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Words

Codes Free groups

Sturmian

sets

Bifix codes and Sturmian words

(J. Berstel, C. De Felice, D. Perrin, C. Reutenauer, G. Rindone - 2011)
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Codes Free groups

Dynamical Systems

Sturmian

sets

The finite index basis property

(V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone - 2014)

Bifix codes and Interval Exchanges

(V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone - 2014)
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Words

Codes Free groups

Dynamical Systems

S-adic words

Sturmian

sets

Maximal bifix decoding

(V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone - 2015)
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Words

Codes Free groups

Dynamical Systems

S-adic words Surfaces

Sturmian

sets

Return words of linear involutions and fundamental groups

(V. Berthé, V. Delecroix, F. Dolce, D. Perrin, C. Reutenauer, G. Rindone - to appear)
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Words

Codes Free groups

Dynamical Systems

S-adic words Surfaces

Sturmian

sets

Neutral

Enumeration formulæ in neutral sets

(F. Dolce, D. Perrin - DLT 2015)
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Words

Codes Free groups

Dynamical Systems

S-adic words Surfaces

Sturmian

sets

Neutral

Tree

Acyclic, connected and tree sets

(V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone - 2014)

On the decidability of tree condition

(F. Dolce, R. Kyriakoglou, J. Leroy - work in progress)
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Introduction

Generalization of links between Sturmian sets and Free groups to general
objects : Specular sets and Specular groups.
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Introduction

Generalization of links between Sturmian sets and Free groups to general
objects : Specular sets and Specular groups.

Introduction of new concepts : parity of words (odd and even words),
mixed return words.

Framework allowing to handle linear involutions (generalization of interval
exchange transformations).

Adaptation of results holding for tree sets : “Maximal Bifix Decoding

Theorem”, “Finite Index Basis Theorem”, “Return Theorem”.
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Outline

Motivation and Introduction

1. Specular groups

2. Specular sets

3. Codes and subgroups

Further research directions
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Specular Groups

Outline

Motivation and Introduction

1. Specular groups

◦ Groups and subgroups
◦ Reduced words
◦ Monoidal basis

2. Specular sets

3. Codes and subgroups

Further research directions
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Specular Groups Groups and Subgroups

Given an involution θ : A→ A (possibly with some fixed point), let us define

Gθ = 〈a ∈ A | a · θ(a) = 1 for every a ∈ A〉.

Gθ = Z
i ∗ (Z/2Z)j is a specular group of type (i , j), and Card (A)= 2i + j is its

symmetric rank.

Example

Let A= {a,b, ,d} and let θ be the involution which exchanges b,d and fixes a,, i.e.,

Gθ = 〈a,b, ,d | a2 = 

2 = bd= db= 1〉.

Gθ = Z ∗ (Z/2Z)2 is a specular group of type (1, 2) and symmetric rank 4.
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Specular Groups Groups and Subgroups

Theorem

Any subgroup of a specular group is specular.

Example

Let Gθ = Z ∗ (Z/2Z)2, then one has

Gθ

Z ∗ (Z/2Z) (Z/2Z)2

Z Z/2Z

1
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Specular Groups Reduced words

A word is θ-reduced if it has no factor of the form aθ(a) for a ∈ A.

Any element of a specular group is represented by a unique reduced word.

Example

Let θ : b↔ d fixing a,.

The θ-reduction of the word daaabd is da.

Francesco Dolce (Paris-Est) Specular Sets Palermo, 21 Dic. 2015 8 / 30



Specular Groups Reduced words

A word is θ-reduced if it has no factor of the form aθ(a) for a ∈ A.

Any element of a specular group is represented by a unique reduced word.

Example

Let θ : b↔ d fixing a,.

The θ-reduction of the word d✁a✁aa✁b✁d is da.
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Specular Groups Monoidal Basis

A subset of a group G is called symmetric if it is closed under taking inverses (under θ).

Example

The set X = {a,ad,b, ba,d} is symmetric, for θ : b↔ d fixing a,.
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Specular Groups Monoidal Basis

A subset of a group G is called symmetric if it is closed under taking inverses (under θ).

Example

The set X = {a,ad,b, ba,d} is symmetric, for θ : b↔ d fixing a,.

A set X in a specular group G is called a monoidal basis of G if :

• it is symmetric ;

• the monoid that it generates is G ;

• any product x1x2 · · ·xmsuch that x
k

x

k+1 6= 1 for every k is distinct of 1.

Example

The alphabet A is a monoidal basis of Gθ.

