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Quantum graph concept

The idea of investigating quantum particles confined to a
graph was first suggested by L. Pauling and worked out by
Ruedenberg and Scherr in 1953 in a model of aromatic
hydrocarbons
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Quantum graph concept

The idea of investigating quantum particles confined to a
graph was first suggested by L. Pauling and worked out by
Ruedenberg and Scherr in 1953 in a model of aromatic
hydrocarbons

The concept extends, however, to graphs of arbitrary shape
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on graph edges,
boundary conditions at vertices

and what is important, it became practically important after
experimentalists learned in the last two decades to fabricate
tiny graph-like structure for which this is a good model
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Remarks

Most often one deals with semiconductor graphs
produced by combination of ion litography and chemical
itching. In a similar way metallic graphs are prepared
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Most often one deals with semiconductor graphs
produced by combination of ion litography and chemical
itching. In a similar way metallic graphs are prepared

Recently carbon nanotubes became a building material,
after branchings were fabricated several years ago: see
[Papadopoulos et al.’00], [Andriotis et al.’01], etc.

Moreover, from the stationary point of view a quantum
graph is also equivalent to a microwave network built of
optical cables – see [Hul et al.’04]

In addition one can consider generalized graphs which
consist of components of different dimensions

Now when the microstructures reach molecular size
quantum graphs “return” in a sense to their origin!

Joint physics/mathematics workshop on Quantum Few-Body Systems; Aarhus University, March 19, 2007 – p. 4/50



More remarks

The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved by the method
based on s-a extensions which everybody in this
audience knows (at least I suppose so)
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More remarks

The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved by the method
based on s-a extensions which everybody in this
audience knows (at least I suppose so)

Here we consider Schrödinger operators on graphs,
most often free, vj = 0. Naturally one can external
electric and magnetic fields, spin, etc.

Graphs can support also Dirac operators, see
[Bulla-Trenckler’90], [Bolte-Harrison’03], although this
remains so far a theoretical possibility only.

The graph literature is extensive; recall just a review
[Kuchment’04], proceedings of Snowbird’05 conference,
and present AGA Programme at INI Cambridge
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Vertex coupling
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The most simple example is a
star graph with the state Hilbert
space H =

⊕n
j=1 L

2(R+) and
the particle Hamiltonian acting
on H as ψj 7→ −ψ′′

j
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The most simple example is a
star graph with the state Hilbert
space H =

⊕n
j=1 L

2(R+) and
the particle Hamiltonian acting
on H as ψj 7→ −ψ′′

j

Since it is second-order, the boundary condition involve
Ψ(0) := {ψj(0)} and Ψ′(0) := {ψ′

j(0)} being of the form

AΨ(0) +BΨ′(0) = 0 ;

by [Kostrykin-Schrader’99] the n× n matrices A,B give rise
to a self-adjoint operator if they satisfy the conditions

rank (A,B) = n

AB∗ is self-adjoint
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Unique boundary conditions
The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer’00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n×n matrices U such that

A = U − I , B = i(U + I)
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Unique boundary conditions
The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer’00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n×n matrices U such that

A = U − I , B = i(U + I)

One can derive them modifying the argument used in
[Fülöp-Tsutsui’00] for generalized point interactions, n = 2

Self-adjointness requires vanishing of the boundary form,
n

∑

j=1

(ψ̄jψ
′
j − ψ̄′

jψj)(0) = 0 ,

which occurs iff the norms ‖Ψ(0) ± iℓΨ′(0)‖Cn with a fixed
ℓ 6= 0 coincide, so the vectors must be related by an n× n
unitary matrix; this gives (U − I)Ψ(0) + iℓ(U + I)Ψ′(0) = 0
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Remarks
The length parameter is not important because matrices
corresponding to two different values are related by

U ′ =
(ℓ+ ℓ′)U + ℓ− ℓ′

(ℓ− ℓ′)U + ℓ+ ℓ′

The choice ℓ = 1 just fixes the length scale
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The unique b.c. help to simplify the analysis done in
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Remarks
The length parameter is not important because matrices
corresponding to two different values are related by

U ′ =
(ℓ+ ℓ′)U + ℓ− ℓ′

(ℓ− ℓ′)U + ℓ+ ℓ′

The choice ℓ = 1 just fixes the length scale

The unique b.c. help to simplify the analysis done in
[Kostrykin-Schrader’99], [Kuchment’04] and other
previous work. It concerns, for instance, the null
spaces of the matrices A,B

or the on-shell scattering matrix for a star graph of n
halflines with the considered coupling which equals

SU (k) =
(k − 1)I + (k + 1)U

(k + 1)I + (k − 1)U
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Examples of vertex coupling

Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n

∑

j=1

ψ′

j(0) = αψ(0)

with “coupling strength” α ∈ R; α = ∞ gives U = −I
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Examples of vertex coupling

Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n

∑

j=1

ψ′

j(0) = αψ(0)

with “coupling strength” α ∈ R; α = ∞ gives U = −I

α = 0 corresponds to the “free motion”, the so-called
free boundary conditions (better name than Kirchhoff)

Similarly, U = I − 2
n−iβJ describes the δ′s coupling

ψ′

j(0) = ψ′

k(0) =: ψ′(0) , j, k = 1, . . . , n ,
n

∑

j=1

ψj(0) = βψ′(0)

with β ∈ R; for β = ∞ we get Neumann decoupling
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Further examples
Another generalization of 1D δ′ is the δ′ coupling:

n
∑

j=1

ψ′

j(0) = 0 , ψj(0)−ψk(0) =
β

n
(ψ′

j(0)−ψ′

k(0)) , 1 ≤ j, k ≤ n

with β ∈ R and U = n−iα
n+iαI −

2
n+iαJ ; the infinite value of

β refers again to Neumann decoupling of the edges
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Further examples
Another generalization of 1D δ′ is the δ′ coupling:

n
∑

j=1

ψ′

j(0) = 0 , ψj(0)−ψk(0) =
β

n
(ψ′

j(0)−ψ′

k(0)) , 1 ≤ j, k ≤ n

with β ∈ R and U = n−iα
n+iαI −

2
n+iαJ ; the infinite value of

β refers again to Neumann decoupling of the edges

Due to permutation symmetry the U ’s are combinations
of I and J in the examples. In general, interactions with
this property form a two-parameter family described by
U = uI + vJ s.t. |u| = 1 and |u+ nv| = 1 giving the b.c.

