# Geometric properties of the ground state for Hamiltonians with singular interactions 

Pavel Exner<br>in collaboration with Andrea Mantile and Michal Jex<br>exner@ujf.cas.cz<br>Doppler Institute<br>for Mathematical Physics and Applied Mathematics<br>Prague

## Motivation

Relations between geometry and principal eigenvalue are a traditional question in mathematical physics. Recall, e.g., the Faber-Krahn inequality for the Dirichlet Laplacian $-\Delta_{D}^{M}$ in a compact $M \subset \mathbb{R}^{2}$ : among all regions with a fixed area the ground state is uniquely minimized by the circle,

$$
\inf \sigma\left(-\Delta_{D}^{M}\right) \geq \pi j_{0,1}^{2}|M|^{-1} ;
$$

similarly a ball is a minimizer for a compact $M \subset \mathbb{R}^{d}, d \geq 3$

## Motivation

Relations between geometry and principal eigenvalue are a traditional question in mathematical physics. Recall, e.g., the Faber-Krahn inequality for the Dirichlet Laplacian $-\Delta_{D}^{M}$ in a compact $M \subset \mathbb{R}^{2}$ : among all regions with a fixed area the ground state is uniquely minimized by the circle,

$$
\inf \sigma\left(-\Delta_{D}^{M}\right) \geq \pi j_{0,1}^{2}|M|^{-1} ;
$$

similarly a ball is a minimizer for a compact $M \subset \mathbb{R}^{d}, d \geq 3$
Another classical example is the PPW conjecture proved by Ashbaugh and Benguria: in the 2D situation we have

$$
\frac{\lambda_{2}(M)}{\lambda_{1}(M)} \leq\left(\frac{j_{1,1}}{j_{0,1}}\right)^{2}
$$

## Motivation, continued

Symmetry of $M$ may correspond also to the maximum of the principal eigenvalue; for instance for a strip of fixed length and width [E.-Harrell-Loss'99] we have

whenever the strip is not a circular annulus

## Motivation, continued

Symmetry of $M$ may correspond also to the maximum of the principal eigenvalue; for instance for a strip of fixed length and width [E.-Harrell-Loss'99] we have

$<\quad$ ground state of

whenever the strip is not a circular annulus
Another example is a circular obstacle in circular cavity [Harrell-Kröger-Kurata'01]

whenever the obstacle is off center; the minimum is reached when the obstacle is touching the boundary

## Motivation, continued

In other cases the geometry concerns rather a potential configuration. Recall, for instance, a recent result result of [Baker-Loss-Stolz'08] on the spectral minimum of $-\Delta+V$ in $L^{2}\left(\mathbb{R}^{d}\right)$ where the potential $V_{\omega}(x)=\sum_{i \in \mathbb{Z}^{d}} q\left(x-i-\omega_{i}\right)$

## Motivation, continued

In other cases the geometry concerns rather a potential configuration. Recall, for instance, a recent result result of [Baker-Loss-Stolz'08] on the spectral minimum of $-\Delta+V$ in $L^{2}\left(\mathbb{R}^{d}\right)$ where the potential $V_{\omega}(x)=\sum_{i \in \mathbb{Z}^{d}} q\left(x-i-\omega_{i}\right)$ In this case the minimizing configuration is shown to be


## What we are going to do

The subject of this talk will be several problems of the above type for solvable models of quantum systems, that is, Hamiltonians with point- or contact-type interactions. Specifically, we will consider

- An isoperimetric problem for polymer loops in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$


## What we are going to do

The subject of this talk will be several problems of the above type for solvable models of quantum systems, that is, Hamiltonians with point- or contact-type interactions. Specifically, we will consider

- An isoperimetric problem for polymer loops in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$
- Principal eigenvalue optimization for a single point interaction in a bounded domain of $\mathbb{R}^{d}, d=2,3$


## What we are going to do

The subject of this talk will be several problems of the above type for solvable models of quantum systems, that is, Hamiltonians with point- or contact-type interactions. Specifically, we will consider

- An isoperimetric problem for polymer loops in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$
- Principal eigenvalue optimization for a single point interaction in a bounded domain of $\mathbb{R}^{d}, d=2,3$
- One dimension: point interactions in a potential well


## What we are going to do

The subject of this talk will be several problems of the above type for solvable models of quantum systems, that is, Hamiltonians with point- or contact-type interactions. Specifically, we will consider

- An isoperimetric problem for polymer loops in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$
- Principal eigenvalue optimization for a single point interaction in a bounded domain of $\mathbb{R}^{d}, d=2,3$
- One dimension: point interactions in a potential well
- One dimension: attractive point interactions on the line


## What we are going to do

The subject of this talk will be several problems of the above type for solvable models of quantum systems, that is, Hamiltonians with point- or contact-type interactions. Specifically, we will consider

- An isoperimetric problem for polymer loops in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$
- Principal eigenvalue optimization for a single point interaction in a bounded domain of $\mathbb{R}^{d}, d=2,3$
- One dimension: point interactions in a potential well
- One dimension: attractive point interactions on the line
- Quantum graphs with attractive $\delta$ coupling at the vertices - dependence on edge lengths


## What we are going to do

The subject of this talk will be several problems of the above type for solvable models of quantum systems, that is, Hamiltonians with point- or contact-type interactions. Specifically, we will consider

- An isoperimetric problem for polymer loops in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$
- Principal eigenvalue optimization for a single point interaction in a bounded domain of $\mathbb{R}^{d}, d=2,3$
- One dimension: point interactions in a potential well
- One dimension: attractive point interactions on the line
- Quantum graphs with attractive $\delta$ coupling at the vertices - dependence on edge lengths
- Finally, point interactions in $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$ again and their continuous analogue


## Polymer loops

We ask about ground-state optimization for point interactions under a geometric constraint: inspired by [AGHH'88, 05] we can call it a problem polymer loop

## Polymer loops

We ask about ground-state optimization for point interactions under a geometric constraint: inspired by [AGHH'88, 05] we can call it a problem polymer loop
The question is the following: we take a closed loop $\Gamma$ - parametrized in the standard way by its arc length and consider a class of singular Schrödinger operators in $L^{2}\left(\mathbb{R}^{d}\right), d=2,3$, given formally by the expression

$$
H_{\alpha, \Gamma}^{N}=-\Delta+\tilde{\alpha} \sum_{j=0}^{N-1} \delta\left(x-\Gamma\left(\frac{j L}{N}\right)\right)
$$

We are interested in the shape of $\Gamma$ which maximizes the ground state energy provided, of course, that the discrete spectrum of $H_{\alpha, \Gamma}^{N}$ is non-empty.

## A reminder: 2D point interactions

Fixing the site $y_{j}$ and "coupling constant" $\alpha$ we define them by b.c. which change locally the domain of $-\Delta$ : we require

$$
\psi(x)=-\frac{1}{2 \pi} \log \left|x-y_{j}\right| L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right),
$$

where the generalized b.v. $L_{0}\left(\psi, y_{j}\right)$ and $L_{1}\left(\psi, y_{j}\right)$ satisfy

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R}
$$

## A reminder: 2D point interactions

Fixing the site $y_{j}$ and "coupling constant" $\alpha$ we define them by b.c. which change locally the domain of $-\Delta$ : we require

$$
\psi(x)=-\frac{1}{2 \pi} \log \left|x-y_{j}\right| L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right),
$$

where the generalized b.v. $L_{0}\left(\psi, y_{j}\right)$ and $L_{1}\left(\psi, y_{j}\right)$ satisfy

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R}
$$

For $Y_{\Gamma}:=\left\{y_{j}:=\Gamma\left(\frac{j L}{N}\right): j=0, \ldots, N-1\right\}$ we define in this way $-\Delta_{\alpha, Y_{\Gamma}}$ in $L^{2}\left(\mathbb{R}^{2}\right)$. It holds $\sigma_{\text {disc }}\left(-\Delta_{\alpha, Y_{\Gamma}}\right) \neq \emptyset$, i.e.

$$
\epsilon_{1} \equiv \epsilon_{1}\left(\alpha, Y_{\Gamma}\right):=\inf \sigma\left(-\Delta_{\alpha, Y_{\Gamma}}\right)<0,
$$

which is always true in two dimensions - cf. [AGHH'88, 05]

## A reminder: 3D point interactions

Similarly, for $y_{j}$ and "coupling" $\alpha$ we define them by b.c. which change locally the domain of $-\Delta$ : we require

$$
\psi(x)=\frac{1}{4 \pi\left|x-y_{j}\right|} L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right),
$$

where the b.v. $L_{0}\left(\psi, y_{j}\right)$ and $L_{1}\left(\psi, y_{j}\right)$ satisfy again

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R},
$$

## A reminder: 3D point interactions

Similarly, for $y_{j}$ and "coupling" $\alpha$ we define them by b.c. which change locally the domain of $-\Delta$ : we require

$$
\psi(x)=\frac{1}{4 \pi\left|x-y_{j}\right|} L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right)
$$

where the b.v. $L_{0}\left(\psi, y_{j}\right)$ and $L_{1}\left(\psi, y_{j}\right)$ satisfy again

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R},
$$

giving $-\Delta_{\alpha, Y_{\Gamma}}$ in $L^{2}\left(\mathbb{R}^{3}\right)$. However, $\sigma_{\text {disc }}\left(-\Delta_{\alpha, Y_{\Gamma}}\right) \neq \emptyset$, i.e.

$$
\epsilon_{1} \equiv \epsilon_{1}\left(\alpha, Y_{\Gamma}\right):=\inf \sigma\left(-\Delta_{\alpha, Y_{\Gamma}}\right)<0,
$$

is now a nontrivial requirement; it holds only for $\alpha$ below some critical value $\alpha_{0}$ - cf. [AGHH'88, 05]

## A geometric reformulation

By Krein's formula, the spectral condition is reduced to an algebraic problem. Using $k=i \kappa$ with $\kappa>0$, we find the ev's $-\kappa^{2}$ of our operator from

$$
\operatorname{det} \Gamma_{k}=0 \quad \text { with } \quad\left(\Gamma_{k}\right)_{i j}:=\left(\alpha-\xi^{k}\right) \delta_{i j}-\left(1-\delta_{i j}\right) g_{i j}^{k},
$$

where the off-diagonal elements are $g_{i j}^{k}:=G_{k}\left(y_{i}-y_{j}\right)$, or equivalently

$$
g_{i j}^{k}=\frac{1}{2 \pi} K_{0}\left(\kappa\left|y_{i}-y_{j}\right|\right)
$$

and the regularized Green's function at the interaction site is

$$
\xi^{k}=-\frac{1}{2 \pi}\left(\ln \frac{\kappa}{2}+\gamma_{\mathrm{E}}\right)
$$

