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Talk overview

In this talk | am going to present several recent results on
spectral and resonance properties of quantum graphs:

#® Geometric perturbation: eigenvalues in gaps and
resonances in a model of “bent” chain graph
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Talk overview

In this talk | am going to present several recent results on
spectral and resonance properties of quantum graphs:

#® Geometric perturbation: eigenvalues in gaps and
resonances in a model of “bent” chain graph

#® Another geometric perturbation: resonances due to
edge rationality violation in graphs with leads

# High-energy asymptotics of resonances: Weyl and
non-Weyl behaviour, and when each of them occurs
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Introduction: the quantum graph concep

o .

The idea of investigating quantum particles confined to a
graph was first suggested by L. Pauling in 1936 and worked
out by Ruedenberg and Scherr in 1953 in a model of
aromatic hydrocarbons
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Introduction: the quantum graph concep
B o

The idea of investigating quantum particles confined to a
graph was first suggested by L. Pauling in 1936 and worked
out by Ruedenberg and Scherr in 1953 in a model of
aromatic hydrocarbons

The concept extends, however, to graphs of arbitrary shape

Hamiltonian: _aa_xg + ()
on graph edges,
boundary conditions at vertices

and what is important, it became practically important after

experimentalists learned in the last two decades to fabricate
LWtiny graph-like structure for which this is a good model J
L=
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Remarks

f # There are many graph-
semiconductor or meta

Ike systems based on T
lic materials, carbon nanotubes,

etc. The dynamics can

e also simulated by microwave

network built of optical cables — see [Hul et al.’04]
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Remarks

There are many graph-
semiconductor or meta

Ike systems based on T
lic materials, carbon nanotubes,

etc. The dynamics can

e also simulated by microwave

network built of optical cables — see [Hul et al.’04]

Here we consider Schrodinger operators on graphs,

most often free, v; = 0.

Naturally one can external

electric and magnetic fields, spin, etc.

Graphs can support also Dirac operators, see
Bulla-Trenckler'90], [Bolte-Harrison’03], and many
recent applications to graphene and its derivates

The graph literature is extensive; a good up-to-date
reference are proceedings of the recent semester

AGA Programme at INI

Cambridge

-
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Vertex coupling

f The most simple example Is a T
star graph with the state Hilbert

space H = @, L*(R;) and
the particle Hamiltonian acting
on ‘H as ¢ — —
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Vertex coupling

f The most simple example Is a T
star graph with the state Hilbert

space H = @)_, L*(Ry) and
the particle Hamiltonian acting
on ‘H as ¢ — —

Since it is second-order, the boundary condition involve
W(0) := {¢;(0)} and ¥'(0) := {}(0)} being of the form

AT(0) + BY'(0) = 0;

by [Kostrykin-Schrader'99] the n x n matrices A, B give rise
to a self-adjoint operator if they satisfy the conditions

® rank(A,B)=n

-
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Unique boundary conditions

fThe non-uniqueness of the above b.c. can be removed: T

Proposition [Harmer'00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n x n matrices U such that

A=U—1, B=iU+1)

-
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Unique boundary conditions

fThe non-uniqueness of the above b.c. can be removed: T

Proposition [Harmer'00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n x n matrices U such that

A=U—1, B=iU+1)

One can derive them modifying the argument used in
[FUlop-Tsutsui’00] for generalized point interactions, n = 2

Self-adjointness requires vanishing of the boundary form,

n

> (W — ;) (0) =0,

j=1
which occurs iff the norms || ¥(0) 4 i/¥'(0)||c» With a fixed
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Examples of vertex coupling

f # Denote by 7 the n x n matrix whose all entries are T
equal to one; then U = —2—7 — I corresponds to the

n+io
standard ¢ coupling,

1;(0) = ¥ (0) = ¥(0), j,k=1,...,m, Zw;<0> = a1)(0)

with “coupling strength” o« € R; aa = oo gives U = —1
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Examples of vertex coupling

f #® Denote by 7 then xn matrix whose all entries are T

equal to one; then U = J — I corresponds to the

standard ¢ coupling,
$;(0) = $(0) = 9(0), jk=1,....n, Y (0) =
=1

with “coupling strength” o« € R; aa = oo gives U = —1

n—l—zoz

« = 0 corresponds to the “free motion”, the so-called
free boundary conditions

Similarly, U = I — —j describes the ¢’ coupling

%(0) — %(O) —- W(O)a Jk=1,...,n, ij(()) —

i
with ¢ € R; for § = oo we get Neumann decoupling, etc.J
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What is known about graph spectra

f #® many particular examples T
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f # many particular examples T

# a spectral duality mapping the problem on a difference
equation: originally by Alexander and de Gennes in the
early 80’s, mathematically rigorous [E'97], [Cattaneo’97]

-

The OTAMP 2010 conference; Bedtewo, August 6, 2010 — p. 8/¢




What is known about graph spectra

f # many particular examples T

# a spectral duality mapping the problem on a difference
equation: originally by Alexander and de Gennes in the
early 80’s, mathematically rigorous [E'97], [Cattaneo’97]

# trace formulee expressing spectral properties a compact
graph Hamiltonian in terms of closed orbits on the
graph- [Kottos-Smilansky’97], [Bolte-Endres’09]

-

The OTAMP 2010 conference; Bedtewo, August 6, 2010 — p. 8/¢




What is known about graph spectra

f # many particular examples T

# a spectral duality mapping the problem on a difference
equation: originally by Alexander and de Gennes in the
early 80’s, mathematically rigorous [E'97], [Cattaneo’97]

# trace formulee expressing spectral properties a compact
graph Hamiltonian in terms of closed orbits on the
graph- [Kottos-Smilansky’97], [Bolte-Endres’09]

# inverse problems like “Can one hear the shape of a
graph?” [Gutkin-Smilansky’01] and many others

-

The OTAMP 2010 conference; Bedtewo, August 6, 2010 — p. 8/¢




What is known about graph spectra

f #® many particular examples T

#® a spectral duality mapping the problem on a difference
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What is known about graph spectra
s

<

many particular examples T

a spectral duality mapping the problem on a difference
equation: originally by Alexander and de Gennes in the
early 80’s, mathematically rigorous [E'97], [Cattaneo’97]

trace formulae expressing spectral properties a compact
graph Hamiltonian in terms of closed orbits on the
graph- [Kottos-Smilansky’97], [Bolte-Endres’09]

iInverse problems like “Can one hear the shape of a
graph?” [Gutkin-Smilansky’01] and many others

Anderson localization on graphs [Aizenman-Sims
-Warzel'06], [E-Helm-Stolilmann’07], [Hislop-Post’08]

gaps by decoration [Aizenman-Schenker'01] and others
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What is known about graph spectra

9
<

many particular examples T

a spectral duality mapping the problem on a difference
equation: originally by Alexander and de Gennes in the
early 80’s, mathematically rigorous [E'97], [Cattaneo’97]

trace formulae expressing spectral properties a compact
graph Hamiltonian in terms of closed orbits on the
graph- [Kottos-Smilansky’97], [Bolte-Endres’09]

iInverse problems like “Can one hear the shape of a
graph?” [Gutkin-Smilansky’01] and many others

