Palindromes and Tree Sets

Francesco Dolce

LaCIM

Secondo Incontro di Combinatoria delle Parole
Palermo, 20 gennaio 2017

GoflowolfoG

GoflowolfoG

" You can summon him by trying to take on his characteristics - relaxing, fantasising that you're 'cool', and letting go of your frustration momentarily. Visualise him zipping along on his skateboard, accompanied by a slight breeze and his Mantra : 'Neeeoooow'. "

Palindromes

A palindrome is a word $w=\tilde{w}$ as, for instance :
In girum imus nocte et consumimur igni, ...

Palindromes

A palindrome is a word $w=\tilde{w}$ as, for instance :
In girum imus nocte et consumimur igni, ...
起
eye, noon, sagas, racecar, ...
ici, été, coloc, kayak ...
saippuakivikauppias, ...

Palindromes

A palindrome is a word $w=\tilde{w}$ as, for instance :
In girum imus nocte et consumimur igni, ...
eye, noon, sagas, racecar, ...
ici, été, coloc, kayak...
saippuakivikauppias, ...
E Le Mie Sei Mele?

Full words

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]
A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is rich (or full).

Full words

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]
A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is rich (or full).

Example

- Ananas, Banana, Lampone, Susina are rich.
- Albicocca, Anguria, Fragola, Melone are not rich.

$$
|\operatorname{SUSINA}|=6 \quad \text { and } \quad \operatorname{Card}(\{\varepsilon, \mathrm{A}, \mathrm{I}, \mathrm{~N}, \mathrm{~S}, \mathrm{U}, \operatorname{SUS}\})=7
$$

$|\operatorname{Albicocca}|=9$ and $\operatorname{Card}(\{\varepsilon, A, B, C, I, L, O, C C, C O C\})=9$

Full words

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]
A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is rich (or full).
A factorial set is rich if all its elements are rich.

Example (Fibonacci)

Let S be the set of factors of the fixed-point $\varphi^{\omega}(a)$ of

$$
\varphi: a \mapsto a b, \quad b \mapsto a .
$$

Every word $w \in S$ is rich. For instance,

$$
\operatorname{Pal}(a b a a b)=\{\varepsilon, a, b, a a, a b a, b a a b\} .
$$

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed under reversal with $p_{n}=(\operatorname{Card}(A)-1) n+1$ having a unique right special factor for each length.

Examples

- Fibonacci : factors of the fixed-point $\varphi^{\omega}(a)$, where $\quad \varphi:\left\{\begin{array}{l}a \mapsto a b \\ b \mapsto a\end{array}\right.$ - Tribonacci : factors of the fixed-point $\psi^{\omega}(a)$, where $\psi:\left\{\begin{array}{l}a \mapsto a b \\ b \mapsto a c \\ c \mapsto a\end{array}\right.$.
Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed under reversal with $p_{n}=(\operatorname{Card}(A)-1) n+1$ having a unique right special factor for each length.

Examples

- Fibonacci : factors of the fixed-point $\varphi^{\omega}(a)$, where

$$
\varphi:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto a
\end{array}\right.
$$

- Tribonacci : factors of the fixed-point $\psi^{\omega}(a)$, where $\quad \psi:\left\{\begin{array}{l}a \mapsto a b \\ b \mapsto a c \\ c \mapsto a\end{array}\right.$.

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

Arnoux-Rauzy sets are rich.

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of $[0,1[$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of $[0,1[$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of $[0,1[$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of $[0,1[$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of $[0,1[$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the separation points $\neq 0$ are infinite and disjoint.
Theorem [M. Keane (1975)]
A regular interval exchange transformation is minimal.

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the separation points $\neq 0$ are infinite and disjoint.
Theorem [M. Keane (1975)]
A regular interval exchange transformation is minimal.

Example (the converse is not true)

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in[0,1[} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in[0,1[} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Proposition

Regular interval exchange sets have factor complexity $p_{n}=(\operatorname{Card}(A)-1) n+1$.

Interval exchanges

Theorem [P. Balǎži, Z. Masáková, E. Pelantová (2007)]
Regular interval exchange sets closed under reverse are rich.

