
Singular Schrödinger operators and Robin billiards:
geometry, spectra and asymptotic expansions

Pavel Exner

Doppler Institute
for Mathematical Physics and Applied Mathematics

Prague

in collaboration with Jussi Behrndt, Jaroslav Dittrich, Michal Jex, Sylwia Kondej,
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Leaky quantum graphs and their generalizations

The first main object of interest in this talk are singular Schrödinger
operators that can formally written as

Hα,Γ = −∆− αδ(x − Γ) , α > 0 ,

in L2(Rn), where Γ is a graph understood as a subset of Rn.

Motivation: (a) Interesting mathematical objects, in particular, since
their spectral properties reflect the geometry of Γ
(b) an alternative model of quantum graphs and generalized graphs
with the advantage that tunneling between edges is not neglected

Here we shall consider the simplest situation where Γ is a smooth
manifold in Rn having in mind three important cases:

curves in R2, surfaces in R3, and curves in R3

We can regard them as waveguides of a sort, with a finite size of the
transverse localization, and building blocks of more complicated structures
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The talk outline

We will be concerned with the discrete spectra of such operators, in
particular, with asymptotic expansions of the eigenvalues with respect to
the parameters of the model.

Setting the scene: definition of the operators

Discrete spectrum induced by the singular interaction

Strong coupling eigenvalue asymptotics
I Closed manifolds
I Curves with ends
I Surfaces with a boundary
I δ′ interactions

A digression: Robin billiard counterparts

A geometric perturbation asymptotics

Asymptotic distribution of eigenvalues

Some open questions
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Definition of the Hamiltonian
The easiest way to introduce a δ-interaction in the case codim Γ = 1
is to employ the quadratic form,

ψ 7→ ‖∇ψ‖2
L2(Rd ) − α

∫
Γ
|ψ(x)|2dx ,

which is closed and below bounded in W 1,2(Rd), d = 2, 3; the second
term makes sense in view of the standard Sobolev embedding.

For smooth manifolds we can use an alternative definition by boundary
conditions: Hα,Γ acts as −∆ on functions from W 2,2

loc (Rd \ Γ), which are
continuous and exhibit a normal-derivative jump,

∂ψ

∂n
(x)

∣∣∣∣
+

− ∂ψ

∂n
(x)

∣∣∣∣
−

= −αψ(x)

Moreover, for codim Γ = 1 one can consider other, more singular
interactions. The prime example is a δ′-interaction supported by Γ in
which the roles of ψ and ∂ψ

∂n are switched; more about that a bit later.
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The case codim Γ = 2

This is more complicated but one can use again boundary conditions,
appropriately modified. Furthermore, for an infinite curve Γ corresponding
to a map γ : R→ R3 we have to assume in addition that there is a
tubular neighbourhood of Γ which does not intersect itself

We employ Frenet’s frame (t(s), b(s), n(s)) for Γ. Given ξ, η ∈ R, we set
r = (ξ2+η2)1/2 and define family of “shifted” curves

t

b

n

Γ
Γr

Γr ≡ Γξηr := { γr (s) ≡ γξηr (s) := γ(s) + ξb(s) + ηn(s) }
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The case codim Γ = 2, continued

The restriction of f ∈W 2,2
loc (R3 \ Γ) to Γr is well defined for small r ;

we say that f ∈W 2,2
loc (R3 \ Γ) ∩ L2(R3) belongs to Υ if

Ξ(f )(s) := − lim
r→0

1

ln r
f �Γr

(s) ,

Ω(f )(s) := lim
r→0

[
f �Γr

(s) + Ξ(f )(s)ln r
]
,

exist a.e. in R, are independent of the direction 1
r (ξ, η), and define

functions from L2(R).

Then the operator Hα,Γ has the domain

{ g ∈ Υ : 2παΞ(g)(s) = Ω(g)(s) }
and acts as

−Hα,Γf = −∆f for x ∈ R3 \ Γ

Note that absence of the interaction corresponds α =∞ !
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Spectrum of Hα,Γ

Consider first the δ-interaction with a finite support, |Γ| <∞.

In this case it is easy to check that σess(Hα,Γ) = R+ holds.