## Geometric reformulation, continued

The ground state refers to the point where the lowest ev of $\Gamma_{i \kappa}$ vanishes. Using smoothness and monotonicity of the $\kappa$-dependence we have to check that

$$
\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right)<\min \sigma\left(\tilde{\Gamma}_{i \tilde{\kappa}_{1}}\right)
$$

holds locally for $\Gamma \neq \tilde{\mathcal{P}}_{N}$, where $-\tilde{\kappa}_{1}^{2}:=\epsilon_{1}\left(\alpha, \tilde{\mathcal{P}}_{N}\right)$

## Geometric reformulation, continued

The ground state refers to the point where the lowest ev of $\Gamma_{i \kappa}$ vanishes. Using smoothness and monotonicity of the $\kappa$-dependence we have to check that

$$
\min \sigma\left(\Gamma_{i \tilde{k}_{1}}\right)<\min \sigma\left(\tilde{\Gamma}_{i \tilde{k}_{1}}\right)
$$

holds locally for $\Gamma \neq \tilde{\mathcal{P}}_{N}$, where $-\tilde{\kappa}_{1}^{2}:=\epsilon_{1}\left(\alpha, \tilde{\mathcal{P}}_{N}\right)$
There is a one-to-one relation between an ef $c=\left(c_{1}, \ldots, c_{N}\right)$ of $\Gamma_{i \kappa}$ at that point and the corresponding ef of $-\Delta_{\alpha, \Gamma}$ given by $c \leftrightarrow \sum_{j=1}^{N} c_{j} G_{i \kappa}\left(\cdot-y_{j}\right)$, up to normalization. In particular, the lowest ev of $\tilde{\Gamma}_{i \tilde{\kappa}_{1}}$ corresponds to the eigenvector $\tilde{\phi}_{1}=N^{-1 / 2}(1, \ldots, 1)$; hence the spectral threshold is

$$
\min \sigma\left(\tilde{\Gamma}_{i \tilde{\kappa}_{1}}\right)=\left(\tilde{\phi}_{1}, \tilde{\Gamma}_{i \tilde{\kappa}_{1}} \tilde{\phi}_{1}\right)=\alpha-\xi^{i \tilde{\kappa}_{1}}-\frac{2}{N} \sum_{i<j} \tilde{g}_{i j}^{i \tilde{\kappa}_{1}}
$$

## Geometric reformulation, continued

On the other hand, we have $\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right) \leq\left(\tilde{\phi}_{1}, \Gamma_{i \tilde{k}_{1}} \tilde{\phi}_{1}\right)$, and therefore it is sufficient to check that

$$
\sum_{i<j} G_{i \kappa}\left(y_{i}-y_{j}\right)>\sum_{i<j} G_{i \kappa}\left(\tilde{y}_{i}-\tilde{y}_{j}\right)
$$

holds for all $\kappa>0$ and $\Gamma \neq \tilde{\mathcal{P}}_{N}$.

## Geometric reformulation, continued

On the other hand, we have $\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right) \leq\left(\tilde{\phi}_{1}, \Gamma_{i \tilde{\kappa}_{1}} \tilde{\phi}_{1}\right)$, and therefore it is sufficient to check that

$$
\sum_{i<j} G_{i k}\left(y_{i}-y_{j}\right)>\sum_{i<j} G_{i k}\left(\tilde{y}_{i}-\tilde{y}_{j}\right)
$$

holds for all $\kappa>0$ and $\Gamma \neq \tilde{\mathcal{P}}_{N}$. Call $\ell_{i j}:=\left|y_{i}-y_{j}\right|$ and $\tilde{\ell}_{i j}:=\left|\tilde{y}_{i}-\tilde{y}_{j}\right|$ and define $F:\left(\mathbb{R}_{+}\right)^{N(N-3) / 2} \rightarrow \mathbb{R}$ by

$$
F\left(\left\{\ell_{i j}\right\}\right):=\sum_{m=2}^{[N / 2]} \sum_{|i-j|=m}\left[G_{i \kappa}\left(\ell_{i j}\right)-G_{i \kappa}\left(\tilde{\ell}_{i j}\right)\right] ;
$$

Using the convexity of $G_{i \kappa}(\cdot)$ for a fixed $\kappa>0$ we get

$$
F\left(\left\{\ell_{i j}\right\}\right) \geq \sum_{m=2}^{[N / 2]} \nu_{m}\left[G_{i \hbar}\left(\frac{1}{\nu_{m}} \sum_{|i-j|=m} \ell_{i j}\right)-G_{i \kappa}\left(\tilde{\ell}_{1,1+m}\right)\right],
$$

where $\nu_{n}$ is the number of the appropriate chords

## Geometric reformulation, continued

It is easy to see that

$$
\nu_{m}:=\left\{\begin{array}{cll}
N & \ldots & m=1, \ldots,\left[\frac{1}{2}(N-1)\right] \\
\frac{1}{2} N & \ldots & m=\frac{1}{2} N \quad \text { for } N \text { even }
\end{array}\right.
$$

since for an even $N$ one has to prevent double counting

## Geometric reformulation, continued

It is easy to see that

$$
\nu_{m}:=\left\{\begin{array}{cll}
N & \ldots & m=1, \ldots,\left[\frac{1}{2}(N-1)\right] \\
\frac{1}{2} N & \ldots & m=\frac{1}{2} N \quad \text { for } N \text { even }
\end{array}\right.
$$

since for an even $N$ one has to prevent double counting
Since $G_{i \kappa}(\cdot)$ is also monotonously decreasing in $(0, \infty)$, we thus need only to demonstrate that

$$
\tilde{\ell}_{1, m+1} \geq \frac{1}{\nu_{n}} \sum_{|i-j|=m} \ell_{i j}
$$

with the sharp inequality for at least one $m$ if $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$. In this way the problem becomes again purely geometric

## Chord inequalities

Recall that for $\Gamma:[0, L] \rightarrow \mathbb{R}^{d}$ we have used the notation

$$
y_{j}:=\Gamma\left(\frac{j L}{N}\right), \quad j=0,1, \ldots, N-1 ;
$$

## Chord inequalities

Recall that for $\Gamma:[0, L] \rightarrow \mathbb{R}^{d}$ we have used the notation

$$
y_{j}:=\Gamma\left(\frac{j L}{N}\right), \quad j=0,1, \ldots, N-1 ;
$$

For fixed $L>0, N$ and $m=1, \ldots,\left[\frac{1}{2} N\right]$ we consider the following inequalities for $\ell^{p}$ norms related to the chord lengths, that is, the quantities $\Gamma\left(\cdot+\frac{j L}{N}\right)-\Gamma(\cdot)$

$$
\begin{array}{lll}
D_{L, N}^{p}(m): & \sum_{n=1}^{N}\left|y_{n+m}-y_{n}\right|^{p} \leq \frac{N^{1-p} L^{p} \sin ^{p} \frac{\pi m}{N}}{\sin ^{p} \frac{\pi}{N}}, & p>0, \\
D_{L, N}^{-p}(m): & \sum_{n=1}^{N}\left|y_{n+m}-y_{n}\right|^{-p} \geq \frac{N^{1+p} \sin ^{p} \frac{\pi}{N}}{L^{p} \sin ^{p} \frac{N}{N}}, & p>0 .
\end{array}
$$

The rhs's correspond to regular planar polygon $\tilde{\mathcal{P}}_{N}$

## More on the inequalities

In general, the inequalities are not valid for $p>2$ as the example of a rhomboid shows: $D_{L, 4}^{p}(2)$ is equivalent to $\sin ^{p} \phi+\cos ^{p} \phi \leq 2^{1-(p / 2)}$ for $0<\phi<\pi$ which obviously holds for $p \leq 2$ only

## More on the inequalities

In general, the inequalities are not valid for $p>2$ as the example of a rhomboid shows: $D_{L, 4}^{p}(2)$ is equivalent to $\sin ^{p} \phi+\cos ^{p} \phi \leq 2^{1-(p / 2)}$ for $0<\phi<\pi$ which obviously holds for $p \leq 2$ only

Proposition: $D_{L, N}^{p}(m) \Rightarrow D_{L, N}^{p^{\prime}}(m)$ if $p>p^{\prime}>0$ and
$D_{L, N}^{p}(m) \Rightarrow D_{L, N}^{-p}(m)$ for any $p>0$

## More on the inequalities

In general, the inequalities are not valid for $p>2$ as the example of a rhomboid shows: $D_{L, 4}^{p}(2)$ is equivalent to $\sin ^{p} \phi+\cos ^{p} \phi \leq 2^{1-(p / 2)}$ for $0<\phi<\pi$ which obviously holds for $p \leq 2$ only

Proposition: $D_{L, N}^{p}(m) \Rightarrow D_{L, N}^{p^{\prime}}(m)$ if $p>p^{\prime}>0$ and $D_{L, N}^{p}(m) \Rightarrow D_{L, N}^{-p}(m)$ for any $p>0$

Theorem [E'05b]: The inequality $D_{L, N}^{2}(m)$ is valid

## More on the inequalities

In general, the inequalities are not valid for $p>2$ as the example of a rhomboid shows: $D_{L, 4}^{p}(2)$ is equivalent to $\sin ^{p} \phi+\cos ^{p} \phi \leq 2^{1-(p / 2)}$ for $0<\phi<\pi$ which obviously holds for $p \leq 2$ only

Proposition: $D_{L, N}^{p}(m) \Rightarrow D_{L, N}^{p^{\prime}}(m)$ if $p>p^{\prime}>0$ and $D_{L, N}^{p}(m) \Rightarrow D_{L, N}^{-p}(m)$ for any $p>0$

Theorem [E'05b]: The inequality $D_{L, N}^{2}(m)$ is valid
Remark: The inequalities have "continuous" analogues [E-Harrell-Loss'05] with the summation replaced by integration; the rhs's are in this case $L^{1 \pm p} \pi^{\mp p} \sin ^{p} \frac{\pi u}{L}$ referring to a circle

## Proof of $D_{L, N}^{2}(m)$

It is clear that one has to deal with case $p=2$ only. We put $L=2 \pi$ and express $\Gamma$ through its Fourier series,

$$
\Gamma(s)=\sum_{0 \neq n \in \mathbb{Z}} c_{n} \mathrm{e}^{i n s}
$$

with $c_{n} \in \mathbb{C}^{d}$; since $\Gamma(s) \in \mathbb{R}^{d}$ one has to require $c_{-n}=\bar{c}_{n}$. We are free to choose $c_{0}=0$ and the normalization condition $\sum_{0 \neq n \in \mathbb{Z}} n^{2}\left|c_{n}\right|^{2}=1$ follows from $|\dot{\Gamma}(s)|=1$