(u− 1)(ψj(0) − ψk(0)) + i(u− 1)(ψ′

j(0) − ψ′

k(0)) = 0

(u− 1 + nv)
n

∑

k=1

ψk(0) + i(u− 1 + nv)
n

∑

k=1

ψ′

k(0) = 0
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Why are vertices interesting?

Apart of a general mathematical interest, there are specific
reasons related to various use of such models, e.g.

A nontrivial vertex coupling can lead to number
theoretic properties of graph spectrum; I will show
a simple example below
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Why are vertices interesting?

Apart of a general mathematical interest, there are specific
reasons related to various use of such models, e.g.

A nontrivial vertex coupling can lead to number
theoretic properties of graph spectrum; I will show
a simple example below

On more practical side, the conductivity of graph
nanostructures is controlled typically by external
fields, vertex coupling can serve the same purpose

In particular, the generalized point interaction
has been proposed as a way to realize a qubit
[Cheon-Tsutsui-Fülöp’04]; vertices with n > 2 can
similarly model qudits

Joint physics/mathematics workshop on Quantum Few-Body Systems; Aarhus University, March 19, 2007 – p. 11/50



An example: a rectangular lattice graph

Basic cell is a rectangle of sides ℓ1, ℓ2, the δ coupling with
parameter α is assumed at every vertex

x

y

g
n

g
n+1

fm+1

fm

l 2

1l
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An example: a rectangular lattice graph

Basic cell is a rectangle of sides ℓ1, ℓ2, the δ coupling with
parameter α is assumed at every vertex

x

y

g
n

g
n+1

fm+1

fm

l 2

1l

Spectral condition for quasimomentum (θ1, θ2) reads

2
∑

j=1

cos θjℓj − cos kℓj
sin kℓj

=
α

2k
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Lattice band spectrum
Recall a continued-fraction classification, α = [a0, a1, . . .]:

“good” irrationals have lim supj aj = ∞

(and full Lebesgue measure)
“bad” irrationals have lim supj aj <∞

(and limj aj 6= 0, of course)
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Lattice band spectrum
Recall a continued-fraction classification, α = [a0, a1, . . .]:

“good” irrationals have lim supj aj = ∞

(and full Lebesgue measure)
“bad” irrationals have lim supj aj <∞

(and limj aj 6= 0, of course)

Theorem [E’95]: Call θ := ℓ2/ℓ1 and L := max{ℓ1, ℓ2}.
(a) If θ is rational or “good” irrational, there are infinitely
many gaps for any nonzero α
(b) For a “bad” irrational θ there is α0 > 0 such no gaps
open above threshold for |α| < α0

(c) There are infinitely many gaps if |α|L > π2

√
5
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(and full Lebesgue measure)
“bad” irrationals have lim supj aj <∞

(and limj aj 6= 0, of course)

Theorem [E’95]: Call θ := ℓ2/ℓ1 and L := max{ℓ1, ℓ2}.
(a) If θ is rational or “good” irrational, there are infinitely
many gaps for any nonzero α
(b) For a “bad” irrational θ there is α0 > 0 such no gaps
open above threshold for |α| < α0

(c) There are infinitely many gaps if |α|L > π2

√
5

Clearly, understanding of vertex couplings is needed when
one wants to model real physical systems by such graphs
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A head-on approach
Take a more realistic situation with no ambiguity, such
as branching tubes and analyze the squeezing limit :
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Unfortunately, it is not so simple as it looks because

Joint physics/mathematics workshop on Quantum Few-Body Systems; Aarhus University, March 19, 2007 – p. 14/50
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Unfortunately, it is not so simple as it looks because

after a long effort the Neumann-like case was solved
[Freidlin-Wentzell’93], [Freidlin’96], [Saito’01],
[Kuchment-Zeng’01], [Rubinstein-Schatzmann’01],
[E.-Post’05], [Post’06] giving free b.c. only

there is a recent progress in Dirichlet case [Post’05],
[Molchanov-Vainberg’06], [Griesser’07]?, but the full
understanding has not yet been achieved here
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More on the Dirichlet case

Generically it is expected that that the limit with the
energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases

Joint physics/mathematics workshop on Quantum Few-Body Systems; Aarhus University, March 19, 2007 – p. 15/50



More on the Dirichlet case

Generically it is expected that that the limit with the
energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases

if the vertex regions squeeze faster than the “tubes”
one gets Dirichlet decoupling [Post’05]
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More on the Dirichlet case

Generically it is expected that that the limit with the
energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases

if the vertex regions squeeze faster than the “tubes”
one gets Dirichlet decoupling [Post’05]

on the other hand, if you blow up the spectrum for a
fixed point separated from thresholds, i.e.

r r r��
�� r

0 λ1 λ λ2

one gets a nontrivial limit with b.c. fixed by scattering
on the “fat star” [Molchanov-Vainberg’06]
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Back to the Neumann case: first, the graphs

The simplest situation in [KZ’01, EP’05] (weights left out)

Let M0 be a finite connected graph with vertices vk, k ∈ K
and edges ej ≃ Ij := [0, ℓj ], j ∈ J ; the state Hilbert space is

L2(M0) :=
⊕

j∈J

L2(Ij)

and in a similar way Sobolev spaces on M0 are introduced
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Back to the Neumann case: first, the graphs

