

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Words

Codes

Bifix codes and Sturmian words

(J. Berstel, C. De Felice, D. Perrin, C. Reutenauer, G. Rindone - 2011)

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

◆ □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ ○ Q ○
 PALERMO, 21 DIC. 2015 2 / 30

Dynamical Systems

The finite index basis property

(V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone - 2014) *Bifix codes and Interval Exchanges*

(V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone - 2014)

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Palermo, 21 Dic. 2015 2 / 30

イロト イポト イヨト イヨ

Maximal bifix decoding

(V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone - 2015)

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

◆ □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ ○ Q ○
 PALERMO, 21 DIC. 2015 2 / 30

Return words of linear involutions and fundamental groups

(V. Berthé, V. Delecroix, F. Dolce, D. Perrin, C. Reutenauer, G. Rindone - to appear)

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

◆ □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ ○ Q ○
 PALERMO, 21 DIC. 2015 2 / 30

Enumeration formulæ in neutral sets

(F. Dolce, D. Perrin - DLT 2015)

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Acyclic, connected and tree sets

(V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone - 2014)

On the decidability of tree condition

(F. Dolce, R. Kyriakoglou, J. Leroy - work in progress)

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Generalization of links between Sturmian sets and Free groups to general objects : *Specular sets* and *Specular groups*.

(日) (同) (王) (日) (王)

Generalization of links between Sturmian sets and Free groups to general objects : *Specular sets* and *Specular groups*.

Introduction of new concepts : *parity* of words (*odd* and *even* words), *mixed return words*.

Francesco Dolce (Paris-Est)

Specular Sets

PALERMO, 21 DIC. 2015 3 / 30

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ → ∃ − のへで

Generalization of links between Sturmian sets and Free groups to general objects : *Specular sets* and *Specular groups*.

Introduction of new concepts : *parity* of words (*odd* and *even* words), *mixed return words*.

Framework allowing to handle linear involutions (generalization of interval exchange transformations).

Francesco Dolce (Paris-Est)

Specular Sets

PALERMO, 21 DIC. 2015 3 / 30

Generalization of links between Sturmian sets and Free groups to general objects : *Specular sets* and *Specular groups*.

Introduction of new concepts : *parity* of words (*odd* and *even* words), *mixed return words*.

Framework allowing to handle linear involutions (generalization of interval exchange transformations).

Adaptation of results holding for tree sets : "Maximal Bifix Decoding Theorem", "Finite Index Basis Theorem", "Return Theorem".

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Outline

Motivation and Introduction

- 1. Specular groups
- 2. Specular sets
- $\it 3. \ \mbox{Codes and subgroups}$

Further research directions

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

◆ □ → 《 □ → 《 ■ → 《 ■ → 《 ■ → ③ Q @
 PALERMO, 21 DIC. 2015 4 / 30

Specular Groups

Outline

Motivation and Introduction

1. Specular groups

- Groups and subgroups
- Reduced words
- Monoidal basis
- 2. Specular sets
- 3. Codes and subgroups

Further research directions

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Given an involution $\theta : A \to A$ (possibly with some fixed point), let us define

$$G_{\theta} = \langle a \in A \mid a \cdot \theta(a) = 1 \text{ for every } a \in A \rangle.$$

 $G_{\theta} = \mathbb{Z}^{i} * (\mathbb{Z}/2\mathbb{Z})^{j}$ is a specular group of type (i, j), and Card(A) = 2i + j is its symmetric rank.

Example

Let $A = \{a, b, c, d\}$ and let θ be the involution which exchanges b, d and fixes a, c, i.e.,

$$G_{\theta} = \langle a, b, c, d \mid a^2 = c^2 = bd = db = 1 \rangle.$$

 $G_{\theta} = \mathbb{Z} * (\mathbb{Z}/2\mathbb{Z})^2$ is a specular group of type (1, 2) and symmetric rank 4.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

◆□▶ ◆□▶ ★ □▶ ★ □▶ = □ • • • • • • •

Palermo, 21 Dic. 2015

6 / 30

Any subgroup of a specular group is specular.