## Proof of $D_{L, N}^{2}(m)$

It is clear that one has to deal with case $p=2$ only. We put $L=2 \pi$ and express $\Gamma$ through its Fourier series,

$$
\Gamma(s)=\sum_{0 \neq n \in \mathbb{Z}} c_{n} \mathrm{e}^{\text {ins }}
$$

with $c_{n} \in \mathbb{C}^{d}$; since $\Gamma(s) \in \mathbb{R}^{d}$ one has to require $c_{-n}=\bar{c}_{n}$. We are free to choose $c_{0}=0$ and the normalization condition $\sum_{0 \neq n \in \mathbb{Z}} n^{2}\left|c_{n}\right|^{2}=1$ follows from $|\dot{\Gamma}(s)|=1$
On the other hand, the left-hand side of $D_{2 \pi, N}^{2}(m)$ equals
$\sum_{n=1}^{N} \sum_{0 \neq j, k \in \mathbb{Z}} c_{j}^{*} \cdot c_{k}\left(\mathrm{e}^{-2 \pi i m j / N}-1\right)\left(\mathrm{e}^{2 \pi i m k / N}-1\right) \mathrm{e}^{2 \pi i n(k-j) / N}$

## Proof of $D_{L, N}^{2}(m)$, continued

Next we change the order of summation and observe that $\sum_{n=1}^{N} \mathrm{e}^{2 \pi i n(k-j) / N}=N$ if $j=k(\bmod N)$ and zero otherwise; this allows us to write the last expression as

$$
4 N \sum_{l \in \mathbb{Z}} \sum_{\substack{0 \neq j, k \in \mathbb{Z} \\ j-k=l N}}|j| c_{j}^{*} \cdot|k| c_{k}\left|j^{-1} \sin \frac{\pi m j}{N}\right|\left|k^{-1} \sin \frac{\pi m k}{N}\right| .
$$

## Proof of $D_{L, N}^{2}(m)$, continued

Next we change the order of summation and observe that $\sum_{n=1}^{N} \mathrm{e}^{2 \pi i n(k-j) / N}=N$ if $j=k(\bmod N)$ and zero otherwise; this allows us to write the last expression as

$$
4 N \sum_{l \in \mathbb{Z}} \sum_{\substack{0 \neq j, k \in \mathbb{Z} \\ j-k=l N}}|j| c_{j}^{*} \cdot|k| c_{k}\left|j^{-1} \sin \frac{\pi m j}{N}\right|\left|k^{-1} \sin \frac{\pi m k}{N}\right| .
$$

Hence the sought inequality $D_{2 \pi, N}^{2}(m)$ is equivalent to

$$
\left(d,\left(A^{(N, m)} \otimes I\right) d\right) \leq\left(\frac{\pi \sin \frac{\pi m}{N}}{N \sin \frac{\pi}{N}}\right)^{2}
$$

## Proof of $D_{L, N}^{2}(m)$, continued

Here the vector $d \in \ell^{2}(\mathbb{Z}) \otimes \mathbb{C}^{d}$ has the components $d_{j}:=|j| c_{j}$ and the operator $A^{(N, m)}$ on $\ell^{2}(\mathbb{Z})$ is defined as
$A_{j k}^{(N, m)}:= \begin{cases}\left|j^{-1} \sin \frac{\pi m j}{N}\right|\left|k^{-1} \sin \frac{\pi m k}{N}\right| & \text { if } 0 \neq j, k \in \mathbb{Z}, j-k=l N \\ 0 & \text { otherwise }\end{cases}$
$A^{(N, m)}$ is obviously bounded because its Hilbert-Schmidt norm is finite; we have to estimate its norm

## Proof of $D_{L, N}^{2}(m)$, continued

Here the vector $d \in \ell^{2}(\mathbb{Z}) \otimes \mathbb{C}^{d}$ has the components $d_{j}:=|j| c_{j}$ and the operator $A^{(N, m)}$ on $\ell^{2}(\mathbb{Z})$ is defined as
$A_{j k}^{(N, m)}:= \begin{cases}\left|j^{-1} \sin \frac{\pi m j}{N}\right|\left|k^{-1} \sin \frac{\pi m k}{N}\right| & \text { if } 0 \neq j, k \in \mathbb{Z}, j-k=l N \\ 0 & \text { otherwise }\end{cases}$
$A^{(N, m)}$ is obviously bounded because its Hilbert-Schmidt norm is finite; we have to estimate its norm

Remark: The "continuous" analogue corresponds formally to $N=\infty$. Then $A^{(N, m)}$ is a multiple of $I$ and it is only necessary to employ $|\sin j x| \leq j \sin x$ for any $j \in \mathbb{N}$ and $x \in\left(0, \frac{1}{2} \pi\right]$. Here due to infinitely many side diagonals such a simple estimate yields an unbounded Toeplitz-type operator, and one has use the matrix-element decay

## Proof of $D_{L, N}^{2}(m)$, continued

For a given $j \neq 0$ and $d \in \ell^{2}(\mathbb{Z})$ we have

$$
\begin{gathered}
\left(A^{(N, m)} d\right)_{j}=\left|j^{-1} \sin \frac{\pi m j}{N}\right|
\end{gathered} \sum_{\substack{0 \neq k \in \mathbb{Z} \\
k=j(\bmod N)}}\left|k^{-1} \sin \frac{\pi m k}{N}\right| d_{k}
$$

## Proof of $D_{L, N}^{2}(m)$, continued

For a given $j \neq 0$ and $d \in \ell^{2}(\mathbb{Z})$ we have

$$
\left(A^{(N, m)} d\right)_{j}=\left|j^{-1} \sin \frac{\pi m j}{N}\right| \sum_{\substack{0 \neq k \in \mathbb{Z} \\ k=j(\bmod N)}}\left|k^{-1} \sin \frac{\pi m k}{N}\right| d_{k}
$$

The norm $\left\|A^{(N, m)} d\right\|$ is then easily estimated by means of Schwarz inequality,

$$
\begin{aligned}
&\left\|A^{(N, m)} d\right\|^{2}= \sum_{0 \neq j \in \mathbb{Z}} j^{-2} \sin ^{2} \frac{\pi m j}{N}\left|\sum_{\substack{0 \neq k \in \mathbb{Z} \\
k=j(\bmod N)}}\right| k^{-1} \sin \frac{\pi m k}{N}\left|d_{k}\right|^{2} \\
& \leq \sum_{n=0}^{N-1} \sin ^{4} \frac{\pi m n}{N} S_{n}^{2} \sum_{\substack{n+l N \neq 0 \\
l \in \mathbb{Z}}}\left|d_{n+l N}\right|^{2}
\end{aligned}
$$

## Proof of $D_{L, N}^{2}(m)$, concluded

Here we have introduced

$$
S_{n}:=\sum_{\substack{n+l N \neq 0 \\ l \in \mathbb{Z}}} \frac{1}{(n+l N)^{2}}=\sum_{l=1}^{\infty}\left\{\frac{1}{(l N-n)^{2}}+\frac{1}{(l N-N+n)^{2}}\right\}
$$

which is easily evaluated to be $S_{n}=\left(\frac{\pi}{N \sin \frac{\pi n}{N}}\right)^{2}$

## Proof of $D_{L, N}^{2}(m)$, concluded

Here we have introduced

$$
S_{n}:=\sum_{\substack{n+l N \neq 0 \\ l \in \mathbb{Z}}} \frac{1}{(n+l N)^{2}}=\sum_{l=1}^{\infty}\left\{\frac{1}{(l N-n)^{2}}+\frac{1}{(l N-N+n)^{2}}\right\}
$$

which is easily evaluated to be $S_{n}=\left(\frac{\pi}{N \sin \frac{\pi n}{N}}\right)^{2}$
The sought claim, the validity of $D_{L, N}^{2}(m)$, then follows from

$$
\sin \frac{\pi m}{N} \sin \frac{\pi r}{N}>\left|\sin \frac{\pi}{N} \sin \frac{\pi m r}{N}\right|, \quad 2 \leq r<m \leq\left[\frac{1}{2} N\right]
$$

This can be also equivalently written as the inequalities $U_{m-1}\left(\cos \frac{\pi}{N}\right)>\left|U_{m-1}\left(\cos \frac{\pi r}{N}\right)\right|$ for Chebyshev polynomials of the second kind; they are verified directly $\square$

## Remarks

- Also the spectral result has continuous analogue: consider the singular Schrödinger operator

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$, where $\Gamma$ is a loop of fixed length in the plane; we suppose that it has no zero-angle self-intersections. The principal eigenvalue is maximized if $\Gamma$ is a circle. The proof is similar as above but somewhat simpler

## Remarks

- Also the spectral result has continuous analogue: consider the singular Schrödinger operator

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$, where $\Gamma$ is a loop of fixed length in the plane; we suppose that it has no zero-angle self-intersections. The principal eigenvalue is maximized if $\Gamma$ is a circle. The proof is similar as above but somewhat simpler

- The inequalities have also other applications. Consider $N$ equal point charges attached at equal distances to a loop. By $D_{L, N}^{-1}(m)$ such an electrostatic problem has planar polygon $\tilde{\mathcal{P}}_{N}$ as its unique minimizer


## Point interaction in a bounded region

Our next question concerns the operator written formally as

$$
-\Delta_{D}^{\Omega}+\tilde{\alpha} \delta\left(x-x_{0}\right)
$$

where $\Omega \subset \mathbb{R}^{d}$ is a precompact set; we ask about optimization of the principal eigenvalue w.r.t. the point-interaction site $x_{0}$

## Point interaction in a bounded region

Our next question concerns the operator written formally as

$$
-\Delta_{D}^{\Omega}+\tilde{\alpha} \delta\left(x-x_{0}\right)
$$

where $\Omega \subset \mathbb{R}^{d}$ is a precompact set; we ask about optimization of the principal eigenvalue w.r.t. the point-interaction site $x_{0}$
For the moment we consider $d=2,3$ leaving out the one-dimensional situation which has its specifics

- variation of $\Omega$ has a different character
- the answer may depend on the coupling sign

