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Overview
• Planar tree sets

• Complete return words

• Weak and strong words

• Acyclic and connected sets

• Rauzy graphs and Stallings foldings

• Specular groups

• Monoidal basis

• Doubling transducer

• Odd and even words

• Return words in specular sets

• Palindromes in tree sets

• σ-palindromes

• G -palindromes

• Branching Rauzy induction

• Return Theorem for interval exchanges

• Interval exchanges over a quadratic field

• S-adic representation
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Planar tree sets

Let <1 and <2 be two orders on A.
For a set S and a word w ∈ S , the graph E(w) is compatible with <1 and <2 if for any
(a, b), (c, d) ∈ B(w), one has

a <2 c =⇒ b ≤1 d .

Example (Fibonacci, a <1 b and b <2 a)

E(ε)

a

b

b

a

E(a)

a

b

b

a

E(b)

a a

A biextendable set S is a planar tree set w.r.t. <1 and <2 on A if for any nonempty
w ∈ S , the graph E(w) is a tree compatible with <1 and <2.
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Planar tree sets

Example (A = { a,b,c })
The Tribonacci set is the set of factors of the Tribonacci word f ω(a) = abacaba . . . fixed
point of the morphism

f : a 7→ ab, b 7→ ac, c 7→ a.

a

b

c

a
b
c

a

a

b

a

a

a
b
c

b
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Planar tree sets

Example (A = { a,b,c })
The Tribonacci set is the set of factors of the Tribonacci word f ω(a) = abacaba . . . fixed
point of the morphism

f : a 7→ ab, b 7→ ac, c 7→ a.

The Tribonacci set is not a planar tree set.
Indeed, let us consider the extension graphs of the bispecial words ε, a and aba.

E(ε)
a

b

c

c

b

a

E(a)
b

c

a

a

c

b

E(aba)
c

a

b

a

b

c

It is not possible to find two orders on A making the three graphs planar.
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Planar tree sets

Theorem [S. Ferenczi, L. Zamboni (2008)]

A set S is a regular interval exchange set on A if and only if it is a recurrent tree set of
characteristic 1.

<1 <1
a b c

<2 <2
b c a

E(ε)

a

c

b

c

b

a

Francesco Dolce Soutenance de Thèse (Appendix) 13 septembre 2016 5 / 25



Planar tree sets

Theorem [S. Ferenczi, L. Zamboni (2008)]

A set S is a regular interval exchange set on A if and only if it is a recurrent tree set of
characteristic 1.

Theorem [Dolce, Perrin (2016)]

Let T be an interval exchange transformation with exactly C connections, all of length 0.
Then L(T ) is a planar tree set of characteristic C + 1 with respect to <1 and <2.

<1 <1
a b c

<2 <2
c a b

T

E(ε)

b

a

c

c

b

a
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Complete return words

A complete return word to w in S is a nonempty word u such that u ∈ S starts and
ends with w but has no w as an internal factor. Formally,

CRS(w) = S ∩
(

wA
+ ∩ A

+
w
)

\ A+
wA

+

Example (Fibonacci)

CRS(aa) = {aabaa, aababaa}

ϕ(a)ω = abaababaabaababaababaabaababaabaab · · ·
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Complete return words

A complete return word to w in S is a nonempty word u such that u ∈ S starts and
ends with w but has no w as an internal factor. Formally,

CRS(w) = S ∩
(

wA
+ ∩ A

+
w
)

\ A+
wA

+

A complete return word to a set X ⊂ S is a nonempty word starting and ending with a
word of X having no internal factor in X . Formally,

CRS(X ) = S ∩
(

XA
+ ∩ A

+
X
)

\ A+
XA

+

Example (Fibonacci)

CRS(aa,bab) = {aabaa, aa bab, bab aa}

ϕ(a)ω = abaa babaabaabab aababaabaababaabaab · · ·
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Complete return words

A complete return word to w in S is a nonempty word u such that u ∈ S starts and
ends with w but has no w as an internal factor. Formally,

CRS(w) = S ∩
(

wA
+ ∩ A

+
w
)

