Return words and palindromes in specular sets

Francesco Dolce

RDMath IdF
Domaine d'Intérêt Majeur (DIM)

* îledeFrance

Praha, 24th May 2016
based on a joint work with
V. Berthé, C. De Felice, V. Delecroix, J. Leroy, D. Perrin, C. Reutenauer, G. Rindone

- return words

- return words

- palindromes

Outline

Introduction

1. Specular sets
2. Return words
3. Palindromes

Conclusions

The extension graph of a word $\mathrm{w} \in \mathrm{S}$ is the undirected bipartite graph $\mathcal{E}(\mathrm{w})$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
\mathrm{L}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{aw} \in S\} \\
\mathrm{R}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{wa} \in S\} \\
\mathrm{B}(\mathrm{w}) & =\{(\mathrm{a}, \mathrm{~b}) \in \mathrm{A} \times \mathrm{A} \mid \mathrm{awb} \in \mathrm{~S}\}
\end{aligned}
$$

The extension graph of a word $\mathrm{w} \in \mathrm{S}$ is the undirected bipartite graph $\mathcal{E}(\mathrm{w})$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
\mathrm{L}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{aw} \in \mathrm{~S}\} \\
\mathrm{R}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{wa} \in \mathrm{~S}\} \\
\mathrm{B}(\mathrm{w}) & =\{(\mathrm{a}, \mathrm{~b}) \in \mathrm{A} \times \mathrm{A} \mid \mathrm{awb} \in \mathrm{~S}\} .
\end{aligned}
$$

Example (Fibonacci)

$S=\{\varepsilon, a, b, a a, a b, b a$, aab, aba, baa, bab, $\ldots\}$.

The extension graph of a word $\mathrm{w} \in \mathrm{S}$ is the undirected bipartite graph $\mathcal{E}(\mathrm{w})$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
\mathrm{L}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{aw} \in \mathrm{~S}\} \\
\mathrm{R}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{wa} \in \mathrm{~S}\} \\
\mathrm{B}(\mathrm{w}) & =\{(\mathrm{a}, \mathrm{~b}) \in \mathrm{A} \times \mathrm{A} \mid \mathrm{awb} \in \mathrm{~S}\} .
\end{aligned}
$$

Example (Fibonacci)

$S=\{\varepsilon, a, b, a a, a b, b a, ~ a a b, a b a, b a a, b a b, \ldots\}$.

The extension graph of a word $\mathrm{w} \in \mathrm{S}$ is the undirected bipartite graph $\mathcal{E}(\mathrm{w})$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
\mathrm{L}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{aw} \in \mathrm{~S}\} \\
\mathrm{R}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{wa} \in \mathrm{~S}\} \\
\mathrm{B}(\mathrm{w}) & =\{(\mathrm{a}, \mathrm{~b}) \in \mathrm{A} \times \mathrm{A} \mid \mathrm{awb} \in \mathrm{~S}\} .
\end{aligned}
$$

Example (Fibonacci)

$S=\{\varepsilon, a, b, a a, a b, b a$, aab, aba, baa, bab, $\ldots\}$.

The extension graph of a word $\mathrm{w} \in \mathrm{S}$ is the undirected bipartite graph $\mathcal{E}(\mathrm{w})$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
\mathrm{L}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{aw} \in \mathrm{~S}\} \\
\mathrm{R}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{wa} \in \mathrm{~S}\} \\
\mathrm{B}(\mathrm{w}) & =\{(\mathrm{a}, \mathrm{~b}) \in \mathrm{A} \times \mathrm{A} \mid \mathrm{awb} \in \mathrm{~S}\} .
\end{aligned}
$$

Example (Fibonacci)

$S=\{\varepsilon, a, b, a a, a b, b a, ~ a a b, a b a, b a a, b a b, \ldots\}$.

The extension graph of a word $\mathrm{w} \in \mathrm{S}$ is the undirected bipartite graph $\mathcal{E}(\mathrm{w})$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
\mathrm{L}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{aw} \in \mathrm{~S}\} \\
\mathrm{R}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{wa} \in \mathrm{~S}\} \\
\mathrm{B}(\mathrm{w}) & =\{(\mathrm{a}, \mathrm{~b}) \in \mathrm{A} \times \mathrm{A} \mid \mathrm{awb} \in \mathrm{~S}\} .
\end{aligned}
$$

Example (Fibonacci)

$S=\{\varepsilon, a, b, a a, a b, b a$, aab, aba, baa, bab, $\ldots\}$.

