Maximal bifix decoding

Francesco Dolce

LaCIM
 UQÃM

A\&C Seminar

Waterloo, March 8th, 2017

Fibonacci

$$
x=\text { abaababaabaababa } \cdots
$$

$$
x=\lim _{n \rightarrow \infty} \varphi^{n}(a) \quad \text { where } \quad \varphi:\left\{\begin{array}{l}
a \mapsto a b \\
b \mapsto a
\end{array}\right.
$$

Fibonacci

$$
x=\text { abaababaabaababa } \cdots
$$

The Fibonacci set (set of factors of x) is a Sturmian set.

Definition

A Sturmian set S is a factorial set such that $p_{n}=\operatorname{Card}\left(S \cap A^{n}\right)=n+1$.

2-coded Fibonacci

$x=a b$ aa ba ba $a b$ aa ba ba \cdots

2-coded Fibonacci

$$
x=a b \text { aa ba ba } a b \text { aa ba ba } \cdots
$$

$$
f:\left\{\begin{array}{rll}
u & \mapsto & a a \\
v & \mapsto & a b \\
w & \mapsto & b a
\end{array}\right.
$$

2-coded Fibonacci

$$
\begin{aligned}
& x=a b \text { aa ba ba ab aa ba ba } \cdots \\
& f^{-1}(x)=v u w w v u w w \cdots
\end{aligned}
$$

$$
f:\left\{\begin{array}{lll}
u & \mapsto & a a \\
v & \mapsto & a b \\
w & \mapsto & b a
\end{array}\right.
$$

2-coded Fibonacci

$$
\begin{aligned}
& x=a b \text { aa ba ba ab aa ba ba } \cdots \\
& f^{-1}(x)=v u w w v u w w \cdots
\end{aligned}
$$

$$
f:\left\{\begin{array}{lll}
u & \mapsto & a a \\
v & \mapsto & a b \\
w & \mapsto & b a
\end{array}\right.
$$

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_{n}=(\operatorname{Card}(A)-1) n+1$ having a unique right special factor for each length.

Arnoux-Rauzy sets

Definition

An Arnoux-Rauzy set is a factorial set closed by reversal with $p_{n}=(\operatorname{Card}(A)-1) n+1$ having a unique right special factor for each length.

Example (Tribonacci)

Factors of the fixed point $\psi^{\omega}(a)$ of the morphism $\quad \psi: a \mapsto a b, \quad b \mapsto a c, \quad c \mapsto a$.

$$
\begin{gathered}
\text { 2-coded Fibonacci } \\
f^{-1}(x)=v u w w v u w w \cdots
\end{gathered}
$$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set ?

$$
\begin{aligned}
& \text { 2-coded Fibonacci } \\
& f^{-1}(x)=v u w w v u w w \cdots
\end{aligned}
$$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set?

$$
\begin{aligned}
& \text { 2-coded Fibonacci } \\
& f^{-1}(x)=v u w w v u w w \cdots
\end{aligned}
$$

Is the set of factors of $f^{-1}(S)$ an Arnoux-Rauzy set? No!

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of $[0,1[$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of $[0,1[$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha} .
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of $[0,1[$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of $[0,1[$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

Let $\left(I_{\alpha}\right)_{\alpha \in A}$ and $\left(J_{\alpha}\right)_{\alpha \in A}$ be two partitions of $[0,1[$. An interval exchange transformation (IET) is a map $T:[0,1[\rightarrow[0,1[$ defined by

$$
T(z)=z+y_{\alpha} \quad \text { if } z \in I_{\alpha}
$$

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the separation points $\neq 0$ are infinite and disjoint.

Theorem [M. Keane (1975)]

A regular interval exchange transformation is minimal.

Interval exchanges

T is said to be minimal if for any point $z \in\left[0,1\left[\right.\right.$ the orbit $\mathcal{O}(z)=\left\{T^{n}(z) \mid n \in \mathbb{Z}\right\}$ is dense in $[0,1[$.
T is said regular if the orbits of the separation points $\neq 0$ are infinite and disjoint.

Theorem [M. Keane (1975)]

A regular interval exchange transformation is minimal.