The simplest situation in [KZ’01, EP’05] (weights left out)

Let M0 be a finite connected graph with vertices vk, k ∈ K
and edges ej ≃ Ij := [0, ℓj ], j ∈ J ; the state Hilbert space is

L2(M0) :=
⊕

j∈J

L2(Ij)

and in a similar way Sobolev spaces on M0 are introduced

The form u 7→ ‖u′‖2
M0

:=
∑

j∈J ‖u′‖2
Ij

with u ∈ H1(M0) is
associated with the operator which acts as −∆M0

u = −u′′j
and satisfies free b.c.,

∑

j, ej meets vk

u′j(vk) = 0
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On the other hand, Laplacian on manifolds
Consider a Riemannian manifold X of dimension d ≥ 2 and
the corresponding space L2(X) w.r.t. volume dX equal to
(det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2
X =

∫

X
|du|2dX , |du|2 =

∑

i,j

gij∂iu ∂ju

The closure of this form is associated with the s-a operator
∆X which acts in fixed chart coordinates as

∆Xu = −(det g)−1/2
∑

i,j

∂i((det g)1/2gij ∂ju)
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On the other hand, Laplacian on manifolds
Consider a Riemannian manifold X of dimension d ≥ 2 and
the corresponding space L2(X) w.r.t. volume dX equal to
(det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2
X =

∫

X
|du|2dX , |du|2 =

∑

i,j

gij∂iu ∂ju

The closure of this form is associated with the s-a operator
∆X which acts in fixed chart coordinates as

∆Xu = −(det g)−1/2
∑

i,j

∂i((det g)1/2gij ∂ju)

If X is compact with piecewise smooth boundary, one starts
from the form defined on C∞(X). This yields ∆X as the
Neumann Laplacian on X and allows us to treat “fat graphs”
and “sleeves” on the same footing
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Fat graphs and sleeves: manifolds

We associate with the graph M0 a family of manifolds Mε

M0 Mε

ej

vk

Uε,j

Vε,k

We suppose that Mε is a union of compact edge and vertex
components Uε,j and Vε,k such that their interiors are
mutually disjoint for all possible j ∈ J and k ∈ K
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Manifold building blocks

ε

ε

ej vk

Uε,j

Vε,k
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Manifold building blocks

ε

ε

ej vk

Uε,j

Vε,k

However, Mε need not be embedded in some R
d.

It is convenient to assume that Uε,j and Vε,k depend on ε
only through their metric:

for edge regions we assume that Uε,j is diffeomorphic to
Ij × F where F is a compact and connected manifold
(with or without a boundary) of dimension m := d− 1

for vertex regions we assume that the manifold Vε,k is
diffeomorphic to an ε-independent manifold Vk
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Eigenvalue convergence

Let thus U = Ij × F with metric gε, where cross section F
is a compact connected Riemannian manifold of dimension
m = d− 1 with metric h; we assume that volF = 1. We
define another metric g̃ε on Uε,j by

g̃ε := dx2 + ε2h(y) ;

the two metrics coincide up to an O(ε) error

This property allows us to treat manifolds embedded in R
d

(with metric g̃ε) using product metric gε on the edges
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Eigenvalue convergence

Let thus U = Ij × F with metric gε, where cross section F
is a compact connected Riemannian manifold of dimension
m = d− 1 with metric h; we assume that volF = 1. We
define another metric g̃ε on Uε,j by

g̃ε := dx2 + ε2h(y) ;

the two metrics coincide up to an O(ε) error

This property allows us to treat manifolds embedded in R
d

(with metric g̃ε) using product metric gε on the edges

The sought result now looks as follows.

Theorem [KZ’01, EP’05]: Under the stated assumptions
λk(Mε) → λk(M0) as ε→ 0 (giving thus free b.c.!)
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The main tool

Our main tool here will be minimax principle. Suppose that
H, H′ are separable Hilbert spaces. We want to compare
ev’s λk and λ′k of nonnegative operators Q and Q′ with
purely discrete spectra defined via quadratic forms q and q′

on D ⊂ H and D′ ⊂ H′. Set ‖u‖2
Q,n := ‖u‖2 + ‖Qn/2u‖2.
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The main tool

Our main tool here will be minimax principle. Suppose that
H, H′ are separable Hilbert spaces. We want to compare
ev’s λk and λ′k of nonnegative operators Q and Q′ with
purely discrete spectra defined via quadratic forms q and q′

on D ⊂ H and D′ ⊂ H′. Set ‖u‖2
Q,n := ‖u‖2 + ‖Qn/2u‖2.

Lemma: Suppose that Φ : D → D′ is a linear map such that
there are n1, n2 ≥ 0 and δ1, δ2 ≥ 0 such that

‖u‖2 ≤ ‖Φu‖′2 + δ1‖u‖
2
Q,n1

, q(u) ≥ q′(Φu) − δ2‖u‖
2
Q,n2

for all u ∈ D ⊂ D(Qmax{n1,n2}/2). Then to each k there is an
ηk(λk, δ1, δ2) > 0 which tends to zero as δ1, δ2 → 0, such that

λk ≥ λ′k − ηk
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Idea of the proof

Proposition: λk(Mε) ≤ λk(M0) + o(1) as ε→ 0

To prove it apply the lemma to Φε : L2(M0) → L2(Mε),

Φεu(z) :=







ε−m/2u(vk) if z ∈ Vk

ε−m/2uj(x) if z = (x, y) ∈ Uj

for u ∈ H1(M0)
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Idea of the proof

Proposition: λk(Mε) ≤ λk(M0) + o(1) as ε→ 0

To prove it apply the lemma to Φε : L2(M0) → L2(Mε),

Φεu(z) :=







ε−m/2u(vk) if z ∈ Vk

ε−m/2uj(x) if z = (x, y) ∈ Uj

for u ∈ H1(M0)