The extension graph of a word $\mathrm{w} \in \mathrm{S}$ is the undirected bipartite graph $\mathcal{E}(\mathrm{w})$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
\mathrm{L}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{aw} \in \mathrm{~S}\} \\
\mathrm{R}(\mathrm{w}) & =\{\mathrm{a} \in \mathrm{~A} \mid \mathrm{wa} \in \mathrm{~S}\} \\
\mathrm{B}(\mathrm{w}) & =\{(\mathrm{a}, \mathrm{~b}) \in \mathrm{A} \times \mathrm{A} \mid \mathrm{awb} \in \mathrm{~S}\} .
\end{aligned}
$$

Example (Fibonacci)

$S=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\}$.

A factorial set S is called a tree set of characteristic c if $\mathcal{E}(\mathrm{w})$ is a tree for any nonempty $\mathrm{w} \in \mathrm{S}$, and $\mathcal{E}(\varepsilon)$ is a union of c trees.

A factorial set S is called a tree set of characteristic c if $\mathcal{E}(\mathrm{w})$ is a tree for any nonempty $\mathrm{w} \in \mathrm{S}$, and $\mathcal{E}(\varepsilon)$ is a union of c trees.

Theorem

Families of (uniformly) recurrent tree sets of characteristic 1 :

- Factors of Arnoux-Rauzy (Sturmian) words;
[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]
- Natural coding of regular interval exchanges.
[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

A factorial set S is called a tree set of characteristic c if $\mathcal{E}(\mathrm{w})$ is a tree for any nonempty $\mathrm{w} \in \mathrm{S}$, and $\mathcal{E}(\varepsilon)$ is a union of c trees.

Theorem

Families of (uniformly) recurrent tree sets of characteristic 1 :

- Factors of Arnoux-Rauzy (Sturmian) words;
[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]
- Natural coding of regular interval exchanges.
[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Example (Tribonacci)

Let $\theta: \mathrm{A} \rightarrow \mathrm{A}$ be an involution (possibly with some fixed point).

Let $\theta: \mathrm{A} \rightarrow \mathrm{A}$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $\mathrm{a} \theta(\mathrm{a})$ for $\mathrm{a} \in \mathrm{A}$.

Example

Let $\theta: \mathrm{a} \mapsto \mathrm{a}, \mathrm{b} \mapsto \mathrm{d}, \mathrm{c} \mapsto \mathrm{c}, \mathrm{d} \mapsto \mathrm{b}$.
The θ-reduction of the word daaacdb is dac.

Let $\theta: \mathrm{A} \rightarrow \mathrm{A}$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $\mathrm{a} \theta(\mathrm{a})$ for $\mathrm{a} \in \mathrm{A}$.

Example

Let $\theta: \mathrm{a} \mapsto \mathrm{a}, \mathrm{b} \mapsto \mathrm{d}, \mathrm{c} \mapsto \mathrm{c}, \mathrm{d} \mapsto \mathrm{b}$.
The θ-reduction of the word d daacdb is dac.

Let $\theta: \mathrm{A} \rightarrow \mathrm{A}$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $\mathrm{a} \theta(\mathrm{a})$ for $\mathrm{a} \in \mathrm{A}$.

Example

Let $\theta: \mathrm{a} \mapsto \mathrm{a}, \mathrm{b} \mapsto \mathrm{d}, \mathrm{c} \mapsto \mathrm{c}, \mathrm{d} \mapsto \mathrm{b}$.
The θ-reduction of the word daaacdb is dac.

A set is called θ-symmetric if it is closed under taking inverses (under θ).

Example

The set $\mathrm{X}=\{\mathrm{a}, \mathrm{adc}, \mathrm{b}, \mathrm{cba}, \mathrm{d}\}$ is symmetric for $\theta: \mathrm{b} \leftrightarrow \mathrm{d}$ fixing a, c.

Let $\theta: \mathrm{A} \rightarrow \mathrm{A}$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $\mathrm{a} \theta(\mathrm{a})$ for $\mathrm{a} \in \mathrm{A}$.