Example (the converse is not true)

Francesco Dolce (LaCIM)
Maximal Bifix Decoding
MARCH 8TH, 2017
$7 / 25$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha} .
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The natural coding of T relative to $z \in\left[0,1\left[\right.\right.$ is the infinite word $\Sigma_{T}(z)=a_{0} a_{1} \cdots \in A^{\omega}$ defined by

$$
a_{n}=\alpha \quad \text { if } T^{n}(z) \in I_{\alpha}
$$

Example (Fibonacci, $z=(3-\sqrt{5}) / 2)$

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in[0,1[} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Interval exchanges

The set $\mathcal{L}(T)=\bigcup_{z \in[0,1[} \operatorname{Fac}\left(\Sigma_{T}(z)\right)$ is said a (minimal, regular) interval exchange set.
Remark. If T is minimal, $\operatorname{Fac}\left(\Sigma_{T}(z)\right)$ does not depend on the point z.

Example (Fibonacci)

Proposition

Regular interval exchange sets have factor complexity $p_{n}=(\operatorname{Card}(A)-1) n+1$.

Arnoux-Rauzy and Interval exchanges

Arnoux-Rauzy and Interval exchanges

Extension graphs

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in A \mid a w \in S\}, \\
R(w) & =\{a \in A \mid w a \in S\}, \\
B(w) & =\{(a, b) \in A \mid a w b \in S .\}
\end{aligned}
$$

Example (Fibonacci, $S=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

Extension graphs

The extension graph of a word $w \in S$ is the undirected bipartite graph $\mathcal{E}(w)$ with vertices $L(w) \sqcup R(w)$ and edges $B(w)$, where

$$
\begin{aligned}
L(w) & =\{a \in A \mid a w \in S\}, \\
R(w) & =\{a \in A \mid w a \in S\}, \\
B(w) & =\{(a, b) \in A \mid a w b \in S .\}
\end{aligned}
$$

The multiplicity of a word w is the quantity

$$
m(w)=\operatorname{Card}(B(w))-\operatorname{Card}(L(w))-\operatorname{Card}(R(w))+1 .
$$

Example (Fibonacci, $S=\{\varepsilon, a, b, a a, a b, b a, a a b, a b a, b a a, b a b, \ldots\})$

Tree and neutral sets

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$.

Tree and neutral sets

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$. It is called neutral if every nonempty word has multiplicity $m(w)=0$.

Tree and neutral sets

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$. It is called neutral if every nonempty word has multiplicity $m(w)=0$.

The characteristic of a neutral/tree set S is the quantity $\chi(S)=1-m(\varepsilon)$.

Tree and neutral sets

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$. It is called neutral if every nonempty word has multiplicity $m(w)=0$.

The characteristic of a neutral/tree set S is the quantity $\chi(S)=1-m(\varepsilon)$.

Tree and neutral sets

Definition

A factorial set S is called a tree set if the graph $\mathcal{E}(w)$ is a tree for any nonempty $w \in S$. It is called neutral if every nonempty word has multiplicity $m(w)=0$.

The characteristic of a neutral/tree set S is the quantity $\chi(S)=1-m(\varepsilon)$.

Recurrence and uniformly recurrence

Definition

A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that $u v w$ is in S. It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.

Proposition

Uniform recurrence \Longrightarrow recurrence.

Recurrence and uniformly recurrence

Definition

A factorial set S is recurrent if for every $u, v \in S$ there is a $w \in S$ such that $u v w$ is in S. It is uniformly recurrent (or minimal) if for every $u \in S$ there exists an $n \in \mathbb{N}$ such that u is a factor of every word of length n in S.

Proposition

Uniform recurrence \Longrightarrow recurrence.

Theorem [D., Perrin (2016)]
A recurrent neutral set is uniformly recurrent.

Planar tree sets

Let $<_{L}$ and $<_{R}$ be two orders on A.
For a set S and a word $w \in S$, the graph $\mathcal{E}(w)$ is compatible with $<_{L}$ and $<_{R}$ if for any $(a, b),(c, d) \in B(w)$, one has

$$
a<_{L} c \quad \Longrightarrow \quad b \leq_{R} d
$$

Example (Fibonacci, $a<L b$ and $b<R$ a)

A biextendable set S is a planar tree set w.r.t. $<_{L}$ and $<_{R}$ on A if for any nonempty $w \in S($ resp. $\varepsilon)$ the graph $\mathcal{E}(w)$ is a tree (resp. forest) compatible with $<_{L}$ and $<_{R}$.

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

- $a<L c<_{L} b$

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

- $\underline{a<L c<_{L} b} \Longrightarrow b<_{R} c<_{R} a$ or $c<_{R} b<_{R} a$

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

- $a<_{L} c<_{L} b \Longrightarrow b<_{R} c<_{R} a$ or $c<_{R} b<_{R} a$

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

- $\underline{a<L C<_{L} b} \quad \Longrightarrow \quad b<_{R} \subset<_{R} a$

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

- $\underline{a<L C<_{L} b} \quad \Longrightarrow \quad b<_{R} \subset<_{R} a$

Planar tree sets

Example

The Tribonacci set is not a planar tree set. Indeed, let us consider the extension graphs of the bispecial words ε, a and $a b a$.

