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Abstract

In this contribution we introduce specular sets, a subclass of tree sets having

particular symmetries. We give some cardinality results about different types of

return words in these sets. We also give some results concerning palindromes,

namely we prove that tree sets of characteristic one closed under reversal are rich

and that an important class of specular sets verifies G-richness. This is a joint work

with V. Berthé, C. De Felice, V. Delecroix, J. Leroy, D. Perrin, C. Reutenauer and

G. Rindone.

1 Introduction

In [2] the authors started a series of papers ([5, 6, 7, 8, 9]) studing the links between
uniformly recurrent languages, subgroups of free groups and bifix codes. In this paper,
we continue this investigation in a situation which involves groups, named specular, which
are free products of a free group and of a finite number of cyclic groups of order two (see
also [4]). A specular set is a subset of such a group. It is a set of words stable by taking
the inverse and defined in terms of restrictions on the extensions of its elements.

The paper is organized as follows. In Section 2, we recall some notions concerning
words, extension graphs and bifix codes. We also consider tree sets of arbitrary character-
istic (see [9]). In Section 3, we introduce specular groups and specular sets. In Section 4
we give a construction which allows to build specular sets from tree sets of characteristic
1 (Theorem 6). In Section 5, we introduce several notions of return words: complete,
right, left and mixed return words. For each of them, we prove a cardinality theorem
(Theorems 9, 11 and 13). Finally, in Section 6, we make a connection with the notion of
G-rich words introduced in [14] and related to the palindromic complexity of [10].

This is a joint work with Valérie Berthé, Clelia De Felice, Vincent Delecroix, Julien
Leroy, Dominique Perrin, Christophe Reutenauer and Giuseppina Rindone.

2 Preliminaries

Let A be a finite alphabet. We denote by A∗ the free monoid on A. We denote by
ε the empty word. The reversal of a word w = a1a2 · · ·an with ai ∈ A is the word
w̃ = an · · · a2a1. A word w is said to be a palindrome if w = w̃. A set S of words is closed
under reversal if w ∈ S implies w̃ ∈ S for every w ∈ S.

∗This work was supported by grants from Région Île-de-France.
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A factor of a word x is a word v such that x = uvw with u, w nonempty. If both u
and w are nonempty, v is called an internal factor. A set of words on the alphabet A is
said to be factorial if it contains the alphabet A and all the factors of its elements.

Given a set S and a word w ∈ S, we define L(w) = {a ∈ A | aw ∈ S}, R(w) =
{a ∈ A | wa ∈ S}, E(w) = {(a, b) ∈ A × A | awb ∈ S}. We denote also ℓ(w) =
Card(L(w)), r(w) = Card(R(w)) and e(w) = Card(E(w)). A word w is right-extendable
if r(w) > 0, left-extendable if ℓ(w) > 0 and biextendable if e(w) > 0. A factorial set
S is called right-extendable (resp. left-extendable, resp. biextendable) if every word in
S is right-extendable (resp. left-extendable, resp. biextendable). A word w is called
right-special if r(w) ≥ 2. It is called left-special if ℓ(w) ≥ 2. It is called bispecial if it is
both left-special and right-special. The factor complexity of a factorial set S of words on
an alphabet A is the sequence pn = Card(S ∩An).

Let S be a biextendable set of words. For w ∈ S, we consider the set E(w) as an
undirected graph on the set of vertices which is the disjoint union of L(w) and R(w)
with edges the pairs (a, b) ∈ E(w). This graph is called the extension graph of w. If
the extension graph E(w) is acyclic, then ℓ(w)− r(w) + e(w) is the number of connected
components of the graph E(w). A biextendable set S is called a tree set of characteristic
χ(S) if for any nonempty w ∈ S, the graph E(w) is a tree (acyclic and connected) and if
E(ε) is a union of χ(S) trees.

A set of words S 6= {ε} is recurrent if it is factorial and if for any u, w ∈ S, there is
a v ∈ S such that uvw ∈ S. An infinite factorial set is said to be uniformly recurrent if
for any word u ∈ S there is an integer n ≥ 1 such that u is a factor of any word of S of
length n. A uniformly recurrent set is recurrent. The converse is true for true for tree
sets (see [9]).

An infinite word is strict episturmian if the set of its factors is closed under reversal
and if it contains for each n exactly one right-special word u such that r(u) = Card(A)
(see [2]). An Arnoux-Rauzy set is the set of factors of a strict episturmian word. Any
Arnoux-Rauzy set is a recurrent tree set of characteristic 1 (see [5]).

Example 1. The Fibonacci set is the set of factors of the fixed-point fω(a) of the mor-
phism f : {a, b}∗ → {a, b}∗ defined by f(a) = ab and f(b) = a. It is an Arnoux-Rauzy
set (see [13]), and thus a tree set of characteristic 1.

A bifix code is a set of nonempty words wich does not contain any proper prefix of
proper suffix of its elements (see [3]). The kernel of a bifix code X is the set of words of
X which are internal factors of X .

