Codes bifixes, combinatoire des mots et systèmes dynamiques symboliques

Appendix

RDMath IdF
Domaine d'Intérêt Majeur (DIM) en Mathérnatiques
* îledeFrance

Francesco Dolce

Marne-la-Vallée, 13 septembre 2016

Overview

- Planar tree sets
- Complete return words
- Weak and strong words
- Acyclic and connected sets
- Rauzy graphs and Stallings foldings
- Specular groups
- Monoidal basis
- Doubling transducer
- Odd and even words
- Return words in specular sets
- Palindromes in tree sets
- σ-palindromes
- G-palindromes
- Branching Rauzy induction
- Return Theorem for interval exchanges
- Interval exchanges over a quadratic field
- \mathcal{S}-adic representation

Planar tree sets

Let $<_{1}$ and $<_{2}$ be two orders on A.
For a set S and a word $w \in S$, the graph $\mathcal{E}(w)$ is compatible with $<_{1}$ and $<_{2}$ if for any $(a, b),(c, d) \in B(w)$, one has

$$
a<2 c \quad \Longrightarrow \quad b \leq_{1} d
$$

Example (Fibonacci, $a<_{1} b$ and $b<2 a$)

A biextendable set S is a planar tree set w.r.t. $<_{1}$ and $<_{2}$ on A if for any nonempty $w \in S$, the graph $\mathcal{E}(w)$ is a tree compatible with $<_{1}$ and $<_{2}$.

Planar tree sets

Example ($\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$)

The Tribonacci set is the set of factors of the Tribonacci word $f^{\omega}(a)=a b a c a b a \ldots$ fixed point of the morphism

$$
f: a \mapsto a b, \quad b \mapsto a c, \quad c \mapsto a .
$$

Planar tree sets

Example ($\mathrm{A}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$)

The Tribonacci set is the set of factors of the Tribonacci word $f^{\omega}(a)=a b a c a b a \ldots$ fixed point of the morphism

$$
f: a \mapsto a b, \quad b \mapsto a c, \quad c \mapsto a .
$$

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

It is not possible to find two orders on A making the three graphs planar.

Planar tree sets

Theorem [s. Ferenczi, L. Zamboni (2008)]

A set S is a regular interval exchange set on A if and only if it is a recurrent tree set of characteristic 1.

Planar tree sets

Theorem [S. Ferenczi, L. Zamboni (2008)]

A set S is a regular interval exchange set on A if and only if it is a recurrent tree set of characteristic 1.

Theorem [Dolce, Perrin (2016)]

Let T be an interval exchange transformation with exactly C connections, all of length 0 . Then $\mathcal{L}(T)$ is a planar tree set of characteristic $C+1$ with respect to $<_{1}$ and $<_{2}$.

Complete return words

A complete return word to w in S is a nonempty word u such that $u \in S$ starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{C} \mathcal{R}_{S}(w)=S \cap\left(w A^{+} \cap A^{+} w\right) \backslash A^{+} w A^{+}
$$

Example (Fibonacci)

$\mathcal{C} \mathcal{R}_{S}(a a)=\{\underline{a a b} b \underline{a a}, \underline{a a b} b \underline{b} \underline{a a}\}$

$$
\varphi(a)^{\omega}=a b \underline{a} b a b \underline{a} b a a b a b a a b a b \underline{a} b \underline{a} b a b a a b a a b \cdots
$$

Complete return words

A complete return word to w in S is a nonempty word u such that $u \in S$ starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{C} \mathcal{R}_{S}(w)=S \cap\left(w A^{+} \cap A^{+} w\right) \backslash A^{+} w A^{+}
$$

A complete return word to a set $X \subset S$ is a nonempty word starting and ending with a word of X having no internal factor in X. Formally,

$$
\mathcal{C} \mathcal{R}_{S}(X)=S \cap\left(X A^{+} \cap A^{+} X\right) \backslash A^{+} X A^{+}
$$

Example (Fibonacci)

$\mathcal{C R} \mathcal{R}_{S}(a a, b a b)=\{\underline{a a b} b \underline{a a}, \underline{a a} \underline{b a b}, \underline{b a b} \underline{a a}\}$

$$
\varphi(a)^{\omega}=a b a \underline{a} \underline{\text { babababababab } a \text { aababaabbaababaabaab } \cdots .}
$$

