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Quantum graphs

The idea of investigating quantum particles confined to a
graph is rather old. It was first suggested by L. Pauling and
worked out by Ruedenberg and Scherr in 1953 in a model
of aromatic hydrocarbons

Using “textbook” graphs such as

�� HH

HH ��

�� HH

HH ��

�� HH

HH ��

q q
q q

with “Kirchhoff” b.c. in combination with Pauli principle, they
reproduced the actual spectra with a . 10% accuracy
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Quantum graph concept
The beauty of theoretical physics resides in permanent
oscillation between physical anchoring in reality and
mathematical freedom of creating concepts
As a mathematically minded person you can imagine
quantum particles confined to a graph of arbitrary shape
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��q q q q Hamiltonian: − ∂2

∂x2

j

+ v(xj)

on graph edges,
boundary conditions at vertices

and, lo and behold, this turns out to be a practically
important concept – after experimentalists learned in the
last 10-15 years to fabricate tiny graph-like structure for
which this is a good model
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Remarks
Most often one deals with semiconductor graphs
produced by combination of ion litography and chemical
itching. In a similar way metallic graphs are prepared

Recently carbon nanotubes became a building material,
after branchings were fabricated cca 3-4 years ago: see
[Papadopoulos et al.’00], [Andriotis et al.’01], etc.

Moreover, from the stationary point of view a quantum
graph is also equivalent to a microwave network built of
optical cables – see [Hul et al.’04]

In addition to graphs one can consider generalized
graphs which consist of components of different
dimensions, modelling things as different as
combinations of nanotubes with fullerenes, scanning
tunneling microscopy, etc.
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More remarks
The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved by the method
based on s-a extensions which everybody in this
audience knows (or am I wrong?)

Here we consider Schrödinger operators on graphs,
most often free, vj = 0. Naturally one can external
electric and magnetic fields, spin, etc.

Graphs can support also Dirac operators, see
[Bulla-Trenckler’90], although this remains so far a
theoretical possibility only.

The graph literature is extensive; let us refer just to a
review [Kuchment’04] and other references in the recent
topical issue of “Waves in Random Media”
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Vertex coupling
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Consider a star graph with
the state Hilbert space H =
⊕n

j=1 L
2(R+) and an operator

acting on H as ψj 7→ −ψ′′
j
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the state Hilbert space H =
⊕n

j=1 L
2(R+) and an operator

acting on H as ψj 7→ −ψ′′
j

Since it is second-order, the boundary condition involve
Ψ(0) := {ψj(0)} and Ψ′(0) := {ψ′

j(0)} being of the form

Ψ′(0) = CΨ(0) or Ψ(0) = CΨ′(0)

with a suitable n× n matrix C parametrizing the coupling
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Vertex coupling
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Consider a star graph with
the state Hilbert space H =
⊕n

j=1 L
2(R+) and an operator

acting on H as ψj 7→ −ψ′′
j

Since it is second-order, the boundary condition involve
Ψ(0) := {ψj(0)} and Ψ′(0) := {ψ′

j(0)} being of the form

Ψ′(0) = CΨ(0) or Ψ(0) = CΨ′(0)

with a suitable n× n matrix C parametrizing the coupling.

Disadvantage: Some couplings may be left out if the matrix
is singular. One would prefer something analogous to the
1D “universal” condition ψ(0) cos θ + ψ′(0) sin θ = 0
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Kostrykin-Schrader b.c.

No coupling is left out if we use the boundary conditions
proposed in [Kostrykin-Schrader’99]. They are described
by a pair of n× n matrices A,B such that

rank (A,B) = n

AB∗ is self-adjoint

The boundary values have to satisfy the conditions

AΨ(0) +BΨ′(0) = 0
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Harmer boundary conditions
Proposition [Harmer’00]: Vertex couplings are uniquely
characterized by unitary n× n matrices U such that

A = U − I , B = i(U + I)

It is obvious that the above A,B have the needed
properties. Conversely, to any such A,B there is a U ∈ U(n)
and an invertible C such that U = C(A− iB). Indeed, such
a U must satisfy UU∗ = C(BB∗ + AA∗)C∗ since AB∗ = BA∗

by assumption. The matrix BB∗ + AA∗ is strictly positive
because its null space is

kerA∗∩kerB∗ = (ranA)⊥∩ (ranB)⊥ = (ranA∪ ranB)⊥ = {0}

In particular, it is Hermitean so C := (BB∗ + AA∗)−1/2

makes sense, it is Hermitean and invertible

The conference “ Operator Theory and Applications in Mathematical Physics”; Bedlewo, July 6, 2004 – p.9/45