Example

Let $\theta: \mathrm{a} \mapsto \mathrm{a}, \mathrm{b} \mapsto \mathrm{d}, \mathrm{c} \mapsto \mathrm{c}, \mathrm{d} \mapsto \mathrm{b}$.
The θ-reduction of the word daaacdb is dac.

A set is called θ-symmetric if it is closed under taking inverses (under θ).

Example

The set $\mathrm{X}=\{\mathrm{a}, \mathrm{adc}, \mathrm{b}, \mathrm{cba}, \mathrm{d}\}$ is symmetric for $\theta: \mathrm{b} \leftrightarrow d$ fixing a, c.

Let $\theta: \mathrm{A} \rightarrow \mathrm{A}$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $\mathrm{a} \theta(\mathrm{a})$ for $\mathrm{a} \in \mathrm{A}$.

Example

Let $\theta: \mathrm{a} \mapsto \mathrm{a}, \mathrm{b} \mapsto \mathrm{d}, \mathrm{c} \mapsto \mathrm{c}, \mathrm{d} \mapsto \mathrm{b}$.
The θ-reduction of the word daaacdb is dac.

A set is called θ-symmetric if it is closed under taking inverses (under θ).

Example

The set $\mathrm{X}=\{\mathrm{a}, \mathrm{adc}, \mathrm{b}, \mathrm{cba}, \mathrm{d}\}$ is symmetric for $\theta: \mathrm{b} \leftrightarrow \mathrm{d}$ fixing a, c.

Let $\theta: \mathrm{A} \rightarrow \mathrm{A}$ be an involution (possibly with some fixed point).

A word is θ-reduced if it has no factor of the form $\mathrm{a} \theta(\mathrm{a})$ for $\mathrm{a} \in \mathrm{A}$.

Example

Let $\theta: \mathrm{a} \mapsto \mathrm{a}, \mathrm{b} \mapsto \mathrm{d}, \mathrm{c} \mapsto \mathrm{c}, \mathrm{d} \mapsto \mathrm{b}$.
The θ-reduction of the word daaacdb is dac.

A set is called θ-symmetric if it is closed under taking inverses (under θ).

Example

The set $\mathrm{X}=\{\mathrm{a}, \mathrm{adc}, \mathrm{b}, \mathrm{cba}, \mathrm{d}\}$ is symmetric for $\theta: \mathrm{b} \leftrightarrow \mathrm{d}$ fixing a, c.

A specular set on an alphabet A (w.r.t. an involution θ) is a set

- biextendable,
- θ-symmetric,
- θ-reduced,
- tree set of characteristic 2 .

A specular set on an alphabet A (w.r.t. an involution θ) is a set

- biextendable,
- θ-symmetric,
- θ-reduced,
- tree set of characteristic 2 .

Example

Let $\mathrm{A}=\{\mathrm{a}, \mathrm{b}\}$ and θ be the identity on A . The set of factors of $(\mathrm{ab})^{\omega}$ is a specular set.

\mathcal{E} (baba)

A specular set on an alphabet A (w.r.t. an involution θ) is a set

- biextendable,
- θ-symmetric,
- θ-reduced,
- tree set of characteristic 2 .

Example

Let $A=\{a, b\}$ and θ be the identity on A. The set of factors of $(a b)^{\omega}$ is a specular set.

\mathcal{E} (baba)

Proposition [using J. Cassaigne (1997)]

The factor complexity of a specular set is given by $\mathrm{p} n=\mathrm{n}(\operatorname{Card}(\mathrm{A})-2)+2$ for all $\mathrm{n} \geq 1$.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
The natural coding of a linear involution without connections is a specular set.

$$
\mathrm{T}=\sigma_{2} \circ \sigma_{1}
$$

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)] The natural coding of a linear involution without connections is a specular set.

$$
\Sigma \mathrm{T}(\mathrm{z})=\mathrm{a}
$$

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
The natural coding of a linear involution without connections is a specular set.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)] The natural coding of a linear involution without connections is a specular set.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)] The natural coding of a linear involution without connections is a specular set.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
The natural coding of a linear involution without connections is a specular set.