Proposition: λk(M0) ≤ λk(Mε) + o(1) as ε→ 0

Proof again by the lemma. Here one uses averaging:

Nju(x) :=

∫

F

u(x, ·) dF , Cku :=
1

volVk

∫

Vk

u dVk

to build the comparison map by interpolation:

(Ψε)j(x) := εm/2
(

Nju(x) + ρ(x)(Cku − Nju(x))
)

with a smooth ρ interpolating between zero and one
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More general b.c.? Recall RS argument

[Ruedenberg-Scher’53] used the heuristic argument:

λ

∫

Vε

φu dVε =

∫

Vε

〈dφ, du〉 dVε +

∫

∂Vε

∂nφu d∂Vε

The surface term dominates in the limit ε→ 0 giving
formally free boundary conditions
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More general b.c.? Recall RS argument

[Ruedenberg-Scher’53] used the heuristic argument:

λ

∫

Vε

φu dVε =

∫

Vε

〈dφ, du〉 dVε +

∫

∂Vε

∂nφu d∂Vε

The surface term dominates in the limit ε→ 0 giving
formally free boundary conditions

A way out could thus be to use different scaling rates of
edges and vertices. Of a particular interest is the borderline
case, voldVε ≈ vold−1∂Vε, when the integral of 〈dφ, du〉 is
expected to be negligible and we hope to obtain

λ0φ0(vk) =
∑

j∈Jk

φ′0,j(vk)
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Scaling with a powerα

Let us try to do the same properly using different scaling of
the edge and vertex regions. Some technical assumptions
needed, e.g., the bottlenecks must be “simple”

transition region Aε,jk

fat edge Uε,j

vertex region Vε,k

scaled as ε

scaled as εα
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Two-speed scaling limit

Let vertices scale as εα. Using the comparison lemma
again (just more in a more complicated way) we find that

if α ∈ (1−d−1, 1] the result is as above: the ev’s at the
spectrum bottom converge the graph Laplacian with
free b.c., i.e. continuity and

∑

edges meeting at vk

u′j(vk) = 0 ;
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Two-speed scaling limit

Let vertices scale as εα. Using the comparison lemma
again (just more in a more complicated way) we find that

if α ∈ (1−d−1, 1] the result is as above: the ev’s at the
spectrum bottom converge the graph Laplacian with
free b.c., i.e. continuity and

∑

edges meeting at vk

u′j(vk) = 0 ;

if α ∈ (0, 1−d−1) the “limiting” Hilbert space is
L2(M0) ⊕ C

K , where K is # of vertices, and the
“limiting” operator acts as Dirichlet Laplacian at each
edge and as zero on C

K
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Two-speed scaling limit

if α = 1−d−1, Hilbert space is the same but the limiting
operator is given by quadratic form q0(u) :=

∑

j ‖u
′
j‖

2
Ij

,
the domain of which consists of u = {{uj}j∈J , {uk}k∈K}

such that u ∈ H1(M0) ⊕ C
K and the edge and vertex

parts are coupled by (vol (V −
k )1/2uj(vk) = uk
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Two-speed scaling limit

if α = 1−d−1, Hilbert space is the same but the limiting
operator is given by quadratic form q0(u) :=

∑

j ‖u
′
j‖

2
Ij

,
the domain of which consists of u = {{uj}j∈J , {uk}k∈K}

such that u ∈ H1(M0) ⊕ C
K and the edge and vertex

parts are coupled by (vol (V −
k )1/2uj(vk) = uk

finally, if vertex regions do not scale at all, α = 0, the
manifold components decouple in the limit again,

⊕

j∈J

∆D
Ij
⊕

⊕

k∈K

∆V0,k
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Two-speed scaling limit

if α = 1−d−1, Hilbert space is the same but the limiting
operator is given by quadratic form q0(u) :=

∑

j ‖u
′
j‖

2
Ij

,
the domain of which consists of u = {{uj}j∈J , {uk}k∈K}

such that u ∈ H1(M0) ⊕ C
K and the edge and vertex

parts are coupled by (vol (V −
k )1/2uj(vk) = uk

finally, if vertex regions do not scale at all, α = 0, the
manifold components decouple in the limit again,

⊕

j∈J

∆D
Ij
⊕

⊕

k∈K

∆V0,k

Hence such a straightforward limiting procedure does
not help us to justify choice of appropriate s-a extension
Thus scaling trick gives just free b.c.: to get more either
manifold geometry or external potentials must be added
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A stronger convergence
The b.c. are not the only problem. The ev convergence for
finite graphs is rather weak. Fortunately, one can do better.

Theorem [Post’06]: Let Mε be graphlike manifolds
associated with a metric graph M0, not necessarily finite.
Under some natural uniformity conditions, ∆Mε

→ ∆M0
as

ε→ 0+ in the norm-resolvent sense (with suitable
identification), in particular, the σdisc and σess converge
uniformly in an bounded interval, and ef’s converge as well.
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A stronger convergence
The b.c. are not the only problem. The ev convergence for
finite graphs is rather weak. Fortunately, one can do better.

Theorem [Post’06]: Let Mε be graphlike manifolds
associated with a metric graph M0, not necessarily finite.
Under some natural uniformity conditions, ∆Mε

→ ∆M0
as

ε→ 0+ in the norm-resolvent sense (with suitable
identification), in particular, the σdisc and σess converge
uniformly in an bounded interval, and ef’s converge as well.

The natural uniformity conditions mean (i) existence of
nontrivial bounds on vertex degrees and volumes, edge
lengths, and the second Neumann eigenvalues at vertices,
(ii) appropriate scaling (analogous to the described above)
of the metrics at the edges and vertices.