On the other hand, the existence of a negative discrete spectrum is
dimension dependent. For d = 2 bound states exist whenever |Γ| > 0, in
particular, we have a weak-coupling expansion [Kondej-Lotoreichik’14]

λ(α) =
(
CΓ + o(1)

)
exp

(
− 4π

α|Γ|

)
as α|Γ| → 0+

On the other hand, for d = 3 the singular coupling must exceed a critical
value. As an example, let Γ be a sphere of radius R > 0 in R3, then by
[Antoine-Gesztesy-Shabani’87] we have

σdisc(Hα,Γ) 6= ∅ iff αR > 1
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Critical coupling for codim Γ = 2

The interaction is more singular but still it behaves with respect to weak
coupling as a regular potential in three dimensions:

Theorem (E-Kondej’08)

For a fixed α ∈ R there exists a Lα > 0 such that the Hα,Γ has no discrete
spectrum for |Γ| < Lα. On the other hand, if |Γ| > 2π e2πα−ψ(1), then
there is at least one bound state.

The existence is easy, one has to consider a straight Γ and use Dirichlet
bracketing. The nonexistence is a bit more involved and requires to
estimate the norm of the generalized Birman-Schwinger operator.
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The δ′ interaction in the plane
This case is more involved because the answer depends on the topology
of Γ. In particular, it is easy to see that the corresponding Hamiltonian
Hβ,Γ has always a discrete spectrum if Γ is a loop.

On the other hand, consider nonclosed monotone curves, piecewise C 1,
i.e. those one can parametrize by a piecewise C 1 map ϕ : (0,R)→ R as

Γ =
{
x0 + r(cosϕ(r), sinϕ(r)) : r ∈ (0,R)

}
Theorem (Jex-Lotoreichik’16)

We have σ(Hβ,Γ) ⊂ R+ if β > 2πr
√

1 + (rϕ′(r))2 holds for all r ∈ (0,R).

Recall that large β means weak coupling for the δ′ interaction. The proof
is based on a minimax estimate and the claim extends to a wider class of
curves obtained form the above on by linear fractional transformations.

Question: Is σ(Hβ,Γ) ⊂ R+ for any non-closed Γ and β large enough?
According to Monique Dauge, the answer seems to be positive.
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δ interaction supported by infinite curves
A geometrically induced spectrum may exist even if Γ is infinite and
inf σess(Hα,Γ) < 0. As an example, consider a non-straight, piecewise
C 1-smooth curve Γ : R→ R2 parameterized by its arc length, assuming

|Γ(s)− Γ(s ′)| ≥ c |s − s ′| holds for some c ∈ (0, 1)

Γ is asymptotically straight: there are d > 0, µ > 1
2

and ω ∈ (0, 1) such that

1− |Γ(s)− Γ(s ′)|
|s − s ′|

≤ d
[
1 + |s + s ′|2µ

]−1/2

in the sector Sω :=
{

(s, s ′) : ω < s
s′ < ω−1

}
Theorem (E-Ichinose’01)

Under these assumptions, σess(Hα,Γ) = [−1
4α

2,∞) and Hα,Γ has at least
one eigenvalue below the threshold −1

4α
2.
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Geometrically induced bound states, continued

The result is obtained via (generalized) Birman-Schwinger principle
regarding the bending a perturbation of the straight line

the crucial observation is that – in view of the 2D free resolvent
kernel properties – this perturbation is sign definite and compact

The analogous result holds for curves in R3, under slightly stronger
regularity hypotheses, with −1

4α
2 replaced by the corresponding 2D

point-interaction eigenvalue

For curved surfaces Γ ⊂ R3 such a result is proved at present in the
strong coupling asymptotic regime only

Implications for graphs: let Γ̃ ⊃ Γ in the set sense, then Hα,Γ̃ ≤ Hα,Γ.
If the essential spectrum threshold is the same for both graphs –
which is often easy to establish – and Γ fits the above assumptions,
we have σdisc(Hα,Γ) 6= ∅ by the minimax principle
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Strong δ interaction asymptotics
If the attraction is strong the motion is strongly localized transversally
and the geometry of Γ is manifested. Again, we exclude self-intersections.

Consider a a C 4 smooth curve in R2 without ends, either infinite or a
closed loop. In the limit α→∞ the j-th eigenvalue of Hα,Γ behaves as

λj(α) = −α
2

4
+ µj +O(α−1 lnα)

where µj is the j-th eigenvalue of

SΓ = − d

ds2
− 1

4
κ(s)2

on L2((0, |Γ|)) for dim Γ = 1, where κ is curvature of Γ.