3 Specular sets

We consider an alphabet A with an involution θ : A → A, possibly with some fixed points.
We also consider the group Gθ generated by A with the relations aθ(a) = 1 for every
a ∈ A. Thus θ(a) = a−1 for a ∈ A. When θ has no fixed point, we can set A = B ∪ B−1

by choosing a set of representatives of the orbits of θ for the set B. The group Gθ is then
the free group on B. In general, we have Gθ = Z

∗i ∗ (Z/2Z)∗j where i is the number of
orbits of θ with two elements and j the number of its fixed points. Such a group will be
called a specular group of type (i, j). These groups are very close to free groups (see [4]).
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Example 2. Let A = {a, b, c, d} and let θ be the involution which exchanges b, d and
fixes a, c. Then Gθ = Z ∗ (Z/2Z)2 is a specular group of type (1, 2).

A word on the alphabet A is θ-reduced if it has no factor of the form aθ(a) for a ∈ A.
It is clear that any element of a specular group is represented by a unique θ-reduced word.
A specular set on A is a biextendable set of θ-reduced words on A, closed under inverses,
which is a tree set of characteristic 2. Thus, in a specular set, the extension graph of
every nonempty word is a tree and the extension graph of the empty word is a union of
two disjoint trees. Note that in a specular set the two trees forming E(ε) are isomorphic
([4, Proposition 4.1]).

Example 3. Let A = {a, b} and let θ be the identity on A. Then the set of factors of
(ab)ω is a specular set.

The following is a particular case of [9, Proposition 2.4].

Proposition 4. The factor complexity of a specular set on the alphabet A is given by

p0 = 1 and pn = n(Card(A)− 2) + 2 for n ≥ 1.

Since a specular set is biextendable, any letter a ∈ A occurs exactly twice as a vertex
of E(ε), one as an element of L(ε) and one as an element of R(ε). A letter a ∈ A is said
to be even if its two occurrences appear in the same tree. Otherwise, it is said to be odd.
Observe that if a specular set is recurrent, there is at least one odd letter. A word w ∈ S
is said to be even if it has an even number of odd letters. Otherwise it is said to be odd.

Example 5. Let S be the set of Example 3. Both letters a and b are odd. Thus even
words are exactly the words of even length.

4 Doubling maps

We now introduce a construction which allows one to build specular sets. This is a
particular case of the multiplying maps introduced in [9].

A doubling transducer is a transducer A with set of states Q = {0, 1} on the input
alphabet Σ and the output alphabet A and such that:

1. the input automaton is a group automaton, that is, every letter of Σ acts on Q as
a permutation

2. the output labels of the edges are all distinct.

We define two maps δ0, δ1 : Σ∗ → A∗ corresponding to initial states 0 and 1 respec-
tively. Thus δ0(u) = v (resp. δ1(u) = v) if the path starting at state 0 (resp. 1) with
input label u has output v. The pair δA = (δ0, δ1) is called a doubling map. The image

of a set T on the alphabet Σ by the doubling map δA is the set S = δ0(T ) ∪ δ1(T ). We

denote by i
α|a
→ j the edge of A from the state i to the state j having input label α and

output label a. We define an involution θA as the map such that i
α|a
→ j and 1−j

α|θ(a)
→ 1−i

are the two edges of A having α as input label.
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Theorem 6. For any tree set T of characteristic 1 closed under reversal, the image of T
by a doubling map δA is a specular set relative to the involution θA.

Example 7. Let Σ = {α, β} and let T be the Fibonacci set. Let δA be the doubling map
given by the transducer of Figure 1 on the left. The letter α acts as the transposition of
the two states 0, 1, while β acts as the identity.

0 1β | d

α | a

α | c

β | b

d

c

a

d

b

a

c

b

Figure 1: A doubling transducer and the extension graph E(ε).

Then θA is the involution θ of Example 2 and the image of T by δ is a specular set S
on the alphabet A = {a, b, c, d}. The graph E(ε) is represented in Figure 1 on the right.
The letters a, c are odd while b, d are even.

5 Return words

Let S be a factorial set of words and let X ⊂ S be a set of nonempty words. A complete

return word to X is a word of S with a proper prefix in X , a proper suffix in X but no
internal factor in X . We denote by CR(X) the set of complete return words to X . The
set CR(X) is a bifix code. If S is uniformly recurrent, CR(X) is finite for any finite set
X . For w ∈ S, we denote CR(w) instead of CR({w}). Thus CR(x) is the usual notion
of a complete return word (see [11] for example).

Example 8. Let S be the specular set of Example 7. One can compute the sets CR(a) =
{abca, abcda, acda}, CR(b) = {bcab, bcdacdab, bcdacdacdab}, CR(c) = {cabc, cdabc, cdac}
and CR(d) = {dabcabcabcd, dabcabcd, dacd}.

The following result is a direct consequence of [9, Theorem 5.2].

Theorem 9 (Cardinality Theorem for complete return words). Let S be a recurrent

specular set on the alphabet A. For any finite nonempty bifix code X ⊂ S with empty

kernel, one has Card(CR(X)) = Card(X) + Card(A)− 2.