\ A+
wA

+

A complete return word to a set X ⊂ S is a nonempty word starting and ending with a
word of X having no internal factor in X . Formally,

CRS(X ) = S ∩
(

XA
+ ∩ A

+
X
)

\ A+
XA

+

Example (Fibonacci)

CRS(S ∩ An) = S ∩ An+1
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Complete return words

A complete return word to w in S is a nonempty word u such that u ∈ S starts and
ends with w but has no w as an internal factor. Formally,

CRS(w) = S ∩
(

wA
+ ∩ A

+
w
)

\ A+
wA

+

A complete return word to a set X ⊂ S is a nonempty word starting and ending with a
word of X having no internal factor in X . Formally,

CRS(X ) = S ∩
(

XA
+ ∩ A

+
X
)

\ A+
XA

+

Theorem [Dolce, Perrin (2016)]

Let S be a neutral set. For any finite nonempty bifix code X ⊂ S with empty kernel, we
have

Card (CRS(X )) ≤ Card (X ) + Card (A) − χ(S)

with equality if S is recurrent.
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Weak and strong words

The multiplicity of a word w is the quantity

m(w) = Card (B(w))− Card (L(w))− Card (R(w)) + 1.

A word is called neutral if m(w) = 0, weak if m(w) < 0 and strong if m(w) > 0.

Definition

A factorial set S is neutral if every nonempty word is neutral. It is weak (resp. strong) if
every word is weak or neutral (resp. strong or neutral).
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Weak and strong words

The multiplicity of a word w is the quantity

m(w) = Card (B(w))− Card (L(w))− Card (R(w)) + 1.

A word is called neutral if m(w) = 0, weak if m(w) < 0 and strong if m(w) > 0.

Definition

A factorial set S is neutral if every nonempty word is neutral. It is weak (resp. strong) if
every word is weak or neutral (resp. strong or neutral).

Theorem [Dolce, Perrin (2016)]

The factor complexity of a factorial set S is given by p0 = 1 and for every n ≥ 1 :

(i) pn = (Card (A)− χ(S)) n + χ(S) if S is neutral ;

(ii) pn ≤ (Card (A)− χ(S)) n + χ(S) if S is weak ;

(iii) pn ≥ (Card (A)− χ(S)) n + χ(S) if S is strong.
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Weak and strong words

The multiplicity of a word w is the quantity

m(w) = Card (B(w))− Card (L(w))− Card (R(w)) + 1.

A word is called neutral if m(w) = 0, weak if m(w) < 0 and strong if m(w) > 0.

Definition

A factorial set S is neutral if every nonempty word is neutral. It is weak (resp. strong) if
every word is weak or neutral (resp. strong or neutral).

Theorem [Dolce, Perrin (2016)]

Let S be a recurrent set and X ⊂ S a finite S-maximal bifix code. One has :

(i) Card (X ) = (Card (A) − χ(S)) dS(X ) + χ(S) if S is neutral ;

(ii) Card (X ) ≤ (Card (A) − χ(S)) dS(X ) + χ(S) if S is weak ;

(iii) Card (X ) ≥ (Card (A) − χ(S)) dS(X ) + χ(S) if S is strong.
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Acyclic and connected sets

The extension graph of a word w ∈ S is the undirected bipartite graph E(w) with
vertices L(w) ⊔ R(w) and edges B(w), where

L(w) = {a ∈ A | aw ∈ S},
R(w) = {a ∈ A |wa ∈ S},
B(w) = {(a, b) ∈ A | awb ∈ S .}

Definition

A factorial set S is called a tree set if the graph E(w) is a tree for all nonempty w ∈ S . It
is acyclic (resp. connected) if for every w ∈ S the graph E(w) is acyclic (resp. connected).
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Acyclic and connected sets

The extension graph of a word w ∈ S is the undirected bipartite graph E(w) with
vertices L(w) ⊔ R(w) and edges B(w), where

L(w) = {a ∈ A | aw ∈ S},
R(w) = {a ∈ A |wa ∈ S},
B(w) = {(a, b) ∈ A | awb ∈ S .}

Definition

A factorial set S is called a tree set if the graph E(w) is a tree for all nonempty w ∈ S . It
is acyclic (resp. connected) if for every w ∈ S the graph E(w) is acyclic (resp. connected).