Proof is based on an abstract convergence result.
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Convergence of resonances

In a similar way we can treat convergence of resonances.
As a motivating example one can think of a “fat lasso”
graph, with the ε-squeezing setting the same as before:
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Convergence of resonances

In a similar way we can treat convergence of resonances.
As a motivating example one can think of a “fat lasso”
graph, with the ε-squeezing setting the same as before:

Uε,int

v

eint

eε

Uε,ext

Uε,v

X0

Xε

ε
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Convergence of resonances, continued

Let H0, with free b.c., and Hε will be as above. We use an
exterior complex scaling extending to complex θ the map

Uθf := (detDΦθ)1/2(f ◦ Φθ)

where Φθ
e(x) := eθx on external edges, and (detDΦθ)1/2

equals one and eθ/2, respectively, on X0,int and X0,ext.
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Convergence of resonances, continued

Let H0, with free b.c., and Hε will be as above. We use an
exterior complex scaling extending to complex θ the map

Uθf := (detDΦθ)1/2(f ◦ Φθ)

where Φθ
e(x) := eθx on external edges, and (detDΦθ)1/2

equals one and eθ/2, respectively, on X0,int and X0,ext.

Theorem [E.-Post’07]: Let λ(0) be a resonance of H0 of
multiplicity m > 0, then for small enough ε > 0 there is m
resonances λ1(ε), . . . , λm(ε) of Hε, not necessarily distinct,
which all converge to λ(0) as ε→ 0. The same is true for
embedded ev’s of H0, when Imλj(ε) ≤ 0 holds in general.
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Convergence of resonances, continued

Let H0, with free b.c., and Hε will be as above. We use an
exterior complex scaling extending to complex θ the map

Uθf := (detDΦθ)1/2(f ◦ Φθ)

where Φθ
e(x) := eθx on external edges, and (detDΦθ)1/2

equals one and eθ/2, respectively, on X0,int and X0,ext.

Theorem [E.-Post’07]: Let λ(0) be a resonance of H0 of
multiplicity m > 0, then for small enough ε > 0 there is m
resonances λ1(ε), . . . , λm(ε) of Hε, not necessarily distinct,
which all converge to λ(0) as ε→ 0. The same is true for
embedded ev’s of H0, when Imλj(ε) ≤ 0 holds in general.

Remarks: (i) The above Φθ can have a shifted discontinuity,
or be replaced by a smooth flow, with the same result
(ii) The result persists if a magnetic field is added
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Potential approximation

A similar but more modest goal: let us look what we can
achieve with potential families on the graph alone
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Potential approximation

A similar but more modest goal: let us look what we can
achieve with potential families on the graph alone
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@ q
Consider once more star graph
with H =

⊕n
j=1 L

2(R+) and
Schrödinger operator acting on
H as ψj 7→ −ψ′′

j + Vjψj
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Potential approximation

A similar but more modest goal: let us look what we can
achieve with potential families on the graph alone

�
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HHHH
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@
@

@ q
Consider once more star graph
with H =

⊕n
j=1 L

2(R+) and
Schrödinger operator acting on
H as ψj 7→ −ψ′′

j + Vjψj

We make the following assumptions:

Vj ∈ L1
loc(R+) , j = 1, . . . , n

δ coupling with a parameter α in the vertex

Then the operator, denoted as Hα(V ), is self-adjoint
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n

Theorem [E’96]: Suppose that Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the parameter
α :=

∑n
j=1

∫ ∞
0
Wj(x) dx
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n

Theorem [E’96]: Suppose that Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the parameter
α :=

∑n
j=1

∫ ∞
0
Wj(x) dx

Proof: Analogous to that for δ interaction on the line. �
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Remarks
Also Birman-Schwinger analysis generalizes easily:

Theorem [E’96]: Let Vj ∈ L1(R+, (1 + |x|)dx),
j = 1, . . . , n . Then H0(λV ) has for all small enough
λ > 0 a single negative ev ǫ(λ) = −κ(λ)2 iff

n
∑

j=1

∫ ∞

0

Vj(x) dx ≤ 0

In that case, its asymptotic behavior is given by

κ(λ) = −
λ

n

n
∑

j=1

∫

∞

0

Vj(x) dx −
λ2

2n

{

n
∑

j=1

∫

∞

0

∫

∞

0

Vj(x)|x−y|Vj(y) dxdy

+

n
∑

j,ℓ=1

(

2

n
− δjℓ

)
∫

∞

0

∫

∞

0

Vj(x)(x+y)Vℓ(y) dxdy

}

+O(λ3)
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Remarks
Also Birman-Schwinger analysis generalizes easily:

Theorem [E’96]: Let Vj ∈ L1(R+, (1 + |x|)dx),
j = 1, . . . , n . Then H0(λV ) has for all small enough
λ > 0 a single negative ev ǫ(λ) = −κ(λ)2 iff

n
∑

j=1

∫ ∞

0

Vj(x) dx ≤ 0

In that case, its asymptotic behavior is given by

κ(λ) = −
λ

n

n
∑

j=1

∫

∞

0

Vj(x) dx −
λ2

2n

{

n
∑

j=1

∫

∞

0

∫

∞

0

Vj(x)|x−y|Vj(y) dxdy

+

n
∑

j,ℓ=1

(

2

n
− δjℓ

)
∫

∞

0

∫

∞

0

Vj(x)(x+y)Vℓ(y) dxdy

}

+O(λ3)

A Seto-Klaus-Newton bound on #σdisc(H0(λV )) can be
obtained in a similar way
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CS-type approximation
The above scheme does not work for graph Hamiltonians
with discontinuous wavefunctions such as δ′s

Joint physics/mathematics workshop on Quantum Few-Body Systems; Aarhus University, March 19, 2007 – p. 33/50



