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Talk overview

In this talk I am going to present several recent results on
spectral and resonance properties of quantum graphs:

Geometric perturbation: eigenvalues in gaps and
resonances in a model of “bent” chain graph
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Talk overview

In this talk I am going to present several recent results on
spectral and resonance properties of quantum graphs:

Geometric perturbation: eigenvalues in gaps and
resonances in a model of “bent” chain graph

Another geometric perturbation: resonances due to
edge rationality violation in graphs with leads

High-energy asymptotics of resonances: Weyl and
non-Weyl behaviour, and when each of them occurs
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Introduction: the quantum graph concept

The idea of investigating quantum particles confined to a
graph was first suggested by L. Pauling in 1936 and worked
out by Ruedenberg and Scherr in 1953 in a model of
aromatic hydrocarbons
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Introduction: the quantum graph concept

The idea of investigating quantum particles confined to a
graph was first suggested by L. Pauling in 1936 and worked
out by Ruedenberg and Scherr in 1953 in a model of
aromatic hydrocarbons

The concept extends, however, to graphs of arbitrary shape
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on graph edges,
boundary conditions at vertices

and what is important, it became practically important after
experimentalists learned in the last two decades to fabricate
tiny graph-like structure for which this is a good model
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Remarks

There are many graph-like systems based on
semiconductor or metallic materials, carbon nanotubes,
etc. The dynamics can be also simulated by microwave
network built of optical cables – see [Hul et al.’04]
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Remarks

There are many graph-like systems based on
semiconductor or metallic materials, carbon nanotubes,
etc. The dynamics can be also simulated by microwave
network built of optical cables – see [Hul et al.’04]

Here we consider Schrödinger operators on graphs,
most often free, vj = 0. Naturally one can external
electric and magnetic fields, spin, etc.

Graphs can support also Dirac operators, see
[Bulla-Trenckler’90], [Bolte-Harrison’03], and many
recent applications to graphene and its derivates

The graph literature is extensive; a good up-to-date
reference are proceedings of the recent semester
AGA Programme at INI Cambridge
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Vertex coupling
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The most simple example is a
star graph with the state Hilbert
space H =

⊕n
j=1 L

2(R+) and
the particle Hamiltonian acting
on H as ψj 7→ −ψ′′

j
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The most simple example is a
star graph with the state Hilbert
space H =

⊕n
j=1 L

2(R+) and
the particle Hamiltonian acting
on H as ψj 7→ −ψ′′

j

Since it is second-order, the boundary condition involve
Ψ(0) := {ψj(0)} and Ψ′(0) := {ψ′

j(0)} being of the form

AΨ(0) +BΨ′(0) = 0 ;

by [Kostrykin-Schrader’99] the n× n matrices A,B give rise
to a self-adjoint operator if they satisfy the conditions

rank (A,B) = n

AB∗ is self-adjoint
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Unique boundary conditions
The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer’00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n×n matrices U such that

A = U − I , B = i(U + I)
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Unique boundary conditions
The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer’00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n×n matrices U such that

A = U − I , B = i(U + I)

One can derive them modifying the argument used in
[Fülöp-Tsutsui’00] for generalized point interactions, n = 2

Self-adjointness requires vanishing of the boundary form,
n∑

j=1

(ψ̄jψ
′
j − ψ̄′

jψj)(0) = 0 ,

which occurs iff the norms ‖Ψ(0) ± iℓΨ′(0)‖Cn with a fixed
ℓ 6= 0 coincide, so the vectors must be related by an n× n
unitary matrix; this gives (U − I)Ψ(0) + iℓ(U + I)Ψ′(0) = 0
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Examples of vertex coupling

Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n∑

j=1

ψ′
j(0) = αψ(0)

with “coupling strength” α ∈ R; α = ∞ gives U = −I
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Examples of vertex coupling

Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n∑

j=1

ψ′
j(0) = αψ(0)

with “coupling strength” α ∈ R; α = ∞ gives U = −I
α = 0 corresponds to the “free motion”, the so-called
free boundary conditions (better name than Kirchhoff)

Similarly, U = I − 2
n−iβJ describes the δ′s coupling

ψ′
j(0) = ψ′

k(0) =: ψ′(0) , j, k = 1, . . . , n ,
n∑

j=1

ψj(0) = βψ′(0)

with β ∈ R; for β = ∞ we get Neumann decoupling, etc.
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What is known about graph spectra
many particular examples
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What is known about graph spectra
many particular examples

a spectral duality mapping the problem on a difference
equation: originally by Alexander and de Gennes in the
early 80’s, mathematically rigorous [E’97], [Cattaneo’97]
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What is known about graph spectra
many particular examples

a spectral duality mapping the problem on a difference
equation: originally by Alexander and de Gennes in the
early 80’s, mathematically rigorous [E’97], [Cattaneo’97]

trace formulæ expressing spectral properties a compact
graph Hamiltonian in terms of closed orbits on the
graph– [Kottos-Smilansky’97], [Bolte-Endres’09]

inverse problems like “Can one hear the shape of a
graph?” [Gutkin-Smilansky’01] and many others

Anderson localization on graphs [Aizenman-Sims
-Warzel’06], [E-Helm-Stollmann’07], [Hislop-Post’08]

gaps by decoration [Aizenman-Schenker’01] and others

and more
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First problem to address

Ask about relations between the geometry of Γ and spectral
properties of a Schrödinger operator supported by Γ. An
interpretation needed: think of Γ as of a subset of R

n with
the geometry inherited from the ambient space
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First problem to address

Ask about relations between the geometry of Γ and spectral
properties of a Schrödinger operator supported by Γ. An
interpretation needed: think of Γ as of a subset of R

n with
the geometry inherited from the ambient space

A simple model: analyze the influence of a “bending”
deformation on a a “chain graph” which exhibits a
one-dimensional periodicity

Without loss of generality we assume unit radii; the rings
are connected by the δ-coupling of a strength α 6= 0
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Bending the chain
We will suppose that the chain is deformed as follows
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Bending the chain
We will suppose that the chain is deformed as follows

Our aim is to show that

the band spectrum of the straight Γ is preserved

there are bend-induced eigenvalues, we analyze their
behavior with respect to model parameters

the bent chain exhibits also resonances
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An infinite periodic chain

The “straight” chain Γ0 can be treated as a periodic system
analyzing the spectrum of the elementary cell

with Floquet-Bloch boundary conditions with the phase e2iθ
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An infinite periodic chain

The “straight” chain Γ0 can be treated as a periodic system
analyzing the spectrum of the elementary cell

with Floquet-Bloch boundary conditions with the phase e2iθ

This yields the condition

e2iθ − eiθ
(

2 cos kπ +
α

2k
sin kπ

)

+ 1 = 0
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Straight chain spectrum
A straightforward analysis leads to the following conclusion:

Proposition: σ(H0) consists of infinitely degenerate
eigenvalues equal to n2 with n ∈ N, and absolutely
continuous spectral bands such that

If α > 0, then every spectral band is contained in
(n2, (n+ 1)2] with n ∈ N0 := N ∪ {0}, and its upper edge
coincides with the value (n+ 1)2.
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Straight chain spectrum
A straightforward analysis leads to the following conclusion:

Proposition: σ(H0) consists of infinitely degenerate
eigenvalues equal to n2 with n ∈ N, and absolutely
continuous spectral bands such that

If α > 0, then every spectral band is contained in
(n2, (n+ 1)2] with n ∈ N0 := N ∪ {0}, and its upper edge
coincides with the value (n+ 1)2.

