph E(w) is a tree and if $E(\varepsilon)$ is a union of c trees.

Example

The Fibonacci set is a tree set of characteristic 1.

Francesco Dolce (Paris-Est)

NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016 9 /

9 / 23

BIFIX CODES

Outline

Introduction

- 0. Neutral sets
- 1. Bifix codes
 - S-maximal bifix codes
 - Parse and degree
 - Cardinality Theorem
- 2. Return words
- 3. Bifix decoding

Conclusions

Francesco Dolce (Paris-Est)

NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016 10 / 23

(本間) (本語) (本語)

A set $X \subset A^+$ of nonempty words over an alphabet A is a *bifix code* if it does not contain any proper prefix or suffix of its elements (as defined by *Sabrina* a couple of hours ago).

Example	
• {aa, ab, ba}	
• {aa, ab, bba, bbb}	
• {ac, bcc, bcb ca}	

イロト イポト イヨト イヨト ニヨー わらで

A set $X \subset A^+$ of nonempty words over an alphabet A is a *bifix code* if it does not contain any proper prefix or suffix of its elements (as defined by *Sabrina* a couple of hours ago).

Example	
• {aa, ab, ba}	
• {aa, ab, bba, bbb}	
• {ac, bcc, bcb ca}	

 $X \subset S$ is S-maximal if it is not properly contained in a bifix code $Y \subset S$ (more general than Sabrina and Arturo's definition).

Example (Fibonacci)

The set $X = \{aa, ab, ba\}$ is an S-maximal bifix code. It is not an A*-maximal bifix code, indeed $X \subset Y = X \cup \{bb\}$.

Francesco Dolce (Paris-Est) Neutral Sets of Arbitrary Characteristic Napoli, 14 Jan. 2016 11 / 23

A parse of a word w w.r.t. a bifix code X is a triple (q,x,p) with w = qxp and such that q has no suffix in $X, x \in X^*$ and p has no prefix in X.

A parse of a word w w.r.t. a bifix code X is a triple (q,x,p) with w=qxp and such that q has no suffix in X, $x\in X^*$ and p has no prefix in X.

The S-degree of X is the maximal number of parses w.r.t. X of a word of S.

Example

- For S = Fibonacci, the set $X = \{aa, ab, ba\}$ has S-degree 2;
- The set $X = S \cap A^n$ has S-degree n.

FRANCESCO DOLCE (PARIS-EST) NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016 12 / 23

Let S be a neutral set of characteristic $\chi.$ For any finite S -maximal bifix code X of S -degree d , one has

 $\operatorname{Card}(X) = d(\operatorname{Card}(A) - \chi) + \chi.$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let S be a neutral set of characteristic $\chi.$ For any finite S -maximal bifix code X of S -degree d , one has

Card (X) = d (Card (A) - χ) + χ .

Example (Fibonacci)

The set S-maximal bifix code $X = \{aa, ab, ba\}$ of S-degree 2 verifies

Card(X) = 2(2-1) + 1.

FRANCESCO DOLCE (PARIS-EST) NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016 13 / 23

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → 目 − のへの

Return Words

Outline

Introduction

- 0. Neutral sets
- 1. Bifix codes
- 2. Return words
 - Definitions
 - Return Theorem

3. Bifix decoding

Conclusions

Francesco Dolce (Paris-Est)

NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016 14 / 23

イロト イヨト イヨト

- 21

A complete return word to a set $X \subset S$ is a word of S which has a proper prefix in X and a proper suffix in X and no internal factor in X.

The set $C\mathcal{R}(X)$ of complete return words to X is a bifix code.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

A complete return word to a set $X \subset S$ is a word of S which has a proper prefix in X and a proper suffix in X and no internal factor in X.

The set $C\mathcal{R}(X)$ of complete return words to X is a bifix code.

Example

For any $n \ge 1$ one has $\mathcal{CR}(S \cap A^n) = S \cap A^{n+1}$.