CS-type approximation
The above scheme does not work for graph Hamiltonians
with discontinuous wavefunctions such as δ′s
Inspiration: Recall that δ′ on the line can be approximated
by δ’s scaled in a nonlinear way [Cheon-Shigehara’98]
Moreover, the convergence is norm resolvent and gives
rise to approximations by regular potentials
[Albeverio-Nizhnik’00], [E.-Neidhardt-Zagrebnov’01]
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CS-type approximation
The above scheme does not work for graph Hamiltonians
with discontinuous wavefunctions such as δ′s
Inspiration: Recall that δ′ on the line can be approximated
by δ’s scaled in a nonlinear way [Cheon-Shigehara’98]
Moreover, the convergence is norm resolvent and gives
rise to approximations by regular potentials
[Albeverio-Nizhnik’00], [E.-Neidhardt-Zagrebnov’01]

This suggests the following scheme:
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βa

b(a)

c(a)

HβHb,c
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A heuristic argument

In the symmetric sector, ψj = ψk, we can drop the indices.
The boundary values at x = 0 and x = a are related by

ψ(a) = ψ(0) + aψ′(0) + O(a2) , ψ′(a−) = ψ′(0+) + O(a) ,

ψ′(a+) = ψ′(a−) + cψ(a) , nψ′(0+) = bψ(0)

Eliminating ψ(0) and ψ′(0+) from here, we get in the
leading order the relation B(a)ψ(a) = ψ′(a+), where

B(a) := c+
b

n+ ab
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A heuristic argument

In the symmetric sector, ψj = ψk, we can drop the indices.
The boundary values at x = 0 and x = a are related by

ψ(a) = ψ(0) + aψ′(0) + O(a2) , ψ′(a−) = ψ′(0+) + O(a) ,

ψ′(a+) = ψ′(a−) + cψ(a) , nψ′(0+) = bψ(0)

Eliminating ψ(0) and ψ′(0+) from here, we get in the
leading order the relation B(a)ψ(a) = ψ′(a+), where

B(a) := c+
b

n+ ab

Hence βψ′(0+) = nψ(0), is achieved as a→ 0+ if we choose

b(a) := −
β

a2
, c(a) := −

1

a
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A heuristic argument

In the orthogonal complement we again drop the index,
because the operators act in the same way on all the linear
combinations of

∑n
j=1 djψj(x) with

∑n
j=1 dj = 0. The b.c. at

origin is now replaced by ψ(0) = 0
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A heuristic argument

In the orthogonal complement we again drop the index,
because the operators act in the same way on all the linear
combinations of

∑n
j=1 djψj(x) with

∑n
j=1 dj = 0. The b.c. at

origin is now replaced by ψ(0) = 0

Eliminating then the boundary values at x = 0 we get in the
leading order the relation ψ′(a+) = (c+ a−1)ψ(a) + O(a).
The right-hand side vanishes if we choose again

b(a) := −
β

a2
, c(a) := −

1

a

giving Neumann condition, ψ′(0+) = 0, in the limit
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δ′s approximation

Theorem [Cheon-E.’04]: Hb,c(a) → Hβ as a→ 0+ in the
norm-resolvent sense provided b, c are chosen as

b(a) := −
β

a2
, c(a) := −

1

a
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δ′s approximation

Theorem [Cheon-E.’04]: Hb,c(a) → Hβ as a→ 0+ in the
norm-resolvent sense provided b, c are chosen as

b(a) := −
β

a2
, c(a) := −

1

a

Proof : By symmetry the task is reduces to a pair of halfline
problems. Consider first the one with Dirichlet condition at
the origin, so the free Green’s function at energy k2 is
Gk(x, y) = sin kx<

k eikx> for x, y ≥ 0

The Green’s function of the operator with the δ interaction at
x = a is obtained easily by Krein’s formula

Gc
k(x, y) = Gk(x, y) +

Gk(x, a)Gk(a, y)

−c−1 −Gk(a, a)
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Proof
The Neumann Green’s function is GN

k (x, y) = cos kx<

k eikx>;
the two have to converge to each other for some k2 ∈ C.

Choose k = iκ with κ > 0, then the denominator is nonzero
for a small enough. It is sufficient to compute the difference
in the case when neither of the arguments is smaller than a;
for definiteness suppose that a ≤ x ≤ y; then

Gc
iκ(x, y) −GN

iκ(x, y) =
e−κxe−κy

κ

[

−1 +
sinh2 κa

−κc−1 − e−κx sinh2 κa

]
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Proof
The Neumann Green’s function is GN

k (x, y) = cos kx<

k eikx>;
the two have to converge to each other for some k2 ∈ C.

Choose k = iκ with κ > 0, then the denominator is nonzero
for a small enough. It is sufficient to compute the difference
in the case when neither of the arguments is smaller than a;
for definiteness suppose that a ≤ x ≤ y; then

Gc
iκ(x, y) −GN

iκ(x, y) =
e−κxe−κy

κ

[

−1 +
sinh2 κa

−κc−1 − e−κx sinh2 κa

]

If c = −a−1 the last term is 1 + O(a) for a→ 0+, so

lim
a→0+

Gc
iκ(x, y) = GN

iκ(x, y)

holds for all x, y > 0
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Proof, continued

Consider next δ coupling at the origin using the same
values of parameters, k = iκ and a ≤ x ≤ y. We need
the following two Green’s functions,

Gb
iκ(x, y) =

e−κy

κ(b+ κ)
(b sinhκx+ κ coshκx) ,

Gβ
iκ(x, y) =

e−κy

κ(n+ βκ)
(n sinhκx+ βκ coshκx)
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Proof, continued

Consider next δ coupling at the origin using the same
values of parameters, k = iκ and a ≤ x ≤ y. We need
the following two Green’s functions,

Gb
iκ(x, y) =

e−κy

κ(b+ κ)
(b sinhκx+ κ coshκx) ,

Gβ
iκ(x, y) =

e−κy

κ(n+ βκ)
(n sinhκx+ βκ coshκx)

The first of them determines the full approximating Green’s
function by Krein’s formula,