Under similar hypotheses on smoothness and absence of boundaries, the
claim extends to higher dimensions, specifically

for a curve in R2 we replace −α2

4 by εα = −4 e2(−2πα+ψ(1))

for a surfaces in R3 we replace the above S by SΓ = −∆Γ + K −M2,
where −∆Γ is Laplace-Beltrami operator on Γ and K ,M, respectively,
are the corresponding Gauss and mean curvatures
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Strong δ interactions, continued

There are various extensions of these results including, in particular,
asymptotic expansions for periodic manifolds, connected or disconnected,
or loops pierced by a magnetic flux – cf. [Ex’08] for a review

How these expansions are demonstrated: the argument has three essential
ingredients. The first is Dirichlet-Neumann bracketing at a boundary Σa of
a tubular neighbourhood of Γ of radius a, here sketched for a loop in R3

Σa

Γ

D,N

We have to care about the tube part only because the Dirichlet/Neumann
Laplacian in the remaining part of Rd is positive
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Strong δ interactions, continued
The second step we use inside the tube natural curvilinear coordinates,
sometimes named Fermi and estimate the coefficients to squeeze the
operator between those with separated variables. For a curve in R2, e.g.,
they are

H̃±a,α = U±a ⊗ 1 + 1⊗ T±a,α ,
where

U±a = −(1∓ a‖κ‖∞)−2 d2

ds2
+ V±(s)

with PBC in the case of a loop, where V−(s) ≤ 1
4κ

2(s) ≤ V+(s) with an
O(a) error. In other words, the U±a are O(a) close to SΓ.

The transverse operators are associated with the forms

t+
a,α[f ] =

∫ a

−a
|f ′(u)|2 du − α|f (0)|2

and t−a,α[f ] = t−a,α[f ]− ‖k‖∞(|f (a)|2 + |f (−a)|2) defined on W 1,2
0 (−a, a)

and W 1,2(−a, a), respectively.

P. Exner: Singular Schrödinger operators ... Operators, Operator Families ... May 16, 2016 - 14 -



Strong δ interactions, continued

Next we observe that for large α the presence of the boundaries causes
just an exponentially small error:

Lemma

There is a positive cN such that T±α,a has for α large enough a single
negative eigenvalue κ±α,a satisfying

−α
2

4

(
1 + cN e−αa/2

)
< κ−α,a < −

α2

4
< κ+

α,a < −
α2

4

(
1− 8 e−αa/2

)

I the final step relate the tube radius with the coupling constant choosing
a = 6α−1 lnα which yields the result

In the other dimension/codimension cases the argument is analogous. If
codim Γ = 2 the transverse operator describes the Dirichlet/Neumann disc
of radius r with the point interaction in the centre; the error is again
exponentially small as α→ −∞.
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Curves with ends
We have seen that the described method yields for finite or semifinite
curves gives the asymptotics for the number of bound states, but fails to
do that for individual eigenvalues — the difference between Dirichlet and
Neumann conditions imposed on the comparison operator is too big.

One conjectures that the ‘correct’ boundary conditions are Dirichlet. For
a finite planar curve we can prove it:

Theorem (E-Pankrashkin’14)

Suppose γ is a C 4 smooth open arc in R2 of length L with regular ends;
then the strong-coupling limit of the j-th negative eigenvalue of Hα,Γ is

λj(α) = −1

4
α2 + µj +O

( lnα

α

)
as α→ +∞

where µj is the j-th eigenvalue of the operator − d2

ds2 − 1
4κ(s)2 on L2(0, L)

with Dirichlet b.c., where κ(s) is as before the signed curvature of Γ at
the point s ∈ (0, L).
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Curves with ends, continued

The proof starts again from bracketing estimates but no it has to be
modified. The upper (Dirichlet) bound works as before, while for the lower
(Neumann) we use the fact that Γ has by assumption regular ends, i.e.
can be extended smoothly in the vicinity of the endpoints.

This allows us to take an ‘extended’
tubular neighbourhood, at each endpoint
longer by a := 6

α lnα. Now we loose the
advantage of variable separation and the
task is to show that the Neumann con-
dition imposed at this distance from the
curve end will have an effect which can
be included into the error term. An extended neighbourhood
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Curves with ends, continued

The way to find such an estimate is to employ again the (generalized)
Birman-Schwinger principle.

It says, in particular, that the eigenfunction of Hα,Γ corresponding to
an eigenvalue λj = −κ2

j can be written – see, e.g. [Posilicano’04] – as

ψj(x) =
1

2π

∫
Γ
K0(κj |x − Γ(s)|) fj(s) ds ,

where fj is the corresponding eigenfunction of the Birman-Schwinger
operator acting on L2(Γ,ds).