- $a<L C<_{L} b \quad \Longrightarrow \quad$,

Planar tree sets

Theorem [S. Ferenczi, L. Zamboni (2008)]
A set S is a regular interval exchange set on A if and only if it is a recurrent planar tree set of characteristic 1 .

Tree and neutral sets

Tree and neutral sets

Tree and neutral sets

- Fibonacci
? 2-coded Fibonacci
- Tribonacci
? 2-coded Tribonacci
- regular IET $(\operatorname{Card}(A) \geq 3)$? 2-coded regular IET

Bifix codes

Definition

A bifix code is a set $X \subset A^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

Example

$$
\begin{array}{ll}
\checkmark & \{a a, a b, b a\} \\
\checkmark & \{a a, a b, b b a, b b b\} \\
\checkmark & \{a c, b c c, b c b c a\}
\end{array}
$$

x \{ fire, water, Waterloo \}
x \{ false, Montreal, real \}
x \{ onto, toro, Toronto \}

Bifix codes

Definition

A bifix code is a set $X \subset A^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $X \subset S$ is S-maximal if it is not properly contained in a bifix code $Y \subset S$.

Example (Fibonacci)

The set $X=\{a a, a b, b a\}$ is an S-maximal bifix code. It is not an A^{*}-maximal bifix code, since $X \subset X \cup\{b b\}$.

Francesco Dolce (LaCIM)
Maximal Bifix Decoding
MARCH 8TH, 2017
$18 / 25$

Bifix codes

Definition

A bifix code is a set $X \subset A^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $X \subset S$ is S-maximal if it is not properly contained in a bifix code $Y \subset S$.

A coding morphism for a bifix code $X \subset A^{+}$is a morphism $f: B^{*} \rightarrow A^{*}$ which maps bijectively B onto X.

Example

The map $f:\{u, v, w\}^{*} \rightarrow\{a, b\}^{*}$ is a coding morphism for $X=\{a a, a b, b a\}$.

$$
f:\left\{\begin{array}{c}
u \mapsto a a \\
v \mapsto a b \\
w \mapsto b a
\end{array}\right.
$$

Bifix codes

Definition

A bifix code is a set $X \subset A^{+}$of nonempty words that does not contain any proper prefix or suffix of its elements.

A bifix code $X \subset S$ is S-maximal if it is not properly contained in a bifix code $Y \subset S$.

A coding morphism for a bifix code $X \subset A^{+}$is a morphism $f: B^{*} \rightarrow A^{*}$ which maps bijectively B onto X.

Example

The map $f:\{u, v, w\}^{*} \rightarrow\{a, b\}^{*}$ is a coding morphism for $X=\{a a, a b, b a\}$.

$$
f:\left\{\begin{array}{c}
u \mapsto a a \\
v \mapsto a b \\
w \mapsto b a
\end{array}\right.
$$

When S is factorial and X is an S-maximal bifix code, the set $f^{-1}(S)$ is called a maximal bifix decoding of S.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]
The family of recurrent planar tree sets of characteristic 1 (i.e. regular interval exchange sets) is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015)]
The family of recurrent tree sets of characteristic 1 is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015) ; D., Perrin (2016)]
The family of recurrent neutral sets (resp. tree sets) of characteristic c is closed under maximal bifix decoding.

Maximal bifix decoding

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014, 2015) ; D., Perrin (2016)]
The family of recurrent neutral sets (resp. tree sets) of characteristic c is closed under maximal bifix decoding.

- Fibonacci
- 2-coded Fibonacci
- Tribonacci
- 2-coded Tribonacci

Parse and degree

Definition

A parse of a word w with respect to a bifix code X is a triple (q, x, p) such that :

- $w=q \times p$,
- q has no suffix in X,
- $x \in X^{*}$ and
- p has no prefix in X.

Example

Let $X=\{a a, a b, b a\}$ and $w=a b a a b a$. The two possible parses of w are :

- $(\varepsilon, a b$ aa $b a, \varepsilon)$,
- ($a, b a a b, a)$.

Parse and degree

Definition

A parse of a word w with respect to a bifix code X is a triple (q, x, p) such that :

- $w=q \times p$,
- q has no suffix in X,
- $x \in X^{*}$ and
- p has no prefix in X.

