Maximal bifix decoding

$Francesco \ Dolce$

イロト イボト イヨト イヨト

A&C Seminar

Waterloo, March 8th, 2017

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 1 / 25

- 3

Fibonacci

 $x = abaababaabaababa \cdots$

$$x = \lim_{n \to \infty} \varphi^n(a)$$
 where $\varphi : \left\{ egin{array}{c} a \mapsto ab \ b \mapsto a \end{array}
ight.$

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

<□ ト < □ ト < ■ ト < ■ ト < ■ ト ■ の へ (~ March 8th, 2017 2 / 25

 $x = abaababaabaababa \cdots$

The Fibonacci set (set of factors of x) is a Sturmian set.

Definition

A Sturmian set S is a factorial set such that $p_n = \text{Card}(S \cap A^n) = n + 1$.

x = ab aa ba ba ab aa ba ba \cdots

Francesco Dolce (LaCIM)

Maximal Bifix Decoding

March 8th, 2017 3 / 25

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の��

 $x = ab aa ba ba ab aa ba ba \cdots$

$$f:\left\{\begin{array}{ccc} u & \mapsto & aa \\ v & \mapsto & ab \\ w & \mapsto & ba \end{array}\right.$$

FRANCESCO DOLCE (LACIM)

Maximal Bifix Decoding

March 8th, 2017 3 / 25

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の��

$$x = ab aa ba ba ab aa ba ba \cdots$$
$$f^{-1}(x) = v u w w v u w w \cdots$$

$$f:\left\{\begin{array}{ccc} u & \mapsto & aa \\ v & \mapsto & ab \\ w & \mapsto & ba \end{array}\right.$$

Francesco Dolce (LaCIM)

Maximal Bifix Decoding

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = つへで March 8th, 2017 3 / 25

$$x = ab aa ba ba ab aa ba ba ba \cdots$$

 $f^{-1}(x) = v u w w v u w w \cdots$

ſ	и	\mapsto	aa
f : {	V	\mapsto	ab
l	w	\mapsto	ba

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

<□ ト < □ ト < ■ ト < ■ ト < ■ ト ■ の へ (~ March 8th, 2017 3 / 25

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_n = (Card(A) - 1)n + 1$ having a unique right special factor for each length.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 4 / 25

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_n = (Card(A) - 1)n + 1$ having a unique right special factor for each length.

Example (Tribonacci)

Factors of the fixed point $\psi^{\omega}(a)$ of the morphism $\psi: \mathbf{a} \mapsto \mathbf{a}\mathbf{b}, \quad \mathbf{b} \mapsto \mathbf{a}\mathbf{c},$ $c \mapsto a$.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

< ∃⇒ March 8th, 2017 4 / 25

э

 $f^{-1}(x) = v u w w v u w w \cdots$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set?

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

<ロト < 部ト < 画ト < 画ト < 画ト < 画 > 画 の Q () MARCH 8TH, 2017 5 / 25

 $f^{-1}(x) = v u w w v u w w \cdots$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set?

Francesco Dolce (LaCIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 5 / 25

 $f^{-1}(x) = v u w w v u w w \cdots$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set? No!

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 5 / 25

Let $(I_{\alpha})_{\alpha \in A}$ and $(J_{\alpha})_{\alpha \in A}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 6 / 25

- -

イロト イヨト イヨト

Let $(I_{\alpha})_{\alpha \in A}$ and $(J_{\alpha})_{\alpha \in A}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

MAXIMAL BIFIX DECODING

March 8th, 2017 6 / 25

-

- 不得下 不良下 不良下

Let $(I_{\alpha})_{\alpha \in A}$ and $(J_{\alpha})_{\alpha \in A}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 6 / 25

-

(人間) とうき くうり

Let $(I_{\alpha})_{\alpha \in A}$ and $(J_{\alpha})_{\alpha \in A}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

MAXIMAL BIFIX DECODING

March 8th, 2017 6 / 25

-

(人間) とうり くうり

Let $(I_{\alpha})_{\alpha \in A}$ and $(J_{\alpha})_{\alpha \in A}$ be two partitions of [0, 1[. An interval exchange transformation (IET) is a map $T : [0, 1[\rightarrow [0, 1[$ defined by

 $T(z) = z + y_{\alpha}$ if $z \in I_{\alpha}$.