The claim of the theorem then follows from simple geometric estimates
combined with the exponential decay of the Macdonald function K0 at
large distances. �
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Curves with ends, codim Γ = 2

A similar result can be obtained for a curve arc in R3:

Theorem (E-Kondej’16)

Let Hα,Γ correspond to a finite, non-closed C 4 smooth curve in R3 with
regular ends having length L and the global Frenet frame.
(i) The cardinality of the discrete spectrum behaves asymptotically as

]σdisc(Hα,Γ) =
L

π
(−εα)1/2(1 +O(eπα)) as α→ −∞ .

(ii) Furthermore, the jth eigenvalue of Hα,Γ has the expansion

λj(Hα,Γ) = εα + µj +O(eπα) for α→ −∞ ,

where µj corresponds to same the operator S on L2(0, L) as above.

Proof is technically slightly more demanding but it follows the same basic
idea as in the previous case. �
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Surface with a boundary
Let Γ ⊂ R3 be now a C 4-smooth relatively compact orientable surface
with a compact Lipschitz boundary ∂Γ. In addition, we suppose that Γ
can be extended through the boundary, i.e. that there exists a larger
C 4-smooth surface Γ2 such that Γ ⊂ Γ2.

As in the case of surfaces without a boundary we consider the operator
SΓ = −∆D

Γ + K −M2, where −∆D
Γ is Laplace-Beltrami operator on Γ,

now with Dirichlet condition at ∂Γ, and K ,M, respectively, are the
corresponding Gauss and mean curvatures.

We denote eigenvalues of this operator as µDj , j ∈ N, then we have

Theorem (Dittrich-E-Kühn-Pankrashkin’16)

Let Γ be as above, then for any fixed j ∈ N we have

λj(Hα,Γ) = −α
2

4
+ µDj + o(1) as α→∞ .

If, in addition, Γ has a C 2 boundary, then the remainder estimate can be
replaced by O(α−1 lnα).

P. Exner: Singular Schrödinger operators ... Operators, Operator Families ... May 16, 2016 - 20 -



Surface with a boundary, comments on the proof

As before, the upper bound is easy because one can take a layer
neighbourhood of the surface Γ itself and impose the ‘right’, that is,
Dirichlet conditions at its boundary. Using then an estimate with
separated variables, we get the result.

The lower bound can be done in two different ways. One is to construct
an explicit family of operators – cf. [Dittrich-E-Kühn-Pankrashkin’16] for
details – using the projection to the lowest transverse mode and its
orthogonal complement, and to employ its monotonicity to prove the
convergence. This gives the result but without an explicit error term; the
advantage is that it requires only the Lipshitz property for ∂Γ.

An alternative is to use the same idea as for the curves with ends based
on Birman-Schwinger principle. This yields an error term, but since the
boundary is not a more complicated object now, we have to require a C 2

smoothness in order to be able to perform the needed geometric estimates.
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Planar curves supporting a δ′ interaction

If codim Γ = 1 the manifold can also support more singular interactions.
One possibility is the δ′-interaction. Using the curvilinear coordinates (s, u)
we can define the corresponding operator Hβ,Γ through the quadratic form

hβ,Γ[ψ] = ‖∇ψ‖2 − β−1

∫
Γ
|ψ(s, 0+)− ψ(s, 0−)|2 ds

defined on functions ψ ∈ H1(R2 \ Γ) as ψ(s, u).

Alternatively, one can use boundary conditions: the operator acts as
Laplacian outside the interaction support,

(Hβ,Γψ)(x) = −(∆ψ)(x)

for x ∈ R2 \ Γ, with the domain D(Hβ,Γ) = {ψ ∈ H2(R2 \ Γ) |
∂nΓ

ψ(x) = ∂−nΓ
ψ(x) =: ψ′(x)|Γ, −βψ′(x)|Γ = ψ(x)|∂+Γ − ψ(x)|∂−Γ},

where nΓ is the outer normal to Γ and ψ(x)|∂±Γ are the appropriate traces.

Note that the strong-coupling limit in this case is β → 0+.
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Strong coupling on a δ′ loop

Theorem (E-Jex’13)

Let Γ be a C 4-smooth closed curve without self-intersections. Then
σess(Hβ,Γ) = [0,∞) and to any n ∈ N there is a βn > 0 such that
#σdisc(Hβ,Γ) ≥ n holds for β ∈ (0, βn). Denoting by λj(β) the j-th
eigenvalue of Hβ,Γ, counted with multiplicity, we have the expansion

λj(β) = − 4

β2
+ µj +O

(
β| lnβ|

)
, j = 1, . . . , n ,

valid as β → 0+, where µj is the j-th eigenvalue of the comparison
operator S, the same as before. Moreover, for the counting function
β 7→ #σd(Hβ,Γ) we have

]σdisc(Hβ,Γ) =
2L

πβ
+O(| lnβ|) as β → 0+ .