Proposition

If S is connected then it is strong.
If S is acyclic then it is weak. Moreover, in that case, c(w) = 1−m(w) is the number of
connected components of E(w).
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Acyclic and connected sets

The extension graph of a word w ∈ S is the undirected bipartite graph E(w) with
vertices L(w) ⊔ R(w) and edges B(w), where

L(w) = {a ∈ A | aw ∈ S},
R(w) = {a ∈ A |wa ∈ S},
B(w) = {(a, b) ∈ A | awb ∈ S .}

Definition

A factorial set S is called a tree set if the graph E(w) is a tree for all nonempty w ∈ S . It
is acyclic (resp. connected) if for every w ∈ S the graph E(w) is acyclic (resp. connected).

Maximal Bifix Decoding Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]

The family of biextendable acyclic sets is closed under maximal bifix decoding.
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Acyclic and connected sets

The extension graph of a word w ∈ S is the undirected bipartite graph E(w) with
vertices L(w) ⊔ R(w) and edges B(w), where

L(w) = {a ∈ A | aw ∈ S},
R(w) = {a ∈ A |wa ∈ S},
B(w) = {(a, b) ∈ A | awb ∈ S .}

Definition

A factorial set S is called a tree set if the graph E(w) is a tree for all nonempty w ∈ S . It
is acyclic (resp. connected) if for every w ∈ S the graph E(w) is acyclic (resp. connected).

Freeness Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]

A set S ⊂ A+ is acyclic if and only if any bifix code X ⊂ S is a free subset of the free
group on A (i.e. X is a basis of 〈X 〉).
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Acyclic and connected sets

The extension graph of a word w ∈ S is the undirected bipartite graph E(w) with
vertices L(w) ⊔ R(w) and edges B(w), where

L(w) = {a ∈ A | aw ∈ S},
R(w) = {a ∈ A |wa ∈ S},
B(w) = {(a, b) ∈ A | awb ∈ S .}

Definition

A factorial set S is called a tree set if the graph E(w) is a tree for all nonempty w ∈ S . It
is acyclic (resp. connected) if for every w ∈ S the graph E(w) is acyclic (resp. connected).

Saturation Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]

Let S be an acyclic set. Then any bifix code X ⊂ S is saturated in S (i.e. X ∗∩S = 〈X 〉∩S).
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Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]

Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

G0(S)

εa b

G1(S)

a ba

b

a

G2(S)

aa

ba ab

b

a

b

a
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Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]

Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

G0(S)

εa b

G1(S)

a ba

b

a

G2(S)

aa

ba ab

b

a

b

a

〈a, b〉
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Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]

Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

G0(S)

εa b

G1(S)

a ba

b

a

G2(S)

aa

ba ab

b

a

b

a

〈a, ba〉

Francesco Dolce Soutenance de Thèse (Appendix) 13 septembre 2016 9 / 25



Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]

Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

G0(S)

εa b

G1(S)

a ba

b

a

G2(S)

aa

ba ab

b

a

b

a

〈a(ba)∗ab〉
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Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]

Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

G2(S)

aa

ba ab

b

a

b

a
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Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]

Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

G2(S) G1(S)

aa

ba ab

b

a

b

a
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Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]

Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

G2(S) G1(S)

a ba

b

a
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Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]

Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

G1(S) G0(S)

a ba

b

a
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Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]

Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

G1(S) G0(S)

εa b
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Rauzy graphs

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2014)]

Let S be a recurrent connected set.
The group described by a Rauzy graph w.r.t. any vertex is the free group on A.

Example (Fibonacci)

G0(S)

εa b
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Specular groups

Given an involution θ : A → A (possibly with some fixed point), let us define

Gθ = 〈a ∈ A | a · θ(a) = 1 for every a ∈ A〉.

Gθ = Zi ∗ (Z/2Z)j is a specular group of type (i , j), and Card (A) = 2i + j is its
symmetric rank.