MAXIMAL BIFIX DECODING

March 8th, 2017 6 / 25

-

- 不得下 不良下 不良下

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● ヨー つへで

March 8th, 2017

7 / 25

T is said to be minimal if for any point $z \in [0, 1[$ the orbit $\mathcal{O}(z) = \{T^n(z) \mid n \in \mathbb{Z}\}$ is dense in [0, 1[.

T is said *regular* if the orbits of the separation points $\neq 0$ are infinite and disjoint.

Theorem [M. Keane (1975)]

A regular interval exchange transformation is minimal.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

T is said to be minimal if for any point $z \in [0, 1[$ the orbit $\mathcal{O}(z) = \{T^n(z) \mid n \in \mathbb{Z}\}$ is dense in [0, 1[.

T is said regular if the orbits of the separation points $\neq 0$ are infinite and disjoint.

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

$$a_n = \alpha$$
 if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 8 / 25

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

 $a_n = \alpha$ if $T^n(z) \in I_\alpha$.

FRANCESCO DOLCE (LACIM)

Maximal Bifix Decoding

March 8th, 2017 8 / 25

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● ヨー つへで

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

$$a_n = \alpha$$
 if $T''(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

Maximal Bifix Decoding

March 8th, 2017 8 / 25

(日) (同) (王) (日) (王)

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

$$a_n = \alpha$$
 if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

Maximal Bifix Decoding

March 8th, 2017 8 / 25

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

$$a_n = \alpha$$
 if $T^n(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 8 / 25

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

$$a_n = \alpha$$
 if $T''(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 8 / 25

(日) (同) (王) (日) (王)

The natural coding of T relative to $z \in [0, 1[$ is the infinite word $\Sigma_T(z) = a_0 a_1 \cdots \in A^{\omega}$ defined by

$$a_n = \alpha$$
 if $T''(z) \in I_{\alpha}$.

FRANCESCO DOLCE (LACIM)

Maximal Bifix Decoding

March 8th, 2017 8 / 25

(日) (同) (王) (日) (王)

The set $\mathcal{L}(T) = \bigcup_{z \in [0,1[} \operatorname{Fac}(\Sigma_T(z)) \text{ is said a (minimal, regular) interval exchange set.}$

<u>Remark</u>. If T is minimal, $Fac(\Sigma_T(z))$ does not depend on the point z.

Francesco Dolce (LaCIM)

Maximal Bifix Decoding

March 8th, 2017 9 / 25

◆□> ◆□> ◆三> ◆三> ● 三 のへの

The set $\mathcal{L}(T) = \bigcup_{z \in [0,1[} \operatorname{Fac}(\Sigma_T(z)) \text{ is said a (minimal, regular) interval exchange set.}$

<u>Remark</u>. If T is minimal, $Fac(\Sigma_T(z))$ does not depend on the point z.

Proposition

Regular interval exchange sets have factor complexity $p_n = (Card(A) - 1)n + 1$.

Francesco Dolce (LaCIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 9 / 25

Arnoux-Rauzy and Interval exchanges

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Arnoux-Rauzy and Interval exchanges

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Extension graphs

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

Extension graphs

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges B(w), where

The *multiplicity* of a word w is the quantity

$$m(w) = \operatorname{Card} \left(B(w) \right) - \operatorname{Card} \left(L(w) \right) - \operatorname{Card} \left(R(w) \right) + 1.$$

Definition

A factorial set S is called a *tree set* if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 12 / 25

3

イロト イポト イヨト イヨト

Definition

A factorial set S is called a *tree set* if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$. It is called *neutral* if every nonempty word has multiplicity m(w) = 0.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 12 / 25

イロト イポト イヨト イヨト

Definition

A factorial set S is called a *tree set* if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$. It is called *neutral* if every nonempty word has multiplicity m(w) = 0.

