Palindromes and Tree Sets

Francesco Dolce

LaCIM

Atelier
"Combinatoire des mots et pavages"
"Combinatorics on Words and Tilings"
Workshop

Montréal, 4 avril 2017

GoFlowolFoG

GoFlowolFoG

«You can summon him by trying to take on his characteristics - relaxing, fantasising that you're 'cool', and letting go of your frustration momentarily. Visualise him zipping along on his skateboard, accompanied by a slight breeze and his Mantra: 'Neeeoooow'.»

GoFlowolFoG

«You can summon him by trying to take on his characteristics - relaxing, fantasising that you're 'cool', and letting go of your frustration momentarily. Visualise him zipping along on his skateboard, accompanied by a slight breeze and his Mantra: 'Neeeoooow'.»
«We decided that the 'name' of the Spirit would [..] be Go Flow. This was mirrored to give the name GoFlowolFoG - which sounds suitably 'magical'.»

Palindromes

A palindrome is a word $w=\tilde{w}$ as, for instance:
non, esse, aveva, rossor, ottetto, ...

Palindromes

A palindrome is a word $w=\tilde{w}$ as, for instance:

111
non, esse, aveva, rossor, ottetto, ...
暽
eye, noon, sagas, racecar, ...
111
ici, été, coloc, kayak, ...

Palindromes

A palindrome is a word $w=\tilde{w}$ as, for instance:

111
non, esse, aveva, rossor, ottetto, ...
溪
eye, noon, sagas, racecar, ...
111
ici, été, coloc, kayak, ...
\uparrow
saippuakivikauppias, ...

Palindromes

A palindrome is a word $w=\tilde{w}$ as，for instance：
non，esse，aveva，rossor，ottetto，．．．
暽
eye，noon，sagas，racecar，．．．
ici，été，coloc，kayak，．．．
saippuakivikauppias，．．．ojo，somos，reconocer，．．．

Krk，potop，ići，．．．топот，довод，кабак，
وَ 1 وَلَو ，．．．
困国 À Laval elle l＇avala，．．．

Palindromes

A palindrome is a word $w=\tilde{w}$ as，for instance：
non，esse，aveva，rossor，ottetto，．．．橉 eye，noon，sagas，racecar，．．． 111
ici，été，coloc，kayak，．．．
saippuakivikauppias，．．．ojo，somos，reconocer，．．．
Krk，potop，ići，．．．
\square
топот，довод，кабак，
كوَ
回图 À Laval elle l＇avala，．．．

Conway's Criterion: B, C, D, E palindromes.

$$
\begin{gathered}
B=\downarrow \rightarrow \downarrow, \quad C=\leftarrow \downarrow \rightarrow \downarrow \rightarrow \downarrow \leftarrow, \\
D=\uparrow \rightarrow \rightarrow \uparrow \leftarrow \leftarrow \leftarrow \leftarrow \uparrow \rightarrow \rightarrow \uparrow, \quad E=\uparrow \uparrow .
\end{gathered}
$$

Conway's Criterion: B, C, D, E palindromes.

$$
\begin{gathered}
B=303, \quad C=23033032, \\
D=1001333331001, \quad E=11 .
\end{gathered}
$$

Theorem [A. Blondin-Massé, A. Garon, S. Labbé (2013)]
If $A B \hat{A} \hat{B}$ is a $B N$-factorisation of a Fibonacci tile, then A and B are palindromes.

$$
A=0103032303010, \quad B=3032321232303
$$

Theorem [A. Blondin-Massé, S. Brlek, A. Garon, S. Labbé (2009)]
If $A B \hat{A} \hat{B}$ and $C D \hat{C} \hat{D}$ are the $B N$-factorisation of a prime double square, then A, B, C, D are palindromes.

Full words

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]
A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is full (or rich).

Full words

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]
A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is full (or rich).

Example

- Trump, Putin, Le Pen, Fillon are rich.
- Trudeau, Merkel, Gentiloni, Mélenchon are not rich.

Full words

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]
A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is full (or rich).