Anderson localization on graphs [Aizenman-Sims
-Warzel'06], [E-Helm-Stolilmann’07], [Hislop-Post’08]

® gaps by decoration [Aizenman-Schenker'01] and others

and more J
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First problem to address

fAsk about relations between the geometry of I and spectraﬂ
properties of a Schrédinger operator supported by I'. An
Interpretation needed: think of I' as of a subset of R™ with
the geometry inherited from the ambient space
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First problem to address

fAsk about relations between the geometry of I and spectraﬂ
properties of a Schrédinger operator supported by I'. An
Interpretation needed: think of I' as of a subset of R™ with
the geometry inherited from the ambient space

A simple model: analyze the influence of a “bending”
deformation on a a “chain graph” which exhibits a
one-dimensional periodicity

Without loss of generality we assume unit radii; the rings
%are connected by the 7-coupling of a strength o # 0 J
NE
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Bending the chain

fWe will suppose that the chain is deformed as follows T




Bending the chain

fWe will suppose that the chain is deformed as follows T

Our aim is to show that
# the band spectrum of the straight I' is preserved

# there are bend-induced eigenvalues, we analyze their
behavior with respect to model parameters

® the bent chain exhibits also resonances J
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An Infinite periodic chain

fThe “straight” chain I'y can be treated as a periodic system T
analyzing the spectrum of the elementary cell

A YR

¢ O

with Floquet-Bloch boundary conditions with the phase e

-
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An Infinite periodic chain

fThe “straight” chain I'y can be treated as a periodic system T
analyzing the spectrum of the elementary cell

A YR

¢ O

with Floquet-Bloch boundary conditions with the phase e
This yields the condition

210 _ o0 (2 cos km -+ % sin kw) +1=0

-
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Straight chain spectrum

fA straightforward analysis leads to the following conclusion:T

Proposition: o(Hy) consists of infinitely degenerate

eigenvalues equal to n* with n € N, and absolutely
continuous spectral bands such that

If o > 0, then every spectral band is contained in
(n?, (n + 1)%] with n € Ny := NU {0}, and its upper edge
coincides with the value (n + 1)2.

-
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Straight chain spectrum

fA straightforward analysis leads to the following conclusion:T

Proposition: o(Hy) consists of infinitely degenerate

eigenvalues equal to n* with n € N, and absolutely
continuous spectral bands such that

If o > 0, then every spectral band is contained in
(n?, (n + 1)%] with n € Ny := NU {0}, and its upper edge
coincides with the value (n + 1)2.

If « < 0, then in each interval [n?, (n + 1)?) with n € N there

is exactly one band with the lower edge »?. In addition,
there is a band with the lower edge (the overall threshold)

— 2, where & is the largest solution of

b N o sinh k7 .
cosh km + — - —
4 K J
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Straight chain spectrum

fProposition, cont'd: The upper edge of this band depends T
ona. If =8/7 < a < 0, itis k* where k solves

, o sinkw
COS KT + YR
n (0,1). On the other hand, for a« < —8/7 the upper edge is
negative, —«? with  being the smallest solution of the
condition, and for « = —8/ it equals zero.

Finally, o(Hy) = [0, +00) holds if a = 0.

=1

-
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Straight chain spectrum

fProposition, cont'd: The upper edge of this band depends T
ona. If =8/7 < a < 0, itis k* where k solves

o sinkm
coskm + — - .

n (0,1). On the other hand, for a« < —8/7 the upper edge is

negative, —«? with  being the smallest solution of the
condition, and for o« = —8/7 It equals zero.

Finally, o(Hgy) = |0, +00) holds if a = 0.
Let us add a couple of remarks:

=1

#® The bands correspond to Kronig-Penney model with the
coupling %oz Instead of «, in addition one has here the
Infinitely degenerate point spectrum
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The bent chain spectrum

fNow we pass to the bent chain denoted as I'y:




The bent chain spectrum

fNow we pass to the bent chain denoted as I'y: T

Since I'y has mirror symmetry, the operator Hy can be
reduced by parity subspaces into a direct sum of an even
part, 7, and odd one, H—; we drop mostly the subscript

Equivalently, we analyze the half-chain with Neumann and
%Dirichlet conditions at the points A, B, respectively J
L=

3 MNODI
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Eigenfunction components

fAt the energy k? they are are linear combinations of e, T

VYi(x) = C’;Leikx + C;e_ikx, xr € 0,7,
pi(x) = D;-Leikx + Dj_e_ik‘”, x € [0, 7]

for j € N. On the other hand, for j = 0 we have

: : — 9
wo(x) — C&i_elkx + C’O_e_lkx, T € [ﬂ- 9 ,7'(']

| . .
wo(z) = DFe™™ + Dye ™ x¢ [W; ,w]

-
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Eigenfunction components

fAt the energy k? they are are linear combinations of e, T

VYi(x) = C’;Leikx + C;e_ikx, xr € 0,7,
pi(x) = D;-Le“l“C + Dj_e_ik‘”, x € [0, 7]

for j € N. On the other hand, for j = 0 we have

: : — 9
wo(x) — C(Si_elkx + C’O_e_lkx, T € [ﬂ- 9 ,7'(']

| . .
wo(z) = DFe™™ + Dye ™ x¢ [W; ,w]

There are d-couplings in the points of contact, i.e.
Vi (0) = ¢;(0), Yj(7)=pj(r), and

% i (0) = vi1(m) s 5(0) + ¢5(0) = 454 () — @4 () = a - 9;(0) J
=
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Transfer matrix

sting the above relations we get for all ;7 > 2 T
ik —ikm
- ik —ikm - ’
¢ N e (T—gR)e ™ ) \ Cia
M

DEC
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Transfer matrix

sting the above relations we get for all ;7 > 2 T
ik —ikm
( C ) B ( (1+5%) e TEC ) ( Ci )
- ik —ikm = ’
C] . —ﬁe (1 — ﬁ) € ’ Cj—l
M

To have eigenvalues, one eigenvalue of M has to be less
than one (they satisfy A\ \s = 1); this happens Iff
cos km + %sinkﬂ > 1;

recall that reversed inequality characterizes spectral bands

-
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Transfer matrix

sting the above relations we get for all ;7 > 2 T
ik —ikm
( C > B ( (1+5%) e TEC ) ( Ci )
- ik —ikm - ’
C; R —Zik€ (1 - ﬁ) © ’ Cia
M

To have eigenvalues, one eigenvalue of M has to be less
than one (they satisfy A\ \s = 1); this happens Iff

COSkﬂ'—i—%SinkT( > 1;

recall that reversed inequality characterizes spectral bands

Remark: By general arguments, oo IS preserved, and
%there are at most two eigenvalues in each gap J
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Spectrum of H+

fCombining the above with the Neumann condition at the T
mirror axis we get the spectral condition in this case,

)
k
cos ki) = —cos km + oL T

ﬁsinlmi \/(cos/er %sinlm)Q —1

and an analogous expression for negative energies

-
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Spectrum of H

fCombining the above with the Neumann condition at the T
mirror axis we get the spectral condition in this case,

sin? k7

cos ki) = — cos km + >
%sinlmi \/(cos/er %sinkﬂ) —1

and an analogous expression for negative energies

After a tiresome but straightforward analysis one arrives
then at the following conclusion:

Proposition: If « > 0, then H* has no negative

eigenvalues. On the other hand, for o < 0 the operator H ™
has at least one negative eigenvalue which lies under the

lowest spectral band and above the number —x3, where
L}Tis the (unique) solution of « - tanh kT = —a/2 J
s__& MNODI
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Spectrum of H™ for o« = 3

25

16

0(k?)