Harmer boundary conditions
Proposition [Harmer’00]: Vertex couplings are uniquely
characterized by unitary n× n matrices U such that

A = U − I , B = i(U + I)

It is obvious that the above A,B have the needed
properties. Conversely, to any such A,B there is a U ∈ U(n)
and an invertible C such that U = C(A− iB). Indeed, such
a U must satisfy UU∗ = C(BB∗ + AA∗)C∗ since AB∗ = BA∗

by assumption. The matrix BB∗ + AA∗ is strictly positive
because its null space is

kerA∗∩kerB∗ = (ranA)⊥∩ (ranB)⊥ = (ranA∪ ranB)⊥ = {0}

In particular, it is Hermitean so C := (BB∗ + AA∗)−1/2

makes sense, it is Hermitean and invertible

The conference “ Operator Theory and Applications in Mathematical Physics”; Bedlewo, July 6, 2004 – p.9/45



A simple derivation of Harmer b.c.
One can modify the argument used in [Fülöp-Tsutsui’00] for
generalized point interactions, n = 2

Self-adjointness requires vanishing of the boundary form,
n

∑

j=1

(ψ̄jψ
′
j − ψ̄′

jψj)(0) = 0 ,

which occurs iff the norms ‖Ψ(0) ± i`Ψ′(0)‖Cn with a fixed
nonzero ` coincide, so the two vectors must be related by
an n× n unitary matrix

The length parameter is not important because matrices
corresponding to two different values are related by

U ′ =
(`+ `′)U + `− `′

(`− `′)U + `+ `′

Thus we set ` = 1, which means a choice of the length scale
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Advantages of this parametrization

The Harmer b.c. help to simplify the analysis done in
[Kostrykin-Schrader’99], [Kuchment’04] and other previous
work. It concerns, for instance, the null spaces of the
matrices A,B,

or the on-shell scattering matrix for a star graph of n
halflines with the considered coupling which equals

SU (k) =
(k − 1)I + (k + 1)U

(k + 1)I + (k − 1)U

To reconstruct U , e.g., it is sufficient to know SU (k) at a
single point where (k + 1)I − (k − 1)SU (k) is invertible.
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Examples of vertex coupling
Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n

∑

j=1

ψ′

j(0) = αψ(0)

with “coupling strength” α ∈ R; α = ∞ gives U = −I

α = 0 corresponds to the “free motion”, the so-called
Kirchhoff boundary conditions (not a well chosen name)

Similarly, U = I − 2
n−iβJ describes the δ′s coupling

ψ′

j(0) = ψ′

k(0) =: ψ′(0) , j, k = 1, . . . , n ,
n

∑

j=1

ψj(0) = βψ′(0)

with β ∈ R; for β = ∞ we get Neumann decoupling
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Examples: another dual pair
The “permuted” δ, or δp coupling:

n
∑

j=1

ψj(0) = 0 , ψ′

j(0)−ψ′

k(0) =
α

n
(ψj(0)−ψk(0)) , 1 ≤ j, k ≤ n

with α ∈ R and the matrix U = n−iα
n+iαI − 2

n+iαJ

Its singular counterpart is the δ′ coupling:
n

∑

j=1

ψ′

j(0) = 0 , ψj(0)−ψk(0) =
β

n
(ψ′

j(0)−ψ′

k(0)) , 1 ≤ j, k ≤ n

with β ∈ R and U = n−iα
n+iαI − 2

n+iαJ
The infinite values of α, β refer again to the Dirichlet and
Neumann decoupling of the graph edges, respectively

These examples have all permutation symmetry, hence
their U ’s are linear combinations of symmetric matrices
I and J
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Why are vertices interesting?