If α < 0, then in each interval [n2, (n+ 1)2) with n ∈ N there
is exactly one band with the lower edge n2. In addition,
there is a band with the lower edge (the overall threshold)
−κ2, where κ is the largest solution of

∣
∣
∣
∣
coshκπ +

α

4
· sinhκπ

κ

∣
∣
∣
∣
= 1
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Straight chain spectrum
Proposition, cont’d: The upper edge of this band depends
on α. If −8/π < α < 0, it is k2 where k solves

cos kπ +
α

4
· sin kπ

k
= −1

in (0, 1). On the other hand, for α < −8/π the upper edge is
negative, −κ2 with κ being the smallest solution of the
condition, and for α = −8/π it equals zero.

Finally, σ(H0) = [0,+∞) holds if α = 0.
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Straight chain spectrum
Proposition, cont’d: The upper edge of this band depends
on α. If −8/π < α < 0, it is k2 where k solves

cos kπ +
α

4
· sin kπ

k
= −1

in (0, 1). On the other hand, for α < −8/π the upper edge is
negative, −κ2 with κ being the smallest solution of the
condition, and for α = −8/π it equals zero.

Finally, σ(H0) = [0,+∞) holds if α = 0.

Let us add a couple of remarks:

The bands correspond to Kronig-Penney model with the
coupling 1

2α instead of α, in addition one has here the
infinitely degenerate point spectrum

It is also an example of gaps coming from decoration
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The bent chain spectrum

Now we pass to the bent chain denoted as Γϑ:
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The bent chain spectrum

Now we pass to the bent chain denoted as Γϑ:

Since Γϑ has mirror symmetry, the operator Hϑ can be
reduced by parity subspaces into a direct sum of an even
part, H+, and odd one, H−; we drop mostly the subscript ϑ

Equivalently, we analyze the half-chain with Neumann and
Dirichlet conditions at the points A, B, respectively
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Eigenfunction components

At the energy k2 they are are linear combinations of e±ikx,

ψj(x) = C+
j eikx + C−

j e−ikx, x ∈ [0, π] ,

ϕj(x) = D+
j eikx +D−

j e−ikx, x ∈ [0, π]

for j ∈ N. On the other hand, for j = 0 we have

ψ0(x) = C+
0 eikx + C−

0 e−ikx, x ∈
[
π − ϑ

2
, π

]

ϕ0(x) = D+
0 eikx +D−

0 e−ikx, x ∈
[
π + ϑ

2
, π

]
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Eigenfunction components

At the energy k2 they are are linear combinations of e±ikx,

ψj(x) = C+
j eikx + C−

j e−ikx, x ∈ [0, π] ,

ϕj(x) = D+
j eikx +D−

j e−ikx, x ∈ [0, π]

for j ∈ N. On the other hand, for j = 0 we have

ψ0(x) = C+
0 eikx + C−

0 e−ikx, x ∈
[
π − ϑ

2
, π

]

ϕ0(x) = D+
0 eikx +D−

0 e−ikx, x ∈
[
π + ϑ

2
, π

]

There are δ-couplings in the points of contact, i.e.

ψj(0) = ϕj(0) , ψj(π) = ϕj(π) , and

ψj(0) = ψj−1(π) ; ψ′
j(0) + ϕ′

j(0) − ψ′
j−1(π) − ϕ′

j−1(π) = α · ψj(0)
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Transfer matrix

Using the above relations we get for all j ≥ 2

(

C+
j

C−
j

)

=

( (
1 + α

4ik

)
eikπ α

4ike−ikπ

− α
4ikeikπ

(
1 − α

4ik

)
e−ikπ

)

︸ ︷︷ ︸

M

·
(

C+
j−1

C−
j−1

)

,
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Transfer matrix

Using the above relations we get for all j ≥ 2

(

C+
j

C−
j

)

=

( (
1 + α

4ik

)
eikπ α

4ike−ikπ

− α
4ikeikπ

(
1 − α

4ik

)
e−ikπ

)

︸ ︷︷ ︸

M

·
(

C+
j−1

C−
j−1

)