Gb,c
k (x, y) = Gb

k(x, y) +
Gb

k(x, a)G
b
k(a, y)

−c−1 −Gb
k(a, a)
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Proof, continued

G
b,c
iκ (x, y) − G

β
iκ(x, y) =

e−κy

κ

[

b sinhκx + κ cosh κx

b + κ

+

e−κx

(b+κ)2 (b sinhκx + κ cosh κx)2

κa − e−κa

b+κ (b sinhκx + κ cosh κx)
−

n sinhκx + βκ cosh κx

n + βκ

]
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Proof, continued

G
b,c
iκ (x, y) − G

β
iκ(x, y) =

e−κy

κ

[

b sinhκx + κ cosh κx

b + κ

+

e−κx

(b+κ)2 (b sinhκx + κ cosh κx)2

κa − e−κa

b+κ (b sinhκx + κ cosh κx)
−

n sinhκx + βκ cosh κx

n + βκ

]

The first term tends to sinhκx as a→ 0+, while the third one
is independent of a, so their sum in the limit gives −βκ e−κx

n+βκ .

Next we take the middle term without the factor e−κx and
expand the numerator and denominator to the second
power in a; this together gives

lim
a→0+

Gb,c
iκ (x, y) = Gβ

iκ(x, y) , x, y > 0

Finally, the pointwise convergence implies convergence of
the resolvents in the HS-norm �
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Permutation symmetry
We have employed the fact that each of the Hamiltonians
Hβ and Hb,c(a) decomposes into a nontrivial part which acts
on the one-dimensional subspace of H =

⊕n
j=1 L

2(R+) of
functions symmetric w.r.t. permutations, ψj(x) = ψk(x) for
all j, k, and the (n−1)-dimensional part corresponding to
Dirichlet and Neumann condition at the central vertex for
the δ and δ′s coupling, respectively
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Permutation symmetry
We have employed the fact that each of the Hamiltonians
Hβ and Hb,c(a) decomposes into a nontrivial part which acts
on the one-dimensional subspace of H =

⊕n
j=1 L

2(R+) of
functions symmetric w.r.t. permutations, ψj(x) = ψk(x) for
all j, k, and the (n−1)-dimensional part corresponding to
Dirichlet and Neumann condition at the central vertex for
the δ and δ′s coupling, respectively

A similar reduction to a halfline problem can be used also
for all permutation-symmetric couplings – cf. [E.-Turek’06].
In the generic case the scheme works with

b(a) :=
in

a2

(

u − 1 + nv

u + 1 + nv
+

u − 1

u + 1

)

−1

, c(a) := −
1

a
− i

u − 1

u + 1
;

other appropriate choices of b(a), c(a) cover the exceptions

Joint physics/mathematics workshop on Quantum Few-Body Systems; Aarhus University, March 19, 2007 – p. 40/50



Nonsymmetric singular couplings

One naturally asks whether the CS-type method – adding
properly scaled δ’s on the edges – can work also without
the permutation symmetry, and which subset of the
n2-parameter family it can cover. In general we have the
following claim:
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Nonsymmetric singular couplings

One naturally asks whether the CS-type method – adding
properly scaled δ’s on the edges – can work also without
the permutation symmetry, and which subset of the
n2-parameter family it can cover. In general we have the
following claim:

Proposition [E.-Turek’07]: Let Γ be an n-edged star graph
and Γ(d) obtained by adding a finite number of δ’s at each
edge, uniformly in d, at the distances O(d) as d→ 0+.
Suppose that the approximations gives KS conditions with
some A, B as d→ 0. The family which can be obtained in
this way depends on 2n parameters if n > 2, and on three
parameters for n = 2.
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Number of CS parameters
Let us sketch the proof: as before we can use Taylor
expansion to express boundary values of a δ through
those of the neighbouring one. Using it recursively, we
write ψ(0), Ψ′(0+) through ψj(dj), ψ

′
j(dj+) where dj

means distance of the last δ on j-th halfline
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Number of CS parameters
Let us sketch the proof: as before we can use Taylor
expansion to express boundary values of a δ through
those of the neighbouring one. Using it recursively, we
write ψ(0), Ψ′(0+) through ψj(dj), ψ

′
j(dj+) where dj

means distance of the last δ on j-th halfline
Using the δ coupling in the centre of Γ we get

cjψj(0) − ckψk(0) + tjψ
′

j(0+) − tkψ
′

k(0+) = 0 , 1 ≤ j, h ≤ n ,
n

∑

j=1

γjψj(0) +
n

∑

j=1

τjψ
′

j(0+) = 0 ,

which be written as AΨ(0) +BΨ′(0) = 0 with coefficients
dependent on 2n parameters.
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Number of CS parameters
Let us sketch the proof: as before we can use Taylor
expansion to express boundary values of a δ through
those of the neighbouring one. Using it recursively, we
write ψ(0), Ψ′(0+) through ψj(dj), ψ

′
j(dj+) where dj

means distance of the last δ on j-th halfline
Using the δ coupling in the centre of Γ we get

cjψj(0) − ckψk(0) + tjψ
′

j(0+) − tkψ
′

k(0+) = 0 , 1 ≤ j, h ≤ n ,
n

∑

j=1

γjψj(0) +
n

∑

j=1

τjψ
′

j(0+) = 0 ,

which be written as AΨ(0) +BΨ′(0) = 0 with coefficients
dependent on 2n parameters.
In the particular case n = 2 the number of independent
parameters is three, see also [Shigehara et al.’99]
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A concrete approximation

The next question is whether a 2n-parameter approximation
can be indeed constructed. Let us investigate a possible
way in the arrangement with two δ’s at each halfline of Γ
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CS-type approximation of star graphs

Theorem [E.-Turek’07]: Choose the above quantities as

u(d) =
ω

d4
, vj(d) = −

1

d3
+
αj

d2
, wj(d) = −

1

d
+ βj .