” o
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Spectrum of H~

fRepIacing Neumann condition by Dirichlet at the mirror axisT
we get the spectral condition in this case,

sin? kr

—cos kY = —coskm +

ﬁsinkﬂi \/(cosk7T+ ﬁsinlm)Q —1

and a similar one, with sin and cos replaced by sinh and cosh
for negative energies

-
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Spectrum of H~

fRepIacing Neumann condition by Dirichlet at the mirror axisT
we get the spectral condition in this case,

)
k
—cos k) = —cos km + L T

ﬁsinkwi \/(coslmrJr ﬁsinkw)z —1

and a similar one, with sin and cos replaced by sinh and cosh
for negative energies

Summarizing, for each of the operators H* there is at least
one eigenvalue in every spectral gap closure. It can lapse
into a band edge n?, n € N, and thus be in fact absent. The
ev's of H™ and H~ may coincide, becoming a single ev of
multiplicity two; this happens only if

k-tankW:% J
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Spectrum of H™ for o = 3

25

16 =

0(k?)

4 W2 314 T
)
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o(H) for attractive coupling, a = —3

16 R

0(k?)

C,
.....

0 W4 W2 314 Tt
)
@ ' & MNODI
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Resonances, analyticity

fThe above eigenvalue curves are not the only solutions of T
the spectral condition. There are also complex solutions
representing resonances of the bent-chain system

In the above pictures their real parts are drawn as functions
of ¢ by dashed lines.

-
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Resonances, analyticity

fThe above eigenvalue curves are not the only solutions of T
the spectral condition. There are also complex solutions
representing resonances of the bent-chain system

In the above pictures their real parts are drawn as functions
of ¢ by dashed lines.

A further analysis of the spectral condition gives

Proposition: The eigenvalue and resonance curves for H+
are analytic everywhere except at (¢, k) = (2H=2t7 p),

n

where n € N, ¢ € Ny, £ < [2H]. Moreover, the real solution
In the n-th spectral gap is given by a function ¥ — k which is
real-analytic, except at the points 21=2t7 Similar claims

n

can be made for the odd part for 4.

-
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Imaginary parts of H™ resonancesgy = 3

-

0(k?)

-

° \ . .
\ " -
\ L ; -
\ . . \ .
| \ // L —
| \~ \ // .....
o Vo
N\ — \’ T —
SN A
4 /2 314 Tt
8 J
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More on the angle dependence

fFor simplicity we take H™ only, the results for H— are T
analogous. Ask about the behavior of the curves at the
points whe they touch bands and where eigenvalues and
resonances may cross

If 9 := %‘%w > ( IS such a point we find easily that in Is
vicinity we have

k
ko~ ko + §/§—0 9 — |43
4 1

so he curve is indeed non-analytic there. The same Is true
for 9 = 0 provided the band-edge value kq is odd

i_ ;‘\ ; MNODI
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More on the angle dependence

fFor simplicity we take H™ only, the results for H— are T
analogous. Ask about the behavior of the curves at the
points whe they touch bands and where eigenvalues and
resonances may cross

If 9 := %‘%w > ( IS such a point we find easily that in Is

vicinity we have
k
ko~ ko -+ \g/g_o 9 — 9|43
4 7

so he curve is indeed non-analytic there. The same Is true
for 9 = 0 provided the band-edge value kq is odd

However, H* has an eigenvalue near 9y = 0 also in the
gaps adjacent to even numbers, when the curve starts at
0, ko) for ko solving |coskr + & sinkr| =1in (n,n+1), n

?;i 74
f 7
\vi‘- il Y £ v
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Even threshold behavior

fPropos.ition: Suppose that n € N Is even and kg Is as T
described above, i.e. k7 is the right endpoint of the spectral
gap adjacent to n°. Then the behavior of the solution in the
vicinity of (0, kg) IS given by

k= ko — Crper - 9* + O(°)

where Cy, o := £ - (§)” (kor +sin kor) !

-
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Even threshold behavior

o .

Proposition: Suppose that n € N Is even and kg Is as
described above, i.e. k7 is the right endpoint of the spectral

gap adjacent to n°. Then the behavior of the solution in the
vicinity of (0, kg) IS given by

k= ko — Crper - 9* + O(°)

where Cy, o := £ - (§)” (kor +sin kor) !

Remark: Notice that the fourth-power is the same as for the
ground state of a slightly bent Dirichlet tube despite the fact
that the dynamics is completely different in the two cases

-
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Second problem concerning resonance

- .

# A typical resonances situation arises for finite graphs
with semiinfinite leads

i €
DEC
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Second problem concerning resonance

- .

# A typical resonances situation arises for finite graphs
with semiinfinite leads

# Different resonances definitions: poles of continued
resolvent, singularities of on-shell S matrix

-
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Second problem concerning resonance
B o

# A typical resonances situation arises for finite graphs
with semiinfinite leads

# Different resonances definitions: poles of continued
resolvent, singularities of on-shell S matrix

#® Graphs may exhibit embedded eigenvalues due to
invalidity of uniform continuation

-
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Second problem concerning resonance

- .

# A typical resonances situation arises for finite graphs
with semiinfinite leads

# Different resonances definitions: poles of continued
resolvent, singularities of on-shell S matrix

# Graphs may exhibit embedded eigenvalues due to
invalidity of uniform continuation

#® Geometric perturbations of such graphs may turn the
embedded eigenvalues into resonances

-
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Preliminaries

fConsider a graph I with vertices V = {X; : j € [}, finite T
edges L = {L;, : (X;, &) € I C I x I} and infinite edges
Loo ={Ljx : X; € Ic}. The state Hilbert space is

H = @LQOZ P @LQOOO

its elements are columns ) = (f; : £, € L, g; : Ljoo € Loo)? .

-
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Preliminaries

fConsMer a graph I with vertices V = {X; : j € [}, finite T
edges L ={L;, : (X;.&,) e [p C I x I} and infinite edges
Loo ={Ljx : X; € Ic}. The state Hilbert space is

H = @LQOZ P @LQOOO

its elements are columns ) = (f; : £, € L, g; : Ljoo € Loo)? .