A similar result holds for infinite curves, cf. [Jex’14], and for strong δ′

interaction supported by surfaces without boundary, cf. [E-Jex’14]
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A digression: Robin ‘billiards’

Let Ω be an open, simply connected set in R2 with a closed C 4 Jordan
boundary ∂Ω = Γ : [0, L] 3 s 7→ (Γ1, Γ2) ∈ R2, with γ : [0, L]→ R being
the signed curvature of Γ. We consider the boundary-value problem

−∆f = λf in Ω ,
∂f

∂n
= βf on Γ ,

with β > 0, where ∂
∂n is the outward normal derivative.

The corresponding self-adjoint operator Hβ is associated with the
quadratic form

qβ[f ] = ‖∇f ‖2
L2(Ω) − β

∫
Γ

|f (x)|2ds

defined on Dom(qβ) = H1(Ω).

As before we consider S = − d2

ds2 − 1
4γ

2(s) on L2(0, L) with periodic b.c.,

and furthermore, we denote γ∗ = max
[0,L]

γ(s) and γ∗ = min
[0,L]

γ(s).
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A large parameter asymptotics
Since the Robin problem can be regarded as a ‘one-sided version’ of
our singular Schrödinger operators, one can try to employ the same
technique. Its naive use, however, yields only a much weaker result,

−
(
β +

γ∗

2

)2
+ µn +O(

log β

β
) ≤ λn(β) ≤ −

(
β +

γ∗
2

)2
+ µn +O(

log β

β
).

The reason is that passing to curvilinear coordinates in the vicinity of the
boundary we get in the one-sided case a boundary term containing γ. If
we want estimates with separated variables we have to employ rough
bounds with γ∗ and γ∗. However, the lower bound can be improved by a
variational technique; this yields at least the first term in the expansion:

Theorem (E-Minakov-Parnovski’14)

In the asymptotic regime β → +∞ the j-th eigenvalue behaves as

λj(β) = −β2 − γ∗β +O
(
β2/3

)
.
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A proof sketch
We employ variational estimate with trial functions

ϕ̂(s, u) = χε(s)
(

e−αu − e−2aα+uα
)
,

where χε is a smooth function on [0, L] with the support located in an
ε-neighborhood of a point s∗ in which γ(s∗) = γ∗.

We consider functions of the form

χε(s) := χ
(s − s∗ + ε

2ε

)
,

where χ(x) is a fixed smooth function on R supported in the interval (0, 1).

Optimizing the bound by choosing ε = β−1/3, we get

bDa,β[ϕ̂]

‖ϕ̂‖2
L2(0,L)

≤ −
(
β +

γ∗

2

)2
+O

(
β2/3

)
.
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Proof sketch, continued

This proves the result for the ground state eigenvalue λ1(β).

For the higher eigenfunctions we proceed in the same way, using trial
functions of the form

ϕ̂j(s, u) = χε,j(s)
(
e−αu − e−2aα+uα

)
,

where the longitudinal part is constructed from a shifted function χ, for
instance

χε,j(s) := χ
(s − s∗ + (2j − 1)ε

2ε

)
.

The estimates remain essentially the same, up to the values of the
constants involved. By construction, the functions χε,j with different
values of j have disjoint supports, hence ϕ̂j is orthogonal to ϕ̂i ,
i = 1, . . . , j − 1, and by the min-max principle the eigenvalue λj(β)
has again the stated upper bound. �
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Improvements and generalizations

The technique can be further refined using quasimodes for the lower
bounds. Moreover, the result can be extended to Robin domains in Rd :

Theorem (Pankrashkin-Popoff’15)

Let Hβ be the Robin Laplacian in open, connected domain Ω ⊂ Rd ,
d ≥ 2. Its j-th the eigenvalue behaves in the limit β →∞ as

λj(β) = −β2 + Ej(−∆S − β(d − 1)H +O
(

log β
)
,

where −∆S is the Laplace-Beltrami operator on S := ∂Ω and H is the
mean curvature of the boundary, (d − 1)H = κ1 + · · ·+ κd−1. In
particular, if Ω has a compact C 2 boundary, then

λj(β) = −β2 − β(d − 1)Hmax + o(β) .

The error term can be further improved if ∂Ω is more regular.
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Improvements and generalizations
Note that for d = 3 the difference between the one- and two-sided
situation is seen: in the Robin case the ‘effective potential’ is given by the
mean curvature only, while for Schrödinger operators it is a combination of
Gauss and mean curvatures, K −M2.