FRANCESCO DOLCE (PARIS-EST) NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016 15 / 23

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Let S be a recurrent neutral set and $X \subset S$ a bifix code with empty kernel. We have

 $Card(CR(X)) = Card(X) + Card(A) - \chi.$

FRANCESCO DOLCE (PARIS-EST) NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016 16 / 23

Let S be a recurrent neutral set and $X \subset S$ a bifix code with empty kernel. We have

 $Card (CR(X)) = Card (X) + Card (A) - \chi.$

Corollary

For any $w \in S$, one has $Card(\mathcal{R}(w)) = Card(A) - \chi + 1$.

FRANCESCO DOLCE (PARIS-EST) NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016 16 / 23

・ロト ・ 同 ト ・ 三 ト ・ 三 ・ つへの

Let S be a recurrent neutral set and $X \subset S$ a bifix code with empty kernel. We have

```
Card(CR(X)) = Card(X) + Card(A) - \chi.
```

Corollary

For any $w \in S$, one has $Card(\mathcal{R}(w)) = Card(A) - \chi + 1$.

```
<u>Remark</u> (recall Aldo de Luca's talk)
A recurrent set S is uniformly recurrent \iff \mathcal{R}(w) is finite for every w \in S.
```

Corollary

A recurrent neutral set is uniformly recurrent.

FRANCESCO DOLCE (PARIS-EST) NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016 16 / 23

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

BIFIX DECODING

Outline

Introduction

- 0. Neutral sets
- 1. Bifix codes
- 2. Return words
- 3. Bifix decoding
 - Coding morphism
 - Maximal bifix decoding Theorem

Conclusions

Francesco Dolce (Paris-Est)

NEUTRAL SETS OF ARBITRARY CHARACTERISTIC NAPOLI, 14 JAN. 2016 17 / 23

イロト イヨト イヨト

- 32

A coding morphism for a bifix code $X\subset A^+$ is a morphism $f:B^*\to A^*$ which maps bijectively B onto X .

Example

Let's consider the bifix code $X=\{aa,ab,ba\}$ on $A=\{a,b\}$ and let $B=\{u,v,w\}.$ The map

ſ	u	\mapsto	aa
::{	v	\mapsto	$^{\mathrm{ab}}$
l	w	\mapsto	ba

is a coding morphism for X.

If S is factorial and X is an S-maximal bifix code, we call the set $f^{-1}(S)$ a maximal bifix decoding of S.

Example (Fibonacci, $\varphi^{\omega}(\mathbf{a}) = \mathbf{a}\mathbf{b}\,\mathbf{a}\mathbf{a}\,\mathbf{b}\mathbf{a}\,\mathbf{b}\mathbf{a}\,\mathbf{b}\cdots$)

The set of factors of $f^{-1}(\varphi^{\omega}(a)) = v \mathbf{u}_{wwvv} \cdots$ is a maximal bifix decoding of S

Francesco Dolce (Paris-Est) Neutral Sets of Arbitrary Characteristic Napoli, 14 Jan. 2016 18 / 23

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

The family of uniformly recurrent tree sets of characteristic 1 is closed under maximal bifix decoding (and so is the family of regular interval exchange sets).

Francesco Dolce (Paris-Est)

The family of *recurrent neutral* sets of characteristic c is closed under maximal bifix decoding (and so is the family of recurrent *tree* sets of characteristic c).

Francesco Dolce (Paris-Est)

Further research directions

- \rightarrow Sets with a finite number of elements satisfying $m(w) \neq 0$.
- $\rightarrow\,$ Bifix decoding for general bifix codes (and for a general neutral set).
- → Return words and basis of the free group. [S tree of $\chi = 1 \implies$ for every w, $\mathcal{R}(w)$ is a basis of F_A.]

Francesco Dolce (Paris-Est) Neutral

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

...auguri Prof!

EUTRA