A doubling transducer is a transducer with set of states $\{0,1\}$ such that:

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

Example

$$
\begin{aligned}
& \Sigma=\{\alpha\} \\
& \mathrm{A}=\{\mathrm{a}, \mathrm{~b}\}
\end{aligned}
$$

A doubling transducer is a transducer with set of states $\{0,1\}$ such that:

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

A doubling map is a pair $\delta=\left(\delta_{0}, \delta_{1}\right)$, where $\delta_{\mathrm{i}}(\mathrm{u})=\mathrm{v}$ for a path starting at the state i with input label u and output label v .

Example

$$
\begin{aligned}
& \Sigma=\{\alpha\} \\
& \mathrm{A}=\{\mathrm{a}, \mathrm{~b}\}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{0}\left(\alpha^{\omega}\right)=(\mathrm{ab})^{\omega} \\
& \delta_{1}\left(\alpha^{\omega}\right)=(\mathrm{ba})^{\omega}
\end{aligned}
$$

A doubling transducer is a transducer with set of states $\{0,1\}$ such that:

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

A doubling map is a pair $\delta=\left(\delta_{0}, \delta_{1}\right)$, where $\delta_{\mathrm{i}}(\mathrm{u})=\mathrm{v}$ for a path starting at the state i with input label u and output label v .

The image of a set T is $\delta(\mathrm{T})=\delta_{0}(\mathrm{~T}) \cup \delta_{1}(\mathrm{~T})$.

Example

$$
\begin{aligned}
& \Sigma=\{\alpha\} \\
& \mathrm{A}=\{\mathrm{a}, \mathrm{~b}\}
\end{aligned}
$$

$$
\begin{aligned}
\delta_{0}\left(\alpha^{\omega}\right) & =(\mathrm{ab})^{\omega} \\
\delta_{1}\left(\alpha^{\omega}\right) & =(\mathrm{ba})^{\omega} \\
\delta\left(\mathrm{Fac}\left(\alpha^{\omega}\right)\right) & =\operatorname{Fac}\left((\mathrm{ab})^{\omega}\right)
\end{aligned}
$$

Proposition [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
The image of a tree set of characteristic 1 closed under reversal is a specular set with respect to $\theta_{\mathcal{A}}$.

Example (two doublings of Fibonacci on $\Sigma=\{\alpha, \beta\}$)

- Fac (abaababa…) \cup Fac (cdccdcdc...)

Example (two doublings of Fibonacci on $\Sigma=\{\alpha, \beta\}$)

- Fac (abaababa…) \cup Fac (cdccdcdc...)

$$
\theta_{\mathcal{A}}:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{c} \\
\mathrm{~b} \mapsto \mathrm{~d} \\
\mathrm{c} \mapsto \mathrm{a} \\
\mathrm{~d} \mapsto \mathrm{~b}
\end{array}\right.
$$

- Fac (abcabcda…) \cup Fac (cdacdabc...)

$$
\theta_{\mathcal{A}}:\left\{\begin{array}{l}
\mathrm{a} \mapsto \mathrm{a} \\
\mathrm{~b} \mapsto \mathrm{~d} \\
\mathrm{c} \mapsto \mathrm{c} \\
\mathrm{~d} \mapsto \mathrm{~b}
\end{array}\right.
$$

A right return word to w in S is a nonempty word u such that $\mathrm{wu} \in \mathrm{S}$, starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{R}(\mathrm{w})=\left\{\mathrm{u} \in \mathrm{~A}^{+} \mid \mathrm{w} u \in\left(\mathrm{~A}^{+} \mathrm{w} \backslash \mathrm{~A}^{+} \mathrm{w} \mathrm{~A}^{+}\right) \cap \mathrm{S}\right\} .
$$

Example (Fibonacci)

$$
\mathcal{R}(\mathrm{aa})=\{\text { baa, babaa }\} .
$$

$$
\varphi(\mathrm{a})^{\omega}=\text { abaababaabaababaababaabaababaabaab } \cdots
$$

A right return word to w in S is a nonempty word u such that $\mathrm{wu} \in \mathrm{S}$, starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{R}(\mathrm{w})=\left\{\mathrm{u} \in \mathrm{~A}^{+} \mid \mathrm{w} u \in\left(\mathrm{~A}^{+} \mathrm{w} \backslash \mathrm{~A}^{+} \mathrm{w} \mathrm{~A}^{+}\right) \cap \mathrm{S}\right\} .
$$