The error term in the above result is still too large to allow to distinguish
individual eigenvalues. This can be changed, for d = 2 at least, if stronger
assumptions are imposed:

Theorem (Helffer-Kachmar’15)

Consider Ω ⊂ R2 with a C∞ smooth boundary, possibly infinite. Suppose
that the curvature κ attains its maximum κmax at a unique point, and the
maximum is non-degenerate, i.e. k2 := −κ′′(0) > 0. Then for any positive
n there exists a sequence {ζj ,n} such that, for any positive M, the n-th
eigenvalue has for β →∞ the following asymptotic expansion

λn(β) = −β2 − κmaxβ + (2n− 1)

√
k2

2
|β|1/2 +

M∑
j=0

ζj ,n|β|
1−j

4 + |β|
1−M

4 o(1)
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A detour from the detour

We note that a part of theses results can be extended to nonlinear
eigenvalue problems, specifically to the question about the spectral bottom
of the p-Laplacian with Robin boundary conditions,

−∆pu = Λ|u|p−2u in Ω , |∇u|p−2∂u

∂n
= β|u|p−2u at ∂Ω ,

where ∆p is the p-Laplacian, ∆pu = ∇ · (|∇u|p−2∇u) and n is the
outer unit normal. We ask about the smallest Λ satisfying the above
equation, i.e.

Λ(Ω, p, β) := inf
06=u∈W 1,p(Ω)

∫
Ω |∇u|

p dx − β
∫
∂Ω |u|

p dσ∫
Ω |u|p dx

.
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The detour from the detour, continued

We call a domain Ω ⊂ Rν , ν ≥ 2, admissible if

the boundary ∂Ω is C 1,1, i.e. is locally the graph of a function
with a Lipschitz gradient

the principal curvatures of ∂Ω are essentially bounded

the map ∂Ω× (0, δ) 3 (s, t) 7→ s − tn(s) ∈ {x ∈ Ω : dist(x , ∂Ω) < δ}
is bijective for some δ > 0

The mean curvature H of ∂Ω is, as above, the arithmetic mean of the
principal curvatures, and we set Hmax ≡ Hmax(Ω) := sup essH

Theorem (Kovǎŕık-Pankrashkin’16)

For any admissible domain Ω ⊂ Rν , ν ≥ 2 and any p ∈ (1,∞) we have

Λ(Ω, p, β) = −(p − 1)βp/(p−1) − β(ν − 1)Hmax(Ω) + o(β)

as β →∞.

P. Exner: Singular Schrödinger operators ... Operators, Operator Families ... May 16, 2016 - 31 -



Back to the main topic: weakly bent curves
The strong coupling regime is not the only asymptotic problem the
leaky structure can offer. Let us turn to geometric perturbations.