The Hamiltonian acts as —d”/dz* on each link satisfying the
boundary conditions

(Uj —])\Ifj—l—i(Uj—l—])\If; =0

characterized by unitary matrices U; at the vertices &.

-
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A universal setting for graphs with leads

fA useful trick is to replace I' “flower-like” graph with one T
vertex by putting all the vertices to a single point,

[N

Its degree is 2N + M where N := card £ and M := card L

-
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A universal setting for graphs with leads

fA useful trick is to replace I' “flower-like” graph with one T
vertex by putting all the vertices to a single point,

[N

Its degree is 2N + M where N := card £ and M := card L
The coupling is described by “big”, (2N + M) x (2N + M)
unitary block diagonal matrix U consisting of blocks U; as
follows,
(U—-DY +4(U+ 1Y =0;
%the block structure of U encodes the original topology of I'. J
L=

3 MNODI
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Equivalence of resonance definitions

fResonances as poles of analytically continued resolvent, T
(H — Xid)~1. One way to reveal the poles is to use exterior
complex scaling. Looking for complex eigenvalues of the
scaled operator we do not change the compact-graph part:
we set [;(z) = a;sin kx + b; cos kx on the internal edges

-
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Equivalence of resonance definitions

fResonanc:es as poles of analytically continued resolvent, T
(H — Xid)~1. One way to reveal the poles is to use exterior
complex scaling. Looking for complex eigenvalues of the
scaled operator we do not change the compact-graph part:
we set [;(z) = a;sin kx + b; cos kx on the internal edges

On the semi-infinite edges are scaled by g,y(z) = ¢/%g;(xe?)
with an imaginary 6 rotating the essential spectrum into the
lower complex halfplane so that the poles of the resolvent
on the second sheet become “uncovered” for 4 large
enough. The “exterior’” boundary values are thus equal to

g;(0) = e %2g;9,  ¢5(0) = ike 2g;,

-
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Resolvent resonances

fSubstituting Into the boundary conditions we get T
[ @) [ @)
bl bl
a2 a2
(U — 1)Cy (k) : + k(U + 1)Ca(k) : o,
bN bN
6_9/2_919 e_6)/2919
\ e 92 g9 ) \ e~ 92 g0 )
where ¢; := diag (C}" (k). 1 (k). ..., (k). 7 Tapar), with

cOw={ " ) Aw=
sinkl; coskl; —coskl; sinkl;

DEC
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Scattering resonances

fln this case we choose a combination of two planar waves, T
g; = c;e R d;e™™" | as an Ansatz on the external edges;
we ask about poles of the matrix S = S(k) which maps the
amplitudes of the incoming waves ¢ = {¢, } into amplitudes
of the outgoing waves d = {d, } by d = Sc.

-
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Scattering resonances

fln this case we choose a combination of two planar waves, T
g; = c;e R d;e™™" | as an Ansatz on the external edges;
we ask about poles of the matrix S = S(k) which maps the
amplitudes of the incoming waves ¢ = {¢, } into amplitudes
of the outgoing waves d = {d,,} by d = Sc. The b.c. give

(U —1)C1(k)

c1+ di

\ CM‘|.'dM /

+ik(U + 1)Co (k)

di —c1

\dM.—CM )

The OTAMP 2010 conferen

-
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-guivalence of resonance definitions, coil

fSince we are interested in zeros of det S—!, we regard the T
above relation as an equation for variables a;, b; and d;
while ¢; are just parameters. Eliminating the variables a;, b;
one derives from here a system of M equations expressing
the map S—'d = c. Itis not solvable, det S~ = 0, if

det [(U — I) Cy(k) + ik(U + I) Ca(K)] = 0

-
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-guivalence of resonance definitions, coil

fSince we are interested in zeros of det S—!, we regard the T
above relation as an equation for variables a;, b; and d;
while ¢; are just parameters. Eliminating the variables a;, b;
one derives from here a system of M equations expressing
the map S—'d = c. Itis not solvable, det S~ = 0, if

det [(U — I) Cy(k) + ik(U + I) Ca(K)] = 0

This Is the same condition as for the previous system of
equations, hence we are able to conclude:

Proposition [E-Lipovsky’10]: The two above resonance
notions, the resolvent and scattering one, are equivalent
for guantum graphs.

-
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Effective coupling on the finite graph

fThe problem can be reduced to the compact subgraph onIy.T

We write U in the block form, v = ( Zl 52 ) where U is the

2N x 2N refers to the compact subgraph, Uy isthe M x M
matrix related to the exterior part, and U, and Us are
rectangular matrices connecting the two.

-
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Effective coupling on the finite graph

fThe problem can be reduced to the compact subgraph onIy.T

We write U in the block form, v = ( gl 52 ) where U is the

2N x 2N refers to the compact subgraph, Uy isthe M x M
matrix related to the exterior part, and U, and Us are
rectangular matrices connecting the two.

Eliminating the external part leads to an effective coupling
on the compact subgraph expressed by the condition

~

(Uk) = D)(f1,- - fan) " +iUE) + D)(f, -, fay) =0,

where the corresponding coupling matrix

~

U(k) := Uy — (1 = k)Us[(1 — k)Uy — (k+ 1)I)7 U3
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Embedded ev’s for commensurate edge

fSuppose that the compact part contains a loop consisting T
of rationally related edges

-
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Embedded ev’s for commensurate edge

fSuppose that the compact part contains a loop consisting T
of rationally related edges

Then the graph Hamiltonian can have eigenvalues with
compactly supported eigenfunctions; they are embedded In
the continuum corresponding to external semiinfinite edges

-
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Embedded eigenvalues

fTheorem [E-Lipovsky'10]: Let I" consist of a single vertex and N finite edges emanating T
from this vertex and ending at it, with the coupling described by a 2N x 2N unitary matrix U.
Let the lengths of the first n edges be integer multiples of a positive real number [j. If the
rectangular 2N x 2n matrix

( U1 w12 — 1 u13 U14 Ul 2n—1 U1,2n \
u21 — 1 U22 u23 U24 e U2 2n—1 U2 2n
u31 U32 u33 uz4 —1 - U3,2n—1 u3,2n
Meoven = u41 U42 ug3 — 1 U44 e U4,2n—1 U4,2n
U2N—-1,1 U2N—-1,2 U2N-1,3 U2N_-1,4 *°° U2N—-12n—1 U2N—-1.2n
U2 N1 U2 N, 2 U2 N,3 U2 N, 4 E U2 N, 2n—1 U2 N, 2n )

has rank smaller than 2n then the spectrum of the corresponding Hamiltonian H = Hy;
contains eigenvalues of the form e = 4m?7? /12 with m € N and the multiplicity of these
eigenvalues is at least the difference between 2n and the rank of Meven.