Example 10. Let S be the specular set of Example 7. One has, for example, CR({a, c}) =
{abc, ac, ca, cda} and CR({b, d}) = {bcab, bcd, dab, dacd}. Both sets have four elements
in agreement with Theorem 9.

Let S be a factorial set. For any nonempty word w ∈ S, a right return word to w in
S is a word u such that wu is a complete return word to w. One defines symmetrically
the left return words. We denote by R(x) the set of right return words to w in S and
by R′(w) the corresponding set of left return words. Note that when S is closed under
inverses, one has R(w)−1 = R′(w−1). One can prove that in a specular set S, for every
w ∈ S, all words in R(w) are even.

Theorem 11 (Cardinality Theorem for right return words). Let S be a recurrent specular

set. For any w ∈ S, one has Card(R(w)) = Card(A)− 1.
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Example 12. Let S be the specular set of Example 7. One has R(a) = {bca, bcda, cda},
R(b) = {cab, cdacdab, cdacdacdab},R(c) = {abc, dabc, dac} andR(d) = {abcabcd, abcabcabcd, acd}.

Two words u, v are said to overlap if a nonempty suffix of one of them is a prefix
of the other. In particular a nonempty word overlaps with itself. We now consider the
return words to {w,w−1} with w such that w and w−1 do not overlap. This is true for
every w in a specular set S where the involution θ has no fixed point. With a complete
return word u to {w,w−1}, we associate a word N(u) obtained as follows: if u has w
as prefix, we erase it and if u has a suffix w−1, we also erase it. Note that these two
operations can be made in any order since w and w−1 cannot overlap. The mixed return

words to w are the words N(u) associated with the words u ∈ CR({w,w−1}). We denote
by MR(w) the set of mixed return words to w in S. The reason for this definition comes
from the study of natural codings of a linear involution (see [8]). Note that MR(w) is
closed under inverses and that wMR(w)w−1 = MR(w−1).

Theorem 13 (Cardinality Theorem for mixed return words). Let S be a recurrent spec-

ular set on the alphabet A. For any w ∈ S such that w,w−1 do not overlap, one has

Card(MR(w)) = Card(A).

Example 14. Let S be the specular set of Example 7. One hasMR(b) = {cab, c, dac, dab}.
Since b, d do not overlap, MR(b) has four elements in agreement with Theorem 13.

6 Palindromes

The notion of palindromic complexity originates in [10] where it is proved that a word
of length n has at most n + 1 palindrome factors. A word of length n is rich (or full)
if it has n + 1 palindrome factors and a factorial set is rich (or full) if all its elements
are rich. By a result of [12], a recurrent set closed under reversal is rich if and only if
every complete return word to a palindrome in S is a palindrome. It is known that all
Arnoux-Rauzy sets are rich [10] and also all natural codings of interval exchanges defined
by a symmetric permutation [1]. The following proposition generalizes results of [1, 10].

Proposition 15. Let T be a recurrent tree set of characteristic 1 closed under reversal.

Then T is rich.

In [14], this notion was extended to that of G-rich, where G is a finite group of
morphisms and antimorphisms of A∗ containing at least one antimorphism. A set S
closed under G is G-rich if for every w ∈ S, every complete return word to the G-orbit
of w is fixed by a nontrivial element of G ([14, Theorem 29]).

Let S be a specular set obtained as the image of a tree set of characteristic 1 by
a doubling map δA. Let us define the antimorphism σ : u 7→ u−1 for u ∈ S. From

Section 4 it follows that both edges i
α|a
→ j and 1− i

α|σ(a)
→ 1− j are in A. Let us define the

morphism τ obtained by replacing each letter a ∈ A by τ(a) if there are edges i
α|a
→ j and

1− j
α|τ(a)
→ 1− i in A. We denote by GA the group generated by the σ and τ . Actually,

we have GA = (Z/2Z)× (Z/2Z).
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Example 16. Let S be the recurrent specular set defined in Example 7. One has GA =
{id, σ, τ, στ}, where σ and τ are defined by σ(a) = a, σ(b) = d, σ(c) = c, σ(d) = a, and
τ(a) = c, τ(b) = d, τ(c) = a, τ(d) = b. Note that στ = τσ is the antimorphism fixing b, d
and exchanging a and c.

We now connect the notions of richness and G-richness, with an analogous result of
Proposition 15 for specular sets.

Proposition 17. Let T be a recurrent tree set of characteristic 1 on the alphabet Σ,
closed under reversal and let S be the image of T under a doubling map A. Then S is

GA-rich.

Example 18. Let S be the specular set of Example 7. S is GA-rich with respect to the
group GA of Example 16. The GA-orbit of a is the set X = {a, c}. The four words of
CR(X) (see Example 10) are fixed by στ .

References
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[5] V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and
G. Rindone. Acyclic, connected and tree sets. Monatshefte für Mathematik, 176:521–
550, 2015.
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