More about that a little later

## Green's function

We assume that $\Omega$ is bounded and connected with piecewise $C^{1}$ boundary, then $-\Delta_{D}^{\Omega}$ has a purely discrete spectrum which allows us to write the Green function

$$
\mathcal{G}_{0}^{z}\left(\vec{x}, \vec{x}^{\prime}\right)=\sum_{n \in \mathbb{N}_{0}, k \leq N_{n}} \frac{\psi_{n, k}\left(\vec{x}^{\prime}\right) \psi_{n, k}(\vec{x})}{\lambda_{n}+z}
$$

where $N_{n}$ is the multiplicity of the $n$-th eigenvalue

## Green's function

We assume that $\Omega$ is bounded and connected with piecewise $C^{1}$ boundary, then $-\Delta_{D}^{\Omega}$ has a purely discrete spectrum which allows us to write the Green function

$$
\mathcal{G}_{0}^{z}\left(\vec{x}, \vec{x}^{\prime}\right)=\sum_{n \in \mathbb{N}_{0}, k \leq N_{n}} \frac{\psi_{n, k}\left(\vec{x}^{\prime}\right) \psi_{n, k}(\vec{x})}{\lambda_{n}+z}
$$

where $N_{n}$ is the multiplicity of the $n$-th eigenvalue Note that it has the same diagonal singularity as the corresponding Green's function in the whole $\mathbb{R}^{d}$,

$$
\mathcal{G}^{z}\left(\vec{x}, \vec{x}^{\prime}\right)=\frac{1}{2 \pi} K_{0}\left(\sqrt{z}\left|\vec{x}-\vec{x}^{\prime}\right|\right) \quad \text { and } \quad e^{-\sqrt{z}\left|\vec{x}-\vec{x}^{\prime}\right|} 4 \pi\left|\vec{x}-\vec{x}^{\prime}\right|
$$

for $d=2,3$, respectively. This motivates us to define $h(\cdot, \cdot, \sqrt{z})$ by $\mathcal{G}_{0}^{z}\left(\vec{x}, \vec{x}^{\prime}\right)=\mathcal{G}^{z}\left(\vec{x}, \vec{x}^{\prime}\right)-h\left(\vec{x}, \vec{x}^{\prime}, \sqrt{z}\right)$

## Spectral condition

The function $h$ is regular and solves the b.v. problem

$$
\left\{\begin{array}{l}
(-\Delta+z) h\left(\vec{x}, \vec{x}^{\prime}, \sqrt{z}\right)=0 \\
\left.h\left(\vec{x}, \vec{x}^{\prime}, \sqrt{z}\right)\right|_{\vec{x} \in \partial \Omega}=\left.\mathcal{G}^{z}\left(\vec{x}, \vec{x}^{\prime}\right)\right|_{\vec{x} \in \partial \Omega}
\end{array} \quad \text { for any } \vec{x}^{\prime} \in \Omega\right.
$$

## Spectral condition

The function $h$ is regular and solves the b.v. problem

$$
\left\{\begin{array}{l}
(-\Delta+z) h\left(\vec{x}, \vec{x}^{\prime}, \sqrt{z}\right)=0 \\
\left.h\left(\vec{x}, \vec{x}^{\prime}, \sqrt{z}\right)\right|_{\vec{x} \in \partial \Omega}=\left.\mathcal{G}^{z}\left(\vec{x}, \vec{x}^{\prime}\right)\right|_{\vec{x} \in \partial \Omega}
\end{array} \quad \text { for any } \vec{x}^{\prime} \in \Omega\right.
$$

The point perturbation is introduced by the same boundary conditions as above. Spectral properties of the perturbed operator are obtained by Krein's formula

## Spectral condition

The function $h$ is regular and solves the b.v. problem

$$
\left\{\begin{array}{l}
(-\Delta+z) h\left(\vec{x}, \vec{x}^{\prime}, \sqrt{z}\right)=0 \\
\left.h\left(\vec{x}, \vec{x}^{\prime}, \sqrt{z}\right)\right|_{\vec{x} \in \partial \Omega}=\left.\mathcal{G}^{z}\left(\vec{x}, \vec{x}^{\prime}\right)\right|_{\vec{x} \in \partial \Omega}
\end{array} \quad \text { for any } \vec{x}^{\prime} \in \Omega\right.
$$

The point perturbation is introduced by the same boundary conditions as above. Spectral properties of the perturbed operator are obtained by Krein's formula
Using it we can find principal ev $\xi$ from the condition

$$
\begin{array}{rlrl}
\alpha-\ln \sqrt{-\xi}-2 \pi h\left(\vec{x}_{0}, \vec{x}_{0}, \sqrt{-\xi}\right)=0, & & \Omega \subset \mathbb{R}^{2} \\
\alpha+\frac{\sqrt{-\xi}}{4 \pi}+h\left(\vec{x}_{0}, \vec{x}_{0}, \sqrt{-\xi}\right)=0, & \Omega \subset \mathbb{R}^{3}
\end{array}
$$

## Remarks

The above spectral condition determines all ev's except of those for which $\psi_{\bar{n}}\left(\vec{x}_{0}\right)=0$ which, however, cannot happen in the ground state

## Remarks

The above spectral condition determines all ev's except of those for which $\psi_{\bar{n}}\left(\vec{x}_{0}\right)=0$ which, however, cannot happen in the ground state

Lemma: Let $\lambda_{0}$ be the first ev of $-\Delta_{\Omega}^{D}$ corresponding to a domain $\Omega \subset \mathbb{R}^{3}$. For any $\alpha \in \mathbb{R}$, the equation

$$
\alpha+\frac{\sqrt{-\xi}}{4 \pi}+h\left(\vec{x}_{0}, \vec{x}_{0}, \sqrt{-\xi}\right)=0, \quad \xi \in\left(-\infty, \lambda_{0}\right)
$$

admits a unique solution $\xi(\alpha)$ such that

$$
\lim _{\alpha \rightarrow-\infty} \xi(\alpha)=-\infty, \quad \xi\left(-h\left(\vec{x}_{0}, \vec{x}_{0}, 0\right)\right)=0, \quad \lim _{\alpha \rightarrow+\infty} \xi(\alpha)=\lambda_{0}
$$

The same is true for $\Omega \subset \mathbb{R}^{2}$ except for the middle condition replaced now by $\xi\left(f\left(\vec{x}_{0}, \vec{x}_{0}, 0\right)\right)=0$ where

$$
f\left(\vec{x}, \vec{x}_{0}, \sqrt{-\xi}\right)=2 \pi h\left(\vec{x}, \vec{x}_{0}, \sqrt{-\xi}\right)+\ln \sqrt{-\xi} I_{0}\left(\sqrt{-\xi}\left|\vec{x}-\vec{x}_{0}\right|\right), \quad \xi<\lambda_{0}
$$

## Interior reflection property

Definition: Consider a hyperplane $P$ of dimension $d-1$ in $\mathbb{R}^{d}$ and denote by $S^{P}$ the mirror image of a set $S \subset \mathbb{R}^{d}$ w.r.t. $P$ provided $S \cap P=\emptyset$. The domain $\Omega$ is said to have the interior reflection property w.r.t. $P$ if $P \cap \Omega \neq \emptyset$ and there is an open connected component $\Omega_{s} \subset \Omega \backslash P$ such that $\Omega_{s}^{P}$ is a proper subset of $\Omega \backslash \bar{\Omega}_{s}$. We call $\Omega_{s}$ the smaller side of $\Omega$ and $P$ an interior reflection hyperplane.

## Interior reflection property

Definition: Consider a hyperplane $P$ of dimension $d-1$ in $\mathbb{R}^{d}$ and denote by $S^{P}$ the mirror image of a set $S \subset \mathbb{R}^{d}$ w.r.t. $P$ provided $S \cap P=\emptyset$. The domain $\Omega$ is said to have the interior reflection property w.r.t. $P$ if $P \cap \Omega \neq \emptyset$ and there is an open connected component $\Omega_{s} \subset \Omega \backslash P$ such that $\Omega_{s}^{P}$ is a proper subset of $\Omega \backslash \bar{\Omega}_{s}$. We call $\Omega_{s}$ the smaller side of $\Omega$ and $P$ an interior reflection hyperplane.


## Principal eigenvalue monotonicity

Theorem [E-Mantile'08]: Let $P$ be an interior reflection hyperplane for $\Omega$ and $\vec{n}$ the normal vector to $P$ pointing towards $\Omega_{s}$. Assume that $\vec{x}_{0} \in \Omega \cap\left(\partial \Omega_{s} \cap P\right)$; then the principal eigenvalue $\xi$ of $H_{\alpha}$ with perturbation placed at $\vec{x}_{0}$ satisfies

$$
\vec{n} \cdot \nabla_{\vec{x}_{0}} \xi>0
$$

## Principal eigenvalue monotonicity

Theorem [E-Mantile'08]: Let $P$ be an interior reflection hyperplane for $\Omega$ and $\vec{n}$ the normal vector to $P$ pointing towards $\Omega_{s}$. Assume that $\vec{x}_{0} \in \Omega \cap\left(\partial \Omega_{s} \cap P\right)$; then the principal eigenvalue $\xi$ of $H_{\alpha}$ with perturbation placed at $\vec{x}_{0}$ satisfies

$$
\vec{n} \cdot \nabla_{\vec{x}_{0}} \xi>0
$$


©

## Proof idea

The spectral condition is an implicit equation for $\xi$; the derivative sign is related to gradient of the function $h(\cdot, \cdot, y)$. The problem can be reduced to analysis of the function $u$ defined on $\Omega_{s}$ by

$$
u\left(\vec{x}, \vec{x}_{0}, y\right):=h\left(\vec{x}, \vec{x}_{0}, y\right)-h\left(\vec{x}^{P}, \vec{x}_{0}, y\right), \quad \vec{x} \in \Omega_{s},
$$

where $\vec{x}^{P}$ denotes the mirror image of $\vec{x} \in \Omega_{s}$ through the plane $P$. The function $u$ solves the problem
$\left\{\begin{array}{l}\left(-\Delta+y^{2}\right) u=0 \quad \text { in } \Omega_{s} \\ \left.u\right|_{P \cap \Omega}=0,\left.\quad u\right|_{\partial \Omega_{s} \cap \Omega}=\frac{e^{-y\left|\vec{x}-\vec{x}_{0}\right|}}{4 \pi\left|\vec{x}-\vec{x}_{\mid}\right|}-\left.h\left(\vec{x}^{P}, \vec{x}_{0}, y\right)\right|_{\vec{x} \in \partial \Omega s \cap \partial \Omega}\end{array}\right.$
; $\vec{x}_{0} \in \Omega \cap P$
which allows us to apply Hopf boundary point lemma (about superharmonic functions vanishing at a boundary point) and to translate the conclusion back to $h$ and $\xi$

## Optimization of $\xi\left(\vec{x}_{0}\right)$

For simplicity, consider a convex $\Omega$. Let $\Pi$ be the set of all the hyperplanes $P$ of interior reflection for $\Omega$; we denote by $\Omega_{s, P}$ the smaller part related to $P \in \Pi$, provided it exists, and set

$$
\Sigma:=\bigcup_{P \in \Pi} \Omega_{s, P}
$$

## Optimization of $\xi\left(\vec{x}_{0}\right)$

For simplicity, consider a convex $\Omega$. Let $\Pi$ be the set of all the hyperplanes $P$ of interior reflection for $\Omega$; we denote by $\Omega_{s, P}$ the smaller part related to $P \in \Pi$, provided it exists, and set

$$
\Sigma:=\bigcup_{P \in \Pi} \Omega_{s, P}
$$

Corollary: Let $\Omega \subset \mathbb{R}^{d}, d=2,3$, be an open convex domain, and $H_{\alpha}$ as defined above with the perturbation at $\vec{x}_{0}$. The principal eigenvalue of $H_{\alpha}$ takes its minimum value when $\vec{x}_{0}$ belongs to the set $\Omega \backslash \Sigma$.