,

To have eigenvalues, one eigenvalue of M has to be less
than one (they satisfy λ1λ2 = 1); this happens iff

∣
∣
∣cos kπ +

α

4k
sin kπ

∣
∣
∣ > 1 ;

recall that reversed inequality characterizes spectral bands
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Transfer matrix

Using the above relations we get for all j ≥ 2

(

C+
j

C−
j

)

=

( (
1 + α

4ik

)
eikπ α

4ike−ikπ

− α
4ikeikπ

(
1 − α

4ik

)
e−ikπ

)

︸ ︷︷ ︸

M

·
(

C+
j−1

C−
j−1

)

,

To have eigenvalues, one eigenvalue of M has to be less
than one (they satisfy λ1λ2 = 1); this happens iff

∣
∣
∣cos kπ +

α

4k
sin kπ

∣
∣
∣ > 1 ;

recall that reversed inequality characterizes spectral bands

Remark: By general arguments, σess is preserved, and
there are at most two eigenvalues in each gap
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Spectrum ofH+

Combining the above with the Neumann condition at the
mirror axis we get the spectral condition in this case,

cos kϑ = − cos kπ +
sin2 kπ

α
4k sin kπ ±

√
(
cos kπ + α

4k sin kπ
)2 − 1

and an analogous expression for negative energies
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Spectrum ofH+

Combining the above with the Neumann condition at the
mirror axis we get the spectral condition in this case,

cos kϑ = − cos kπ +
sin2 kπ

α
4k sin kπ ±

√
(
cos kπ + α

4k sin kπ
)2 − 1

and an analogous expression for negative energies

After a tiresome but straightforward analysis one arrives
then at the following conclusion:

Proposition: If α ≥ 0, then H+ has no negative
eigenvalues. On the other hand, for α < 0 the operator H+

has at least one negative eigenvalue which lies under the
lowest spectral band and above the number −κ2

0, where κ0

is the (unique) solution of κ · tanhκπ = −α/2
The OTAMP 2010 conference; Bedłewo, August 6, 2010 – p. 17/67



Spectrum ofH+ for α = 3

  0 π/4 π/2 3π/4  π  
0
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ϑ

ℜ
(k
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Spectrum ofH−

Replacing Neumann condition by Dirichlet at the mirror axis
we get the spectral condition in this case,

− cos kϑ = − cos kπ +
sin2 kπ

α
4k sin kπ ±

√
(
cos kπ + α

4k sin kπ
)2 − 1

and a similar one, with sin and cos replaced by sinh and cosh
for negative energies
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Spectrum ofH−

Replacing Neumann condition by Dirichlet at the mirror axis
we get the spectral condition in this case,

− cos kϑ = − cos kπ +
sin2 kπ

α
4k sin kπ ±

√
(
cos kπ + α

4k sin kπ
)2 − 1

and a similar one, with sin and cos replaced by sinh and cosh
for negative energies

Summarizing, for each of the operators H± there is at least
one eigenvalue in every spectral gap closure. It can lapse
into a band edge n2, n ∈ N, and thus be in fact absent. The
ev’s of H+ and H− may coincide, becoming a single ev of
multiplicity two; this happens only if

k · tan kπ =
α

2
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Spectrum ofH− for α = 3

  0 π/4 π/2 3π/4  π  
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σ(H) for attractive coupling, α = −3

  0 π/4 π/2 3π/4  π  
−2

0
1

4

9

16

ϑ

ℜ
(k

2 )
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Resonances, analyticity

The above eigenvalue curves are not the only solutions of
the spectral condition. There are also complex solutions
representing resonances of the bent-chain system

In the above pictures their real parts are drawn as functions
of ϑ by dashed lines.
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Resonances, analyticity

The above eigenvalue curves are not the only solutions of
the spectral condition. There are also complex solutions
representing resonances of the bent-chain system

In the above pictures their real parts are drawn as functions
of ϑ by dashed lines.