Example (Fibonacci)

$$
\mathcal{R}(\mathrm{aa})=\{\text { baa, babaa }\} .
$$

$$
\varphi(\mathrm{a})^{\omega}=\text { abaababaabaababaababaabaababaabaab } \ldots
$$

Cardinality Theorem for Right Return Words [BDDDLPRR (2015)]

For any w in a recurrent specular set, one has

$$
\operatorname{Card}(\mathcal{R}(\mathrm{w}))=\operatorname{Card}(\mathrm{A})-1 .
$$

A complete return word to a set $\mathrm{X} \subset \mathrm{S}$ is a word starting and ending with a word of X but having no internal factor in X . Formally,

$$
\mathcal{C R}(\mathrm{X})=\mathrm{S} \cap\left(\mathrm{XA}^{+} \cap \mathrm{A}^{+} \mathrm{X}\right) \backslash \mathrm{A}^{+} \mathrm{XA}^{+} .
$$

Example (Fibonacci)

$\mathcal{C R}(\{a \mathrm{a}, \mathrm{bab}\})=\{\underline{\text { aab }} \underline{a a}, \underline{\text { aabab }}, \underline{\text { babaa }}\}$.

$$
\varphi(\mathrm{a})^{\omega}=\text { abaababaabaababaababaabaababaabaab } \cdots
$$

A complete return word to a set $\mathrm{X} \subset \mathrm{S}$ is a word starting and ending with a word of X but having no internal factor in X. Formally,

$$
\mathcal{C R}(\mathrm{X})=\mathrm{S} \cap\left(\mathrm{XA}^{+} \cap \mathrm{A}^{+} \mathrm{X}\right) \backslash \mathrm{A}^{+} \mathrm{XA}^{+}
$$

Example (Fibonacci)

$\mathcal{C R}(\{\mathrm{aa}, \mathrm{bab}\})=\{\underline{\mathrm{aab}} \underline{\mathrm{aa}}, \underline{\text { aabab}}, \underline{\text { babaa }}\}$.

$$
\varphi(\mathrm{a})^{\omega}=\text { abaababaabaababaababaabaababaabaab } \cdots
$$

Cardinality Theorem for Complete Return Words [BDDDLPRR (2015)]

Let S be a recurrent specular set and $\mathrm{X} \subset \mathrm{S}$ be a finite bifix code ${ }^{1}$ with empty kernel ${ }^{2}$. Then,

$$
\operatorname{Card}(\mathcal{C R}(\mathrm{X}))=\operatorname{Card}(\mathrm{X})+\operatorname{Card}(\mathrm{A})-2
$$

1. bifix code : set that does not contain any proper prefix or suffix of its elements.
2. kernel : set of words of X which are also internal factors of X .

Two words u, v overlap if a nonempty suffix of one of them is a prefix of the other.

Two words u, v overlap if a nonempty suffix of one of them is a prefix of the other.

Consider a word w not overlapping with w^{-1}.
A mixed return word to w is the word $\mathrm{N}(\mathrm{u})$ obtained from $\mathrm{u} \in \mathcal{C} \mathcal{R}\left(\left\{\mathrm{w}, \mathrm{w}^{-1}\right\}\right)$ erasing the prefix if it is w and the suffix if it is w^{-1}.

Two words u, v overlap if a nonempty suffix of one of them is a prefix of the other.

Consider a word w not overlapping with w^{-1}.
A mixed return word to w is the word $\mathrm{N}(\mathrm{u})$ obtained from $\mathrm{u} \in \mathcal{C} \mathcal{R}\left(\left\{\mathrm{w}, \mathrm{w}^{-1}\right\}\right)$ erasing the prefix if it is w and the suffix if it is w^{-1}.

Cardinality Theorem for Mixed Return Words [BDDDLPRR (2015)]

Let S be a recurrent specular set and $\mathrm{w} \in \mathrm{S}$ such that $\mathrm{w}, \mathrm{w}^{-1}$ do not overlap. Then,

$$
\operatorname{Card}(\mathcal{M R}(\mathrm{w}))=\operatorname{Card}(\mathrm{A})
$$

A palindrome is a word $\mathrm{w}=\widetilde{\mathrm{w}}$ as, for instance :

A palindrome is a word $\mathrm{w}=\widetilde{\mathrm{w}}$ as, for instance :
eye, noon, sagas, racecar ...