Example

- Trump, Putin, Le Pen, Fillon are rich.
- Trudeau, Merkel, Gentiloni, Mélenchon are not rich.

$$
\begin{array}{lll}
\mid \text { François } \mid=8 & \text { and } & \operatorname{Card}(\{\varepsilon, \mathrm{F}, \mathrm{R}, \mathrm{~A}, \mathrm{~N}, \mathrm{C}, \mathrm{O}, \mathrm{I}, \mathrm{~S}\})=9=8+1 \\
\mid \text { PEnElope } \mid=8 & \text { and } & \operatorname{Card}(\{\varepsilon, \mathrm{P}, \mathrm{E}, \mathrm{~N}, \mathrm{~L}, \mathrm{O}, \text { ENE }\})=7<8+1
\end{array}
$$

Full words

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]

A word of length n has at most $n+1$ palindrome factors

A word with maximal number of palindromes is full (or rich). A factorial set is full if all its elements are full.

Example (Fibonacci)

Let S be the set of factors of the fixed-point $\varphi^{\omega}(0)$ of

$$
\varphi: 0 \mapsto 01, \quad 1 \mapsto 0
$$

Every word $w \in S$ is full. For instance,

$$
\operatorname{Pal}(01001)=\{\varepsilon, 0,1,00,010,1001\} .
$$

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed under reversal with $p_{n}=(\operatorname{Card}(A)-1) n+1$ having a unique right special factor for each length.

Examples

- Fibonacci: factors of the fixed-point $\varphi^{\omega}(0)$, where $\quad \varphi:\left\{\begin{array}{l}0 \mapsto 01 \\ 1 \mapsto 0\end{array}\right.$.
- Tribonacci: factors of the fixed-point $\psi^{\omega}(0)$, where $\psi:\left\{\begin{array}{l}0 \mapsto 01 \\ 1 \mapsto 02 \\ 2 \mapsto 0\end{array}\right.$.
Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed under reversal with $p_{n}=(\operatorname{Card}(A)-1) n+1$ having a unique right special factor for each length.

Examples

- Fibonacci: factors of the fixed-point $\varphi^{\omega}(0)$, where $\quad \varphi:\left\{\begin{array}{l}0 \mapsto 01 \\ 1 \mapsto 0\end{array}\right.$.
- Tribonacci: factors of the fixed-point $\psi^{\omega}(0)$, where $\quad \psi:\left\{\begin{array}{l}0 \mapsto 01 \\ 1 \mapsto 02 \\ 2 \mapsto 0\end{array}\right.$.

Theorem [X. Droubay, J. Justin, G. Pirillo (2001)]
Arnoux-Rauzy sets are full.

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of a semi-interval I. An interval exchange transformation (IET) is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of a semi-interval I. An interval exchange transformation (IET) is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of a semi-interval I. An interval exchange transformation (IET) is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of a semi-interval I. An interval exchange transformation (IET) is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of a semi-interval I. An interval exchange transformation (IET) is a map $T: I \rightarrow I$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

T is minimal if for any point $z \in I$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in I.
T is regular if the orbits of the separation points are infinite and disjoint.
Theorem [M. Keane (1975)]
A regular interval exchange transformation is minimal.

Interval exchanges

T is minimal if for any point $z \in I$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in I.
T is regular if the orbits of the separation points are infinite and disjoint.

Theorem [M. Keane (1975)]

A regular interval exchange transformation is minimal.

Example (the converse is not true)

Interval exchanges

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, z = $(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, z = $(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in I$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in 1} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in 1} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Proposition

Regular interval exchange sets have factor complexity $p_{n}=(\operatorname{Card}(A)-1) n+1$.

Interval exchanges

Theorem [P. Baláži, Z. Masáková, E. Pelantová (2007)]
Regular interval exchange sets closed under reverse are full.

T closed under reverse $\Longleftrightarrow \pi=\left(\begin{array}{llll}n & n-1 & \cdots & 2\end{array}\right)$

Extension graphs

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in A \mid a w \in S\}, \\
R(w) & =\{a \in A \mid w a \in S\}, \\
B(w) & =\{(a, b) \in A \mid a w b \in S .\}
\end{aligned}
$$

Example (Fibonacci, $S=\{\varepsilon, 0,1,00,01,10,001,010,100,101, \ldots\})$

Tree sets

Definition

A factorial set S is called a tree set (of characteristic 1) if $\mathcal{E}(w)$ is a tree for any $w \in S$.