Complete return words

A complete return word to w in S is a nonempty word u such that $u \in S$ starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{C} \mathcal{R}_{S}(w)=S \cap\left(w A^{+} \cap A^{+} w\right) \backslash A^{+} w A^{+}
$$

A complete return word to a set $X \subset S$ is a nonempty word starting and ending with a word of X having no internal factor in X. Formally,

$$
\mathcal{C} \mathcal{R}_{S}(X)=S \cap\left(X A^{+} \cap A^{+} X\right) \backslash A^{+} X A^{+}
$$

Example (Fibonacci)

$\mathcal{C} \mathcal{R}_{S}\left(S \cap A^{n}\right)=S \cap A^{n+1}$

Complete return words

A complete return word to w in S is a nonempty word u such that $u \in S$ starts and ends with w but has no w as an internal factor. Formally,

$$
\mathcal{C} \mathcal{R}_{S}(w)=S \cap\left(w A^{+} \cap A^{+} w\right) \backslash A^{+} w A^{+}
$$

A complete return word to a set $X \subset S$ is a nonempty word starting and ending with a word of X having no internal factor in X. Formally,

$$
\mathcal{C} \mathcal{R}_{S}(X)=S \cap\left(X A^{+} \cap A^{+} X\right) \backslash A^{+} X A^{+}
$$

Theorem [Dolce, Perrin (2016)]

Let S be a neutral set. For any finite nonempty bifix code $X \subset S$ with empty kernel, we have

$$
\operatorname{Card}\left(\mathcal{C R}_{S}(X)\right) \leq \operatorname{Card}(X)+\operatorname{Card}(A)-\chi(S)
$$

with equality if S is recurrent.

Weak and strong words

The multiplicity of a word w is the quantity

$$
m(w)=\operatorname{Card}(B(w))-\operatorname{Card}(L(w))-\operatorname{Card}(R(w))+1
$$

A word is called neutral if $m(w)=0$, weak if $m(w)<0$ and strong if $m(w)>0$.

Definition

A factorial set S is neutral if every nonempty word is neutral. It is weak (resp. strong) if every word is weak or neutral (resp. strong or neutral).

Weak and strong words

The multiplicity of a word w is the quantity

$$
m(w)=\operatorname{Card}(B(w))-\operatorname{Card}(L(w))-\operatorname{Card}(R(w))+1 .
$$

A word is called neutral if $m(w)=0$, weak if $m(w)<0$ and strong if $m(w)>0$.

Definition

A factorial set S is neutral if every nonempty word is neutral. It is weak (resp. strong) if every word is weak or neutral (resp. strong or neutral).

Theorem [Dolce, Perrin (2016)]

The factor complexity of a factorial set S is given by $p_{0}=1$ and for every $n \geq 1$:
(i) $p_{n}=(\operatorname{Card}(A)-\chi(S)) n+\chi(S)$ if S is neutral;
(ii) $p_{n} \leq(\operatorname{Card}(A)-\chi(S)) n+\chi(S)$ if S is weak;
(iii) $p_{n} \geq(\operatorname{Card}(A)-\chi(S)) n+\chi(S)$ if S is strong.

Weak and strong words

The multiplicity of a word w is the quantity

$$
m(w)=\operatorname{Card}(B(w))-\operatorname{Card}(L(w))-\operatorname{Card}(R(w))+1 .
$$

A word is called neutral if $m(w)=0$, weak if $m(w)<0$ and strong if $m(w)>0$.

Definition

A factorial set S is neutral if every nonempty word is neutral. It is weak (resp. strong) if every word is weak or neutral (resp. strong or neutral).

Theorem [Dolce, Perrin (2016)]

Let S be a recurrent set and $X \subset S$ a finite S-maximal bifix code. One has :
(i) $\operatorname{Card}(X)=(\operatorname{Card}(A)-\chi(S)) d_{S}(X)+\chi(S)$ if S is neutral;
(ii) $\operatorname{Card}(X) \leq(\operatorname{Card}(A)-\chi(S)) d_{S}(X)+\chi(S)$ if S is weak;
(iii) $\operatorname{Card}(X) \geq(\operatorname{Card}(A)-\chi(S)) d_{S}(X)+\chi(S)$ if S is strong.