While usually conductivity of graph structures is
controlled by external fields, vertex coupling can
serve the same purpose

It is an interesting problem in itself, recall that for the
generalized point interaction, i.e. graph with n = 2,
the spectrum has nontrivial topological structure
[Tsutsui-Fülöp-Cheon’01]

More recently, the same system has been proposed as
a way to realize a qubit , with obvious consequences
[Tsutsui-Fülöp-Cheon, quant-ph/0404039]

Recall also that in a rectangular lattice with δ coupling
of nonzero α spectrum depends on number theoretic
properties of model geometric parameters [E.’95,’96a;
E.-Gawlista’96]
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E.-Gawlista’96]
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More on the lattice example

Basic cell is a rectangle of sides `1, `2, the δ coupling with
parameter α is assumed at every vertex

x

y

g
n

g
n+1

fm+1

fm

l 2

1l

Spectral condition for quasimomentum (θ1, θ2) reads

2
∑

j=1

cos θj`j − cos k`j
sin k`j

=
α

2k
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Lattice band spectrum

To describe spectral properties of such a system, express
the coupling through continued fractions, α = [a0, a1, . . .]:

“good” irrationals have lim supj aj = ∞
(and full Lebesgue measure)
“bad” irrationals have lim supj aj <∞
(and lim infj aj > 0, of course)

Theorem [E.’95,’96a]: Call θ := `2/`1 and L := max{`1, `2}.

(a) If θ is rational or “good” irrational, there are infinitely
many gaps for any nonzero α
(b) For a “bad” irrational θ there is α0 > 0 such no gaps
open above threshold for |α| < α0

(c) There are infinitely many gaps if |α|L > π2

√
5
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Remarks
The critical value α0 = π2

√
5

is attained, in particular,

for golden mean, 1
2
(1 +

√
5) = [1, 1, 1, . . .], i.e. the

“worst” irrational

Other infinite gap series open at integer multiples of α0,
namely 4, 5, 9, 11, 16, 19, 20, 25, . . . which is nothing else
than |m2 − n2 −mn| with m,n ∈ N [E.-Gawlista’96]

The above claim can be regarded as sui generis
counterexample to Bethe-Sommerfeld conjecture, of
course, if you accept that such a lattice is a 2D system

These examples – and others – illustrate that it is
desirable to understand whether there is a meaningful
way to “construct” vertices with different couplings
This will be our task in the rest of this talk
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So? Any freshman knows what to do
Take a more realistic situation with no ambiguity, such
as branching tubes and analyze the squeezing limit :

@
@

@
@

�
�

�
�

@
@

�
�r−→

Unfortunately, this is not sufficient because

after a long effort the Neumann case was solved
[Kuchment-Zeng’01, Rubinstein-Schatzmann’01,
Saito’01] leading to Kirchhoff b.c. only

the important Dirichlet case is open (and difficult)

there are interesting situations – remember the
branching nanotubes mentioned above, etc.
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Preliminaries: weighted graphs
Let M0 be a finite connected graph with vertices vk, k ∈ K
and edges ej ' Ij := [0, `j ], j ∈ J . We add smooth weights
pj : Ij → R+ so the state Hilbert space is

L2(M0) :=
⊕

j∈J

L2(Ij , pj(x) dx) ;

in a similar way Sobolev spaces on M0 are introduced

The form u 7→ ‖u′‖2
M0

:=
∑

j∈J ‖u′‖2
Ij

with u ∈ H1(M0) is
associated with the operator which acts as

∆M0
u = − 1

pj(x)
(pj(x)u

′
j)

′

and satisfies (weighted) Kirchhoff b.c.,
∑

j, ej meets vk

pj(vk)u
′
j(vk) = 0
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Preliminaries: Laplacian on manifolds
Consider a Riemannian manifold X of dimension d ≥ 2 and
the corresponding space L2(X) w.r.t. volume dX equal to
(det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2
X =

∫

X
|du|2dX , |du|2 =

∑

i,j

gij∂iu ∂ju

The closure of this form is associated with the s-a operator
∆X which acts in fixed chart coordinates as

∆Xu = −(det g)−1/2
∑

i,j

∂i((det g)1/2gij ∂ju)

If X is compact with piecewise smooth boundary, one starts
from the form defined on C∞(X). This yields ∆X as the
Neumann Laplacian on X and allows us to treat “fat graphs”
and “sleeves” on the same footing
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Fat graphs and sleeves: manifolds

We associate with the graph M0 a family of manifolds Mε

M0 Mε

ej

vk

Uε,j

Vε,k

We suppose that Mε is a union of compact edge and vertex
components Uε,j and Vε,k such that their interiors are
mutually disjoint for all possible j ∈ J and k ∈ K
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Manifold building blocks

ε

ε

ej vk

Uε,j

Vε,k

However, Mε need not be embedded in some R
d.