Example

Let $G_{\theta} = \mathbb{Z} * (\mathbb{Z}/2\mathbb{Z})^2$, then one has

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

◆ □ → 《 □ → 《 □ → 《 □ → 《 □ → 《 □ → 《 □ → 《 □ → 《 □ → ③ Q ○
 PALERMO, 21 DIC. 2015 7 / 30

A word is θ -reduced if it has no factor of the form $a\theta(a)$ for $a \in A$.

Any element of a specular group is represented by a unique reduced word.

Example

Let θ : **b** \leftrightarrow **d** fixing **a**, **c**.

The θ -reduction of the word datacbd is dac.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Palermo, 21 Dic. 2015 8 / 30

A word is θ -reduced if it has no factor of the form $a\theta(a)$ for $a \in A$.

Any element of a specular group is represented by a unique reduced word.

Example	h
Let $\theta : \mathbf{b} \leftrightarrow \mathbf{d}$ fixing \mathbf{a}, \mathbf{c} .	
The θ -reduction of the word $datac bd$ is dac.	ļ

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

A subset of a group G is called *symmetric* if it is closed under taking inverses (under θ).

Example

The set $X = \{a, adc, b, cba, d\}$ is symmetric, for $\theta : b \leftrightarrow d$ fixing a, c.

Francesco Dolce (Paris-Est)

Specular Sets

A subset of a group G is called *symmetric* if it is closed under taking inverses (under θ).

Example The set $X = \{a, adc, b, cba, d\}$ is symmetric, for $\theta : b \leftrightarrow d$ fixing a, c.

A set X in a specular group G is called a $\mathit{monoidal}\ \mathit{basis}$ of G if :

- it is symmetric;
- the monoid that it generates is G ;
- any product $x_1x_2 \cdots x_m$ such that $x_kx_{k+1} \neq 1$ for every k is distinct of 1.

Example

The alphabet A is a monoidal basis of G_{θ} .

The symmetric rank of a specular group is the cardinality of any monoidal basis.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

◆ □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ ○ Q ○
 PALERMO, 21 DIC. 2015 9 / 30

Specular Sets

Outline

Motivation and Introduction

- 1. Specular groups
- 2. Specular sets
 - Tree sets and specular sets
 - Linear involutions and Doubling Maps
 - Even and odd words

3. Subgroup theorems

Further research directions

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Palermo, 21 Dic. 2015 10 / 30

- 3

イロト イポト イヨト イヨト

A *tree* is a graph that is both acyclic and connected.

Francesco Dolce (Paris-Est)

Specular Sets

A *tree* is a graph that is both acyclic and connected.

Francesco Dolce (Paris-Est)

Specular Sets

◆ □ → 〈 □ → 〈 三 → 〈 三 → 〈 三 → 〉 ミ ◇ Q (?)
 PALERMO, 21 DIC. 2015 11 / 30

A *tree* is a graph that is both acyclic and connected.

Francesco Dolce (Paris-Est)

Specular Sets

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Palermo, 21 Dic. 2015 12 / 30

The extension graph of a word $w\in S$ is the undirected bipartite graph $G\left(w\right)$ with vertices the disjoint union of

 $L(w)=\{a\in A\,|\,aw\in S\,\} \quad \text{and} \quad R(w)=\{a\in A\,|\,wa\in S\,\},$

and edges the pairs $E\left(w\right)=\left\{\left(a,b\right)\in A\times A\,|\,awb\in S\,\right\}$

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

A factorial and biextendable set S is called a *tree set* of *characteristic* c if for any nonempty $w \in S$, the graph E(w) is a tree and if $E(\varepsilon)$ is a union of c trees.

Example

The Fibonacci set is a tree set of characteristic 1.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

◆ □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ ○ ○ ○
 PALERMO, 21 DIC. 2015 14 / 30

A factorial and biextendable set S is called a *tree set* of *characteristic* c if for any nonempty $w \in S$, the graph E(w) is a tree and if $E(\varepsilon)$ is a union of c trees.

Example

The Fibonacci set is a tree set of characteristic 1.