The S-degree of X is the maximal number of parses with respect to X of a word of S.

Example (Fibonacci)

- The set $X=\{a a, a b, b a\}$ has S-degree 2 .
- The set $X=S \cap A^{n}$ has S-degree n.

Cardinality of bifix codes

Theorem [D., Perrin (2016)]

Let S be a recurrent neutral set of characteristic c.
For any finite S-maximal bifix code X of S-degree n, one has

$$
\operatorname{Card}(X)=n(\operatorname{Card}(A)-c)+c
$$

Example (Fibonacci)

The three possible S-maximal bifix codes of S-degree 2 are :

Each of them has cardinality $3=2(2-1)+1$.

Cardinality of bifix codes

Theorem [D., Perrin (2016)]

Let S be a recurrent neutral set of characteristic c.
For any finite S-maximal bifix code X of S-degree n, one has

$$
\operatorname{Card}(X)=n(\operatorname{Card}(A)-c)+c
$$

Theorem [D., Perrin (2016)]

Let S be a uniformly recurrent set.
If every finite S-maximal bifix code of S-degree n has $n(\operatorname{Card}(A)-c)+c$ elements, then S is neutral of characteristic c.

Finite index basis property

Example (Fibonacci)

The S-maximal bifix code $X=\{a a, a b, b a\}$ of S-degree 2 is a basis of $\left\langle A^{2}\right\rangle$. Indeed

$$
b b=b a(a a)^{-1} a b
$$

Finite index basis property

Example (Fibonacci)

The S-maximal bifix code $X=\{a a, a b, b a\}$ of S-degree 2 is a basis of $\left\langle A^{2}\right\rangle$. Indeed

$$
b b=b a(a a)^{-1} a b
$$

Also $S \cap A^{3}=\{a a b, a b a, b a a, b a b\}$ is a basis of $\left\langle A^{3}\right\rangle$:

$$
\begin{aligned}
& a a a=a a b(b a b)^{-1} b a a \\
& a b b=a b a(b a a)^{-1} b a b \\
& b b a=b a b(a a b)^{-1} a b a \\
& b b b=b b a(a b a)^{-1} a a b
\end{aligned}
$$

Finite index basis property

Definition

A set $S \subset A^{+}$satisfies the finite index basis property if for any finite bifix code $X \subset S$:
X is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of the free group on A.

Finite index basis property

Definition

A set $S \subset A^{+}$satisfies the finite index basis property if for any finite bifix code $X \subset S$:
X is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of the free group on A.

Theorem [Berstel, De Felice, Perrin, Reutenauer, Rindone (2012)]
An Arnoux-Rauzy set satisfies the finite index basis property.

Finite index basis property

Definition

A set $S \subset A^{+}$satisfies the finite index basis property if for any finite bifix code $X \subset S$:
X is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of the free group on A.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2014)]
A regular interval exchange set satisfies the finite index basis property.

Finite index basis property

Definition

A set $S \subset A^{+}$satisfies the finite index basis property if for any finite bifix code $X \subset S$:
X is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of the free group on A.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
A (uniformly) recurrent tree set of characteristic 1 satisfies the finite index basis property.

Finite index basis property

Definition

A set $S \subset A^{+}$satisfies the finite index basis property if for any finite bifix code $X \subset S$:
X is an S-maximal bifix code of S-degree d if and only if it is a basis of a subgroup of index d of the free group on A.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenauer, Rindone (2015)]
A (uniformly) recurrent tree set of characteristic 1 satisfies the finite index basis property.

Theorem [Berthé, De Felice, D., Leroy, Perrin, Reutenaurer, Rindone (2015)]
A uniformly recurrent set satisfying the finite index basis property is a tree sets of characteristic 1.

Further research directions
 and some open problem

- Decidability of the tree condition
[work in progress with Revekka Kyriakoglou and Julien Leroy]
- Tree sets and palindromes
[S tree of $\chi=1$ closed under reversal $\Longrightarrow S$ full $\left(\Longrightarrow \operatorname{Pal}(n)=\left\{\begin{array}{cc}1 & \text { odd } \\ |A| & \text { even }\end{array}\right)\right.$]
- Return words are a basis of the free group
[S recurrent tree of $\chi=1 \quad \Longrightarrow \quad \mathcal{R}_{S}(w)$ basis of \mathbb{F}_{A} for all $w \in S$]
- Rigidity of tree sets
[stabilizer of a tree word.]