Example

Let A = {a, b, c, d} and let θ be the involution which exchanges b, d and fixes a, c, i.e.,

Gθ = 〈a, b, c, d | a
2 = c

2 = bd = db = 1〉.

Gθ = Z ∗ (Z/2Z)2 is a specular group of type (1, 2) and symmetric rank 4.
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Monoidal basis

A subset of a group G is called symmetric if it is closed under taking inverses (under θ).

Example

The set X = {a, adc, b, cba, d} is symmetric, for θ : b ↔ d fixing a, c.

A set X in a specular group G is called a monoidal basis of G if :

• it is symmetric ;

• the monoid that it generates is G ;

• any product x1x2 · · · xm such that xkxk+1 6= 1 for every k is distinct of 1.

Example

The alphabet A is a monoidal basis of Gθ .

The symmetric rank of a specular group is the cardinality of any monoidal basis.
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Doubling transducers

A doubling transducer is a transducer with set of states Q = {0, 1} such that :

1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

Example

0 1

α | a

α | b

Σ = {α}
A = {a, b}
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Doubling transducers

A doubling transducer is a transducer with set of states Q = {0, 1} such that :

1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

A doubling map is a pair δ = (δ0, δ1), where δi (u) = v is the path starting at the state i

with input label u and output label v .

Example

0 1

α | a

α | b

Σ = {α}
A = {a, b}

δ0 (α
ω) = (ab)ω

δ1 (α
ω) = (ba)ω
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Doubling transducers

A doubling transducer is a transducer with set of states Q = {0, 1} such that :

1. the input automaton is a group automaton,

2. the output labels of the edges are all distinct.

A doubling map is a pair δ = (δ0, δ1), where δi (u) = v is the path starting at the state i

with input label u and output label v .

The image of a set T is δ(T ) = δ0(T ) ∪ δ1(T )

Example

0 1

α | a

α | b

Σ = {α}
A = {a, b}

δ0 (α
ω) = (ab)ω

δ1 (α
ω) = (ba)ω

δ(Fac (αω)) = (ab)ω ∪ (ba)ω
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Doubling transducers

Proposition [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]

The image of a tree set of characteristic 1 closed under reversal by a doubling map is a
specular set (and, in particular, a tree set of characteristic 2).

i j

1− i 1− j

α | a

α | θA(a)

Francesco Dolce Soutenance de Thèse (Appendix) 13 septembre 2016 13 / 25



Doubling transducers

Example (two possible doublings of Fibonacci)

◮ Fac (abaababa · · · ) ∪ Fac (cdccdcdc · · · )

0 1
α|a
β|b

α|c
β|d

◮ Fac (abcabcda · · · ) ∪ Fac (cdacdabc · · · )

0 1

α|a

α|c
β|d β|b
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Odd and even words

A letter is said to be even if its two occurences (as a element of L(ε) and of R(ε))
appear in the same tree of E(ε). Otherwise it is said to be odd.

Example (doubling of Fibonacci)

0 1

α|a

α|c
β|d β|b

E(ε)
a

b

b

c

c

d

d

a

The letters b, d are even, while the letters a, c are odd.

A word is said to be even if it has an even number of odd letters. Otherwise it is said to
be odd.
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Return words in specular sets

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]

Let S be a recurrent specular set. One has

• Card (RS(w)) = Card (A) − 1 for any w ∈ S ;

• Card (CRS(X )) = Card (X ) + Card (A)− 2 for any finite bifix X ⊂ S code with
empty kernel ;

• Card (MRS(w)) = Card (A) for any w ∈ S s.t. w , w−1 do not overlap.

Definition

A mixed return word to w (not overlapping with w−1) is the word N(u) obtained from
u ∈ CRS({w ,w−1}) erasing the prefix if it is w and the suffix if it is w−1

u

N(u)

w−1 w−1
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Palindromes in tree sets

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most n + 1 palindromes factors.

A word with maximal number of palindromes is rich (or full).
A factorial set is rich if all its elements are rich.