         

````````̀

   
  
β

The simplest example is a broken line Γ = Γβ with a small angle β.

By the above mentioned result the Hamiltonian has an eigenvalues, a
single one for small β, and by a simple scaling argument together with
an analogy with bent Dirichlet tubes lead us to conjecture that

λ(HΓβ ) = −1

4
α2 + aβ4 + o(β4)

with some a < 0 for β → 0+.

The question now is (a) what is the coefficient a, and (b) whether a
similar formula holds for more general slightly bent curves.
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Weakly bent curves, continued

Let us first specify the class of curves we shall consider: Γ will be a
continuous and piecewise C 2 infinite planar curve without self-intersections
parametrized by its arc length, i.e. the graph of a piecewise C 2-smooth
function Γ : R→ R2 such that |γ̇(s)| = 1. Moreover,

there exists a c ∈ (0, 1) such that |Γ(s)− Γ(s ′)| ≥ c |s − s ′| holds
for s, s ′ ∈ R,

there are real numbers s1 > s2 and straight lines Σi , i = 1, 2, such
that Γ coincides with Σ1 for s ≥ s1 and with Σ2 for s ≤ s2,

one-sided limits of γ̇ exists at the points where the function γ̈ is
discontinuous.

In particular, the signed curvature k(s) = γ̇2(s)γ̈1(s)− γ̇1(s)γ̈2(s) is
piecewise continuous and the one-sided limits of γ̇, i.e. tangent vectors
to the curve at the points of discontinuity exist. We denote them as
Π = {pi}]Πi=1 and shall speak of them as of vertices. Consequently, Γ
consists of ]Π + 1 simple arcs or edges, each having as its endpoints
one or two of the vertices.
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Weakly bent curves, continued
The curvature integral describes bending of the curve. Specifically,
the angle between the tangents at the points Γ(s) and Γ(s ′) equals

φ(s, s ′) =
∑

pi∈(s,s′)

c(pi ) +

∫
(s,s′)\Π

k(ζ) dζ ,

where c(pi ) ∈ (0, π) is the exterior angle of the two adjacent edges
of Γ meeting at the vertex pi .

Alternatively, we can understand φ(s, s ′) as the integral over the interval
(s, s ′) of k̃ : k̃(s) = k(s) +

∑
p∈Π c(p) δ(s − p). By assumption k , k̃ are

compactly supported, thus φ(s, s ′) has the same value for all s < s2 and
s1 < s ′ which we shall call the total bending.

One can reconstruct Γ from k̃ , uniquely up to Euclidean transformations,

Γ(s) =

(∫ s

0
cosφ(u, 0) du ,

∫ s

0
sinφ(u, 0) du

)
.
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Weakly bent curves, continued

Now we introduce the one-parameter family of ‘scaled’ curves Γβ,

Γβ(s) =

(∫ s

0
cosβφ(u, 0) du ,

∫ s

0
sinβφ(u, 0)) du

)
, |β| ∈ (0, 1] .

Note that depending on (non)vanishing of the total bending of Γ the limit
β → 0+ may have a different meaning, say ‘straightening’ or ‘flattening’.

Next we define an integral operator A : L2(R)→ L2(R) through its kernel,

A(s, s ′) :=
α4

32π
K ′0

(α
2
|s − s ′|

)(
|s − s ′|−1

(∫ s

s′
φ

)2

−
∫ s

s′
φ2

)
.

Lemma

Under the stated assumptions, we have
∫
R×RA(s, s ′) ds ds ′ <∞.
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Weakly bent curves, the result

Now we are in position to state the weak-bending result.

Theorem (E-Kondej’16)

There is a β0 > 0 such that for any β ∈ (−β0, 0)∪ (0, β0) the operator HΓβ

has a unique eigenvalue λ(HΓβ ) which admits the asymptotic expansion

λ(HΓβ ) = −α
2

4
−
(∫

R×R
A(s, s ′) ds ds ′

)2

β4 + o(β4) .

Proof is laborious but the idea is simple. It is based again on application
of the Birman-Schwinger principle which says that

−κ2 ∈ σd(HΓβ ) ⇔ ker(I − αQΓβ (κ)) 6= ∅ ,
where QΓβ (κ) is the integral operator with the kernel

QΓβ (κ; s, s ′) =
1

2π
K0(κ|γβ(s)− γβ(s ′)|) ;

moreover, we have dim ker(HΓβ + κ2) = dim ker(I − αQΓβ (κ)).
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Weakly bent curves, continued

One has to compare with the Birman-Schwinger operator corresponding
to the straight line which has the kernel K0

(
κ
2 |s − s ′|

)
in the vicinity of

the point κ = 1
2α corresponding to threshold of the essential spectrum.

Let us return to the broken-line example: in this case A(s, s ′) can be
found easily, it vanishes if s, s ′ have the same sign, being otherwise

A(s, s ′) =
α4

32π
K ′0

(α
2
|s − s ′|

) |ss ′|
|s − s ′|

χΩ(s, s ′) ,

where χΩ(·, ·) is the characteristic function of the set Ω, the union of
the second and fourth quadrant. The integral of A(s, s ′) over the both
variable can be computed explicitly giving

−1
4α

2 − λ(HΓβ )

−1
4α

2
= − 1

9π2
β4 + o(β4) .
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Systems with infinite discrete spectrum

One can encounter still another type of asymptotic formulæ in situations
when ]σdisc(Hα,Γ =∞. The eigenvalues then typically accumulate at the
bottom of the essential spectrum and one can ask how fast this
accumulation proceeds for a given geometry.

The first question is whether an infinite discrete spectrum may exist. In
examples such as the the broken line in the plane Γβ considered above it