Acyclic and connected sets

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in A \mid a w \in S\} \\
R(w) & =\{a \in A \mid w a \in S\} \\
B(w) & =\{(a, b) \in A \mid a w b \in S .\}
\end{aligned}
$$

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for all nonempty $w \in S$. It is acyclic (resp. connected) if for every $w \in S$ the graph $\mathcal{E}(w)$ is acyclic (resp. connected).

Acyclic and connected sets

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in A \mid a w \in S\} \\
R(w) & =\{a \in A \mid w a \in S\}, \\
B(w) & =\{(a, b) \in A \mid a w b \in S .\}
\end{aligned}
$$

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for all nonempty $w \in S$. It is acyclic (resp. connected) if for every $w \in S$ the graph $\mathcal{E}(w)$ is acyclic (resp. connected).

Proposition

If S is connected then it is strong.
If S is acyclic then it is weak. Moreover, in that case, $c(w)=1-m(w)$ is the number of connected components of $\mathcal{E}(w)$.

Acyclic and connected sets

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in A \mid a w \in S\} \\
R(w) & =\{a \in A \mid w a \in S\} \\
B(w) & =\{(a, b) \in A \mid a w b \in S .\}
\end{aligned}
$$

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for all nonempty $w \in S$. It is acyclic (resp. connected) if for every $w \in S$ the graph $\mathcal{E}(w)$ is acyclic (resp. connected).

Maximal Bifix Decoding Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]

The family of biextendable acyclic sets is closed under maximal bifix decoding.

Acyclic and connected sets

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in A \mid a w \in S\} \\
R(w) & =\{a \in A \mid w a \in S\} \\
B(w) & =\{(a, b) \in A \mid a w b \in S .\}
\end{aligned}
$$

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for all nonempty $w \in S$. It is acyclic (resp. connected) if for every $w \in S$ the graph $\mathcal{E}(w)$ is acyclic (resp. connected).

Freeness Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]
A set $S \subset A^{+}$is acyclic if and only if any bifix code $X \subset S$ is a free subset of the free group on A (i.e. X is a basis of $\langle X\rangle$).

Acyclic and connected sets

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in A \mid a w \in S\} \\
R(w) & =\{a \in A \mid w a \in S\} \\
B(w) & =\{(a, b) \in A \mid a w b \in S .\}
\end{aligned}
$$

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for all nonempty $w \in S$. It is acyclic (resp. connected) if for every $w \in S$ the graph $\mathcal{E}(w)$ is acyclic (resp. connected).

Saturation Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]
Let S be an acyclic set. Then any bifix code $X \subset S$ is saturated in S (i.e. $X^{*} \cap S=\langle X\rangle \cap S$).

Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]
Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

$G_{0}(S)$

Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]
Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

$G_{0}(S)$

$$
G_{2}(S)
$$

$$
\langle a, b\rangle
$$

Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]
Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

$G_{0}(S)$

$$
G_{2}(S)
$$

$$
\langle a, b a\rangle
$$

Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]
Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

$G_{0}(S)$

$$
G_{2}(S)
$$

$$
\left\langle a(b a)^{*} a b\right\rangle
$$

Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]
Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]
Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

$$
G_{2}(S) \rightsquigarrow G_{1}(S)
$$

Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]
Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]
Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]
Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

$$
G_{1}(S) \rightsquigarrow G_{0}(S)
$$

Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]
Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

$$
G_{0}(S)
$$

Specular groups

Given an involution $\theta: A \rightarrow A$ (possibly with some fixed point), let us define

$$
\left.G_{\theta}=\langle a \in A| a \cdot \theta(a)=1 \text { for every } a \in A\right\rangle .
$$

$G_{\theta}=\mathbb{Z}^{i} *(\mathbb{Z} / 2 \mathbb{Z})^{j}$ is a specular group of type (i, j), and $\operatorname{Card}(A)=2 i+j$ is its symmetric rank.

Example

Let $A=\{a, b, c, d\}$ and let θ be the involution which exchanges b, d and fixes a, c, i.e.,

$$
G_{\theta}=\left\langle a, b, c, d \mid a^{2}=c^{2}=b d=d b=1\right\rangle .
$$

$G_{\theta}=\mathbb{Z} *(\mathbb{Z} / 2 \mathbb{Z})^{2}$ is a specular group of type $(1,2)$ and symmetric rank 4.