Proposition [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

Factors of an Arnoux-Rauzy word and regular interval exchange sets are both uniformly recurrent tree sets of characteristic 1.

Francesco Dolce (Paris-Est)

Specular Sets

Palermo, 21 Dic. 2015 14 / 30

A specular set on an alphabet A (w.r.t. an involution θ) is a

- biextendable and
- symmetric set
- of θ -reduced words
- which is a tree set of characteristic 2.

Francesco Dolce (Paris-Est)

Specular Sets

◆□ → < □ → < 三 → < 三 → < 三 → 三 < つ Q (*) PALERMO, 21 DIC. 2015 A specular set on an alphabet A (w.r.t. an involution θ) is a

- biextendable and
- symmetric set
- of θ -reduced words
- which is a tree set of characteristic 2.

Example

Let θ be the identity on $A = \{a, b\}$. Fac $((ab)^{\omega})$ is a specular set.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

A specular set on an alphabet A (w.r.t. an involution θ) is a

- biextendable and
- symmetric set
- of θ -reduced words
- which is a tree set of characteristic 2.

Example

Let θ be the identity on $A = \{a, b\}$. Fac $((ab)^{\omega})$ is a specular set.

Proposition [using J. Cassaigne (1997)]

pS(0) = 1 and pS(n) = n(Card(A) - 2) + 2.

FRANCESCO DOLCE (PARIS-EST)

The natural coding of a linear involution without connections is a specular set.

Francesco Dolce (Paris-Est)

Specular Sets

The natural coding of a linear involution without connections is a specular set.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

The natural coding of a linear involution without connections is a specular set.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

The natural coding of a linear involution without connections is a specular set.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

The natural coding of a linear involution without connections is a specular set.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

The natural coding of a linear involution without connections is a specular set.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

A doubling transducer is a transducer with set of states $\{0, 1\}$ such that :

- 1. the input automaton is a group automaton,
- 2. the output labels of the edges are all distinct.

Francesco Dolce (Paris-Est)

Specular Sets

Palermo, 21 Dic. 2015 17 / 30

A doubling transducer is a transducer with set of states $\{0, 1\}$ such that :

- 1. the input automaton is a group automaton,
- 2. the output labels of the edges are all distinct.

A doubling map is a pair $\delta = (\delta_0, \delta_1)$, where $\delta_i(u) = v$ for a path starting at the state i with input label u and output label v.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Palermo, 21 Dic. 2015 17 / 30

A doubling transducer is a transducer with set of states $\{0, 1\}$ such that :

- 1. the input automaton is a group automaton,
- 2. the output labels of the edges are all distinct.

A doubling map is a pair $\delta = (\delta_0, \delta_1)$, where $\delta_i(u) = v$ for a path starting at the state i with input label u and output label v.

The *image* of a set T is $\delta(T) = \delta_0(T) \cup \delta_1(T)$.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

PALERMO, 21 DIC. 2015 17 / 30

Proposition

The image of a tree set of characteristic 1 closed under reversal is a specular set.

Example (two doublings of Fibonacci on $\Sigma = \{\alpha, \beta\}$)

• $Fac(abaababa \cdots) \cup Fac(cdccdcdc \cdots),$

• $Fac(abcabcda\cdots) \cup Fac(cdacdabc\cdots)$.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

A letter is *even* if its two occurences (as a element of $L(\varepsilon)$ and of $R(\varepsilon)$) appear in the same tree of $E(\varepsilon)$. Otherwise it is *odd*.

A word is even if it has an even number of odd letters. Otherwise it is odd.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Codes and Subgroups

Outline

Motivation and Introduction

- 1. Specular groups
- 2. Specular sets
- 3. Codes and Subgroups
 - Maximal Bifix Decoding Theorem
 - Finite Index Basis Theorem
 - Return Theorem

Further research directions

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Palermo, 21 Dic. 2015 20 / 30

- 3

イロト イポト イヨト イヨト

A set $X \subset A^+$ of nonempty words over an alphabet A is a *bifix code* if it does not contain any proper prefix or suffix of its elements.

