Cenni sulla teoria dei nodi Errata Corrige, Tabulazioni, Grafi planari

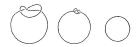
Francesco Dolce

26 maggio 2009

Osservazioni sulla puntata precedente Isotopia

Definizione (isotopia)

Due immersioni $\varphi_0, \varphi_1 : S^1 \to \mathbb{R}^3$ sono dette *isotope* se $\exists F : S^1 \times I \to \mathbb{R}^3$ continua tale che $\forall t \in [0,1]$ si ha F(x,t) immersione.



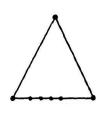
Definizione (isotopia ambiente)

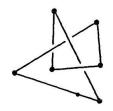
Due immersioni $\varphi_0, \varphi_1: S^1 \to \mathbb{R}^3$ sono dette ambientalmente isotope se $\exists H: \mathbb{R}^3 \times I \to \mathbb{R}^3$ continua tale che $\forall t \in [0,1]$ h_t è un omeomorfismo e inoltre $h_0 = id_{R^3}$ e $h_1\varphi_0 = \varphi_1$.

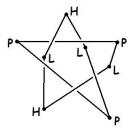
Osservazioni sulla puntata precedente $(\mathbb{K}, \#) \ncong (\mathbb{Z}, \cdot)$

$$(+1) \cdot (+1) = 1 = (-1) \cdot (-1)$$

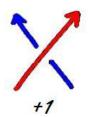
$Osservazioni \ sulla \ puntata \ precedente \\ s(K)$

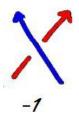






$Osservazioni \ sulla \ puntata \ precedente$





Definizione

$$Lk(L) = \frac{1}{2} \sum_{c \in \pi(L)} Lk(c)$$

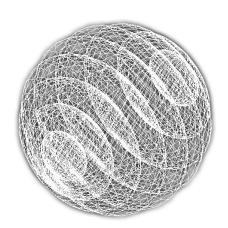
Osservazioni sulla puntata precedente p-colorabilità

Definizione

Sia p un numero primo. Sia $T_p(D)$ l'insieme delle colorazioni degli archi di D con elementi in \mathbb{Z}_p , tali che ad ogni incrocio in cui A_i sia il ramo superiore e A_j , A_k i due archi rappresentanti il ramo inferiore, sia verificata l'equazione:

$$2x_i - x_j - x_k \equiv 0 \pmod{p}$$

$Osservazioni \ sulla \ puntata \ precedente$

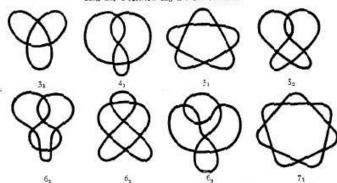


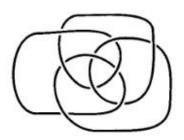
$Notazione\ Alexander-Briggs$

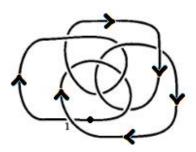
Knotentheorie - K. Reidemeister, 1932

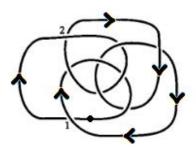
Knotentabelle.

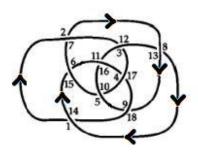
Die Tabelle der folgenden Knotenprojektionen bis zu neun Überkreuzungen wurde der Arbeit von Alexander und Briscos (3) entmommen. Verbessett wurden die Kurven 84 und 97, bei denen die Anzahl der Überkteuzungen nicht stimmte.



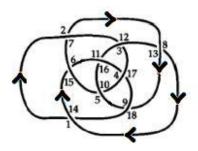








Nodo alterno - Dal diagramma alla notazione

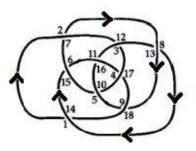


1 3 5 7 9 11 13 15 17 14 12 10 2 18 16 8 6 4

GRAFI PLANAR 000000 00000 000

Notazione Dowker

Nodo alterno - Dal diagramma alla notazione

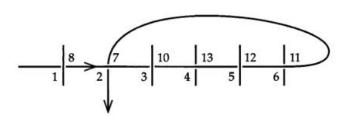


14 12 10 2 18 16 8 6 4

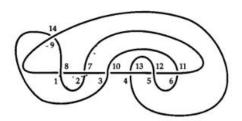
Nodo alterno - Dalla notazione al diagramma

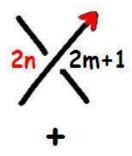
1 3 5 7 9 11 13 8 10 12 2 14 6 4

Nodo alterno - Dalla notazione al diagramma

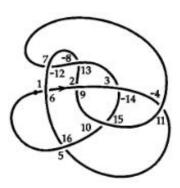


Nodo alterno - Dalla notazione al diagramma







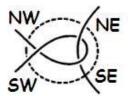


1 3 5 7 9 11 13 15 6 -14 16 -12 2 -4 -8 10

Notazione Conway Grovigli - Definizione

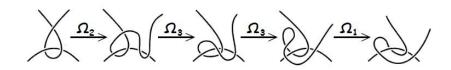
Definizione

Un *groviglio* (o *tangle*) è una regione del piano delimitata da una circonferenza tale che il diagramma del link intersechi la circonferenza in esattamente 4 punti.