is not the case: the number of the bound state can be made large for a
sharp break, π − β sufficiently small, but it remains finite.

Nevertheless, examples of infinite discrete spectrum exist. This happens,
for instance if d = 3 and Γ = Cθ is the conical surface of the opening angle
2θ, in other words

Cθ :=
{

(x , y , z) ∈ R3 : z := cot(θ)
√

x2 + y2
}
, θ ∈ (0, 1

2π) .
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The conical layer spectrum

Theorem (Behrndt-E-Lotoreichik’14)

For any θ ∈ (0, 1
2π) and α > 0 the essential spectrum of the operator

Hα,Cθ is [−1
4α

2,∞), the discrete spectrum is infinite and accumulates
to −1

4α
2.

Proof sketch: The argument proceeds in several steps
Using the cylindrical symmetry one can perform a partial-wave
decomposition and observe that only the s-wave component is
important, the spectra of the components with nonzero angular
momentum are contained in [−1

4α
2,∞).

The problem is thus reduced to two dimensions in a halfplane,
(r , z) ∈ R+ × R, using reduced wave functions, ψ(r , ϕ, z) = ω(r ,z)√

2πr
.

We introduce rotated coordinates, s along the halfline representing
the surface and t perpendicular to it.
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Proof sketch, continued

To check that σess(Hα,Cθ) ⊃ [−1
4α

2,∞) we construct a suitable Weyl
sequence. It can be done, e.g., using

ωn,p(s, t) := 1√
n

(
χ1( s

n ) exp(ips)
)(
χ2( t

n ) exp(−α
2 |t|)

)
,

where χ1, χ2 are suitable C∞0 functions.

The check the opposite inclusion, one uses Neumann bracketing
taking a symmetric surface layer neighbourhood of the width 2

√
n

cut at a distance from the cone tip, s > n. Its complement does not
contribute to the essential spectrum; choosing n large enough, one
can make the influence of the term −(4r(z))−1 in the Hamiltonian
small and to prove in this way that inf σess(Hα,Cθ) ≥ −1

4α
2 − ε holds

for any ε > 0 which yields the result.
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Proof sketch, continued

For the discrete spectrum part we chose suitable trial functions, e,g.,

ωn(s, t) := 1
nχ1( s−n

n2 )χ2( t√
n

) exp(−α
2 |t|) ∈ H1

0 (R2
+) ,

where χ1, χ2 are again suitable C∞0 functions.

Choosing the indices n appropriately, we can construct a sequence
of functions with disjoint supports and prove in this way that the
discrete spectrum is infinite and the eigenvalues λk satisfy

λk ≤ −
α2

4
− γ(θ)

n4
k

, k ∈ N ,

where γ(θ) > 0 with nk+1 := n2
k + nk and n1 = N with N ∈ N

sufficiently large. �

Remarks: • The claim remains true if the cone is locally deformed.

• σdisc(Hα,Cθ) = ∅ holds if d ≥ 4, cf. [Lotoreichik–Ourmières-Bonafos’16].
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Accumulation asymptotics

We denote conventionally NE (T ) = ]{k ∈ N : λk(T ) < E}, i.e. the
counting function of eigenvalues of the operator T below the threshold
of its essential spectrum.

Theorem (Lotoreichik–Ourmières-Bonafos’16)

For the conical layer the discrete spectrum accumulates as

N
−1

4α
2 − E

(Hα,Cθ) ∼ cot θ

4π
| lnE | , E → 0+ .

Proof idea is to estimate the discrete spectrum from above and below
using a suitable one-dimensional operator, in this case − d2

dx2 − 1
4 sin2 θ

1
x2

on the interval (1,∞) the spectral asymptotics of which is known. This
is combined with the estimates on the δ-interaction eigenvalue on an
interval with Dirichlet or Neumann boundary similar to those used in
the discussion of the strong coupling asymptotics above.
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Open questions

In my view, the main challenge concerns the strong-coupling behavior
in situations with less regularity, in the first place such a behavior for
Hamiltonians of branched leaky graphs.

Conjecture: In the ‘two-sided’ situation the strong coupling limit of broken
curves/branched graphs behaves similarly to shrinking Dirichlet networks
or tubes, i.e. a nontrivial limit with the natural energy renormalization can
be obtained provided the system exhibits a threshold resonance.

The ‘one-sided’ case is different: recall also that if the ‘attractive’ Robin
billiard has corners of angles 2θj , the ground state behaves in the limit
β →∞ as −β2 maxj

(
sin−2 θj

)
– cf. [Levitin-Parnovski’08]. Tunneling

between the corners was discussed recently by Helffer and Pankrashkin.

Other problems: for periodic manifolds: absolute continuity of the
spectrum not proven generally, strong-coupling asymptotic behavior of
gaps, magnetic fields: how do they influence curvature-induced bound
states? We conjecture they may destroy them. Furthermore, where does
the mobility edge lies if Γ is randomized?, etc., etc.
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as well as the other papers mentioned in the course of the presentation.
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It remains to say

Thank you for your attention!
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