Extension graphs

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in A \mid a w \in S\}, \\
R(w) & =\{a \in A \mid w a \in S\}, \\
B(w) & =\{(a, b) \in A \mid a w b \in S .\}
\end{aligned}
$$

Example (Fibonacci, $S=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

Tree sets

Definition

A factorial set S is called a tree set (of characteristic 1) if $\mathcal{E}(w)$ is a tree for any $w \in S$.

Tree sets

Definition

A factorial set S is called a tree set (of characteristic 1) if $\mathcal{E}(w)$ is a tree for any $w \in S$.

[using J. Cassaigne : "Complexité et facteurs spéciaux" (1997).]

Tree sets

Definition

A factorial set S is called a tree set (of characteristic 1) if $\mathcal{E}(w)$ is a tree for any $w \in S$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone: "Acyclic, connected and tree sets" (2014).]

Tree sets

Definition

A factorial set S is called a tree set (of characteristic 1) if $\mathcal{E}(w)$ is a tree for any $w \in S$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone : "Bifix codes and interval exchanges" (2015).]

Tree sets

Definition

A factorial set S is called a tree set (of characteristic 1) if $\mathcal{E}(w)$ is a tree for any $w \in S$.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]
A (uniformly) recurrent tree set closed under reversal is rich.

σ-palindromes

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

Example

Let $\sigma: \mathrm{A} \leftrightarrow \mathrm{T}, \mathrm{C} \leftrightarrow \mathrm{G}$.
The word CTTAAG is a σ-palindrome.

$$
\sigma \text {-palindromes }
$$

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

Example

Let $\sigma: \mathrm{A} \leftrightarrow \mathrm{T}, \mathrm{C} \leftrightarrow \mathrm{G}$.
The word CTTAAG is a σ-palindrome.

Theorem [š. Starosta (2011)]

Let $\gamma_{\sigma}(w)$ be the number of transpositions of σ affecting w. Then

$$
\operatorname{Card}\left(\operatorname{Pal}_{\sigma}(w)\right) \leq|w|+1-\gamma_{\sigma}(w)
$$

A word (resp. set) is σ-rich if the equality holds (resp. for all its elements).

σ-palindromes

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

Theorem [š. Starosta (2011)]
$\operatorname{Card}\left(\operatorname{Pal}_{\sigma}(w)\right) \leq|w|+1-\gamma_{\sigma}(w)$
A word (resp. set) is σ-rich if the equality holds (resp. for all its elements).

Example

Let $\sigma: \mathrm{A} \leftrightarrow \mathrm{L}, \mathrm{B} \leftrightarrow \mathrm{E}, \mathrm{I} \leftrightarrow \mathrm{R}$ and $\tau=\mathrm{id}$.

$$
\sigma \text {-palindromes }
$$

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

Theorem [š. Starosta (2011)]
$\operatorname{Card}\left(\operatorname{Pal}_{\sigma}(w)\right) \leq|w|+1-\gamma_{\sigma}(w)$
A word (resp. set) is σ-rich if the equality holds (resp. for all its elements).

Example

Let $\sigma: \mathrm{A} \leftrightarrow \mathrm{L}, \mathrm{B} \leftrightarrow \mathrm{E}, \mathrm{I} \leftrightarrow \mathrm{R}$ and $\tau=\mathrm{id}$.

$$
\begin{aligned}
\operatorname{Card}\left(\mathrm{Pal}_{\sigma}(\operatorname{GABRIELE})\right) & =\operatorname{Card}(\{\varepsilon, \mathrm{G}, \mathrm{RI}, \mathrm{BRIE}, \mathrm{ABRIEL}\}) \\
& =5<6=8+1-3
\end{aligned}
$$

$$
\sigma \text {-palindromes }
$$

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

Theorem [̌̌. Starosta (2011)]
$\operatorname{Card}\left(\operatorname{Pal}_{\sigma}(w)\right) \leq|w|+1-\gamma_{\sigma}(w)$
A word (resp. set) is σ-rich if the equality holds (resp. for all its elements).
Example
Let $\sigma: \mathrm{A} \leftrightarrow \mathrm{L}, \mathrm{B} \leftrightarrow \mathrm{E}, \mathrm{I} \leftrightarrow \mathrm{R}$ and $\tau=\mathrm{id}$.