## Optimization of $\xi\left(\vec{x}_{0}\right)$

For simplicity, consider a convex $\Omega$. Let $\Pi$ be the set of all the hyperplanes $P$ of interior reflection for $\Omega$; we denote by $\Omega_{s, P}$ the smaller part related to $P \in \Pi$, provided it exists, and set

$$
\Sigma:=\bigcup_{P \in \Pi} \Omega_{s, P}
$$

Corollary: Let $\Omega \subset \mathbb{R}^{d}, d=2,3$, be an open convex domain, and $H_{\alpha}$ as defined above with the perturbation at $\vec{x}_{0}$. The principal eigenvalue of $H_{\alpha}$ takes its minimum value when $\vec{x}_{0}$ belongs to the open set $\Omega \backslash \Sigma$.

Examples: disc, elliptic disc, ball, ellipsoid - the minimum is reached with the point interaction at the centre; with less symmetry $\Omega \backslash \Sigma$ may be of nonzero dimension $d_{\Omega} \leq d$

## Remarks

- A similar result can be proved also for non-convex domains where interior reflection may give rise to more than one smaller part


## Remarks

- A similar result can be proved also for non-convex domains where interior reflection may give rise to more than one smaller part
- Note that the result is independent of the point interaction coupling parameter $\alpha$


## Remarks

- A similar result can be proved also for non-convex domains where interior reflection may give rise to more than one smaller part
- Note that the result is independent of the point interaction coupling parameter $\alpha$
- One can compare with [Harrell-Kröger-Kurata'01 who proved that for a hard-wall obstacle the principal eigenvalue decreases as it moves towards the boundary. The difference is in the different boundary conditions: the hard obstacle is characterized by Dirichlet b.c., while $H_{\alpha}$ can be obtained as the norm-resolvent limit of a family of sphere interactions Hamiltonians $H_{\alpha}(r)$ with the b.c. of a mixed type as the radius $r \rightarrow 0$
C


# ompare: $1 \mathrm{D} \delta$ interaction in a potential we 

Things may look differently if a Dirichlet billiard is replaced by a potential well. Consider a one-dimensional situation

$$
H_{\alpha, V, y}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V(x)+\alpha \delta(x-y)
$$

# ompare: $1 \mathbf{D} \delta$ interaction in a potential we 

Things may look differently if a Dirichlet billiard is replaced by a potential well. Consider a one-dimensional situation

$$
H_{\alpha, V, y}=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+V(x)+\alpha \delta(x-y)
$$

First, $\operatorname{sgn} \alpha$ matters here as example of rectangular $V$ shows


## Symmetry matters

Consider thus attractive interactions only supposing $\alpha<0$ In general the optimal $\delta$ placement may not coincide with the potential minimum. As example, take the potential

$$
V(x)=-c_{-} x \chi_{(-\infty, 0]}(x)+c_{+} x \chi_{[0,-\infty)}(x)
$$

with $c_{+} \neq c_{-}$in general

## Symmetry matters

Consider thus attractive interactions only supposing $\alpha<0$ In general the optimal $\delta$ placement may not coincide with the potential minimum. As example, take the potential

$$
V(x)=-c_{-} x \chi_{(-\infty, 0]}(x)+c_{+} x \chi_{[0,-\infty)}(x)
$$

with $c_{+} \neq c_{-}$in general


## A symmetric potential well

Proposition: Let $V \in C^{1}$ be even and monotonous in $(0, \infty)$ with $V(0)=0$. If the principal eigenvalues of both operators are negative we have

$$
\inf \sigma\left(H_{\alpha, V, y_{1}}\right)<\inf \sigma\left(H_{\alpha, V, y_{2}}\right) \quad \text { if } \quad\left|y_{1}\right|<\left|y_{2}\right|
$$

## A symmetric potential well

Proposition: Let $V \in C^{1}$ be even and monotonous in $(0, \infty)$ with $V(0)=0$. If the principal eigenvalues of both operators are negative we have

$$
\inf \sigma\left(H_{\alpha, V, y_{1}}\right)<\inf \sigma\left(H_{\alpha, V, y_{2}}\right) \quad \text { if } \quad\left|y_{1}\right|<\left|y_{2}\right|
$$

Sketch of the proof: Without loss we assume $y_{2}>y_{1} \geq 0$. Let $\lambda(y)$ and $\phi_{y}$ be the ground state ev and ef, respectively Using convexity/concavity we check that $\phi_{y}(x)>\phi_{y}(-x)$ holds for $x>0$, so the claim follows by Hellmann-Feynman

$$
\frac{\mathrm{d} \lambda(y)}{\mathrm{d} y}=\left.\int_{\mathbb{R}} \frac{\mathrm{d} V(y)}{\mathrm{d} y}\right|_{y=x}\left|\phi_{y}(x)\right|^{2} \mathrm{~d} x=\int_{0}^{\infty} \frac{\mathrm{d} V(x)}{\mathrm{d} x}\left(\left|\phi_{y}(x)\right|^{2}-\left|\phi_{y}(-x)\right|^{2}\right) \mathrm{d} x>0
$$

## One dimension: attractive $\delta$ 's on the line

Consider Hamiltonian of the form $-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\sum_{j=1}^{n} \alpha_{j} \delta\left(x-y_{j}\right)$. Defined rigorously [AGHH'08] it is denoted as $-\Delta_{\alpha, Y}$ where $\alpha:=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $Y:=\left\{y_{1}, \ldots, y_{n}\right\}$.
We suppose that all $y_{j}$ 's are mutually distinct and the interactions are attractive, $\alpha_{j}<0, j=1, \ldots, n$. Then $\sigma_{\text {cont }}\left(-\Delta_{\alpha, Y}\right)=\mathbb{R}_{+}$and $\sigma_{\text {disc }}\left(-\Delta_{\alpha, Y}\right) \subset \mathbb{R}_{-}$is non-empty. In particular, there is a ground-state eigenvalue $\lambda_{0}<0$ with a strictly positive eigenfunction $\psi_{0}$; we ask how does $\lambda_{0}$ depend on the geometry of the set $Y$.

## One dimension: attractive $\delta$ 's on the line

Consider Hamiltonian of the form $-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}+\sum_{j=1}^{n} \alpha_{j} \delta\left(x-y_{j}\right)$. Defined rigorously [AGHH'08] it is denoted as $-\Delta_{\alpha, Y}$ where $\alpha:=\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ and $Y:=\left\{y_{1}, \ldots, y_{n}\right\}$.
We suppose that all $y_{j}$ 's are mutually distinct and the interactions are attractive, $\alpha_{j}<0, j=1, \ldots, n$. Then $\sigma_{\text {cont }}\left(-\Delta_{\alpha, Y}\right)=\mathbb{R}_{+}$and $\sigma_{\text {disc }}\left(-\Delta_{\alpha, Y}\right) \subset \mathbb{R}_{-}$is non-empty. In particular, there is a ground-state eigenvalue $\lambda_{0}<0$ with a strictly positive eigenfunction $\psi_{0}$; we ask how does $\lambda_{0}$ depend on the geometry of the set $Y$.
Proposition: Let $\sharp Y_{1}=\sharp Y_{2}$ and $y_{j, 1}<y_{j, 2}<\ldots<y_{j, n}$. Suppose there is an $i$ such that $y_{2, j}=y_{1, j}$ for $j=1, \ldots, i$ and $y_{2, j}=y_{1, j}+\eta$ for $j=i+1, \ldots, n$. Assume further that $\psi_{0}^{\prime}\left(y_{i}+\right)<0$ and $\psi_{0}^{\prime}\left(y_{i+1}-\right)>0$. Then we have $\min \sigma\left(-\Delta_{\alpha, Y_{1}}\right) \leq \min \sigma\left(-\Delta_{\alpha, Y_{2}}\right)$ for any $\eta>0$.

## Proof by bracketing

Since $\psi_{0}>0$ and $\psi^{\prime \prime}=-\lambda_{0} \psi$ between the points $y_{j}$, the function is convex; by assumption there is $x_{0} \in\left(y_{i}, y_{i+1}\right)$ such that $\psi_{0}^{\prime}\left(x_{0}\right)=0$. Consider the operator $-\tilde{\Delta}_{\alpha, Y_{1}}$ which acts as $-\Delta_{\alpha, Y_{1}}$ with the additional Neumann condition at $x_{0}$ We have $-\tilde{\Delta}_{\alpha, Y_{1}}=-\tilde{\Delta}_{\alpha, Y_{1}}^{l} \oplus-\tilde{\Delta}_{\alpha, Y_{1}}^{r}$ and the two operators have obviously the same ground state. Consider now the operator $-\hat{\Delta}_{\alpha, Y_{2}}:=-\tilde{\Delta}_{\alpha, Y_{1}}^{l} \oplus-\Delta_{N} \oplus-\tilde{\Delta}_{\alpha, Y_{1}}^{r}$ where the added operator is the Neumann Laplacian on $L^{2}(0, \eta)$; it is clear that the latter does not contribute to the negative spectrum, hence $\min \sigma\left(-\hat{\Delta}_{\alpha, Y_{2}}\right)=\min \sigma\left(-\tilde{\Delta}_{\alpha, Y_{1}}\right)$
Furthermore, $-\hat{\Delta}_{\alpha, Y_{2}}$ is obviously unitarily equivalent to $-\tilde{\Delta}_{\alpha, Y_{2}}$ with added Neumann conditions at $x=x_{0}, x_{0}+\eta$, hence the result follows by Neumann bracketing $\quad \square$

## A stronger result

It is easy to see that the derivative-sign assumption is satisfied if $-\alpha_{i},-\alpha_{i+1}$ are large enough or, which is the same by scaling, the distance $y_{i+1}-y_{i}$ is large enough. However, we can make a stronger claim

## A stronger result

It is easy to see that the derivative-sign assumption is satisfied if $-\alpha_{i},-\alpha_{i+1}$ are large enough or, which is the same by scaling, the distance $y_{i+1}-y_{i}$ is large enough. However, we can make a stronger claim
Theorem [E-Jex'12]: Suppose again $\sharp Y_{1}=\sharp Y_{2}$ and $\alpha_{j}<0$ for all $j$. Let further $y_{1, i}-y_{1, j} \leq y_{2, i}-y_{2, j}$ hold for all $i, j$ and $y_{1, i}-y_{1, j}<y_{2, i}-y_{2, j}$ for at least one pair of $i, j$, then we have $\min \sigma\left(-\Delta_{\alpha, Y_{1}}\right)<\min \sigma\left(-\Delta_{\alpha, Y_{2}}\right)$