Tree sets

Definition

A factorial set S is called a tree set (of characteristic 1) if $\mathcal{E}(w)$ is a tree for any $w \in S$.

Tree sets

Definition

A factorial set S is called a tree set (of characteristic 1) if $\mathcal{E}(w)$ is a tree for any $w \in S$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

Tree sets

Definition

A factorial set S is called a tree set (of characteristic 1) if $\mathcal{E}(w)$ is a tree for any $w \in S$.

[Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

Tree sets

Definition

A factorial set S is called a tree set (of characteristic 1) if $\mathcal{E}(w)$ is a tree for any $w \in S$.

[D., Perrin (2016)]

Tree sets

Definition

A factorial set S is called a tree set (of characteristic 1) if $\mathcal{E}(w)$ is a tree for any $w \in S$.

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]
A (uniformly) recurrent tree set closed under reversal is full.

σ-palindromes

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

Example

Let $\sigma: \mathrm{A} \leftrightarrow \mathrm{T}, \mathrm{C} \leftrightarrow \mathrm{G}$.
The word CTTAAG is a σ-palindrome.

σ-palindromes

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

σ-palindromes

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

Theorem [š. Starosta (2011)]
$\operatorname{Card}\left(\operatorname{Pal}_{\sigma}(w)\right) \leq|w|+1-\gamma_{\sigma}(w) \quad$ with $\gamma_{\sigma}(w)=\#$ transposition acting on w.
A word (resp. set) is σ-full if the equality holds (resp. for all its elements).

$$
\sigma \text {-palindromes }
$$

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

Theorem [š. Starosta (2011)]
$\operatorname{Card}\left(\operatorname{Pal}_{\sigma}(w)\right) \leq|w|+1-\gamma_{\sigma}(w) \quad$ with $\gamma_{\sigma}(w)=\#$ transposition acting on w.
A word (resp. set) is σ-full if the equality holds (resp. for all its elements).

Example

Let $\sigma: \mathrm{I} \leftrightarrow \mathrm{M}, \mathrm{O} \leftrightarrow \mathrm{T}$ and $\tau=\mathrm{J} \leftrightarrow \mathrm{O}, \mathrm{K} \leftrightarrow \mathrm{R}$, fixing all other letters.

σ-palindromes

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

Theorem [š. Starosta (2011)]
$\operatorname{Card}\left(\operatorname{Pal}_{\sigma}(w)\right) \leq|w|+1-\gamma_{\sigma}(w) \quad$ with $\gamma_{\sigma}(w)=\#$ transposition acting on w.
A word (resp. set) is σ-full if the equality holds (resp. for all its elements).

Example

Let $\sigma: \mathrm{I} \leftrightarrow \mathrm{M}, \mathrm{O} \leftrightarrow \mathrm{T}$ and $\tau=\mathrm{J} \leftrightarrow \mathrm{O}, \mathrm{K} \leftrightarrow \mathrm{R}$, fixing all other letters.

$$
\begin{aligned}
\operatorname{Card}\left(\mathrm{PaI}_{\sigma}(\mathrm{TIMO})\right) & =\operatorname{Card}(\{\varepsilon, \text { IM, TIMO }\}) \\
& =3=4+1-2
\end{aligned}
$$

σ-palindromes

Let σ be an antimorphism.
A word w is a σ-palindrome if $w=\sigma(w)$.

Theorem [š. Starosta (2011)]
$\operatorname{Card}\left(\operatorname{Pal}_{\sigma}(w)\right) \leq|w|+1-\gamma_{\sigma}(w) \quad$ with $\gamma_{\sigma}(w)=\#$ transposition acting on w.
A word (resp. set) is σ-full if the equality holds (resp. for all its elements).