Example	
 {aa, ab, ba} {aa, ab, bba, bbb} {ac, bcc, bcbca} 	 {melo, pero, melograno} {mandarino, arancio, mandarancio}

A set $X \subset A^+$ of nonempty words over an alphabet A is a *bifix code* if it does not contain any proper prefix or suffix of its elements.

Example	
 {aa, ab, ba} {aa, ab, bba, bbb} {ac, bcc, bcbca} 	 {melo, pero, melograno} {mandarino, arancio, mandarancio}

$X \subset S$ is S -maximal if it is not properly contained in a bifix code $Y \subset S$.

Example (Fibonacci) The set $X = \{aa, ab, ba\}$ is an S-maximal bifix code. It is not an A*-maximal bifix code, indeed $X \subset Y = X \cup \{bb\}$.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

A parse of a word w w.r.t. a bifix code X is a triple (q,x,p) with w = qxp and such that q has no suffix in X, $x \in X^*$ and p has no prefix in X.

Specular Sets

◆ □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ ○ ○ ○
 PALERMO, 21 DIC. 2015 22 / 30

A parse of a word w w.r.t. a bifix code X is a triple (q,x,p) with w = qxp and such that q has no suffix in X, $x \in X^*$ and p has no prefix in X.

The S-degree of X is the maximal number of parses w.r.t. X of a word of S.

Example

- For S = Fibonacci, the set $X = \{aa, ab, ba\}$ has S-degree 2;
- The set $X = S \cap A^n$ has S-degree n.

Francesco Dolce (Paris-Est)

Specular Sets

The set of even words has the form $X^*\cap S$, where $X\subset S$ is a bifix code called the even code.

X is the set of even words without a nonempty even prefix (or suffix).

Proposition

If S is recurrent, the even code is an S-maximal bifix code of S-degree 2.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

A coding morphism for a (S-maximal) bifix code X is a morphism $f:B^*\to A^*$ which maps bijectively an alphabet B onto X.

The set $f^{-1}(S)$ is called a (maximal) bifix decoding of S.

24 / 30

Palermo, 21 Dic. 2015

A coding morphism for a (S-maximal) bifix code X is a morphism $f:B^*\to A^*$ which maps bijectively an alphabet B onto X.

The set $f^{-1}(S)$ is called a (maximal) bifix decoding of S.

Maximal Bifix Decoding Theorem

The decoding of a recurrent specular set by the even code is a union of two recurrent tree sets of characteristic 1.

Example (Fac $((ab)^{\omega}))$)

The even code is $X=\{ab,ba\}.$ Let $f:\{u,v\}^*\to A^*$ be the coding morphism :

$$f : \left\{ \begin{array}{c} u \mapsto ab \\ v \mapsto ba \end{array} \right.$$

Then, $f^{-1}(S) = Fac(u^{\omega}) \cup Fac(v^{\omega})$.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Finite Index Basis Theorem

Let S be a recurrent specular set and $X \subset S$ a symmetric bifix code. Then X is : S-maximal of S-degree $d \iff$ monoidal basis of $H \leq G_{\theta}$, with $[G_{\theta}:H] = d$.

Example

- $\bullet \ S\cap A^d \text{ is a monoidal basis of } \langle A^d \rangle.$
- The even code is a monoidal basis of the *even subgroup*.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Palermo, 21 Dic. 2015 25 / 30

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Finite Index Basis Theorem

Let S be a recurrent specular set and $X \subset S$ a symmetric bifix code. Then X is : S-maximal of S-degree $d \iff$ monoidal basis of $H \leq G_{\theta}$, with $[G_{\theta}:H] = d$.

Example

- $\bullet \ S\cap A^d \text{ is a monoidal basis of } \langle A^d \rangle.$
- The even code is a monoidal basis of the *even subgroup*.

The Finite Index Basis Theorem has also a converse.