-
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Embedded eigenvalues

fTheorem [E-Lipovsky'10]: Let I" consist of a single vertex and N finite edges emanating T
from this vertex and ending at it, with the coupling described by a 2N x 2N unitary matrix U.
Let the lengths of the first n edges be integer multiples of a positive real number [j. If the
rectangular 2N x 2n matrix

( U1l u12 — 1 U13 U14 U1 ,2n—1 U1,2n \
u21 — 1 U22 u23 U24 e U2 2n—1 U2 2n
u31 u32 u33 ugzgg —1 - U3.2n—1 u3.2n
Meoven = u41 U42 ug3 — 1 U44 e U4,2n—1 U4,2n
U2N_-1,1 U2N-1,2 U2N—-1,3 U2N—-1,4 -°° U2N_-12n—1 U2N_-1,2n
U2 N, 1 U2 N2 U2 N3 U2N 4 E U2N,2n—1 U2 N, 2n )

has rank smaller than 2n then the spectrum of the corresponding Hamiltonian H = Hy;

contains eigenvalues of the form e = 4m?7? /12 with m € N and the multiplicity of these
eigenvalues is at least the difference between 2n and the rank of Meven. This result
corresponds to sin klp /2 = 0, an analogous claim is valid in the odd case, cos klp /2 = 0. J
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Example: a loop with two leads
f fi(z)

g1() l;,  92(x)

fa(x)




Example: a loop with two leads
f fi(z) T

g1() l;,  92(x)

fa(x)

The setting Is as above, the b.c. at the nodes are

) = f2(0), fi(lh) = fa(l2)

) = a7 (f1(0) + £5(0)) + 1191(0),
filly) = —og ' (fi(l) + f5(l2)) +7295(0)

) = F(f1(0) + f3(0)) + a; g1(0),

) = —%(fi(h) + f3(l2) + a3 ' g5(0) J
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Resonance condition

fWriting the loop edgesas [y =1(1 —X), lo =1(1 + \),
A € |0, 1] — which effectively means shifting one of the
connections points around the loop as X is changing —
one arrives at the final resonance condition

sinkl(1 — ) sin kl(1 + \) — 4k*5; 1 (k)35 (k) sin? ki

+k[B () + By (k)] sin 2kl = 0,

| 2

where 3. ' (k) == a; ' + il

U 1—ika; *

-
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Resonance condition

fWriting the loop edges as iy =I(1 —\), lo = [(1+ N), T
A € |0, 1] — which effectively means shifting one of the
connections points around the loop as X is changing —
one arrives at the final resonance condition

sinkl(1 — ) sin kl(1 + \) — 4k*5; 1 (k)35 (k) sin? ki
+k[B () + By (k)] sin 2kl = 0,
|2

where 6;1(k) S ikl

U 1—ika; *

The condition can be solved numerically to find the
resonance trajectories with respect to the variable \.

-
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Pole trajectory

-0.0005

-0.001

-0.0015

-0.002

-0.0025 ' ' ' ' '
6.28 6.29 6.3 6.31 6.32 6.33 6.34

The trajectory of the resonance pole in the lower complex halfplane
starting from ko = 2r for the coefficients values ;' =1, a; ' = 2,
V2 =1,a;'=0,a;" =1, |12|?> =1, n = 2. The colour codlng shows

L}Tthe dependence on )\ changing from red (A = 0) to blue (A = 1). J
DE
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Pole trajectory

10.2

The trajectory of the resonance pole starting at ky = 3= for the coefficients
valuesa; ' =1,a0;,' =1, a;' =1,a;' =1, |m1|?> = |2]? =1, n = 3. The
colour coding is the same as in the previous picture.

-
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Pole trajectory

-0.2 |

0.4 F

-0.6 |

-0.8 |

6.25 6.3 6.35 6.4 6.45 6.5 6.55 6.6 6.65 6.7

The trajectory of the resonance pole starting at ky = 27 for the coefficients
valuesa; ' =1, 0, ' =1L, a;' =1L, a, =1, |m?=1,|%.?=1,n=2
The colour coding is the same as above.

-
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Example: a cross-shaped graph

f fl(ﬂ?).ll:l(l—)\) T
g1(z) g2(z)

0

fa(x)[la =1(1+ )




Example: a cross-shaped graph
- - B

1\ llzl 1—A
g1(x) ho Y g2(z)

< 4 >

0

fa(x)[la =1(1+ )

This time we restrict ourselves to the § coupling as the
boundary condition at the vertex and we consider Dirichlet
conditions at the loose ends, i.e.
f1(0) = f2(0) = g1(0) = g2(0),
filt) = fa(l2) =0,
afi(0) = f1(0)+ f2(0) + g1(0) + g5(0).

leading to the resonance condition

2k sin 2kl + (a0 — 2ik)(cos 2kIA — cos2kl) = 0 J
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-0.1

-0.2

-0.3

-0.4

-0.5

-0.6

-0.7

-0.8

-0.9

Pole trajectory

6.2

6.4

7.4 7.6

The trajectory of the resonance pole starting at k£, = 27 for the coefficients
values a = 10, n = 2. The colour coding is the same as in the previous
figures.

-
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Pole trajectory

0 | | | |
lﬁ\\ }\
02| / \ I i

-0.6 -

-0.8 | .

12 b -

14 | -

1.6 -

1.8 -

The trajectory of the resonance pole for the coefficients values o = 1,
n = 2. The colour coding Is the same as above.

-
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Pole trajectory

-05 |

1.5

25 | | | | | | | | |
6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11

The trajectories of two resonance poles for the coefficients values

a = 2.596, n = 2. We can see an avoided resonance crossing — the

former eigenvalue “travelling from the left to the right” interchanges with

the former resonance “travelling the other way” and ending up as an J
e ided eigenvalue. The colour coding is the same as above.

\—
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Multiplicity preservation

fln a similar way resonances can be generated in the T
general case. What is important, nothing is “lost™:

Theorem [E-Lipovsky’10]: Let I" have N finite edges of
lengths [;, M infinite edges, and the coupling given by

U= ( gl ZQ ) where U, refers to infinite edge coupling.
3 4

Let ko satisfying det [(1 — kg)Uy — (1 + ko)I] # 0 be a pole

of the resolvent (H — \id)~! of a multiplicity d. Let I’ be a
geometrically perturbed guantum graph with edge lengths
l;(1 + ¢) and the same coupling. Then there is ¢y > 0 s.t. for
all £ e U.,(0) the sum of multiplicities of the resolvent poles
In a sufficiently small neighbourhood of kg Is d.

. B
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Multiplicity preservation

fln a similar way resonances can be generated in the T
general case. What is important, nothing is “lost™:

Theorem [E-Lipovsky’10]: Let I" have N finite edges of
lengths [;, M infinite edges, and the coupling given by

Us Us
Let ko satisfying det [(1 — kg)Uy — (1 + ko)I] # 0 be a pole
of the resolvent (H — \id)~! of a multiplicity d. Let I’ be a
geometrically perturbed guantum graph with edge lengths
l;(1 + ¢) and the same coupling. Then there is ¢y > 0 s.t. for
all £ e U.,(0) the sum of multiplicities of the resolvent poles
In a sufficiently small neighbourhood of kg Is d.

U= ( Ui e ) where U, refers to infinite edge coupling.