The symmetric rank of a specular group is the cardinality of any monoidal basis.
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Specular Sets

Outline

Motivation and Introduction

1. Specular groups

2. Specular sets

◦ Tree sets and specular sets
◦ Linear involutions and Doubling Maps
◦ Even and odd words

3. Subgroup theorems

Further research directions
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Specular Sets Tree Sets and Specular Sets

A tree is a graph that is both ayli and onneted.
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Specular Sets Tree Sets and Specular Sets
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Specular Sets Tree Sets and Specular Sets

The extension graph of a word w ∈ S is the undirected bipartite graph G(w) with
vertices the disjoint union of

L(w) = {a ∈ A | aw ∈ S} and R(w) = {a ∈ A|wa ∈ S},

and edges the pairs E (w) = {(a,b) ∈ A×A | awb ∈ S}

Example (Fibonacci)

S = {ε, a,b, aa, ab,ba, aab, aba,baa,bab, . . .}.

E(ε)

a

b

a

b

E (a)

a

b

a

b

E(b)

a a
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Specular Sets Tree Sets and Specular Sets

A factorial and biextendable set S is called a tree set of characteristic  if for any
nonempty w ∈ S , the graph E (w) is a tree and if E (ε) is a union of  trees.

Example

The Fibonacci set is a tree set of characteristic 1.
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Specular Sets Tree Sets and Specular Sets

A factorial and biextendable set S is called a tree set of characteristic  if for any
nonempty w ∈ S , the graph E (w) is a tree and if E (ε) is a union of  trees.

Example

The Fibonacci set is a tree set of characteristic 1.

Proposition [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]

Factors of an Arnoux-Rauzy word and regular interval exchange sets are both uniformly
recurrent tree sets of characteristic 1.

Example (Tribonacci)

E(ε)

a

b





b

a

Francesco Dolce (Paris-Est) Specular Sets Palermo, 21 Dic. 2015 14 / 30



Specular Sets Tree Sets and Specular Sets

A specular set on an alphabet A (w.r.t. an involution θ) is a

- biextendable and

- symmetric set

- of θ-reduced words

- which is a tree set of characteristic 2.
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Specular Sets Tree Sets and Specular Sets

A specular set on an alphabet A (w.r.t. an involution θ) is a

- biextendable and

- symmetric set

- of θ-reduced words

- which is a tree set of characteristic 2.

Example

Let θ be the identity on A= {a,b}. Fac ((ab)ω) is a specular set.

E(ε)

a

b

a

b
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Specular Sets Tree Sets and Specular Sets

A specular set on an alphabet A (w.r.t. an involution θ) is a

- biextendable and

- symmetric set

- of θ-reduced words

- which is a tree set of characteristic 2.

Example

Let θ be the identity on A= {a,b}. Fac ((ab)ω) is a specular set.

E(ε)

a

b

a

b

Proposition [using J. Cassaigne (1997)]

p

S

(0) = 1 and p
S

(n) = n (Card (A)− 2) + 2.
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Specular Sets Linear Involutions and Doubling Maps

Theorem

The natural coding of a linear involution without connections is a specular set.

T = σ2 ◦ σ1

a b b

−1





−1
a

−1

σ1

σ1

σ1

σ2
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Specular Sets Linear Involutions and Doubling Maps

Theorem

The natural coding of a linear involution without connections is a specular set.

a b b

−1





−1
a

−1

Σ
T

(z) =a
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Specular Sets Linear Involutions and Doubling Maps

Theorem

The natural coding of a linear involution without connections is a specular set.

a b b

−1





−1
a

−1

Σ
T

(z) =ab

−1
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Specular Sets Linear Involutions and Doubling Maps

Theorem

The natural coding of a linear involution without connections is a specular set.

a b b

−1





−1
a
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Σ
T

(z) =ab

−1
 b
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Specular Sets Linear Involutions and Doubling Maps

Theorem

The natural coding of a linear involution without connections is a specular set.

a b b

−1





−1
a

−1

Σ
T

(z) =ab

−1
 b

−1· · ·
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Specular Sets Linear Involutions and Doubling Maps

A doubling transducer is a transducer with set of states {0, 1} such that :

1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

Example

0 1

α | a

α |b

Σ = {α}
A= {a,b}

Francesco Dolce (Paris-Est) Specular Sets Palermo, 21 Dic. 2015 17 / 30



Specular Sets Linear Involutions and Doubling Maps

A doubling transducer is a transducer with set of states {0, 1} such that :

1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

A doubling map is a pair δ = (δ0, δ1), where δ
i

(u) = v for a path starting at the state i
with input label u and output label v .

Example

0 1

α | a

α |b

Σ = {α}
A= {a,b}

δ0 (α
ω) = (ab)ω

δ1 (α
ω) = (ba)ω
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Specular Sets Linear Involutions and Doubling Maps

A doubling transducer is a transducer with set of states {0, 1} such that :

1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

A doubling map is a pair δ = (δ0, δ1), where δ
i

(u) = v for a path starting at the state i
with input label u and output label v .