Monoidal basis

A subset of a group G is called symmetric if it is closed under taking inverses (under θ).

Example

The set $X=\{a, a d c, b, c b a, d\}$ is symmetric, for $\theta: b \leftrightarrow d$ fixing a, c.

A set X in a specular group G is called a monoidal basis of G if :

- it is symmetric;
- the monoid that it generates is G;
- any product $x_{1} x_{2} \cdots x_{m}$ such that $x_{k} x_{k+1} \neq 1$ for every k is distinct of 1 .

Example

The alphabet A is a monoidal basis of G_{θ}.

The symmetric rank of a specular group is the cardinality of any monoidal basis.

Doubling transducers

A doubling transducer is a transducer with set of states $Q=\{0,1\}$ such that :

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

Example

$$
\begin{aligned}
& \Sigma=\{\alpha\} \\
& A=\{a, b\}
\end{aligned}
$$

Doubling transducers

A doubling transducer is a transducer with set of states $Q=\{0,1\}$ such that:

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

A doubling map is a pair $\delta=\left(\delta_{0}, \delta_{1}\right)$, where $\delta_{i}(u)=v$ is the path starting at the state i with input label u and output label v.

Example

$$
\begin{aligned}
& \Sigma=\{\alpha\} \\
& A=\{a, b\}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{0}\left(\alpha^{\omega}\right)=(a b)^{\omega} \\
& \delta_{1}\left(\alpha^{\omega}\right)=(b a)^{\omega}
\end{aligned}
$$

Doubling transducers

A doubling transducer is a transducer with set of states $Q=\{0,1\}$ such that:

1. the input automaton is a group automaton,
2. the output labels of the edges are all distinct.

A doubling map is a pair $\delta=\left(\delta_{0}, \delta_{1}\right)$, where $\delta_{i}(u)=v$ is the path starting at the state i with input label u and output label v.

The image of a set T is $\delta(T)=\delta_{0}(T) \cup \delta_{1}(T)$

Example

$$
\begin{aligned}
& \Sigma=\{\alpha\} \\
& A=\{a, b\}
\end{aligned}
$$

$$
\begin{aligned}
\delta_{0}\left(\alpha^{\omega}\right) & =(a b)^{\omega} \\
\delta_{1}\left(\alpha^{\omega}\right) & =(b a)^{\omega} \\
\delta\left(\operatorname{Fac}\left(\alpha^{\omega}\right)\right) & =(a b)^{\omega} \cup(b a)^{\omega}
\end{aligned}
$$

Doubling transducers

Proposition [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]
The image of a tree set of characteristic 1 closed under reversal by a doubling map is a specular set (and, in particular, a tree set of characteristic 2).

Doubling transducers

Example (two possible doublings of Fibonacci)

- Fac (abaababa...) \cup Fac (cdccdcdc...)

- Fac (abcabcda...) \cup Fac (cdacdabc...)

Odd and even words

A letter is said to be even if its two occurences (as a element of $L(\varepsilon)$ and of $R(\varepsilon)$) appear in the same tree of $\mathcal{E}(\varepsilon)$. Otherwise it is said to be odd.

Example (doubling of Fibonacci)

The letters b, d are even, while the letters a, c are odd.

A word is said to be even if it has an even number of odd letters. Otherwise it is said to be odd.

Return words in specular sets

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]

Let S be a recurrent specular set. One has

- $\operatorname{Card}\left(\mathcal{R}_{S}(w)\right)=\operatorname{Card}(A)-1$ for any $w \in S$;
- Card $\left(\mathcal{C R}_{S}(X)\right)=\operatorname{Card}(X)+\operatorname{Card}(A)-2$ for any finite bifix $X \subset S$ code with empty kernel;
- $\operatorname{Card}\left(\mathcal{M R}_{S}(w)\right)=\operatorname{Card}(A)$ for any $w \in S$ s.t. w, w^{-1} do not overlap.

Definition

A mixed return word to w (not overlapping with w^{-1}) is the word $N(u)$ obtained from $u \in \mathcal{C} \mathcal{R}_{S}\left(\left\{w, w^{-1}\right\}\right)$ erasing the prefix if it is w and the suffix if it is w^{-1}

Palindromes in tree sets

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]
A word of length n has at most $n+1$ palindromes factors.