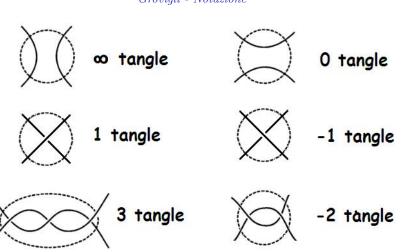




Notazione Conway Grovigli - Mosse di Reidemeister

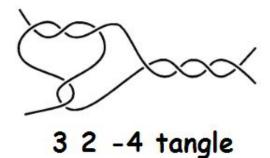


Notazione Conway Grovigli - Notazione



Notazione Conway Grovigli - Moltiplicazione

Notazione Conway Grovigli - Grovigli razionali



Notazione Conway

$Grovigli\ \hbox{--}\ Frazioni\ continue$

<u>De</u>finizione

Dato il groviglio razionale con notazione $\alpha_1\alpha_2\dots\alpha_n$ si considera il valore corrispondente alla frazione

$$\alpha_n + \frac{1}{\alpha_{n-1} + \frac{1}{\alpha_{n-2} + \cdots \cdot \frac{1}{\alpha_1}}} \in \mathbb{Q}$$

Notazione Conway Grovigli - Frazioni continue

Definizione

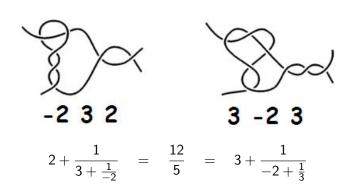
Dato il groviglio razionale con notazione $\alpha_1\alpha_2\dots\alpha_n$ si considera il valore corrispondente alla frazione

$$\alpha_{n} + \frac{1}{\alpha_{n-1} + \frac{1}{\alpha_{n-2} + \cdots \frac{1}{\alpha_{1}}}} \in \mathbb{Q}$$

Teorema

Due grovigli razionali sono equivalenti se e solo se le due frazioni corrispondenti coincidono. (Burde e Zieschang, 1986)

Notazione Conway Grovigli - Grovigli equivalenti

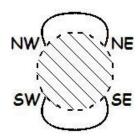


Notazione Conway

Link razionali

Definizione

Si definisce *link razionale* un link ottenuto partendo da un groviglio e collegando tra loro i rami **NE** e **NW** e i rami **SE** e **SW**, senza formare nuovi incroci.



Notazione Conway Link razionali - Esempio



Notazione Conway Grovigli - Operazioni

Addizione:

$$T_1$$
 + T_2 = T_1

Moltiplicazione:

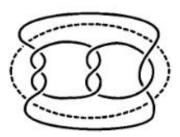
$$T_1$$
 T_2 = T_2

Notazione Conway Grovigli - Nodi pretzel

Indichiamo con

$$a_1, a_2, \ldots, a_n$$

il groviglio ottenuto da $a_1 \cdot 0 + a_2 \cdot 0 + \ldots + a_n \cdot 0$.



3, 3, 2 pretzel

Notazione Conway Grovigli algebrici e Link algebrici

Definizione

Si definisce groviglio algebrico un groviglio ottenuto da grovigli razionali sommati e moltiplicati tra loro.

Definizione

Si definisce *link algebrico* un link ottenuto partendo da un groviglio algebrico collegando tra loro i rami **NE** e **NW** e i rami **SE** e **SW**, senza formare nuovi incroci.

Notazione Conway Grovigli mutanti

Mutanti di Kinoshita-Terasaka

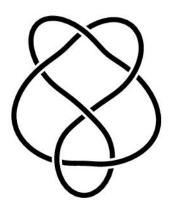
Notazione Conway Grovigli mutanti

Mutanti di Kinoshita-Terasaka

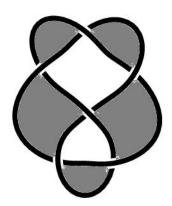
Proprietà

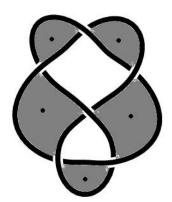
- Il mutante di un nodo alterno è un nodo alterno.
- Il mutante di un nodo (link ad 1 componente) è un nodo.
- Il mutante di un nodo non banale è un nodo non banale.