The image of a set T is δ(T ) = δ0(T )∪ δ1(T ).

Example

0 1

α | a

α |b

Σ = {α}
A= {a,b}

δ0 (α
ω) = (ab)ω

δ1 (α
ω) = (ba)ω

δ(αω) = (ab)ω ∪ (ba)ω
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Specular Sets Linear Involutions and Doubling Maps

Proposition

The image of a tree set of characteristic 1 closed under reversal is a specular set.

Example (two doublings of Fibonacci on Σ = {α, β})

• Fac (abaababa · · · ) ∪ Fac (ddd · · · ),

0 1
α|a
β|b

α|
β|d

• Fac (ababda · · · ) ∪ Fac (dadab · · · ) .

0 1

α|a

α|

β|d β|b

Francesco Dolce (Paris-Est) Specular Sets Palermo, 21 Dic. 2015 18 / 30



Specular Sets Even and Odd Words

A letter is even if its two occurences (as a element of L(ε) and of R(ε)) appear in the
same tree of E (ε). Otherwise it is odd.

Example (doubling of Fibonacci)

0 1

α|a

α|

β|d β|b

E (ε)

a

b

b





d

d

a

The letters b and d are even,
while a and  are odd.

A word is even if it has an even number of odd letters. Otherwise it is odd.
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Codes and Subgroups

Outline

Motivation and Introduction

1. Specular groups

2. Specular sets

3. Codes and Subgroups

◦ Maximal Bifix Decoding Theorem
◦ Finite Index Basis Theorem
◦ Return Theorem

Further research directions
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Codes and Subgroups Maximal Bifix Decoding Theorem

A set X ⊂ A

+ of nonempty words over an alphabet A is a bifix code if it does not
contain any proper prefix or suffix of its elements.

Example

• {aa, ab,ba}

• {aa, ab,bba,bbb}

• {a,b,bba}

• {melo,pero,melograno}

• {mandarino,aranio,mandaranio}
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Codes and Subgroups Maximal Bifix Decoding Theorem

A set X ⊂ A

+ of nonempty words over an alphabet A is a bifix code if it does not
contain any proper prefix or suffix of its elements.

Example

• {aa, ab,ba}

• {aa, ab,bba,bbb}

• {a,b,bba}

• {melo,pero,melograno}

• {mandarino,aranio,mandaranio}

X ⊂ S is S-maximal if it is not properly contained in a bifix code Y ⊂ S .

Example (Fibonacci)

The set X = {aa,ab,ba} is an S-maximal bifix code.
It is not an A∗-maximal bifix code, indeed X ⊂ Y = X ∪ {bb}.
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Codes and Subgroups Maximal Bifix Decoding Theorem

A parse of a word w w.r.t. a bifix code X is a triple (q,x ,p) with w = qxp and such
that q has no suffix in X , x ∈ X

∗ and p has no prefix in X .

Example

Let X = {aa,ab,ba} and w = abaaba. The two possible parses of w are

• (ε, ab·aa·ba, ε),

• (a,ba·ab, a).
a b a a b a
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Codes and Subgroups Maximal Bifix Decoding Theorem

A parse of a word w w.r.t. a bifix code X is a triple (q,x ,p) with w = qxp and such
that q has no suffix in X , x ∈ X

∗ and p has no prefix in X .

Example

Let X = {aa,ab,ba} and w = abaaba. The two possible parses of w are

• (ε, ab·aa·ba, ε),

• (a,ba·ab, a).
a b a a b a

The S-degree of X is the maximal number of parses w.r.t. X of a word of S .

Example

• For S = Fibonacci, the set X = {aa,ab,ba} has S-degree 2 ;

• The set X = S ∩A

nhas S-degree n.
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Codes and Subgroups Maximal Bifix Decoding Theorem

The set of even words has the form X

∗∩ S , where X ⊂ S is a bifix code called the even

code.
X is the set of even words without a nonempty even prefix (or suffix).

Example (doubling of Fibonacci)

0 1

α|a

α|

β|d β|b

E (ε)

a

b

b





d

d

a

The even code is X = {ab,a,b, a,da,d}.

Proposition

If S is recurrent, the even code is an S-maximal bifix code of S-degree 2.

Francesco Dolce (Paris-Est) Specular Sets Palermo, 21 Dic. 2015 23 / 30



Codes and Subgroups Maximal Bifix Decoding Theorem

A coding morphism for a (S-maximal) bifix code X is a morphism f : B∗ → A

∗ which
maps bijectively an alphabet B onto X .