Example

Let $\sigma: \mathrm{I} \leftrightarrow \mathrm{M}, \mathrm{O} \leftrightarrow \mathrm{T}$ and $\tau=\mathrm{J} \leftrightarrow \mathrm{O}, \mathrm{K} \leftrightarrow \mathrm{R}$, fixing all other letters.

$$
\begin{aligned}
\operatorname{Card}\left(\mathrm{PaI}_{\sigma}(\mathrm{TIMO})\right) & =\operatorname{Card}(\{\varepsilon, \text { IM, TIMO }\}) \\
& =3=4+1-2 \\
\operatorname{Card}\left(\mathrm{PaI}_{\tau}(\mathrm{JARKKO})\right) & =\operatorname{Card}(\{\varepsilon, \mathrm{A}, \mathrm{RK}\}) \\
& =3<5=6+1-2
\end{aligned}
$$

G-palindromes

Let G be a group containing at least one antimorphism. A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.
G-palindromes

Let G be a group containing at least one antimorphism.
A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Example

$$
\begin{aligned}
\text { Let } G=\langle\sigma, \tau\rangle \text { with } & \sigma: \mathrm{A} \leftrightarrow \mathrm{E}, & \mathrm{I} \leftrightarrow \mathrm{~V}, & \mathrm{R} \leftrightarrow \mathrm{X}, \quad \mathrm{O} \leftrightarrow \mathrm{~L} \\
\text { and } & \tau: \mathrm{A} \leftrightarrow \mathrm{~J}, & \mathrm{~L} \leftrightarrow \mathrm{~S} & \text { fixing the other letters. }
\end{aligned}
$$

The following are G-palindromes:
G-palindromes

Let G be a group containing at least one antimorphism.
A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Example

$$
\begin{aligned}
\text { Let } G=\langle\sigma, \tau\rangle \text { with } & \sigma: \mathrm{A} \leftrightarrow \mathrm{E}, & \mathrm{I} \leftrightarrow \mathrm{~V}, & \mathrm{R} \leftrightarrow \mathrm{X}, \quad \mathrm{O} \leftrightarrow \mathrm{~L} \\
\text { and } & \tau: \mathrm{A} \leftrightarrow \mathrm{~J}, & \mathrm{~L} \leftrightarrow \mathrm{~S} & \text { fixing the other letters. }
\end{aligned}
$$

The following are G-palindromes:

- XAVIER, fixed by σ,
G-palindromes

Let G be a group containing at least one antimorphism.
A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Example

$$
\begin{aligned}
\text { Let } G=\langle\sigma, \tau\rangle \text { with } & \sigma: \mathrm{A} \leftrightarrow \mathrm{E}, \quad \mathrm{I} \leftrightarrow \mathrm{~V}, \\
\text { and } & \tau: \mathrm{A} \leftrightarrow \mathrm{X}, \quad \mathrm{O} \leftrightarrow \mathrm{~L} \\
& \\
& \mathrm{~J}, \mathrm{~L} \leftrightarrow \mathrm{~S}
\end{aligned} \quad \text { fixing the other letters. }
$$

The following are G-palindromes:

- XAVIER, fixed by σ,
- ÉLISE, fixed by τ,
G-palindromes

Let G be a group containing at least one antimorphism.
A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Example

$$
\begin{aligned}
\text { Let } G=\langle\sigma, \tau\rangle \text { with } & \sigma: \mathrm{A} \leftrightarrow \mathrm{E}, & \mathrm{I} \leftrightarrow \mathrm{~V}, & \mathrm{R} \leftrightarrow \mathrm{X}, \quad \mathrm{O} \leftrightarrow \mathrm{~L} \\
\text { and } & \tau: \mathrm{A} \leftrightarrow \mathrm{~J}, & \mathrm{~L} \leftrightarrow \mathrm{~S} & \text { fixing the other letters. }
\end{aligned}
$$

The following are G-palindromes:

- XAVIER, fixed by σ,
- ÉLISE, fixed by τ,
- JOSÉ, fixed by $\sigma \tau \sigma$,

G-palindromes

Let G be a group containing at least one antimorphism.
A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Example

$$
\begin{aligned}
\text { Let } G=\langle\sigma, \tau\rangle \text { with } & \sigma: \mathrm{A} \leftrightarrow \mathrm{E}, & \mathrm{I} \leftrightarrow \mathrm{~V}, & \mathrm{R} \leftrightarrow \mathrm{X}, \quad \mathrm{O} \leftrightarrow \mathrm{~L} \\
\text { and } & \tau: \mathrm{A} \leftrightarrow \mathrm{~J}, & \mathrm{~L} \leftrightarrow \mathrm{~S} & \text { fixing the other letters. }
\end{aligned}
$$

The following are G-palindromes:

- XAVIER, fixed by σ,
- ÉLISE, fixed by τ,
- JOSÉ, fixed by $\sigma \tau \sigma$, while NADIA is fixed only by id.