## A stronger result

It is easy to see that the derivative-sign assumption is satisfied if $-\alpha_{i},-\alpha_{i+1}$ are large enough or, which is the same by scaling, the distance $y_{i+1}-y_{i}$ is large enough. However, we can make a stronger claim
Theorem [E-Jex'12]: Suppose again $\sharp Y_{1}=\sharp Y_{2}$ and $\alpha_{j}<0$ for all $j$. Let further $y_{1, i}-y_{1, j} \leq y_{2, i}-y_{2, j}$ hold for all $i, j$ and $y_{1, i}-y_{1, j}<y_{2, i}-y_{2, j}$ for at least one pair of $i, j$, then we have $\min \sigma\left(-\Delta_{\alpha, Y_{1}}\right)<\min \sigma\left(-\Delta_{\alpha, Y_{2}}\right)$
Proof: We employ Krein's formula which makes it possible to reduce the spectral problem at energy $k^{2}$ to solution of the secular equation, $\operatorname{det} \Gamma_{\alpha, Y}(\kappa)=0$, where

$$
\left[\Gamma_{\alpha, Y}(k)\right]_{j j^{\prime}}=-\left[\alpha_{j}^{-1} \delta_{j j^{\prime}}+G_{k}\left(y_{j}-y_{j^{\prime}}\right)\right]_{j, j^{\prime}=1}^{N}
$$

and $G_{k}\left(y_{j}-y_{j^{\prime}}\right)=\frac{i}{2 k} \mathrm{e}^{i k\left|y_{j}-y_{j^{\prime}}\right|}$ is the free resolvent kernel

## Proof by Krein's formula

Writing $k=i \kappa$ with $\kappa>0$, we have to investigate the lowest eigenvalue of $\Gamma_{\alpha, Y}(\kappa)$ which is, of course, given by

$$
\mu_{0}(\alpha, Y ; \kappa)=\min _{|c|=1}\left(c, \Gamma_{\alpha, Y}(\kappa) c\right) ;
$$

the ground state energy $-\kappa^{2}$ corresponds to $\kappa$ such that $\mu_{0}(\alpha, Y ; \kappa)=0$. We set $\ell_{i j}:=\left|y_{i}-y_{j}\right|$, then the quantity to be minimized is explicitly

$$
\left(c, \Gamma_{\alpha, Y}(\kappa) c\right)=\sum_{i=1}^{n}\left|c_{i}\right|^{2}\left(-\frac{1}{\alpha_{i}}-\frac{1}{2 \kappa}\right)-2 \sum_{i=1}^{n} \sum_{j=1}^{i-1} \operatorname{Re} \bar{c}_{i} c_{j} \frac{\mathrm{e}^{-\kappa \ell_{i j}}}{2 \kappa}
$$

## Proof by Krein's formula

Writing $k=i \kappa$ with $\kappa>0$, we have to investigate the lowest eigenvalue of $\Gamma_{\alpha, Y}(\kappa)$ which is, of course, given by

$$
\mu_{0}(\alpha, Y ; \kappa)=\min _{|c|=1}\left(c, \Gamma_{\alpha, Y}(\kappa) c\right) ;
$$

the ground state energy $-\kappa^{2}$ corresponds to $\kappa$ such that $\mu_{0}(\alpha, Y ; \kappa)=0$. We set $\ell_{i j}:=\left|y_{i}-y_{j}\right|$, then the quantity to be minimized is explicitly

$$
\left(c, \Gamma_{\alpha, Y}(\kappa) c\right)=\sum_{i=1}^{n}\left|c_{i}\right|^{2}\left(-\frac{1}{\alpha_{i}}-\frac{1}{2 \kappa}\right)-2 \sum_{i=1}^{n} \sum_{j=1}^{i-1} \operatorname{Re} \bar{c}_{i} c_{j} \frac{\mathrm{e}^{-\kappa \ell_{i j}}}{2 \kappa}
$$

The eigenfunction corresponding to the ground state, i.e. $c$ for which the minimum is reached can be chosen strictly positive; this follows from the fact that the semigroup $\left\{\mathrm{e}^{-t \Gamma_{\alpha, Y}(\kappa)}: t \geq 0\right\}$ is positivity improving

## Proof by Krein's formula, continued

This means, in particular, that we have

$$
\mu_{0}(\alpha, Y ; \kappa)=\min _{|c|=1, c>0}\left(c, \Gamma_{\alpha, Y}(\kappa) c\right)
$$

## Proof by Krein's formula, continued

This means, in particular, that we have

$$
\mu_{0}(\alpha, Y ; \kappa)=\min _{|c|=1, c>0}\left(c, \Gamma_{\alpha, Y}(\kappa) c\right)
$$

Take now two configurations, $(\alpha, Y)$ and $(\alpha, \tilde{Y})$ such that $\ell_{i j} \leq \tilde{\ell}_{i j}$ and the inequality is strict for at least one pair $(i, j)$. For a fixed $c>0$ we have $\left(c, \Gamma_{\alpha, Y}(\kappa) c\right)<\left(c, \Gamma_{\alpha, \tilde{Y}}(\kappa) c\right)$, and consequently, taking a minimum overs all such $c$ 's we get

$$
\mu_{0}(\alpha, Y ; \kappa)<\mu_{0}(\alpha, \tilde{Y} ; \kappa)
$$

for all $\kappa$ with the obvious implication for the ground state of $-\Delta_{\alpha, Y}$; the sharp inequality holds due to the fact that there is a $c$ for which the minimum is attained.

## Quantum graphs

More complicated "1D" problems one can find in quantum graphs. Consider such a graph $\Gamma$ consisting of vertices, $\mathcal{V}=\left\{\mathcal{X}_{j}: j \in I\right\}$, and edges of two categories, finite, $\mathcal{L}=\left\{\mathcal{L}_{j n}:\left(\mathcal{X}_{j}, \mathcal{X}_{n}\right)\right.$ with $\left.(j, n) \in I_{\mathcal{L}} \subset I \times I\right\}$, and infinite, $\mathcal{L}_{\infty}=\left\{\mathcal{L}_{k \infty}: k \in I_{\mathcal{C}}\right\}$. We regard $\Gamma$ as a configuration space of a quantum system with the Hilbert space

$$
\mathcal{H}=\bigoplus_{j \in I_{\mathcal{L}}} L^{2}\left(\left[0, l_{j}\right]\right) \oplus \bigoplus_{k \in I_{\mathcal{C}}} L^{2}([0, \infty))
$$

with columns $\psi=\left(f_{j}: \mathcal{L}_{j} \in \mathcal{L}, g_{j}: \mathcal{L}_{j \infty} \in \mathcal{L}_{\infty}\right)^{T}$ as elements

## Quantum graphs

More complicated "1D" problems one can find in quantum graphs. Consider such a graph $\Gamma$ consisting of vertices, $\mathcal{V}=\left\{\mathcal{X}_{j}: j \in I\right\}$, and edges of two categories, finite, $\mathcal{L}=\left\{\mathcal{L}_{j n}:\left(\mathcal{X}_{j}, \mathcal{X}_{n}\right)\right.$ with $\left.(j, n) \in I_{\mathcal{L}} \subset I \times I\right\}$, and infinite, $\mathcal{L}_{\infty}=\left\{\mathcal{L}_{k \infty}: k \in I_{\mathcal{C}}\right\}$. We regard $\Gamma$ as a configuration space of a quantum system with the Hilbert space

$$
\mathcal{H}=\bigoplus_{j \in I_{\mathcal{L}}} L^{2}\left(\left[0, l_{j}\right]\right) \oplus \bigoplus_{k \in I_{\mathcal{C}}} L^{2}([0, \infty))
$$

with columns $\psi=\left(f_{j}: \mathcal{L}_{j} \in \mathcal{L}, g_{j}: \mathcal{L}_{j \infty} \in \mathcal{L}_{\infty}\right)^{T}$ as elements
The Hamiltonian acts as $-\mathrm{d}^{2} / \mathrm{d} x^{2}$ on each edge; to make it self-adjoint s-a, general boundary conditions

$$
\left(U_{j}-I\right) \Psi_{j}+i\left(U_{j}+I\right) \Psi_{j}^{\prime}=0
$$

with unitary matrices $U_{j}$ have to be imposed at the vertices $\mathcal{\mathcal { X }}$, where $\Psi_{j}$ and $\Psi_{j}^{\prime}$ are vectors of boundary values

## Assumptions

We will be interested in the following particular situation:

- the internal part of the graphs is finite and so is the number of external edges, $\# I_{\mathcal{L}}<\infty$ and $\# I_{\mathcal{C}}<\infty$


## Assumptions

We will be interested in the following particular situation:

- the internal part of the graphs is finite and so is the number of external edges, $\# I_{\mathcal{L}}<\infty$ and $\# I_{\mathcal{C}}<\infty$
- vertex couplings are of $\delta$-type which means they correspond to $U_{j}=\frac{2}{n+i \alpha_{j}} \mathcal{J}-I$, or explicitly

$$
\psi_{j, i}(0)=\psi_{j, k}(0)=: \psi_{j}(0), j, k=1, \ldots, n_{j}, \quad \sum_{i=1}^{n_{j}} \psi_{j, i}^{\prime}(0)=\alpha_{j} \psi_{j}(0),
$$

where $n_{j}=\operatorname{deg} \mathcal{X}_{j}$ and edges are parametrized so that $x=0$ corresponds to the vertex. In particular, we have Robin condition, $\psi_{j}^{\prime}\left(l_{j}\right)+\alpha_{j} \psi_{j}\left(l_{j}\right)=0$, at "free endpoints"

## Assumptions

We will be interested in the following particular situation:

- the internal part of the graphs is finite and so is the number of external edges, $\# I_{\mathcal{L}}<\infty$ and $\# I_{\mathcal{C}}<\infty$
- vertex couplings are of $\delta$-type which means they correspond to $U_{j}=\frac{2}{n+i \alpha_{j}} \mathcal{J}-I$, or explicitly

$$
\psi_{j, i}(0)=\psi_{j, k}(0)=: \psi_{j}(0), j, k=1, \ldots, n_{j}, \quad \sum_{i=1}^{n_{j}} \psi_{j, i}^{\prime}(0)=\alpha_{j} \psi_{j}(0),
$$

where $n_{j}=\operatorname{deg} \mathcal{X}_{j}$ and edges are parametrized so that $x=0$ corresponds to the vertex. In particular, we have Robin condition, $\psi_{j}^{\prime}\left(l_{j}\right)+\alpha_{j} \psi_{j}\left(l_{j}\right)=0$, at "free endpoints"