Example (Fibonacci)

Pal(abaab) = {ε, a, b, aa, aba, baab}

Theorem [Berthé, De Felice, Delecroix, Dolce, Leroy, Perrin, Reutenauer, Rindone (2016)]

Recurrent tree sets of characteristic 1 closed under reversal are rich.
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σ-palindromes

Let σ be an antimorphism.
A word w is a σ-palindrome if w = σ(w).

Example

Let σ : A ↔ T, C ↔ G.
The word CTTAAG is a σ-palindrome.

Theorem [Starosta (2001) ; Blondin Massé, Brlek ( ?)]

Let γσ(w) be the number of transpositions of σ affecting w . Then

Card (Palσ(w)) = |w |+ 1− γσ(w)

A word (resp. set) is σ-rich if the equality holds (resp. for all its elements).
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G -palindromes

Let G be a group of morphisms and antimorphisms, containing at least one
antimorphism.
A word w is a G-palindrome if there exists a nontrivial g ∈ G s.t. w = g(w).

Theorem [Berthé, De Felice, Delecroix, Dolce, Leroy, Perrin, Reutenauer, Rindone (2016)]

Specular sets obtained as image under a doubling transducer A are GA-rich.

GA = {id, σ, τ, στ} ≃ (Z/2Z)× (Z/2Z)

with σ an antimorphism and τ a morphism.

i j

1− i 1− j

1− j 1− i

α | a
α |σ(a)

α | τ (a)
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Two-sided Rauzy induction

T

ψ(T )

ϕ ◦ ψ(T )

ϕ2 ◦ ψ(T )
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Return Theorem for interval exchanges

Ia Ib

Jb Ja

T

b 7→ ab

a b

b a

ψ(T )

a 7→ ab

a b

b a

ψ2(T )

RS (b) = {aab, ab}

θ :

{

a 7→ ab 7→ aab

b 7→ b 7→ ab
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Return Theorem for interval exchanges

Ia Ib

Jb Ja

T

b 7→ ab

a b

b a

ψ(T )

a 7→ ab

a b

b a

ψ2(T )

RS (b) = {aab, ab}

θ :

{

a 7→ ab 7→ aab

b 7→ b 7→ ab

For w = b0b1 · · · bm−1 one has :

Iw = Ib0 ∩T
−1(Ib1 )∩ . . .∩T

−m+1(Ibm−1 )

and Jw = Tm(Iw ), that is :

Jw = T
m(Ib0 )∩Tm−1(Ib1 )∩. . .∩T (Ibm−1 )
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Interval exchange over a quadratic field

Theorem [folklore, Dolce (2014)]

Let T be a regular interval exchange transformation defined over a quadratic field.
Then L(T ) is a primitive morphic set.

Example (Fibonacci, α = (3−

√

5)/2 )

|Ia|, |Ib | ∈ Q[
√
5]

−1 + 1
2

√
5 3

2
− 1

2

√
5

T
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S-adic representation

Definition

Let S be a set of morphisms. A set T is called S-adic if T =
⋂

n∈N
Fac (σ0 · · ·σn (A

∗
n+1))

where σn : A∗
n+1 → A∗

n is a morphism of S .
The sequence (σ0, σ1, . . .) is called an S-representation of T .
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S-adic representation

Definition

Let S be a set of morphisms. A set T is called S-adic if T =
⋂

n∈N
Fac (σ0 · · ·σn (A

∗
n+1))

where σn : A∗
n+1 → A∗

n is a morphism of S .
The sequence (σ0, σ1, . . .) is called an S-representation of T .

Theorem [S. Ferenczi (1996)]

If T is an aperiodic set. T is uniformly recurrent⇔ it has a primitive S-adic representation.

Theorem [Berthé, De Felice, Dolce, Leroy, Perrin, Reutenauer, Rindone (2015)]

If T is a recurrent tree set of characteristic 1, then it has a primitive Se-adic representation.

Se formed by permutations and

αa,b(c) =

{

ab if c = a,

c otherwise
α̃a,b(c) =

{

ba if c = a,

c otherwise.

Francesco Dolce Soutenance de Thèse (Appendix) 13 septembre 2016 23 / 25



The end
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