It is convenient to assume that Uε,j and Vε,k depend on ε
only through their metric:

for edge regions we assume that Uε,j is diffeomorphic to
Ij × F where F is a compact and connected manifold
(with or without a boundary) of dimension m := d− 1

for vertex regions we assume that the manifold Vε,k is
diffeomorphic to an ε-independent manifold Vk
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Ruedenberg-Scherr argument
For simplicity assume that the radius of Uε,j does not
change, i.e., let pj = 1

Suppose that φ = φε is an ef of ∆X with the ev λ = λε. By
the Gauss-Green formula we have at the vertex Vε,k = Vε

λ

∫

Vε

φu dVε =

∫

Vε

〈dφ, du〉 dVε +

∫

∂Vε

∂nφu d∂Vε

for all u ∈ H1(Mε)

Assume that λε → λ0 and φε → φ0,j. Since vertex volume
(∼ εd) decays faster than the interface area (∼ εd−1) only
the boundary integral over ∂Vε survives in the limit ε→ 0
giving thus Kirchhoff boundary conditions

0 =
∑

j∈Jk

φ′0,j(vk)
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Comparison of eigenvalues
Our main tool here will be minimax principle. Suppose that
H, H′ are separable Hilbert spaces. We want to compare
ev’s λk and λ′k of nonnegative operators Q and Q′ with
purely discrete spectra defined via quadratic forms q and q′

on D ⊂ H and D′ ⊂ H′. Set ‖u‖2
Q,n := ‖u‖2 + ‖Qn/2u‖2.

Lemma: Suppose that Φ : D → D′ is a linear map such that
there are n1, n2 ≥ 0 and δ1, δ2 ≥ 0 such that

‖u‖2 ≤ ‖Φu‖′2 + δ1‖u‖2
Q,n1

, q(u) ≥ q′(Φu) − δ2‖u‖2
Q,n2

for all u ∈ D ⊂ D(Qmax{n1,n2}/2). Then to each k there is a
positive ηk(λk, δ1, δ2) which tends to zero as δ1, δ2 → 0, such
that

λk ≥ λ′k − ηk
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Thickened edges
Let thus U = Ij × F with metric gε, where cross section F
is a compact connected Riemannian manifold of dimension
m = d− 1 with metric h; we assume that volF = 1. We
define another metric g̃ε on Uε,j by

g̃ε := dx2 + ε2r2j (x)h(y) ,

where rj(x) := (pj(x))
1/m; they coincide up to O(ε) error

This property allows us to treat manifolds embedded in R
d

(with metric g̃ε) using product metric gε on the edges

Curved edges: If ej is a smooth curve in R
d the metric

coming form the embedding contains terms given by the
curvature γ of ej. In the limit ε→ 0 they give rise to effective
potential −1

4
γ2. This effect is well known; for simplicity we

assume that the edges are straight
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Eigenvalue convergence

Theorem [E.-Post’03]: Under the stated assumptions
λk(Mε) → λk(M0) as ε→ 0

Proof is based on two-sided estimates. The upper one is
easier and reads
Proposition: λk(Mε) ≤ λk(M0) + o(1) as ε→ 0

To prove it one one defines Φε : L2(M0) → L2(Mε) by

Φεu(z) :=

{

ε−m/2u(vk) if z ∈ Vk

ε−m/2uj(x) if z = (x, y) ∈ Uj

for any u ∈ H1(M0), i.e. multiplication by a constant function
in transverse direction. It is checked directly that the above
lemma applies �
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A lower bound
Proposition: λk(M0) ≤ λk(Mε) + o(1) as ε→ 0
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A lower bound
Proposition: λk(M0) ≤ λk(Mε) + o(1) as ε→ 0

Here one uses averaging:

Nju(x) :=

∫

F
u(x, ·) dF , Cku :=

1

volVk

∫

Vk

u dVk

to build the comparison map by interpolation:

(Ψε)j(x) := εm/2(Nju(x) + ρ(x)(Cku−Nju(x)))

with a suitable ρ smoothly interpolating between zero and
one. But a series of estimates one checks that Ψε satisfies
again assumptions of the lemma �
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(Ψε)j(x) := εm/2(Nju(x) + ρ(x)(Cku−Nju(x)))

with a suitable ρ smoothly interpolating between zero and
one. But a series of estimates one checks that Ψε satisfies
again assumptions of the lemma �

In this way the theorem is proved. However, the limiting
operator corresponds to Kirchhoff b.c. only
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Once more heuristics à la R-S
Trying to get other b.c., consider again the formula

λ

∫

Vε

φu dVε =

∫

Vε

〈dφ, du〉 dVε +

∫

∂Vε

∂nφu d∂Vε

with different scaling rates of edges and vertices
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decoupling plus extra zero modes at vertices
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If the vertex volume decays slower than vold−1∂Vε, the
integrals over Vε dominate. Normalized ef’s are nearly
vanishing on Vε on the scale on Uε,j; this suggests Dirichlet
decoupling plus extra zero modes at vertices
In the borderline case, voldVε ≈ vold−1∂Vε, the ef’s should
again vary slowly making the integral of 〈dφ, du〉 negligible
and giving

λ0φ0(vk) =
∑

j∈Jk

φ′0,j(vk)
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Hence, try a more general scaling

Furthermore, one can try to do the same using different
scaling of the edge and vertex regions. Some technical
assumptions needed, e.g., the bottlenecks must be “simple”

transition region Aε,jk

fat edge Uε,j

vertex region Vε,k

scaled as ε

scaled as εα
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Two-speed scaling limit

Let vertices scale as εα. In a similar way (just more
complicated) we find that

if α ∈ (1−d−1, 1] the result is as above: the ev’s at the
spectrum bottom converge the graph Laplacian with
Kirchhoff b.c., i.e. continuity and

∑

edges meeting at vk

u′j(vk) = 0 ;

if α ∈ (0, 1−d−1) the “limiting” Hilbert space is
L2(M0) ⊕ C

K , where K is # of vertices, and the
“limiting” operator acts as Dirichlet Laplacian at each
edge and as zero on C

K
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Two-speed scaling limit

if α = 1−d−1, Hilbert space is the same but the limiting
operator is given by quadratic form q0(u) :=

∑

j ‖u′j‖2
Ij

,
the domain of which consists of u = {{uj}j∈J , {uk}k∈K}
such that u ∈ H1(M0) ⊕ C

K and the edge and vertex
parts are coupled by (vol (V −

k )1/2uj(vk) = uk

finally, if vertex regions do not scale at all, α = 0, the
manifold components decouple in the limit again,

⊕

j∈J

∆D
Ij
⊕

⊕

k∈K

∆V0,k

Hence such a straightforward limiting procedure does
not help us to justify choice of appropriate s-a extension
A remedy: one has to add either manifold geometry or
external potentials
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Potential approximation
Let us look what we can achieve with potential families
on the graph alone
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Consider again a star graph
with H =

⊕n
j=1 L

2(R+) and
Schrödinger operator acting on
H as ψj 7→ −ψ′′

j + Vjψj
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Consider again a star graph
with H =

⊕n
j=1 L

2(R+) and
Schrödinger operator acting on
H as ψj 7→ −ψ′′

j + Vjψj

We make the following assumptions:

Vj ∈ L1
loc(R+) , j = 1, . . . , n

δ coupling with a parameter α in the vertex

Then the operator, denoted as Hα(V ), is self-adjoint
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n

Theorem [E.’96b]: Suppose that Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the parameter
α :=

∑n
j=1

∫ ∞
0
Wj(x) dx
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x

ε

)

, j = 1, . . . , n

Theorem [E.’96b]: Suppose that Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the parameter
α :=

∑n
j=1

∫ ∞
0
Wj(x) dx

Proof: Analogous to that for δ interaction on the line. �
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Remarks
Also Birman-Schwinger analysis generalizes easily:
Theorem [E.’96b]: Let Vj ∈ L1(R+, (1 + |x|)dx),
j = 1, . . . , n . Then H0(λV ) has for all small enough
λ > 0 a single negative ev ε(λ) = −κ(λ)2 iff