The set f−1(S) is called a (maximal) bifix decoding of S .
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Codes and Subgroups Maximal Bifix Decoding Theorem

A coding morphism for a (S-maximal) bifix code X is a morphism f : B∗ → A

∗ which
maps bijectively an alphabet B onto X .

The set f−1(S) is called a (maximal) bifix decoding of S .

Maximal Bifix Decoding Theorem

The decoding of a recurrent specular set by the even code is a union of two recurrent tree
sets of characteristic 1.

Example (Fac ((ab)ω))

The even code is X = {ab,ba}. Let f : {u,v}∗ → A

∗ be the coding morphism :

f :

{

u 7→ ab

v 7→ ba

Then, f −1(S) = Fac (uω) ∪ Fac (vω).
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Codes and Subgroups Finite Index Basis Theorem

Finite Index Basis Theorem

Let S be a recurrent specular set and X ⊂ S a symmetric bifix code.
Then X is :
S-maximal of S-degree d ⇐⇒ monoidal basis of H ≤ Gθ, with [Gθ : H] = d .

Example

•
S ∩A

d is a monoidal basis of 〈Ad〉.

• The even code is a monoidal basis of the even subgroup.
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Codes and Subgroups Finite Index Basis Theorem

Finite Index Basis Theorem

Let S be a recurrent specular set and X ⊂ S a symmetric bifix code.
Then X is :
S-maximal of S-degree d ⇐⇒ monoidal basis of H ≤ Gθ, with [Gθ : H] = d .

Example

•
S ∩A

d is a monoidal basis of 〈Ad〉.

• The even code is a monoidal basis of the even subgroup.

The Finite Index Basis Theorem has also a converse.

Theorem

Let S be a recurrent and symmetric set of reduced words having factor complexity p
S

(n) =
n (Card (A)− 2) + 2.
If S ∩A

n is a monoidal basis of 〈An〉 for all n ≥ 1 =⇒ S is specular.
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Codes and Subgroups Return Theorem

A (right) return word to w in S is a nonempty word u such that wu∈ S ∩A

∗

w , but has
no internal factor equal to w .

We denote by R
S

(w) the set of return words to w in S .

Example (Fibonacci)

R
S

(aa) = {baa,babaa}.

ϕ(a)ω = abaababaabaababaababaabaababaabaab· · ·

Remark.
A recurrent set S is uniformly recurrent ⇐⇒ R

S

(w) is finite for every w ∈ S .
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Codes and Subgroups Return Theorem

Theorem [Balková, Palentová, Steiner (2008)]

Let S be a (uniformly) recurrent tree set of characteristic 1.
For every w ∈ S , the set R

S

(w) has exactly Card (A) elements.
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Codes and Subgroups Return Theorem

Theorem [Balková, Palentová, Steiner (2008)]

Let S be a (uniformly) recurrent tree set of characteristic 1.
For every w ∈ S , the set R

S

(w) has exactly Card (A) elements.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Let S be a (uniformly) recurrent tree set of characteristic 1.
For every w ∈ S , the set R

S

(w) is a (tame) basis of the free group on A.
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Codes and Subgroups Return Theorem

Theorem [Balková, Palentová, Steiner (2008)]

Let S be a (uniformly) recurrent tree set of characteristic 1.
For every w ∈ S , the set R

S

(w) has exactly Card (A) elements.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Let S be a (uniformly) recurrent tree set of characteristic 1.
For every w ∈ S , the set R

S

(w) is a (tame) basis of the free group on A.

Return Theorem

Let S be a (uniformly) recurrent specular set on the alphabet A.
For any w ∈ S , the set R

S

(w) is a monoidal basis of the even subgroup.

In particular, Card (R
S

(x))= Card (A)− 1.
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Codes and Subgroups Return Theorem

Example (doubling of Fibonacci)

Recall that in Gθ one has θ : b↔ d fixing a and .

0 1

α|a

α|

β|d β|b

E (ε)

a

b

b





d

d

aThe even code is X = {ab,a,b, a,da,d},

while R
S

(a) = {ba,bda, da}.

Francesco Dolce (Paris-Est) Specular Sets Palermo, 21 Dic. 2015 28 / 30



Codes and Subgroups Return Theorem

Example (doubling of Fibonacci)

Recall that in Gθ one has θ : b↔ d fixing a and .

0 1

α|a

α|

β|d β|b

E (ε)

a

b

b





d

d

aThe even code is X = {ab,a,b, a,da,d},

while R
S

(a) = {ba,bda, da}.

One has
〈

R
S

(a)
〉

= 〈X 〉, indeed :







da = da

ab = (da)−1

b= (bda)(ab)

a= (b)−1(ba)
a = (a)−1

d = b

−1
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