The *characteristic* of a neutral/tree set S is the quantity $\chi(S) = 1 - m(\varepsilon)$.

Definition

A factorial set S is called a *tree set* if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$. It is called *neutral* if every nonempty word has multiplicity m(w) = 0.

The *characteristic* of a neutral/tree set S is the quantity $\chi(S) = 1 - m(\varepsilon)$.

Definition

A factorial set S is called a *tree set* if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$. It is called *neutral* if every nonempty word has multiplicity m(w) = 0.

The *characteristic* of a neutral/tree set S is the quantity $\chi(S) = 1 - m(\varepsilon)$.

Recurrence and uniformly recurrence

Definition

A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that uvw is in S.

It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.

Proposition

Uniform recurrence \implies recurrence.

FRANCESCO DOLCE (LACIM)

Maximal Bifix Decoding

March 8th, 2017 13 / 25

イロト イボト イヨト イヨト

Recurrence and uniformly recurrence

Definition

A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that uvw is in S.

It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.

Proposition

Uniform recurrence \implies recurrence.

Theorem [D., Perrin (2016)]

A recurrent neutral set is uniformly recurrent.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017

Let $<_L$ and $<_R$ be two orders on A. For a set S and a word $w \in S$, the graph $\mathcal{E}(w)$ is *compatible* with $<_L$ and $<_R$ if for any $(a, b), (c, d) \in B(w)$, one has

$$a <_L c \implies b \leq_R d.$$

A biextendable set S is a *planar tree set* w.r.t. $<_L$ and $<_R$ on A if for any nonempty $w \in S$ (resp. ε) the graph $\mathcal{E}(w)$ is a tree (resp. forest) compatible with $<_L$ and $<_R$.

Francesco Dolce (LaCIM)

Maximal Bifix Decoding

March 8th, 2017 14 / 25

The *Tribonacci set* is **not** a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , *a* and *aba*.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

< ∃⇒ March 8th, 2017 15 / 25

э

A B > A B > A

The Tribonacci set is not a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

• a <_L c <_L b

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 15 / 25

< 🗇 >

Example

The *Tribonacci set* is <u>not</u> a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

• $\underline{a <_L c <_L b} \implies b <_R c <_R a \text{ or } c <_R b <_R a$

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 15 / 25

Example

The *Tribonacci set* is <u>not</u> a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

• $\underline{a <_L c <_L b} \implies b <_R c <_R a \text{ or } c <_R b <_R a$

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 15 / 25

э

ヘロン 人間と 人間と 人間と

Example

The *Tribonacci set* is <u>not</u> a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

• $\underline{a <_L c <_L b} \implies b <_R c <_R a$

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 15 / 25

э

ヘロン 人間と 人間と 人間と

Example

The *Tribonacci set* is <u>not</u> a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

ヘロン 人間と 人間と 人間と

• $\underline{a <_L c <_L b} \implies b <_R c <_R a$

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 15 / 25

э

The *Tribonacci set* is **not** a planar tree set.

Indeed, let us consider the extension graphs of the bispecial words ε , a and aba.

イロト 不得 とくほと くほう

• *a* <_{*L*} *c* <_{*L*} *b*

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 15 / 25

э

Theorem [S. Ferenczi, L. Zamboni (2008)]

A set S is a regular interval exchange set on A if and only if it is a recurrent planar tree set of characteristic 1.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 17 / 25

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

MAXIMAL BIFIX DECODING

March 8th, 2017 17 / 25

<ロ> (目) (目) (目) (目) (目) (日) (0) (0)

- Fibonacci
- 2-coded Fibonacci
- Tribonacci

?

- ? 2-coded Tribonacci
- regular IET (Card (A) \geq 3)
- ? 2-coded regular IET

MAXIMAL BIFIX DECODING

March 8th, 2017 17 / 25

Definition

A *bifix code* is a set $X \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

Example

- \checkmark {aa, ab, ba}
- ✓ {aa, ab, bba, bbb}
- ✓ {ac, bcc, bcbca}

- X { fire, water, Waterloo }
- X { false, Montreal, real }
- X { onto, toro, Toronto }

FRANCESCO DOLCE (LACIM)

Maximal Bifix Decoding

March 8th, 2017 18 / 25

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

Definition

A *bifix code* is a set $X \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $X \subset S$ is S-maximal if it is not properly contained in a bifix code $Y \subset S$.