∫ ∞

0

Vj(x) dx ≤ 0

In that case, its asymptotic behavior is given by

κ(λ) = −λ

n

n
∑

j=1

∫

∞

0

Vj(x) dx − λ2

2n

{

n
∑

j=1

∫

∞

0

∫

∞

0

Vj(x)|x−y|Vj(y) dx dy

+

n
∑

j,`=1

(

2

n
− δj`

)
∫

∞

0

∫

∞

0

Vj(x)(x+y)V`(y) dx dy

}

+O(λ3)

A Seto-Klaus-Newton bound on #σdisc(H0(λV )) can be
obtained in a similar way
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CS-type approximation
The above scheme does not work for graph Hamiltonians
with discontinuous wavefunctions such as δ′s
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CS-type approximation
The above scheme does not work for graph Hamiltonians
with discontinuous wavefunctions such as δ′s
Inspiration: Recall that δ′ on the line can be approximated
by δ’s scaled in a nonlinear way [Cheon-Shigehara’98]
Moreover, the convergence is norm resolvent and gives
rise to approximations by regular potentials
[Albeverio-Nizhnik’00], [E.-Neidhardt-Zagrebnov’01]
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b(a)

c(a)

HβHb,c
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Permutation symmetry

The problem simplifies due to symmetry. Each of the
Hamiltonians Hβ and Hb,c(a) decomposes into a nontrivial
part which acts on the one-dimensional subspace of
H =

⊕n
j=1 L

2(R+) consisting of functions symmetric with
respect to permutations, ψj(x) = ψk(x) for all j, k, and the
(n−1)-dimensional part corresponding to Dirichlet and
Neumann condition at the central vertex for the δ and δ′s
coupling, respectively

Notice that the matrices corresponding to these coupling,
U = 2

n+iαJ − I and U = I − 2
n−iβJ , have each one simple

eigenvalue and another one equal to ∓1, respectively, of
multiplicity n− 1
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Heuristic argument

In the symmetric sector we can drop the indices. The
boundary values at x = 0 and x = a are related by

ψ(a) = ψ(0) + aψ′(0) + O(a2) , ψ′(a−) = ψ′(0+) + O(a) ,

ψ′(a+) = ψ′(a−) + cψ(a) , ψ′(0+) = bψ(0)

Eliminating ψ(0) and ψ′(0+) from here, we get in the
leading order the relation B(a)ψ(a) = ψ′(a+), where

B(a) := c+
b

1 + ab

Hence βψ′(0+) = nψ(0), is achieved as a→ 0+ if we choose

b(a) := − β

na2
, c(a) := −1

a
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Heuristic argument

In the orthogonal complement we again drop the index,
because the operators act in the same way on all the linear
combinations of

∑n
j=1 djψj(x) with

∑n
j=1 dj = 0. The b.c. at

origin is now replaced by ψ(0) = 0

Eliminating then the boundary values at x = 0 we get in the
leading order the relation ψ′(a+) = (c+ a−1)ψ(a) + O(a).
The right-hand side vanishes if we choose again

b(a) := − β

na2
, c(a) := −1

a

giving Neumann condition, ψ′(0+) = 0, in the limit
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δ′s approximation
Theorem [Cheon-E.’04]: Hb,c(a) → Hβ as a→ 0+ in the
norm-resolvent sense provided b, c are chosen as

b(a) := − β

na2
, c(a) := −1

a

Proof : By symmetry the task is reduces to a pair of halfline
problems. Consider first the one with Dirichlet condition at
the origin, so the free Green’s function at energy k2 is
Gk(x, y) = sin kx<

k eikx> for x, y ≥ 0

The Green’s function of the operator with the δ interaction at
x = a is obtained easily by Krein’s formula

Gc
k(x, y) = Gk(x, y) +

Gk(x, a)Gk(a, y)

−c−1 −Gk(a, a)

The conference “ Operator Theory and Applications in Mathematical Physics”; Bedlewo, July 6, 2004 – p.39/45



δ′s approximation
Theorem [Cheon-E.’04]: Hb,c(a) → Hβ as a→ 0+ in the
norm-resolvent sense provided b, c are chosen as

b(a) := − β

na2
, c(a) := −1

a

Proof : By symmetry the task is reduces to a pair of halfline
problems. Consider first the one with Dirichlet condition at
the origin, so the free Green’s function at energy k2 is
Gk(x, y) = sin kx<

k eikx> for x, y ≥ 0

The Green’s function of the operator with the δ interaction at
x = a is obtained easily by Krein’s formula