$$
\begin{aligned}
\operatorname{Card}\left(\mathrm{Pal}_{\sigma}(\mathrm{GABRIELE})\right) & =\operatorname{Card}(\{\varepsilon, \mathrm{G}, \mathrm{RI}, \mathrm{BRIE}, \mathrm{ABRIEL}\}) \\
& =5<6=8+1-3 \\
\operatorname{Card}\left(\mathrm{Pal}_{\tau}(\operatorname{CLELIA})\right) & =\operatorname{Card}(\{\varepsilon, \mathrm{C}, \mathrm{~L}, \mathrm{E}, \mathrm{I}, \mathrm{~A}, \mathrm{LEL}\}) \\
& =5=6+1-2
\end{aligned}
$$

G-palindromes

Let G be a group containing at least one antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Example

Let $G=\langle\sigma, \tau\rangle$ with $\sigma: \mathrm{A} \leftrightarrow \mathrm{X}, \mathrm{D} \leftrightarrow \mathrm{E}, \mathrm{M} \leftrightarrow \mathrm{Q}, \mathrm{D} \leftrightarrow \mathrm{U}$ and $\tau: \mathrm{A} \leftrightarrow \mathrm{D}, \mathrm{D} \leftrightarrow \mathrm{L}, \mathrm{U} \leftrightarrow \mathrm{X}$.

The following are G-palindromes :

G-palindromes

Let G be a group containing at least one antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Example

Let $G=\langle\sigma, \tau\rangle$ with $\sigma: \mathrm{A} \leftrightarrow \mathrm{X}, \mathrm{D} \leftrightarrow \mathrm{E}, \mathrm{M} \leftrightarrow \mathrm{Q}, \mathrm{D} \leftrightarrow \mathrm{U}$ and $\tau: \mathrm{A} \leftrightarrow \mathrm{D}, \mathrm{D} \leftrightarrow \mathrm{L}, \mathrm{U} \leftrightarrow \mathrm{X}$.

The following are G-palindromes :

- DOMINIQUE, fixed by σ,

G-palindromes

Let G be a group containing at least one antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Example

Let $G=\langle\sigma, \tau\rangle$ with $\sigma: \mathrm{A} \leftrightarrow \mathrm{X}, \mathrm{D} \leftrightarrow \mathrm{E}, \mathrm{M} \leftrightarrow \mathrm{Q}, \mathrm{O} \leftrightarrow \mathrm{U}$ and $\tau: \mathrm{A} \leftrightarrow \mathrm{D}, \mathrm{D} \leftrightarrow \mathrm{L}, \mathrm{U} \leftrightarrow \mathrm{X}$.

The following are G-palindromes :

- DOMINIQUE, fixed by σ,
- ALDO, fixed by τ,

G-palindromes

Let G be a group containing at least one antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Example

Let $G=\langle\sigma, \tau\rangle$ with $\sigma: \mathrm{A} \leftrightarrow \mathrm{X}, \mathrm{D} \leftrightarrow \mathrm{E}, \mathrm{M} \leftrightarrow \mathrm{Q}, \mathrm{D} \leftrightarrow \mathrm{U}$ and $\tau: \mathrm{A} \leftrightarrow \mathrm{D}, \mathrm{D} \leftrightarrow \mathrm{L}, \mathrm{U} \leftrightarrow \mathrm{X}$.

The following are G-palindromes :

- DOMINIQUE, fixed by σ,
- ALDO, fixed by τ,
- ANTONIO, fixed by $\tau \sigma \tau \sigma$.

G-palindromes

Let G be a group containing at least one antimorphism.
A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Example

Let $G=\langle\sigma, \tau\rangle$ with $\sigma: \mathrm{A} \leftrightarrow \mathrm{X}, \mathrm{D} \leftrightarrow \mathrm{E}, \mathrm{M} \leftrightarrow \mathrm{Q}, \mathrm{D} \leftrightarrow \mathrm{U}$ and $\tau: \mathrm{A} \leftrightarrow \mathrm{D}, \mathrm{D} \leftrightarrow \mathrm{L}, \mathrm{U} \leftrightarrow \mathrm{X}$.

The following are G-palindromes:

- DOMINIQUE, fixed by σ,
- ALDO, fixed by τ,
- ANTONIO, fixed by $\tau \sigma \tau \sigma$.

A word (set) is G-rich if "the number of G-palindromes is maximal".

G-palindromes

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]
Let S be a tree set closed under reversal.
The set obtained from S using a doubling transducer is G-rich, with $G \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$.

Example (doubling of Fibonacci)

GRAzieizaRG