Example (Fibonacci)

The set $X = \{aa, ab, ba\}$ is an *S*-maximal bifix code. It is not an A^* -maximal bifix code, since $X \subset X \cup \{bb\}$.

Francesco Dolce (LaCIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 18 / 25

3

Definition

A *bifix code* is a set $X \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $X \subset S$ is *S*-maximal if it is not properly contained in a bifix code $Y \subset S$.

A coding morphism for a bifix code $X \subset A^+$ is a morphism $f : B^* \to A^*$ which maps bijectively B onto X.

Example

The map $f : \{u, v, w\}^* \to \{a, b\}^*$ is a coding morphism for $X = \{aa, ab, ba\}$.

$$f: \left\{ \begin{array}{c} u \mapsto aa \\ v \mapsto ab \\ w \mapsto ba \end{array} \right.$$

Francesco Dolce (LaCIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 18 / 25

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ● ヨー つへで

Definition

A *bifix code* is a set $X \subset A^+$ of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $X \subset S$ is *S*-maximal if it is not properly contained in a bifix code $Y \subset S$.

A coding morphism for a bifix code $X \subset A^+$ is a morphism $f : B^* \to A^*$ which maps bijectively *B* onto *X*.

Example

The map $f : \{u, v, w\}^* \to \{a, b\}^*$ is a coding morphism for $X = \{aa, ab, ba\}$.

 $f: \left\{ \begin{array}{c} u \mapsto aa \\ v \mapsto ab \\ w \mapsto ba \end{array} \right.$

When S is factorial and X is an S-maximal bifix code, the set $f^{-1}(S)$ is called a maximal bifix decoding of S.

Francesco Dolce (LaCIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 18 / 25

Theorem Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)

The family of recurrent planar tree sets of characteristic 1 (i.e. regular interval exchange sets) is closed under maximal bifix decoding.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 19 / 25

Theorem Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)

The family of recurrent tree sets of characteristic 1 is closed under maximal bifix decoding.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 19 / 25

Theorem Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016)

The family of recurrent neutral sets (resp. tree sets) of characteristic c is closed under maximal bifix decoding.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 19 / 25

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015); D., Perrin (2016)]

The family of recurrent neutral sets (resp. tree sets) of characteristic c is closed under maximal bifix decoding.

Parse and degree

Definition

A parse of a word w with respect to a bifix code X is a triple (q, x, p) such that :

- $w = q \times p$,
- q has no suffix in X,
- $x \in X^*$ and
- p has no prefix in X.

Example

Let $X = \{aa, ab, ba\}$ and w = abaaba. The two possible parses of w are :

- $(\varepsilon, ab aa ba, \varepsilon)$,
- (*a*, *ba ab*, *a*).

<u>a b a a ba</u>

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 20 / 25

- 3

イロト 不同ト 不同ト 不同ト

Parse and degree

Definition

A parse of a word w with respect to a bifix code X is a triple (q, x, p) such that :

- $w = q \times p$,
- q has no suffix in X,
- $x \in X^*$ and
- p has no prefix in X.

The S-degree of X is the maximal number of parses with respect to X of a word of S.

Example (Fibonacci)

- The set $X = \{aa, ab, ba\}$ has S-degree 2.
- The set $X = S \cap A^n$ has S-degree *n*.

Francesco Dolce (LaCIM)

MAXIMAL BIFIX DECODING

イロト イポト イラト イラト 二日

MARCH 8TH, 2017

Cardinality of bifix codes

Theorem [D., Perrin (2016)]

Let *S* be a recurrent neutral set of characteristic *c*. For any finite *S*-maximal bifix code *X* of *S*-degree *n*, one has

$$\operatorname{Card}(X) = n(\operatorname{Card}(A) - c) + c.$$

FRANCESCO DOLCE (LACIM)

Maximal Bifix Decoding

March 8th, 2017 21 / 25

Cardinality of bifix codes

Theorem [D., Perrin (2016)]

Let *S* be a recurrent neutral set of characteristic *c*. For any finite *S*-maximal bifix code *X* of *S*-degree *n*, one has

 $\operatorname{Card}(X) = n(\operatorname{Card}(A) - c) + c.$

Theorem [D., Perrin (2016)]

Let S be a uniformly recurrent set. If every finite S-maximal bifix code of S-degree n has n(Card(A) - c) + c elements, then S is neutral of characteristic c.