Gc
k(x, y) = Gk(x, y) +

Gk(x, a)Gk(a, y)

−c−1 −Gk(a, a)

The conference “ Operator Theory and Applications in Mathematical Physics”; Bedlewo, July 6, 2004 – p.39/45



Proof
The Neumann Green’s function is GN

k (x, y) = cos kx<

k eikx>;
the two have to converge to each other for some k2 ∈ C.
Choose k = iκ with κ > 0, then the denominator is nonzero
for a small enough. It is sufficient to compute the difference
in the case when neither of the arguments is smaller than a;
for definiteness suppose that a ≤ x ≤ y; then

Gc
iκ(x, y) −GN

iκ(x, y) =
e−κxe−κy

κ

[

−1 +
sinh2 κa

−κc−1 − e−κx sinh2 κa

]

If c = −a−1 the last term is 1 + O(a) for a→ 0+, so

lim
a→0+

Gc
iκ(x, y) = GN

iκ(x, y)

holds for all x, y > 0
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Proof

Consider next δ coupling at the origin using the same
values of parameters, k = iκ and a ≤ x ≤ y. We need
the following two Green’s functions,

Gb
iκ(x, y) =

e−κy

κ(b+ κ)
(b sinhκx+ κ coshκx) ,

Gβ
iκ(x, y) =

e−κy

κ(n+ βκ)
(n sinhκx+ βκ coshκx)

The first of them determines the full approximating Green’s
function by Krein’s formula,

Gb,c
k (x, y) = Gb

k(x, y) +
Gb

k(x, a)G
b
k(a, y)

−c−1 −Gb
k(a, a)
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Proof

G
b,c
iκ (x, y) − G

β
iκ(x, y) =

e−κy

κ

[

b sinh κx + κ coshκx

b + κ

+

e−κx

(b+κ)2 (b sinhκx + κ cosh κx)2

κa − e−κa

b+κ
(b sinh κx + κ coshκx)

− n sinh κx + βκ coshκx

n + βκ

]

The first term tends to sinhκx as a→ 0+, while the third one
is independent of a, so their sum in the limit gives −βκ e−κx

n+βκ .
Next we take the middle term without the factor e−κx and
expand the numerator and denominator to the second
power in a; this together gives

lim
a→0+

Gb,c
iκ (x, y) = Gβ

iκ(x, y) , x, y > 0

Finally, the pointwise convergence implies convergence of
the resolvents in the HS-norm �
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δ′ approximation

In a similar way one can approximate the δ′ coupling
Hamiltonian H̃β on the star graph

Let the approximating operator H̃b,c be as above with the
central δ replaced by δp with coupling strength b(a)

Theorem [Cheon-E.’04]: H̃b,c(a) → H̃β as a→ 0+ in the
norm-resolvent sense provided b, c are chosen as

b(a) := − β

a2
, c(a) := −1

a
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Some open questions

Spectral manifolds topology of graph Hamiltonians with
respect to vertex coupling parameters

Scaling limit with nontrivial manifold geometry , for
instance, replacing manifold Laplacian by −∆ +K −M 2

Scaling limit of a fat graph with Dirichlet boundary
conditions

Approximations of a general vertex coupling

Analogous problems on generalized graphs with
“edges” of different dimensions, etc.
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The talk was based on
[CE04] T. Cheon, P.E.: An approximation to δ′ couplings on graphs, J. Phys. A: Math. Gen.,

to appear; quant-ph/0404136

[E95] P.E.: Lattice Kronig–Penney models, Phys. Rev. Lett.75 (1995), 3503-3506

[E96a] P.E.: Contact interactions on graph superlattices, J. Phys. A29 (1996), 87-102

[EG96] P.E., R. Gawlista: Band spectra of rectangular graph superlattices, Phys. Rev. B53

(1996), 7275-7286

[E96b] P.E.: Weakly coupled states on branching graphs, Lett. Math. Phys. 38 (1996),
313-320

[ENZ01] P.E., H. Neidhardt, V.A. Zagrebnov: Potential approximations to δ′: an inverse
Klauder phenomenon with norm-resolvent convergence, Commun. Math. Phys. 224

(2001), 593-612

[EP03] P.E., O. Post: Convergence of spectra of graph-like thin manifolds,
math-ph/0312028

for more information see http://www.ujf.cas.cz/ ẽxner
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