Remark: The result holds only perturbatively, for larger
%values of ¢ poles may, e.g., escape to Iinfinity. J
L=

3 % MNODI
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ird resonance problem: Weyl asymptoti

fLet us now look into high-energy asymptotics of graph T
resonances. Introduce counting function N (R, F') as the
number of zeros of F (k) in the circle {k : |k| < R} of given
radius R > 0, algebraic multiplicities taken into account.

If /' comes from resonance secular equation we count in
this way number of resonances within the given circle

-
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ird resonance problem: Weyl asymptoti

fLet us now look into high-energy asymptotics of graph T
resonances. Introduce counting function N (R, F') as the
number of zeros of F (k) in the circle {k : |k| < R} of given
radius R > 0, algebraic multiplicities taken into account.

If /' comes from resonance secular equation we count in
this way number of resonances within the given circle

IDavies-Pushnitski’10] came with an intriguing observation:
If the coupling is Kirchhoff and some external vertices are
balanced, I.e. connecting the same number of internal and
external edges, then the leading term in the asymptotics
may be less than Weyl formula prediction

-
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ird resonance problem: Weyl asymptoti

fLet us now look into high-energy asymptotics of graph T
resonances. Introduce counting function N (R, F') as the
number of zeros of F(k) in the circle {k : |k| < R} of given
radius R > 0, algebraic multiplicities taken into account.

If /' comes from resonance secular equation we count in
this way number of resonances within the given circle

IDavies-Pushnitski’10] came with an intriguing observation:
If the coupling is Kirchhoff and some external vertices are
balanced, I.e. connecting the same number of internal and
external edges, then the leading term in the asymptotics
may be less than Weyl formula prediction

Let us look how the situation looks like for graphs with more
general vertex couplings J
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Recall the resonance condition

Denote ¢ := el and = := TII ¢, then secular eg-n is o

0 = det {%[(U—I) + R(U+D)] B (k) + %[(U—I) + R(U+D)] By + k(U+1)E3

+(U—-DEs+[(U-I)—k(U+1)|diag (O,..., O>IM><M)},
where E;(k) = diag (E,f”,E.(?) Em,o,...,o),

[ ) ? (

i = 1,2, 3,4, consists of N nontrivial 2 x 2 blocks

: 0 0 : 0 0 : 1 0 : 0 1
Eg]) — . N : Eéj) — o B : Eéj) — ’ Ei]) —
—ie,; €; i€, € 0O O 0O O

and the trivial M x M part.

o -
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Recall the resonance condition

Denote ¢ := el and = := TII ¢, then secular eg-n is o

0 = det {%[(U—I) + R(U+D)] B (k) + %[(U—I) + R(U+D)] By + k(U+1)E3

‘|‘(U—I)E4+[(U-I)—k(U—FI)]dl&g (O ..... O>IM><M)}>
where E;(k) = diag (Eﬂ E® Em,o,...,o),

[ ) ©) (

i = 1,2, 3,4, consists of N nontrivial 2 x 2 blocks

: 0 0 : 0 0 : 1 0 : 0 1
E;j) — . N : Eéj) — o B : Efgj) — 7 Eéij) —
—ie,; €; i€, € 0O O 0O O

and the trivial M x M part.

Looking for zeros of the rhs we can employ a modification of
%a classical result on zeros of exponential sums [Langer'31] J
L=
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Exponential sum zeros

Theorem: Let F(k) = >""_, a.(k) e, where a,(k) are
rational functions of the complex variable k& with complex
coefficients, and 0. € R, 0g < 01 < ... < 0,. SUpPpOSe that
limy . ag(k) # 0 @and limg_, a, (k) # 0. There exist a
compact Q2 C C, real numbers m, and positive K.,
r=1,...,n, such that the zeros of F'(k) outside ¢

lie in the logarithmic strips bounded by the curves

—Im £k + m, log |k| = + K, and the counting function
behaves in the limit R — oo as

N(R,F)=22""R 1+ 0(1)

T

-
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Application of the theorem

fWe need the coefficients at e* in the resonance condition. T
Let us pass to the effective b.c. formulation,

0 = det { %[(f](k) — )+ k(U(k) + D]E1 (k)
+%[(U(k)—I)—k(ﬁ(k)+1)]ﬁz(k)+k(ﬁ(k)+I)E3+(U(k)—I)E4},

where E; are the nontrivial 2N x 2N parts of the matrices
E; and I denotes the 2N x 2N unit matrix

-
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Application of the theorem

fWe need the coefficients at e* in the resonance condition. T
Let us pass to the effective b.c. formulation,

0 = det { %[(f](k) — )+ k(U(k) + D]E1 (k)
+%[(U(k)—I)—k(ﬁ(k)+1)]Ez(k)+k(U(k)+I)E3+(U(k)—I)E4},

where E; are the nontrivial 2N x 2N parts of the matrices
E; and I denotes the 2N x 2N unit matrix

By a direct computation we get

Lemma: The coefficient of e* in the above equation is
i\ &V - -
(%) det [(U(k) — 1) £ k(U(k) + I)]

-
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The resonance asymptotics

fTheorem [Davies-E-Lipovsky’10]: Consider a quantum T
graph (I", Hyy) corresponding to I with finitely many edges

and the coupling at vertices X; given by unitary matrices U;.
The asymptotics of the resonance counting function as

R — oo Is of the form

NRF) =X Rrion),

-
where W Is the effective size of the graph. One always has

N
0<SW V=) 1
j=1
Moreover W < V (graph is non-Weyl in the terminology of
IDavies-Pushnitski'10] if and only if there exists a vertex
where the corresponding energy dependent coupling matrix

%Uj(k) has an eigenvalue (1 —k)/(1+k)or (1+k)/(1—k).
@) s (T
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Permutation invariant couplings

fNow we apply the result to graphs with coupling invariant T
w.r.t. edge permutations. These are described by matrices
U; = a;J +bjI, where a;, b; € C such that |b;| = 1 and
b; + ajdeg X;| = 1; matrix J has all entries equal to one.

Note that § and ¢, are particular cases of such a coupling

-
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Permutation invariant couplings

fNow we apply the result to graphs with coupling invariant T
w.r.t. edge permutations. These are described by matrices

U; = a;J +bjI, where a;, b; € C such that |b;| = 1 and

b; + ajdeg X;| = 1; matrix J has all entries equal to one.

Note that § and ¢, are particular cases of such a coupling

We need two simple auxiliary statements:

Lemma: The matrix U = aJ,,xn, + bl,x, hasn — 1
eigenvalues b and one eigenvalue na + b. Its inverse

iS (]_1 — —mjnxn + %]nxn

a\__ ;‘. ; MNODI
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Permutation invariant couplings

fNow we apply the result to graphs with coupling invariant T
w.r.t. edge permutations. These are described by matrices
U; = a;J +bjI, where a;, b; € C such that |b;| = 1 and
b; + ajdeg X;| = 1; matrix J has all entries equal to one.