Francesco Dolce (LaCIM)

Maximal Bifix Decoding

March 8th, 2017 21 / 25

Example (Fibonacci)

The S-maximal bifix code $X = \{aa, ab, ba\}$ of S-degree 2 is a basis of $\langle A^2 \rangle$. Indeed

 $bb = ba(aa)^{-1}ab$

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

▲□ → ▲□ → ▲ ■ → ▲ ■ → ▲ ■ → ○ Q ○
MARCH 8TH, 2017 22 / 25

Example (Fibonacci)

The S-maximal bifix code $X = \{aa, ab, ba\}$ of S-degree 2 is a basis of $\langle A^2 \rangle$. Indeed

 $bb = ba(aa)^{-1}ab$

Also $S \cap A^3 = \{aab, aba, baa, bab\}$ is a basis of $\langle A^3 \rangle$:

ab
iba
ab

Francesco Dolce (LaCIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 22 / 25

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Definition

A set $S \subset A^+$ satisfies the *finite index basis property* if for any finite bifix code $X \subset S$:

X is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of the free group on A.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 23 / 25

- 3

イロト イボト イヨト イヨト

Definition

A set $S \subset A^+$ satisfies the *finite index basis property* if for any finite bifix code $X \subset S$:

X is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of the free group on A.

Theorem Berstel, De Felice, Perrin, Reutenauer, Rindone (2012)

An Arnoux-Rauzy set satisfies the finite index basis property.

FRANCESCO DOLCE (LACIM)

Maximal Bifix Decoding

イロト イボト イヨト イヨト

March 8th, 2017

Definition

A set $S \subset A^+$ satisfies the *finite index basis property* if for any finite bifix code $X \subset S$:

X is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of the free group on A.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]

A regular interval exchange set satisfies the finite index basis property.

FRANCESCO DOLCE (LACIM)

Maximal Bifix Decoding

(日) (同) (王) (日) (王)

March 8th, 2017

Definition

A set $S \subset A^+$ satisfies the *finite index basis property* if for any finite bifix code $X \subset S$:

X is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of the free group on A.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

A (uniformly) recurrent tree set of characteristic 1 satisfies the finite index basis property.

FRANCESCO DOLCE (LACIM)

Maximal Bifix Decoding

イロト イポト イラト イラト 二日

March 8th, 2017

Definition

A set $S \subset A^+$ satisfies the *finite index basis property* if for any finite bifix code $X \subset S$:

X is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of the free group on A.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

A (uniformly) recurrent tree set of characteristic 1 satisfies the finite index basis property.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]

A uniformly recurrent set satisfying the finite index basis property is a tree sets of characteristic 1.

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017

Further research directions and some open problem

Decidability of the tree condition

[work in progress with Revekka Kyriakoglou and Julien Leroy]

- Tree sets and palindromes [S tree of $\chi = 1$ closed under reversal \implies S full $\left(\implies \operatorname{Pal}(n) = \begin{cases} 1 & \operatorname{odd} \\ |A| & \operatorname{even} \end{cases} \right)$]
- ► Return words are a basis of the free group [*S* recurrent tree of $\chi = 1 \implies \mathcal{R}_S(w)$ basis of \mathbb{F}_A for all $w \in S$]
- Rigidity of tree sets

[stabilizer of a *tree word*.]

Francesco Dolce (LaCIM)

MAXIMAL BIFIX DECODING

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● ○○○

March 8th, 2017 24 / 25

FRANCESCO DOLCE (LACIM)

MAXIMAL BIFIX DECODING

March 8th, 2017 25 / 25