A word with maximal number of palindromes is rich (or full).
A factorial set is rich if all its elements are rich.

Example (Fibonacci)

$\operatorname{Pal}(a b a a b)=\{\varepsilon, a, b, a a, a b a, b a a b\}$

Theorem [Berthé, De Felice, Delecroix, Dolce, Leroy, Perrin, Reutenauer, Rindone (2016)]
Recurrent tree sets of characteristic 1 closed under reversal are rich.

σ-palindromes

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

Example

Let $\sigma: \mathrm{A} \leftrightarrow \mathrm{T}, \mathrm{C} \leftrightarrow \mathrm{G}$.
The word CTTAAG is a σ-palindrome.

Theorem [Starosta (2001); Blondin Massé, Brlek (?)]

Let $\gamma_{\sigma}(w)$ be the number of transpositions of σ affecting w. Then

$$
\operatorname{Card}\left(\operatorname{Pal}_{\sigma}(w)\right)=|w|+1-\gamma_{\sigma}(w)
$$

A word (resp. set) is σ-rich if the equality holds (resp. for all its elements).

G-palindromes

Let G be a group of morphisms and antimorphisms, containing at least one antimorphism.
A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Theorem [Berthé, De Felice, Delecroix, Dolce, Leroy, Perrin, Reutenauer, Rindone (2016)]
Specular sets obtained as image under a doubling transducer \mathcal{A} are $G_{\mathcal{A}}$-rich.

$$
G_{\mathcal{A}}=\{\mathrm{id}, \sigma, \tau, \sigma \tau\} \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})
$$

with σ an antimorphism and τ a morphism.

Two-sided Rauzy induction

Return Theorem for interval exchanges

$$
\begin{gathered}
\mathcal{R}_{s}(b)=\{a a b, a b\} \\
\theta:\left\{\begin{array}{lllll}
a & \mapsto & a b & \mapsto & a b \\
b & \mapsto & b & \mapsto & a b
\end{array}\right.
\end{gathered}
$$

Return Theorem for interval exchanges

Interval exchange over a quadratic field

Theorem [folklore, Dolce (2014)]

Let T be a regular interval exchange transformation defined over a quadratic field. Then $\mathcal{L}(T)$ is a primitive morphic set.

Example (Fibonacci, $\alpha=(3-\sqrt{5}) / 2)$

$$
\left|I_{a}\right|,\left|I_{b}\right| \in \mathbb{Q}[\sqrt{5}]
$$

\mathcal{S}-adic representation

Definition

Let \mathcal{S} be a set of morphisms. A set T is called \mathcal{S}-adic if $T=\bigcap_{n \in \mathbb{N}} \operatorname{Fac}\left(\sigma_{0} \cdots \sigma_{n}\left(A_{n+1}^{*}\right)\right)$ where $\sigma_{n}: A_{n+1}^{*} \rightarrow A_{n}^{*}$ is a morphism of \mathcal{S}.
The sequence $\left(\sigma_{0}, \sigma_{1}, \ldots\right)$ is called an \mathcal{S}-representation of T.

\mathcal{S}-adic representation

Definition

Let \mathcal{S} be a set of morphisms. A set T is called \mathcal{S}-adic if $T=\bigcap_{n \in \mathbb{N}} \operatorname{Fac}\left(\sigma_{0} \cdots \sigma_{n}\left(A_{n+1}^{*}\right)\right)$ where $\sigma_{n}: A_{n+1}^{*} \rightarrow A_{n}^{*}$ is a morphism of \mathcal{S}.
The sequence $\left(\sigma_{0}, \sigma_{1}, \ldots\right)$ is called an \mathcal{S}-representation of T.

Theorem [s. Ferenczi (1996)]

If T is an aperiodic set. T is uniformly recurrent \Leftrightarrow it has a primitive \mathcal{S}-adic representation.

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]
If T is a recurrent tree set of characteristic 1 , then it has a primitive \mathcal{S}_{e}-adic representation.
\mathcal{S}_{e} formed by permutations and

$$
\alpha_{a, b}(c)=\left\{\begin{array}{ll}
a b & \text { if } c=a, \\
c & \text { otherwise }
\end{array} \quad \tilde{\alpha}_{a, b}(c)= \begin{cases}b a & \text { if } c=a, \\
c & \text { otherwise } .\end{cases}\right.
$$

The end