A palindrome is a word $\mathrm{w}=\widetilde{\mathrm{w}}$ as, for instance :
eye, noon, sagas, racecar ...
ici, été, coloc, kayak, radar, . . .

A palindrome is a word $\mathrm{w}=\widetilde{\mathrm{w}}$ as, for instance :
eye, noon, sagas, racecar ...
ici, été, coloc, kayak, radar, ...
non, osso, aveva, rossor, ottetto, ...

A palindrome is a word $\mathrm{w}=\widetilde{\mathrm{w}}$ as, for instance :
eye, noon, sagas, racecar ...
ici, été, coloc, kayak, radar, ...
as non, osso, aveva, rossor, ottetto, ...

Jelenovi Pivo Nelej (to a deer, don't pour beer),

A palindrome is a word $\mathrm{w}=\widetilde{\mathrm{w}}$ as, for instance :
siv
eye, noon, sagas, racecar ...
ici, été, coloc, kayak, radar, ...
N

```
non, osso, aveva, rossor, ottetto, ...
```

Jelenovi Pivo Nelej (to a deer, don't pour beer), Ital Platí, ...

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most $\mathrm{n}+1$ palindrome factors.

A word with maximal number of palindromes is rich.
A factorial set is rich if all its elements are rich.

```
Example (Fibonacci)
Pal(abaab) = {\varepsilon, a, b, aa, aba, baab }.
```


Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most $\mathrm{n}+1$ palindrome factors.

A word with maximal number of palindromes is rich.
A factorial set is rich if all its elements are rich.

```
Example (Fibonacci)
Pal(abaab) = {\varepsilon, a, b, aa, aba, baab }.
```


Theorem [A. Glen, J. Justin, S. Widmer, L.Q. Zamboni (2009)]

Let S be a recurrent set closed under reversal.
S is rich \Longleftrightarrow every complete return word to a palindrome is a palindrome.

Theorem

Families of rich sets :

- Factors of Arnoux-Rauzy (Sturmian) words.
[X. Droubay, J. Justin, G. Pirillo (2001)]
- Natural coding of regular interval exchanges defined by a symmetric permutation.
[P. Balázi, Z. Masáková, E. Pelantová (2007)]

Theorem

Families of rich sets :

- Factors of Arnoux-Rauzy (Sturmian) words.
[X. Droubay, J. Justin, G. Pirillo (2001)]
- Natural coding of regular interval exchanges defined by a symmetric permutation.
[P. Balázi, Z. Masáková, E. Pelantová (2007)]

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

Recurrent tree sets of characteristic 1 closed under reversal are rich.

Let σ be an antimorphism.
A word w is a σ-palindrome if $\mathrm{w}=\sigma(\mathrm{w})$.

Let σ be an antimorphism.
A word w is a σ-palindrome if $\mathrm{w}=\sigma(\mathrm{w})$.

Example

Let $\sigma: \mathrm{A} \leftrightarrow \mathrm{T}, \mathrm{C} \leftrightarrow \mathrm{G}$.
The word CTTAAG is a σ-palindrome.

Let σ be an antimorphism.
A word w is a σ-palindrome if $\mathrm{w}=\sigma(\mathrm{w})$.

Example

Let $\sigma: \mathrm{A} \leftrightarrow \mathrm{T}, \mathrm{C} \leftrightarrow \mathrm{G}$.
The word CTTAAG is a σ-palindrome.

Theorem [Š. Starosta (2011)]

Let $\gamma_{\sigma}(\mathrm{w})$ be the number of transpositions of σ affecting w . Then,

$$
\operatorname{Card}\left(\operatorname{Pal}_{\sigma}(\mathrm{w})\right) \leq|\mathrm{w}|+1-\gamma_{\sigma}(\mathrm{w}) .
$$

A word (set) is σ-rich if the equality holds (for all its elements).

Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G -palindrome if there exists a nontrivial $\mathrm{g} \in \mathrm{G}$ s.t. $\mathrm{w}=\mathrm{g}(\mathrm{w})$.

Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G-palindrome if there exists a nontrivial $\mathrm{g} \in \mathrm{G}$ s.t. $\mathrm{w}=\mathrm{g}(\mathrm{w})$.

$$
\begin{aligned}
& \text { Example } \\
& \text { Let } \mathrm{G}=\langle\sigma, \tau\rangle \text {, with } \quad \begin{array}{l}
\sigma: \mathrm{A} \leftrightarrow \mathrm{R}, \mathrm{E} \leftrightarrow \mathrm{~T}, \mathrm{I} \leftrightarrow \mathrm{M}, \mathrm{O} \leftrightarrow \mathrm{U} \text { and } \\
\tau: \mathrm{A} \leftrightarrow \mathrm{G}, \mathrm{E} \leftrightarrow \mathrm{P}, \mathrm{U} \leftrightarrow \mathrm{R} .
\end{array}
\end{aligned}
$$

The following words are G-palindromes :

Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G -palindrome if there exists a nontrivial $\mathrm{g} \in \mathrm{G}$ s.t. $\mathrm{w}=\mathrm{g}(\mathrm{w})$.

Example

Let $\mathrm{G}=\langle\sigma, \tau\rangle$, with $\quad \sigma: \mathrm{A} \leftrightarrow \mathrm{R}, \mathrm{E} \leftrightarrow \mathrm{T}, \mathrm{I} \leftrightarrow \mathrm{M}, \mathrm{O} \leftrightarrow \mathrm{U}$ and

$$
\tau: \mathrm{A} \leftrightarrow \mathrm{G}, \mathrm{E} \leftrightarrow \mathrm{P}, \mathrm{U} \leftrightarrow \mathrm{R} .
$$

The following words are G-palindromes :

- NUMERATION, fixed by σ,

Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G -palindrome if there exists a nontrivial $\mathrm{g} \in \mathrm{G}$ s.t. $\mathrm{w}=\mathrm{g}(\mathrm{w})$.

Example

Let $\mathrm{G}=\langle\sigma, \tau\rangle$, with $\quad \sigma: \mathrm{A} \leftrightarrow \mathrm{R}, \mathrm{E} \leftrightarrow \mathrm{T}, \mathrm{I} \leftrightarrow \mathrm{M}, \mathrm{O} \leftrightarrow \mathrm{U}$ and

$$
\tau: \mathrm{A} \leftrightarrow \mathrm{G}, \mathrm{E} \leftrightarrow \mathrm{P}, \mathrm{U} \leftrightarrow \mathrm{R} .
$$

The following words are G-palindromes :

- NUMERATION, fixed by σ,
- PRAGUE, fixed by τ,

Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G -palindrome if there exists a nontrivial $\mathrm{g} \in \mathrm{G}$ s.t. $\mathrm{w}=\mathrm{g}(\mathrm{w})$.

Example

Let $\mathrm{G}=\langle\sigma, \tau\rangle$, with $\quad \sigma: \mathrm{A} \leftrightarrow \mathrm{R}, \mathrm{E} \leftrightarrow \mathrm{T}, \mathrm{I} \leftrightarrow \mathrm{M}, \mathrm{O} \leftrightarrow \mathrm{U}$ and

$$
\tau: \mathrm{A} \leftrightarrow \mathrm{G}, \mathrm{E} \leftrightarrow \mathrm{P}, \mathrm{U} \leftrightarrow \mathrm{R} .
$$

The following words are G-palindromes :

- NUMERATION, fixed by σ,
- PRAGUE, fixed by τ,
- PÍT, fixed by $\sigma \tau \sigma$.

Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G -palindrome if there exists a nontrivial $\mathrm{g} \in \mathrm{G}$ s.t. $\mathrm{w}=\mathrm{g}(\mathrm{w})$.

Example

Let $\mathrm{G}=\langle\sigma, \tau\rangle$, with $\quad \sigma: \mathrm{A} \leftrightarrow \mathrm{R}, \mathrm{E} \leftrightarrow \mathrm{T}, \mathrm{I} \leftrightarrow \mathrm{M}, \mathrm{O} \leftrightarrow \mathrm{U}$ and

$$
\tau: \mathrm{A} \leftrightarrow \mathrm{G}, \mathrm{E} \leftrightarrow \mathrm{P}, \mathrm{U} \leftrightarrow \mathrm{R} .
$$

The following words are G-palindromes :

- NUMERATION, fixed by σ,
- PRAGUE, fixed by τ,
- PÍt, fixed by $\sigma \tau \sigma$.