Note that § and ¢, are particular cases of such a coupling

We need two simple auxiliary statements:

Lemma: The matrix U = aJ,,xn, + bl,x, hasn — 1
eigenvalues b and one eigenvalue na + b. Its inverse

iS (]_1 — —mjnxn + %]nxn

Lemma: Let p internal and ¢ external edges be coupled
with b.c. given by U = CLJ(p+q)X(p+q) + bl(p+q)x(p—|—q)- Then the

energy-dependent effective matrix is

ab(l — k) —a(l + k)
(ag+ ) — k) — (b 1) 70 T o J
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Asymptotics In the symmetric case

fCombining them with the above theorem we find easily T
that there are only two cases which exhibit non-Weyl
asymptotics here

-
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Asymptotics in the symmetric case

fCombining them with the above theorem we find easily T

that there are only two cases which exhibit non-Weyl
asymptotics here

Theorem [Davies-E-Lipovsky’10]: Let (T', Hy) be a quantum
graph with permutation-symmetric coupling conditions at
the vertices, U; = a;J + b;I. Then it has non-Weyl

asymptotics if and only If at least one of its vertices is
balanced, p = ¢, and the coupling at this vertex is either

@) fj=fo. Vin<2p, Y fl=0,
ie. U = %szxgp — ]prgp, or

: 2
0) f;=fr, Vin<2p, ST fi=0,
e. U = _]%JQpXQp T [2p><2p : J
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Unbalanced non-Weyl graphs

fOn the other hand, in graphs with unbalanced vertices T
there are many cases of non-Weyl behaviour. To this end
we employ a trick based on the unitary transformation

W-lUW, where W is block diagonal with a nontrivial
unitary g x g part Wy,

W ew[pxp 0
0 Wy

-
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Unbalanced non-Weyl graphs

fOn the other hand, in graphs with unbalanced vertices T
there are many cases of non-Weyl behaviour. To this end
we employ a trick based on the unitary transformation

W-lUW, where W is block diagonal with a nontrivial
unitary g x g part Wy,

W ew[pxp 0
0 Wy

One can check easily the following claim

Lemma: The family of resonances of H;; does not change
if the original coupling matrix U is replaced by W—1UW.

-
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Example: line with a stub

fi(z) fa(z)

The Hamiltonian acts as —d?/dz? on graph I" consisting of
two half-lines and one internal edge of length [. Its domain
contains functions from 1W22(I") which satisfy

0 = (U —1)(u(0), £1(0), f2(0NT + (U + I) (' (0), £1(0), f4(0)T
0 = u(l)+ cu'(1),

(x) referring to half-lines and u(x) to the internal edge. J
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Example, continued

f 01 0 T
We start from the matrix v,=| 1 o o |, describing one
0 0 e
half-line separated from the rest of the graph. As mentioned

above such a graph has non-Weyl asymptotics (obviously, it
cannot have more than two resonances)

-
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Example, continued

0 0 e
half-line separated from the rest of the graph. As mentioned
above such a graph has non-Weyl asymptotics (obviously, it
cannot have more than two resonances)

f 01 0 T
We start from the matrix v,=| 1 o o |, describing one

1 0 0
Using Uy = W=LUW with w = | ¢ rei®1 VI 72 el
0 vi1— ’]"2 eic‘p3 —rei(902+‘103_901)

we arrive at a three-parameter family with the same
resonances — thus non-Weyl — described by

Tei@l meiSOQ
(1 — r2)ei¢ —rv/ 1 — T2€_i(_¢+901_902)
—r/ 1 —_ 7“2612:(1#_*_901_(‘02) rzeiw

-

The OTAMP 2010 conference; Bedtewo, August 6, 2010 — p. 55/¢




Remark

ﬁn particular, for Dirichlet condition both at the end of the T
separated half-line, ¢y = =, and at the remote end of the
iInternal edge, ¢ = 0, one obtains a family of Hamiltonians
which have no resonances at all. This includes ¢; = ¢9 =0

and r = 1/+/2, or the conditions

f1(0) = f2(0), w(0) =V2f1(0), f1(0) — f3(0) = —v2u/(0),

where the fact of resonance absence was first noted In
[E-SereSova’94], and a similar behavior for ¢; = ¢ = 7 and
r = 1/4/2. Notice that the absence of resonances is easily
understood if one regards the graph in question as a tree
and employs a unitary equivalence proposed first by
Solomyak — see, e.g., [Sobolev-Solomyak’02].

-
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Example: a loop with two leads

- .

To illustrate how the asymptotics can change with the graph
geometry, consider the above graph. The Hamiltonian acts
as above with coupling conditions

u(0) = f1(0), wu(l) = f2(0),
au(0) = u'(0) + f1(0) + B(—=u'(1) + f5(0)),
au(l) = B(u'(0) + £1(0)) — u'(1) + f2(0)

with real parameters «, 5 € R. The choice g = 1 gives the

“overall” §-condition of strength «, while 5 = 0 corresponds
L}Vto a Ime with two ¢-Interactions at the distance /. J
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Example, continued

Using e+ = eT** we write the resonance condition as T

8@'04264_ + dkaf — ijo(a — 4ik) + 4k*(5% — 1)] e_
152~ 1) + ala — 4)

= 0.

The coefficient of e™ vanishes iff a = 0, the second term
vanishes for 5 =0 or if |3| # 1 and a = 0, while the

polynomial multiplying e~ does not vanish for any
combination of o and z.

-
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Example, continued

Using e+ = eT** we write the resonance condition as T

82'042e+ + dkaf — ijo(a — 4ik) + 4k*(5% — 1)] e_

432 — 1) + afa — 4) =

The coefficient of e* vanishes iff a = 0, the second term
vanishes for 5 =0 or if |3| # 1 and a = 0, while the
polynomial multiplying e~ does not vanish for any
combination of o and z.

In other words, the graph has a non-Weyl asymptotics iff

a = 0. If, In addition, |3| # 1, than all resonances are

confined to some circle, I1.e. the graph “size” is zero. The

exceptions are Kirchhoff condition, 3 =1 and o = 0, and its

counterpart, 5 = —1 and « = 0, for which “one half” of the
%resonances is preserved, the “size” being 1/2. J
)

3 MNODI
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Example, continued

fLet us look at the §-condition, 3 = 1, to illustrate the T
disappearance of half of the resonances when the coupling
strength vanishes. The resonance equation becomes

—asin kl 4+ 2k(1 + isin kl — cos kl)

— 0
a— 41

-
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Example, continued

fLet us look at the §-condition, 3 = 1, to illustrate the T

disappearance of half of the resonances when the coupling
strength vanishes. The resonance equation becomes

—asin kl 4+ 2k(1 + isin kl — cos kl)
a — 41

=0

A simple calculation shows that there Is a sequence of
embedded ev’s, k = 2nx/l with n € Z, and a family of

resonances given by solutions to ¢?*! = —1 4 2%, The former
do not depend on «, while the latter behave for small « as

o

1 1
Im#k = —jlog— +O(1), Rek=nr+ 0O(a),
Q

hus all the (true) resonances escape to infinity as a — 0. J
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What can cause a non-Weyl asymptotic:

fWe will argue that (anti)Kirchhoff conditions at balanced T
vertices are too easy to decouple diminishing in this way
effectively the graph size

-
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What can cause a non-Weyl asymptotic:

fWe will argue that (anti)Kirchhoff conditions at balanced T
vertices are too easy to decouple diminishing in this way
effectively the graph size

Consider the above graph with a balanced vertex X; which
connects p internal edges of the same length [, and p
external edges with the coupling given by a unitary

UM = a.Jop w0, + blapxa,. The coupling to the rest of the

graph, denoted as I'y, is described by a ¢ x ¢ matrix U(?),
where ¢ > p; needless to say such a matrix can hide

%different topologies of this part of the graph J
@ @I The OTAMP 2010 conference; Bedtewo, August 6, 2010 — p. 60/




Unitary equivalence again

o .