Theorem

Let S be a recurrent and symmetric set of reduced words having factor complexity $pS(n) = n (\mathsf{Card}\,(A) - 2) + 2$. If $S \cap A^n$ is a monoidal basis of $\langle A^n \rangle$ for all $n \geq 1 \Longrightarrow S$ is specular.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

◆ □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ 〈 □ ▶ ○ Q ○
 PALERMO, 21 DIC. 2015 25 / 30

A (right) return word to w in S is a nonempty word u such that $wu \in S \cap A^*w$, but has no internal factor equal to w.

We denote by $\mathcal{R}S(w)$ the set of return words to w in S.

Remark.

A recurrent set S is uniformly recurrent $\iff \mathcal{R}S(w)$ is finite for every $w \in S$.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

26 / 30

Palermo, 21 Dic. 2015

Theorem [Balková, Palentová, Steiner (2008)]

Let S be a (uniformly) recurrent tree set of characteristic 1. For every $w \in S$, the set $\mathcal{R}S(w)$ has exactly Card (A) elements.

Francesco Dolce (Paris-Est)

Specular Sets

◆□ → ◆ ● → ◆ ■ → ▲ ■ → ● ○ ○ ○ PALERMO, 21 DIC. 2015 27 / 30

Theorem [Balková, Palentová, Steiner (2008)]

Let S be a (uniformly) recurrent tree set of characteristic 1. For every $w \in S$, the set $\mathcal{R}S(w)$ has exactly Card (A) elements.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Let S be a (uniformly) recurrent tree set of characteristic 1. For every $w \in S$, the set $\mathcal{R}S(w)$ is a (tame) basis of the free group on A.

Francesco Dolce (Paris-Est)

Specular Sets

◆□ → < □ → < 三 → < 三 → < 三 → 三 の Q (*) PALERMO, 21 DIC. 2015 27 / 30

Theorem [Balková, Palentová, Steiner (2008)]

Let S be a (uniformly) recurrent tree set of characteristic 1. For every $w \in S$, the set $\mathcal{R}S(w)$ has exactly Card (A) elements.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Let S be a (uniformly) recurrent tree set of characteristic 1. For every $w \in S$, the set $\mathcal{R}S(w)$ is a (tame) basis of the free group on A.

Return Theorem

Let S be a (uniformly) recurrent specular set on the alphabet A. For any $w \in S$, the set $\mathcal{R}S(w)$ is a monoidal basis of the even subgroup.

In particular, Card(RS(x)) = Card(A) - 1.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

Example (doubling of Fibonacci)

Recall that in G_{θ} one has $\theta : \mathbf{b} \leftrightarrow \mathbf{d}$ fixing a and c.

The even code is $X = \{abc, ac, b, ca, cda, d\}$, while $\mathcal{R}S(a) = \{bca, bcda, cda\}$.

FRANCESCO DOLCE (PARIS-EST)

Specular Sets

PALERMO, 21 DIC. 2015 28 / 30

3

イロト イポト イヨト イヨト

Example (doubling of Fibonacci)

Recall that in G_{θ} one has $\theta : \mathbf{b} \leftrightarrow \mathbf{d}$ fixing a and c.

The even code is $X = \{abc, ac, b, ca, cda, d\}$, while $\mathcal{R}S(a) = \{bc\underline{a}, bc\underline{d}a, cd\underline{a}\}$.

One has $\langle \mathcal{R}S(a) \rangle = \langle X \rangle$, indeed :

$$\left\{ \begin{array}{ll} cda = c\,da & ca = (b)^{-1}(bca) \\ abc = (c\,da)^{-1} & ac = (ca)^{-1} \\ b = (bc\,da)(abc\,) & d = b^{-1} \end{array} \right.$$

Specular Sets

 $E(\varepsilon)$ (b) (c) (c) (d) (a)

THESE ARENT THE FUTURE RESEARCH DIRECTIONS YOU'RE LOOKING FOR

- Recurrence and uniformly recurrence in tree sets.
- Bifix decoding for general bifix codes.
- Decidability of the tree condition.
- Connection with $\operatorname{G-full}$ (or $\operatorname{G-rich}$) words.
- Generalization towards larger classes of groups (virtually free).
- Profinite monoids and profinite groups.