- all the couplings involved are non-repulsive, $\alpha_{j} \leq 0$ for all $j \in I$, and at least one of them is attractive, $\alpha_{j_{0}}<0$ for some $j_{0} \in I$


## Existence of negative spectrum

The quadratic form of $H$ can be then written as
$q[\Psi]=\sum_{j \in I_{\mathcal{C}}} \int_{0}^{l_{j}}\left|\psi_{j}^{\prime}(x)\right|^{2} \mathrm{~d} x+\sum_{k \in I_{\mathcal{C}}} \int_{+}\left|\psi_{k}^{\prime}(x)\right|^{2} \mathrm{~d} x+\sum_{i \in I} \alpha_{i}\left|\psi_{i}(0)\right|^{2}$
being defined on $L^{2}$ functions which are $W^{1,2}$ on the graph edges and continuous at the vertices

## Existence of negative spectrum

The quadratic form of $H$ can be then written as
$q[\Psi]=\sum_{j \in I_{\mathcal{L}}} \int_{0}^{l_{j}}\left|\psi_{j}^{\prime}(x)\right|^{2} \mathrm{~d} x+\sum_{k \in I_{\mathcal{C}}} \int_{+}\left|\psi_{k}^{\prime}(x)\right|^{2} \mathrm{~d} x+\sum_{i \in I} \alpha_{i}\left|\psi_{i}(0)\right|^{2}$
being defined on $L^{2}$ functions which are $W^{1,2}$ on the graph edges and continuous at the vertices
Proposition: $\inf \sigma(H)<0$ holds under our assumptions

## Existence of negative spectrum

The quadratic form of $H$ can be then written as
$q[\Psi]=\sum_{j \in I_{\mathcal{C}}} \int_{0}^{l_{j}}\left|\psi_{j}^{\prime}(x)\right|^{2} \mathrm{~d} x+\sum_{k \in I_{\mathcal{C}}} \int_{+}\left|\psi_{k}^{\prime}(x)\right|^{2} \mathrm{~d} x+\sum_{i \in I} \alpha_{i}\left|\psi_{i}(0)\right|^{2}$
being defined on $L^{2}$ functions which are $W^{1,2}$ on the graph edges and continuous at the vertices
Proposition: $\inf \sigma(H)<0$ holds under our assumptions
Proof: If $I_{\mathcal{C}}=\emptyset$ we take $\Psi=c$ on $\Gamma$ which belongs to $\operatorname{Dom}[q]$ because $|\Gamma|<\infty$; we get $q[\Psi] \leq \alpha_{j_{0}}|c|^{2}$. If $I_{\mathcal{C}} \neq \emptyset$, we take $\Psi=c$ on the internal part of the graph and $\psi_{k}(x)=c \mathrm{e}^{-\kappa x}$ on each external semiinfinite edge, obtaining

$$
q[\Psi] \leq\left(\alpha_{j_{0}}+\frac{1}{2} \kappa \sharp I_{\mathcal{C}}\right)|c|^{2}
$$

which can be made $<0$ by choosing $\kappa$ small enough.

## Existence of ground state

Theorem [E-Jex'12]: In addition, let $\Gamma$ be connected, then $\lambda_{0}=\inf \sigma(H)$ is a simple isolated eigenvalue. The corresponding eigenfunction $\Psi^{(0)}$ can be chosen strictly positive on $\Gamma$ being convex on each edge

## Existence of ground state

Theorem [E-Jex'12]: In addition, let $\Gamma$ be connected, then $\lambda_{0}=\inf \sigma(H)$ is a simple isolated eigenvalue. The corresponding eigenfunction $\Psi^{(0)}$ can be chosen strictly positive on $\Gamma$ being convex on each edge

Proof: $\sigma(H)$ is discrete if $I_{\mathcal{C}}=\emptyset$, otherwise one checks easily using Krein's formula that $\sigma_{\text {ess }}(H)=\mathbb{R}_{+}$and $\sigma_{\text {disc }}(H) \subset \mathbb{R}_{\mathbf{-}}$ is finite; by the previous result it is non-empty.
The ground state positivity follows, for instance, from a quantum-graph modification of Courant theorem [Band et al.'11]. The ef being positive and its component $\psi_{j}^{(0)}$ at the $j$ th edge twice differentiable away of the vertices, we have $\left(\psi_{j}^{(0)}\right)^{\prime \prime}=-\lambda_{0} \psi_{j}^{(0)}>0$, which means the convexity. $\quad \square$

## Ground state edge indices

In fact, we know more. Writing $\lambda_{0}=-\kappa^{2}$ we see that the ef component on each edge is a linear combination of $e^{\kappa x}$ and $\mathrm{e}^{-\kappa x}$. Since we are free to choose the edge orientation, each component has one of the following three forms,

$$
\psi_{j}^{(0)}(x)=\left\{\begin{array}{lll}
c_{j} \cosh \kappa\left(x+d_{j}\right) & \ldots & d_{j} \in \mathbb{R} \\
c_{j} e^{ \pm \kappa\left(x+d_{j}\right)} & \ldots & d_{j} \in \mathbb{R} \\
c_{j} \sinh \kappa\left(x+d_{j}\right) & \ldots & x+d_{j}>0
\end{array}\right.
$$

where $c_{j}$ is a positive constant.

## Ground state edge indices

In fact, we know more. Writing $\lambda_{0}=-\kappa^{2}$ we see that the ef component on each edge is a linear combination of $e^{\kappa x}$ and $\mathrm{e}^{-\kappa x}$. Since we are free to choose the edge orientation, each component has one of the following three forms,

$$
\psi_{j}^{(0)}(x)=\left\{\begin{array}{lll}
c_{j} \cosh \kappa\left(x+d_{j}\right) & \ldots & d_{j} \in \mathbb{R} \\
c_{j} e^{ \pm \kappa\left(x+d_{j}\right)} & \ldots & d_{j} \in \mathbb{R} \\
c_{j} \sinh \kappa\left(x+d_{j}\right) & \ldots & x+d_{j}>0
\end{array}\right.
$$

where $c_{j}$ is a positive constant. For further purposes we introduce edge index

$$
\sigma_{j}:=\left\{\begin{array}{rll}
+1 & \ldots & \psi_{j}^{(0)}(x)=c_{j} \cosh \kappa\left(x+d_{j}\right) \\
0 & \ldots & \psi_{j}^{(0)}(x)=c_{j} e^{ \pm \kappa\left(x+d_{j}\right)} \\
-1 & \ldots & \psi_{j}^{(0)}(x)=c_{j} \sinh \kappa\left(x+d_{j}\right)
\end{array}\right.
$$

## Ground state monotonicity

Given $\Gamma$ and $\tilde{\Gamma}$ with the same topology differing possibly by inner edge lengths, we say they belong to the same ground-state class in the indices are the same for them and all interpolating graphs.
For connected graphs we have then the following result:
Theorem [E-Jex'12]: Under the stated assumptions, consider graphs $\Gamma$ and $\tilde{\Gamma}$ of the same ground-state class. Let $H$ and $\tilde{H}$ be the corresponding Hamiltonians with the same couplings in the respective vertices, and $\lambda_{0}$ and $\tilde{\lambda}_{0}$ the corresponding ground-state eigenvalues. Suppose that $\sigma_{j} \tilde{l}_{j} \leq \sigma_{j} l_{j}$ holds all $j \in I_{\mathcal{L}}$ such that $\left|\sigma_{j}\right|=1$ and $\tilde{l}_{j}=l_{j}$ if $\sigma_{j}=0$, then $\tilde{\lambda}_{0} \leq \lambda_{0}$; the inequality is sharp if $\sigma_{j} \tilde{I}_{j}<\sigma_{j} l_{j}$ holds for at least one $j \in I_{\mathcal{L}}$.

## Proof by a scaling argument

It is sufficient to consider length change of a single edge and prove the claim locally. We pick a segment in the interior of the a fixed edge and scale it by factor $\xi$ being less than one in case of shrinking and larger than one otherwise

## Proof by a scaling argument

It is sufficient to consider length change of a single edge and prove the claim locally. We pick a segment in the interior of the a fixed edge and scale it by factor $\xi$ being less than one in case of shrinking and larger than one otherwise We have to find $\Psi \in L^{2}(\tilde{\Gamma})$ such that the Rayleigh quotient on $\tilde{\Gamma}$ satisfies

$$
\frac{\tilde{q}[\Psi]}{\|\Psi\|^{2}}<\lambda_{0}
$$

for $\xi<1$ if $\sigma_{j}=1$ and $\xi>1$ if $\sigma_{j}=-1$. We construct such a trial function $\tilde{\Psi}^{(0)}$ putting $\tilde{\Psi}^{(0)}(x)=\Psi^{(0)}(x)$ for $x \in \Gamma_{J}$, while the $j$ th component on $\tilde{J}$ is obtained by scaling

$$
\tilde{\psi}_{j}^{(0)}(\tilde{a}+\xi y)=\psi_{j}^{(0)}(a+y) \quad \text { for } \quad 0 \leq y \leq|J|
$$

## Proof by a scaling argument, continued

The Rayleigh quotient can be then easily rewritten as
where

$$
\frac{\tilde{q}\left[\tilde{\Psi}^{(0)}\right]}{\left\|\tilde{\Psi}^{(0)}\right\|^{2}}=\frac{a+b \xi^{-1}}{c+d \xi}=: f(\xi)
$$

$$
a:=q_{\Gamma_{J}}\left[\Psi^{(0)}\right], \quad b:=\int_{J}\left|\left(\psi_{j}^{(0)}\right)^{\prime}(x)\right|^{2} \mathrm{~d} x
$$

and $c, d$ are the parts of the squared norm of $\Psi^{(0)}$ corresponding to $\Gamma \backslash J$ and $J$, respectively

## Proof by a scaling argument, continued

The Rayleigh quotient can be then easily rewritten as
where

$$
\frac{\tilde{q}\left[\tilde{\Psi}^{(0)}\right]}{\left\|\tilde{\Psi}^{(0)}\right\|^{2}}=\frac{a+b \xi^{-1}}{c+d \xi}=: f(\xi),
$$

$$
a:=q_{\Gamma_{J}}\left[\Psi^{(0)}\right], \quad b:=\int_{J}\left|\left(\psi_{j}^{(0)}\right)^{\prime}(x)\right|^{2} \mathrm{~d} x
$$

and $c, d$ are the parts of the squared norm of $\Psi^{(0)}$ corresponding to $\Gamma \backslash J$ and $J$, respectively
Check that $\sigma_{j} f^{\prime}(1)=-\sigma_{j}(b c+2 b d+a d)(c+d)^{-2}>0$.
Choosing $\left\|\Psi^{(0)}\right\|=1$, we have $c+d=1$ and $a+b=\lambda_{0}$, hence the property to be checked is $-\sigma_{j}\left(\lambda_{0} d+b\right)>0$, or more explicitly

$$
-\sigma_{j}\left(\lambda_{0}\left\|\psi_{j}^{(0)}\right\|_{J}^{2}+\left\|\left(\psi_{j}^{(0)}\right)^{\prime}\right\|_{J}^{2}\right)>0
$$

## Proof by a scaling argument, continued

Using $\lambda_{0}=-\kappa^{2}$ we find for $\sigma_{j}=1$

$$
\begin{aligned}
& \int_{J}\left|\left(\psi_{j}^{(0)}\right)^{\prime}(x)\right|^{2} \mathrm{~d} x=c_{j}^{2} \kappa^{2} \int_{J}(\sinh \kappa x)^{2} \mathrm{~d} x<c_{j}^{2} \kappa^{2} \int_{J}(\cosh \kappa x)^{2} \mathrm{~d} x \\
& \quad=-\lambda_{0} \int_{J}\left|\psi_{j}^{(0)}(x)\right|^{2} \mathrm{~d} x
\end{aligned}
$$

and the opposite inequality for $\sigma_{j}=-1$ where the roles of hyperbolic sine and cosine are interchanged, which is what we have set out to prove. $\square$

## Chain graphs

Corollary: Under our assumptions, suppose that graph $\Gamma$ has no branchings, i.e. the degree of no vertex exceeds two. Then the index of any edge is non-negative being equal to one for any internal edge, hence a length increase of any internal edge moves the ground-state energy up.