A word (set) is G-rich * if...

Let G be a group of morphisms and antimorphisms, containing at least an antimorphism. A word w is a G-palindrome if there exists a nontrivial $\mathrm{g} \in \mathrm{G}$ s.t. $\mathrm{w}=\mathrm{g}(\mathrm{w})$.

Example

Let $\mathrm{G}=\langle\sigma, \tau\rangle$, with $\quad \sigma: \mathrm{A} \leftrightarrow \mathrm{R}, \mathrm{E} \leftrightarrow \mathrm{T}, \mathrm{I} \leftrightarrow \mathrm{M}, \mathrm{O} \leftrightarrow \mathrm{U}$ and

$$
\tau: \mathrm{A} \leftrightarrow \mathrm{G}, \mathrm{E} \leftrightarrow \mathrm{P}, \mathrm{U} \leftrightarrow \mathrm{R} .
$$

The following words are G-palindromes :

- NUMERATION, fixed by σ,
- PRAGUE, fixed by τ,
- PÍT, fixed by $\sigma \tau \sigma$.

A word (set) is G-rich* if... "the number of G-palindromes if maximal".

Theorem [E. Pelantová, Š. Starosta (2014)]

A set S closed under G is G-rich if for every $w \in S$, every complete return word to the G -orbit of w is fixed by a nontrivial element of G .

Theorem [E. Pelantová, Š. Starosta (2014)]

A set S closed under G is G-rich if for every $w \in S$, every complete return word to the G-orbit of w is fixed by a nontrivial element of G.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]

The specular set obtained as image under a doubling transducer \mathcal{A} is $\mathrm{G}_{\mathcal{A}-r i c h . ~}^{\text {rich }}$

$$
\mathrm{G}_{\mathcal{A}}=\{\mathrm{id}, \sigma, \tau, \sigma \tau\} \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})
$$

with σ an antimorphism and τ a morphism.

Conclusions

Summing up

- Tree and specular sets.

Linear involutions and doubling maps.

Conclusions

Summing up

- Tree and specular sets.

Linear involutions and doubling maps.

- Cardinality Theorems for return words.

$$
\begin{aligned}
\operatorname{Card}(\mathcal{R}(\mathrm{w})) & =\operatorname{Card}(\mathrm{A})-1 \\
\operatorname{Card}(\mathcal{C R}(\mathrm{X})) & =\operatorname{Card}(\mathrm{X})+\operatorname{Card}(\mathrm{A})-2 \\
\operatorname{Card}(\mathcal{M R}(\mathrm{w})) & =\operatorname{Card}(\mathrm{A})
\end{aligned}
$$

Conclusions

Summing up

- Tree and specular sets.

Linear involutions and doubling maps.

- Cardinality Theorems for return words.

$$
\begin{aligned}
\operatorname{Card}(\mathcal{R}(\mathrm{w})) & =\operatorname{Card}(\mathrm{A})-1 \\
\operatorname{Card}(\mathcal{C R}(\mathrm{X})) & =\operatorname{Card}(\mathrm{X})+\operatorname{Card}(\mathrm{A})-2 \\
\operatorname{Card}(\mathcal{M R}(\mathrm{w})) & =\operatorname{Card}(\mathrm{A})
\end{aligned}
$$

- New family of G-rich sets.

Specular sets obtained by doubling maps are $\mathrm{G}_{\mathcal{A}}$-rich.

Further Research Directions and other works in progress

- Decidability of the tree (and specular) condition. [work in progress with Julien Leroy and Revekka Kyriakoglou]

Further Research Directions and other works in progress

- Decidability of the tree (and specular) condition. [work in progress with Julien Leroy and Revekka Kyriakoglou]
- Tree set and free groups.

Tree set of $\chi=1 \Longrightarrow \mathcal{R}(\mathrm{w})$ is a basis of the free group for every w

Further Research Directions and other works in progress

- Decidability of the tree (and specular) condition. [work in progress with Julien Leroy and Revekka Kyriakoglou]
- Tree set and free groups.

Tree set of $\chi=1 \Longrightarrow \mathcal{R}(\mathrm{w})$ is a basis of the free group for every w

- New classes of G-rich sets (or new groups G).