Then the corresponding Hu,~v,~w(d) converges as d→ 0+

in the norm-resolvent sense to some Hω,~α,~β depending
explicitly on 2n parameters (notice that, say, α1 and β1

cannot be chosen independently here)
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CS-type approximation of star graphs

Theorem [E.-Turek’07]: Choose the above quantities as

u(d) =
ω

d4
, vj(d) = −

1

d3
+
αj

d2
, wj(d) = −

1

d
+ βj .

Then the corresponding Hu,~v,~w(d) converges as d→ 0+

in the norm-resolvent sense to some Hω,~α,~β depending
explicitly on 2n parameters (notice that, say, α1 and β1

cannot be chosen independently here)

Proof is rather tedious but straightforward; one has to
construct both resolvents and compare them. �

It is clear that to get a wider class of couplings one must
employ other objects as approximants
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More general approximations

A more general approximation is obtained if are allowed to
add not only vertices, but also edges which shrink to the
centre of the star graph Γ in the limit
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More general approximations

A more general approximation is obtained if are allowed to
add not only vertices, but also edges which shrink to the
centre of the star graph Γ in the limit

Proposition [E.-Turek’07]: Consider graphs Γ̃(d) obtained
from Γ by adding edges connection pairwise the halflines, a
finite of them independent of d. Suppose that Γ̃(d) supports
only δ couplings and δ interactions, their number again
independent of d, and that the distances between all their
sites are O(d) as d→ 0+. The family of conditions
AΨ(0) +BΨ′(0) = 0 which can be obtained in this way has
real-valued coefficients, A,B ∈ R

n,n, depending thus on at
most

(n+1
2

)

parameters.

Joint physics/mathematics workshop on Quantum Few-Body Systems; Aarhus University, March 19, 2007 – p. 45/50



More general approximations

A more general approximation is obtained if are allowed to
add not only vertices, but also edges which shrink to the
centre of the star graph Γ in the limit

Proposition [E.-Turek’07]: Consider graphs Γ̃(d) obtained
from Γ by adding edges connection pairwise the halflines, a
finite of them independent of d. Suppose that Γ̃(d) supports
only δ couplings and δ interactions, their number again
independent of d, and that the distances between all their
sites are O(d) as d→ 0+. The family of conditions
AΨ(0) +BΨ′(0) = 0 which can be obtained in this way has
real-valued coefficients, A,B ∈ R

n,n, depending thus on at
most

(n+1
2

)

parameters.

Remark: The requirement A,B ∈ R
n,n means that the

corresponding coupling is time-reversal invariant
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An approximation arrangement
For simplicity, consider the generic case with B regular, so
that Ψ′(0) = −B−1AΨ(0), where −B−1A is symmetric. We
divide into diagonal and off-diagonal part

Ψ′(0) = (D + S)Ψ(0)
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An approximation arrangement
For simplicity, consider the generic case with B regular, so
that Ψ′(0) = −B−1AΨ(0), where −B−1A is symmetric. We
divide into diagonal and off-diagonal part

Ψ′(0) = (D + S)Ψ(0)

We devise the following scheme:

centre of Γ supports a δ coupling with parameter u(d)
at each halfline we place a δ at the distance d from the
centre; the parameter vj(d) will be related to Djj

the pairs of edges whose indices j, k correspond to
nonzero elements of S we join by an additional edge,
whose endpoints are the δ’s mentioned above, and in
the middle of this edge we place δ interaction with a
parameter w{j,k}(d) related to the value of Sjk
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The arrangement, visualization

It is not necessary but useful to visualize the graphs as
embedded in R

3. The connecting edges can be chosen
at that in such a way that they do not intersect
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The arrangement, visualization
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embedded in R

3. The connecting edges can be chosen
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Choice of the parameters

As before we use the δ conditions and Taylor expansions to
write ψ′

j(d+) through ψj(d), k = 1, ..., n, and pass to d→ 0+
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Choice of the parameters

As before we use the δ conditions and Taylor expansions to
write ψ′

j(d+) through ψj(d), k = 1, ..., n, and pass to d→ 0+

Denote Nj := {k ∈ n̂ : Sjk 6= 0}; then one has to choose

vj(d) := Dj −
#Nj + 1

d
−

∑

k∈Nj

Sjk ,

and furthermore,

w{j,k}(d) := −
1

Sjk
·

1

d2
−

2

d
, u(d) :=

1

d3
−

n

d2
.
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Choice of the parameters

As before we use the δ conditions and Taylor expansions to
write ψ′

j(d+) through ψj(d), k = 1, ..., n, and pass to d→ 0+

Denote Nj := {k ∈ n̂ : Sjk 6= 0}; then one has to choose

vj(d) := Dj −
#Nj + 1

d
−

∑

k∈Nj

Sjk ,

and furthermore,

w{j,k}(d) := −
1

Sjk
·

1

d2
−

2

d
, u(d) :=

1

d3
−

n

d2
.

Conjecture: The described approximation converges
again not only in terms of boundary conditions, but in
the norm-resolvent sense as well
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Summary and outlook
We have analyzed several approximations which allow
us to understand meaning of vertex coupling, which is
needed to use graphs as models of “real” physical
systems. Various problems remain open, e.g.,
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Summary and outlook
We have analyzed several approximations which allow
us to understand meaning of vertex coupling, which is
needed to use graphs as models of “real” physical
systems. Various problems remain open, e.g.,
The described scaling limit amended with a nontrivial
manifold geometry , for instance, replacing manifold
Laplacian by −∆ +K −M2

Scaling limit of Dirichlet fat graphs near the continuum
threshold (the existing result, [Post’05], addresses the
decoupling situation only)
The resolvent convergence for time-symmetric
couplings, and approximations of a general vertex
coupling of n2 parameters using additional potentials
Analogous problems on generalized graphs with
“edges” of different dimensions, etc.
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