Proposition: Consider I' be the the coupling given by

arbitrary U() and U2, Let V be an arbitrary unitary p x p
matrix, V1) := diag (V. V) and V?) := diag (I;; )« (4p). V)
be 2p x 2p and ¢ x ¢ block diagonal matrices, respectively.

Then H on I' Is unitarily equivalent to the Hamiltonian Hy,
on topologically the same graph with the coupling given by

the matrices [VW]~1yMy () and [~y (),

-
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Unitary equivalence again

-

Proposition: Consider I' be the the coupling given by

arbitrary U() and U2, Let V be an arbitrary unitary p x p
matrix, V1) := diag (V. V) and V?) := diag (I;; )« (4p). V)
be 2p x 2p and ¢ x ¢ block diagonal matrices, respectively.

Then H on I' Is unitarily equivalent to the Hamiltonian Hy,
on topologically the same graph with the coupling given by

the matrices [VW]~1yMy () and [~y (),

=

Remark: The assumption that the same edge length is
made for convenience only; we can always get it fulfilled
by adding Kirchhhoff vertices

-
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Application to symmetric coupling

fLet now U = aJo, w2, + blopxa, at X1. We choose columns of IV as an T
orthonormal set of eigenvectors of the p x p block aJ,x, + bI,x,, the first
one being = (1,1,...,1)". The transformed matrix VvO—tgMy M
decouples into blocks connecting only pairs (v;, g;).

-
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Application to symmetric coupling

fLet now U = aJapxap + blapxop at Xy We choose columns of 117 as an T
orthonormal set of eigenvectors of the p x p block aJ,x, + bI,x,, the first
one being = (1,1,...,1)". The transformed matrix VvO—tgMy M
decouples into blocks connecting only pairs (v;, g;).

The first one corresponding to a symmetrization of all the «;’s and f;’s,
leads to the 2 x 2 matrix Usxo = apJaxo + blox2, While the other lead to
separation of the corresponding internal and external edges described by
the Robin conditions, (b — 1)v;(0) +4(b + 1)v%(0) = 0 and

(b—1)g;(0) +i(b+1)g;(0) =0forj =2,...,p.

-
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Application to symmetric coupling

fLet now U = aJo, w2, + blopxa, at X1. We choose columns of IV as an T
orthonormal set of eigenvectors of the p x p block aJ,x, + bI,x,, the first
one being = (1,1,...,1)". The transformed matrix VvO—tgMy M
decouples into blocks connecting only pairs (v;, g;).

The first one corresponding to a symmetrization of all the «;’s and f;’s,
leads to the 2 x 2 matrix Usxo = apJaxo + blox2, While the other lead to
separation of the corresponding internal and external edges described by
the Robin conditions, (b — 1)v;(0) +4(b + 1)v%(0) = 0 and

(b—1)g;(0) +i(b+1)g;(0) =0forj =2,...,p.

The “overall” Kirchhoff/anti-Kirchhoff condition at X is transformed to the
“line” Kirchhoff/anti-Kirchhoff condition in the subspace of permutation-
symmetric functions, reducing the graph size by [y. In all the other cases
the point interaction corresponding to the matrix apJsxo + bloyo IS

%nontrivial, and consequently, the graph size is preserved. J
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Effective size Is a global property

fOne may ask whether there are geometrical rules that T
would quantify the effect of each balanced vertex on the
asymptotics. The following example shows that this is not
likely:

-
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Effective size Is a global property

fOne may ask whether there are geometrical rules that T
would quantify the effect of each balanced vertex on the
asymptotics. The following example shows that this is not

likely:

For a fixed integer n > 3 we start with a regular n-gon, each
edge having length ¢, and attach two semi-infinite leads to
each vertex, so that each vertex is balanced; thus the

%effective size W, Is strictly less than V,, = n/. J
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Example, continued
fProposition: The effective size of the graph I';, is given by T

nt/2 If n# 0 mod 4,
Wy, = _
(n—2)¢/2 1fn=0 mod 4.

DEC
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Example, continued

fProposition: The effective size of the graph I';, is given by T

W nt /2 If n# 0 mod 4,
(n—2)¢/2 1fn=0 mod 4.

Sketch of the proof: We employ Bloch/Floquet decomposition of H w.r.t.

the cyclic rotation group Z,,. It leads to analysis of one segment with

“guasimomentum” w satisfying w™ = 1, after a short computation we find

that H_, has a resonance Iff

—2(w? + 1) + dwe™*t = 0.

Hence the effective size W, of the system of resonances of H,, is ¢/2 if

w? +1#0butitis zero if w? +1 = 0. Now w? + 1 = 0 is not soluble if
%w” — 1 and n # 0 mod 4, but it has two solutions if n = 0 mod 4. ] J
A
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Concluding remarks

fThe present results inspire various guestions, e.g. T

» Effect of more general geometric perturbations,
possibly in combination with external fields on
guantum graph spectra and resonances

-
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Concluding remarks

fThe present results inspire various guestions, e.g. T

# Effect of more general geometric perturbations,
possibly in combination with external fields on
guantum graph spectra and resonances

# Can the inequality for resonances be valid not only
asymptotically, in the spirit of Polya conjecture for
Dirichlet Laplacians?
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Concluding remarks

fThe present results inspire various guestions, e.g. T

# Effect of more general geometric perturbations,
possibly in combination with external fields on
guantum graph spectra and resonances

# Can the inequality for resonances be valid not only
asymptotically, in the spirit of Polya conjecture for
Dirichlet Laplacians?

# How these effects will look like for more general
operators? in [DEL10] criteria for occurrence of
non-Weyl asymptotics were derived for weighted
Laplacians, but there are others
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Concluding remarks

fThe present results inspire various guestions, e.g. T

# Effect of more general geometric perturbations,
possibly in combination with external fields on
guantum graph spectra and resonances

# Can the inequality for resonances be valid not only
asymptotically, in the spirit of Polya conjecture for
Dirichlet Laplacians?

# How these effects will look like for more general
operators? in [DEL10] criteria for occurrence of
non-Weyl asymptotics were derived for weighted
Laplacians, but there are others

® elc.

-
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The results discussed here come from

- .
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Thank you for your attention!
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