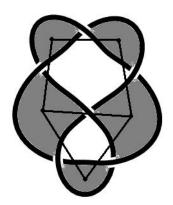
Grafi planari Dal diagramma al grafo

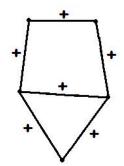


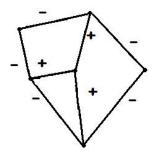
Grafi planari Dal diagramma al grafo

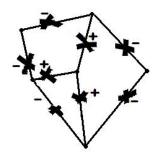


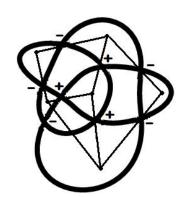


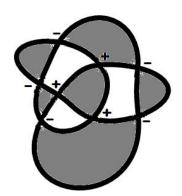


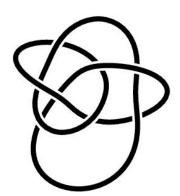










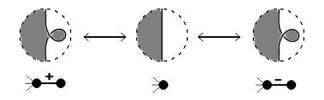


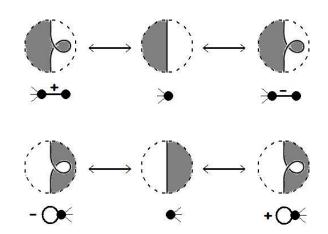
GRAFI PLANARI

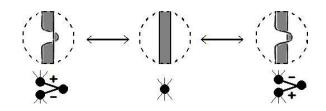
00000

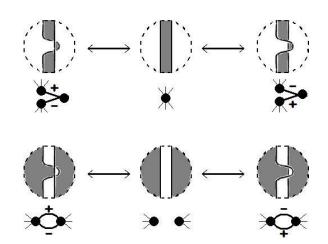
0000

000







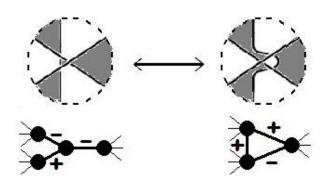


Tabulazioni o oooooooo GRAFI PLANARI

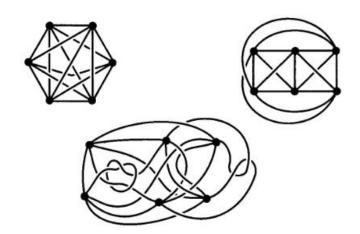
00000

0000

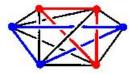
000

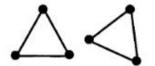


Grafi intrinsecamente annodati Immersioni di un grafo



Grafi intrinsecamente annodati Triangoli in un grafo



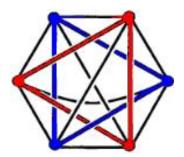


${\it Grafi\ intrinsecamente\ annodati}$

Teorema di Conway-Gordon

Teorema

Ogni immersione di K_6 contiene almeno una coppia di triangoli concatenati. (Conway e Gordon, 1983)

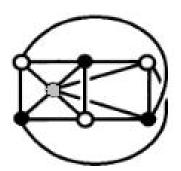


Grafi intrinsecamente annodati

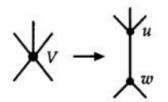
 ${\it Grafo\ intrinsecamente\ concatenato}$

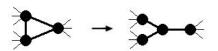
Definizione

Un grafo è detto *intrinsecamente concatenato* se qualsiasi sua immersione in \mathbb{R}^3 contiene link non banali.

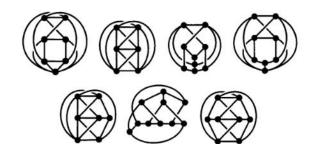


Grafi intrinsecamente annodati Operazioni sui grafi





Grafi intrinsecamente annodati Grafi di Petersen



$Grafi\ intrinsecamente\ annodati$

Teorema di Robertson

Teorema

Un grafo G è intrinsecamente concatenato se e solo se contiene come sottografo il grafo di *Petersen* o una sua espansione. (Robertson et al., 1993)

$Grafi\ intrinsecamente\ annodati$

Teorema

Ogni immersione di K_7 contiene almeno un ciclo Hamiltoniano equivalente a un nodo non banale. (Conway e Gordon, 1983).

Grafi intrinsecamente annodati Definizione

Definizione

Un grafo è detto *intrinsecamente annodato* se qualsiasi sua immersione in \mathbb{R}^3 contiene un ciclo (non per forza Hamiltoniano) annodato in maniera non banale.

Teorema

Un grafo intrinsecamente annodato è sempre intrinsecamente concatenato. (Robertson et al., 1993)

Domande?