G-palindromes

Let G be a group containing at least one antimorphism.
A word w is a G-palindrome if there exists a nontrivial $g \in G$ s.t. $w=g(w)$.

Example

$$
\begin{aligned}
\text { Let } G=\langle\sigma, \tau\rangle \text { with } & \sigma: \mathrm{A} \leftrightarrow \mathrm{E}, & \mathrm{I} \leftrightarrow \mathrm{~V}, & \mathrm{R} \leftrightarrow \mathrm{X}, \quad \mathrm{O} \leftrightarrow \mathrm{~L} \\
\text { and } & \tau: \mathrm{A} \leftrightarrow \mathrm{~J}, & \mathrm{~L} \leftrightarrow \mathrm{~S} & \text { fixing the other letters. }
\end{aligned}
$$

The following are G-palindromes:

- XAVIER, fixed by σ,
- ÉLISE, fixed by τ,
- JOSÉ, fixed by $\sigma \tau \sigma$, while NADIA is fixed only by id.

A word (set) is G-full if "the number of G-palindromes is maximal".

Doubling transducer

A doubling transducer is a transducer with set of states $\left\{q_{0}, q_{1}\right\}$ such that:

1. the input automata is a group automaton,
2. the output labels of the edges are all distinct.

Example

$$
\begin{aligned}
\Sigma & =\{\alpha\} \\
A & =\{a, b\}
\end{aligned}
$$

Doubling transducer

A doubling transducer is a transducer with set of states $\left\{q_{0}, q_{1}\right\}$ such that:

1. the input automata is a group automaton,
2. the output labels of the edges are all distinct.
$\delta_{0}, \delta_{1}: \Sigma^{*} \rightarrow A^{*}$ are defined by $\delta_{i}(u)=v$ for a path starting at q_{i} with input label u and output label v.

Example

$$
\begin{aligned}
& \Sigma=\{\alpha\} \\
& A=\{a, b\}
\end{aligned}
$$

$$
\begin{aligned}
& \delta_{0}\left(\alpha^{3}\right)=a b a \\
& \delta_{1}\left(\alpha^{3}\right)=b a b
\end{aligned}
$$

Doubling transducer

A doubling transducer is a transducer with set of states $\left\{q_{0}, q_{1}\right\}$ such that:

1. the input automata is a group automaton,
2. the output labels of the edges are all distinct.
$\delta_{0}, \delta_{1}: \Sigma^{*} \rightarrow A^{*}$ are defined by $\delta_{i}(u)=v$ for a path starting at q_{i} with input label u and output label v.

The image of a set T is $\delta_{0}(T) \cup \delta_{1}(T)$.

Example

$$
\begin{aligned}
& \Sigma=\{\alpha\} \\
& A=\{a, b\}
\end{aligned}
$$

$$
\begin{gathered}
\delta_{0}\left(\alpha^{3}\right)=a b a \\
\delta_{1}\left(\alpha^{3}\right)=b a b \\
\delta\left(\alpha^{*}\right)=(\varepsilon+a)(b a)^{*}(\varepsilon+b)
\end{gathered}
$$

G-palindromes

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]
Let S be a recurrent tree set closed under reversal. The image of S by a doubling transducer is G-full, with $G \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$.

Example (doubling of Fibonacci)

G-palindromes

Theorem [Berthé, De Felice, Delecroix, D., Leroy, Perrin, Reutenauer, Rindone (2016)]
Let S be a recurrent tree set closed under reversal. The image of S by a doubling transducer is G-full, with $G \simeq(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 2 \mathbb{Z})$.

Example (doubling of Fibonacci)

$$
\{010\} \quad \longrightarrow \quad\{012,230\}
$$

$$
\begin{array}{lll}
\sigma: & 0 \leftrightarrow 2, & 1 \leftrightarrow 3 \\
\tau: & 0,2 \circlearrowleft, & 1 \leftrightarrow 3
\end{array}
$$

Francesco Dolce (LaCim) $\quad G=\{\mathrm{id}, \sigma, \tau, \sigma \tau\}$

MERCICREM

THANk youoy meAHT