## Chain graphs

Corollary: Under our assumptions, suppose that graph $Г$ has no branchings, i.e. the degree of no vertex exceeds two. Then the index of any edge is non-negative being equal to one for any internal edge, hence a length increase of any internal edge moves the ground-state energy up.

Proof: By assumption $\Gamma$ is a chain, either a loop or an open chain. Consider the latter possibility; the former can be dealt with using Krein's formula similarly as above
Obviously it is impossible to have all the indices negative; the question is whether one can have a sinh-type solution at some position within the chain

## Proof, continued

Then wavefunction components with different indices have to match somewhere. Parametrize the chain by a single variable $x$ choosing $x=0$ for the vertex in question. Let the ground-state eigenfunction be $\psi_{j}(x)=\cosh \kappa\left(d_{1}-x\right)$ for $x<0$ and $\psi_{j+1}(x)=c \sinh \kappa\left(d_{2} \mp x\right)$ for $x>0$. They are coupled by an attractive $\delta$ interaction, hence $c$ is determined by the continuity requirement and $\psi_{j+1}^{\prime}(0+)-\psi_{j}^{\prime}(0-)$ must be negative; recall that $\psi_{j}(0-)=\psi_{j+1}(0+)>0$

## Proof, continued

Then wavefunction components with different indices have to match somewhere. Parametrize the chain by a single variable $x$ choosing $x=0$ for the vertex in question. Let the ground-state eigenfunction be $\psi_{j}(x)=\cosh \kappa\left(d_{1}-x\right)$ for $x<0$ and $\psi_{j+1}(x)=c \sinh \kappa\left(d_{2} \mp x\right)$ for $x>0$. They are coupled by an attractive $\delta$ interaction, hence $c$ is determined by the continuity requirement and $\psi_{j+1}^{\prime}(0+)-\psi_{j}^{\prime}(0-)$ must be negative; recall that $\psi_{j}(0-)=\psi_{j+1}(0+)>0$ However, this expression equals $\mp \kappa \cosh \kappa\left(d_{1} \pm d_{2}\right) / \sinh \kappa d_{2}$, hence the needed match is impossible for a sinh solution decreasing towards the vertex. The same is true for the opposite order of the two solutions, and in a similar way one can check that a negative-index edge cannot neighbour with a semiinfinite one.

## Branched graphs

This is no longer true for graphs with branchings as one can illustrate on a simple example

## Branched graphs

This is no longer true for graphs with branchings as one can illustrate on a simple example


We see different regimes with transition at $\alpha_{\text {crit }} \approx-1.09088$

## Point interactions in $\mathbb{R}^{d}, d=2,3$

Consider the Hamiltonians $-\Delta_{\alpha, Y_{1}}$ mentioned in the introduction with a finite set $Y$. The problem is dimension dependent: the ground state exists for all $\alpha \in \mathbb{R}^{N}$ if $d=2$ while for $d=3$ we have to assume that $\alpha_{j}$ 's are below a critical value. In analogy with the 1D case we have

## Point interactions in $\mathbb{R}^{d}, d=2,3$

Consider the Hamiltonians $-\Delta_{\alpha, Y_{1}}$ mentioned in the introduction with a finite set $Y$. The problem is dimension dependent: the ground state exists for all $\alpha \in \mathbb{R}^{N}$ if $d=2$ while for $d=3$ we have to assume that $\alpha_{j}$ 's are below a critical value. In analogy with the 1D case we have

Theorem: Let $\sharp Y_{1}=\sharp Y_{2}$ and $y_{1, i}-y_{1, j} \leq y_{2, i}-y_{2, j}$ for all $i, j$ with $y_{1, i}-y_{1, j}<y_{2, i}-y_{2, j}$ holding for at least one pair of $i, j$, then we have $\min \sigma\left(-\Delta_{\alpha, Y_{1}}\right)<\min \sigma\left(-\Delta_{\alpha, Y_{2}}\right)$

## Point interactions in $\mathbb{R}^{d}, d=2,3$

Consider the Hamiltonians $-\Delta_{\alpha, Y_{1}}$ mentioned in the introduction with a finite set $Y$. The problem is dimension dependent: the ground state exists for all $\alpha \in \mathbb{R}^{N}$ if $d=2$ while for $d=3$ we have to assume that $\alpha_{j}$ 's are below a critical value. In analogy with the 1D case we have

Theorem: Let $\sharp Y_{1}=\sharp Y_{2}$ and $y_{1, i}-y_{1, j} \leq y_{2, i}-y_{2, j}$ for all $i, j$ with $y_{1, i}-y_{1, j}<y_{2, i}-y_{2, j}$ holding for at least one pair of $i, j$, then we have $\min \sigma\left(-\Delta_{\alpha, Y_{1}}\right)<\min \sigma\left(-\Delta_{\alpha, Y_{2}}\right)$
Proof: We employ Krein's formula approach again. The above proof was based on the fact that Green's function is decreasing with the distance between the points. This is true in $d=2,3$ too, hence the argument can be modified to the present case

## Bracketing argument

We can again use bracketing. Now we need no derivative assumption, however, one has to establish instead existence of "Neumann curve". Sometimes it is easy

## Bracketing argument

We can again use bracketing. Now we need no derivative assumption, however, one has to establish instead existence of "Neumann curve". Sometimes it is easy Example:


Call $H_{\vec{a}}$ the operator with "a half" of point interaction shifted; then if $\theta(\vec{a}, \vec{n}) \leq \frac{\pi}{2}$ we have

$$
\inf \sigma\left(H_{\vec{a}}\right) \geq \inf \sigma\left(H_{\overrightarrow{0}}\right)
$$

## A generalization: leaky graphs

The results extend to singular Schrödinger operators

$$
H_{\mu, \Gamma}=-\Delta-\mu(x) \delta(x-\Gamma)
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$ with sufficiently regular function $\mu$ and curve $\Gamma$

## A generalization: leaky graphs

The results extend to singular Schrödinger operators

$$
H_{\mu, \Gamma}=-\Delta-\mu(x) \delta(x-\Gamma)
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$ with sufficiently regular function $\mu$ and curve $\Gamma$
The core observation is that Krein's formula of the above considerations can be replaced by resolvent expression by generalized Birman-Schwinger formula [BEKŠ'94]

## A generalization: leaky graphs

The results extend to singular Schrödinger operators

$$
H_{\mu, \Gamma}=-\Delta-\mu(x) \delta(x-\Gamma)
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$ with sufficiently regular function $\mu$ and curve $\Gamma$
The core observation is that Krein's formula of the above considerations can be replaced by resolvent expression by generalized Birman-Schwinger formula [BEKŠ'94]

Using it one can prove ground-state monotonicity, e.g., for

- shifting curves $\Gamma_{1}, \Gamma_{2}$ pointwise towards each other
- "crumpling" a given curve $\Gamma$


## Open questions

The above results inspire a host of questions, e.g.

- What can one say about point-interaction isoperimetric problems with bias or various types?


## Open questions

The above results inspire a host of questions, e.g.

- What can one say about point-interaction isoperimetric problems with bias or various types?
- optimization problem for more than one point interaction in a region $\Omega \subset \mathbb{R}^{d}$


## Open questions

The above results inspire a host of questions, e.g.

- What can one say about point-interaction isoperimetric problems with bias or various types?
- optimization problem for more than one point interaction in a region $\Omega \subset \mathbb{R}^{d}$
- Can there be different ground-state classes for a fixed coupling and topology of the graph?


## Open questions

The above results inspire a host of questions, e.g.

- What can one say about point-interaction isoperimetric problems with bias or various types?
- optimization problem for more than one point interaction in a region $\Omega \subset \mathbb{R}^{d}$
- Can there be different ground-state classes for a fixed coupling and topology of the graph?
- Is there a general criterion to determine type of the quantum graph ground state?


## Open questions

The above results inspire a host of questions, e.g.

- What can one say about point-interaction isoperimetric problems with bias or various types?
- optimization problem for more than one point interaction in a region $\Omega \subset \mathbb{R}^{d}$
- Can there be different ground-state classes for a fixed coupling and topology of the graph?
- Is there a general criterion to determine type of the quantum graph ground state?
- Regular-potential analogues of the results described here, etc., etc.


## The talk was based on

[E05a] P.E.: An isoperimetric problem for point interactions, J. Phys. A: Math. Gen. A38 (2005), 4795-4802
[E05b] P.E.: Necklaces with interacting beads: isoperimetric problems, Proceedings of the "International Conference on Differential Equations and Mathematical Physics" (Birmingham 2005), AMS "Contemporary Mathematics" Series, vol. 412, Providence, R.I., 2003; pp. 141-149.
[EHL05] P.E., E. Harrell, M. Loss: Global mean-chord inequalities with application to isoperimetric problems, Lett.Math.Phys. 75 (2006), 225-233; addendum 77 (2006), 219
[EM08] P.E., A. Mantile: On the optimization of the principal eigenvalue for single-centre point-interaction operators in a bounded region, J. Phys. A: Math. Gen. A41 (2008), 065305
[EJ12] P.E., I. Jex: On the ground state of quantum graphs with attractive $\delta$-coupling, Phys. Lett. A376 (2012), 713-717.

## Thank you for your attention!