A further analysis of the spectral condition gives

Proposition: The eigenvalue and resonance curves for H+

are analytic everywhere except at (ϑ, k) = (n+1−2ℓ
n π, n),

where n ∈ N, ℓ ∈ N0, ℓ ≤
[

n+1
2

]
. Moreover, the real solution

in the n-th spectral gap is given by a function ϑ 7→ k which is
real-analytic, except at the points n+1−2ℓ

n π. Similar claims
can be made for the odd part for H−.
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Imaginary parts of H+ resonances,α = 3

  0 π/4 π/2 3π/4  π  
0

1

2

3

4

5

ϑ

ℑ
(k

2 )
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More on the angle dependence
For simplicity we take H+ only, the results for H− are
analogous. Ask about the behavior of the curves at the
points whe they touch bands and where eigenvalues and
resonances may cross

If ϑ0 := n+1−2ℓ
n π > 0 is such a point we find easily that in is

vicinity we have

k ≈ k0 + 3

√
α

4

k0

π
|ϑ− ϑ0|4/3

so he curve is indeed non-analytic there. The same is true
for ϑ0 = 0 provided the band-edge value k0 is odd
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More on the angle dependence
For simplicity we take H+ only, the results for H− are
analogous. Ask about the behavior of the curves at the
points whe they touch bands and where eigenvalues and
resonances may cross

If ϑ0 := n+1−2ℓ
n π > 0 is such a point we find easily that in is

vicinity we have

k ≈ k0 + 3

√
α

4

k0

π
|ϑ− ϑ0|4/3

so he curve is indeed non-analytic there. The same is true
for ϑ0 = 0 provided the band-edge value k0 is odd

However, H+ has an eigenvalue near ϑ0 = 0 also in the
gaps adjacent to even numbers, when the curve starts at
(0, k0) for k0 solving | cos kπ + α

4k sin kπ| = 1 in (n, n+ 1), n
even
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Even threshold behavior

Proposition: Suppose that n ∈ N is even and k0 is as
described above, i.e. k2

0 is the right endpoint of the spectral
gap adjacent to n2. Then the behavior of the solution in the
vicinity of (0, k0) is given by

k = k0 − Ck0,α · ϑ4 + O(ϑ5) ,

where Ck0,α := k2
0

8π ·
(

α
4

)3
(k0π + sin k0π)−1
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Even threshold behavior

Proposition: Suppose that n ∈ N is even and k0 is as
described above, i.e. k2

0 is the right endpoint of the spectral
gap adjacent to n2. Then the behavior of the solution in the
vicinity of (0, k0) is given by

k = k0 − Ck0,α · ϑ4 + O(ϑ5) ,

where Ck0,α := k2
0

8π ·
(

α
4

)3
(k0π + sin k0π)−1

Remark: Notice that the fourth-power is the same as for the
ground state of a slightly bent Dirichlet tube despite the fact
that the dynamics is completely different in the two cases
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Second problem concerning resonances

A typical resonances situation arises for finite graphs
with semiinfinite leads
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A typical resonances situation arises for finite graphs
with semiinfinite leads

Different resonances definitions: poles of continued
resolvent, singularities of on-shell S matrix
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Second problem concerning resonances

A typical resonances situation arises for finite graphs
with semiinfinite leads

Different resonances definitions: poles of continued
resolvent, singularities of on-shell S matrix

Graphs may exhibit embedded eigenvalues due to
invalidity of uniform continuation
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Second problem concerning resonances

A typical resonances situation arises for finite graphs
with semiinfinite leads

Different resonances definitions: poles of continued
resolvent, singularities of on-shell S matrix

Graphs may exhibit embedded eigenvalues due to
invalidity of uniform continuation

Geometric perturbations of such graphs may turn the
embedded eigenvalues into resonances
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Preliminaries

Consider a graph Γ with vertices V = {Xj : j ∈ I}, finite
edges L = {Ljn : (Xj ,Xn) ∈ IL ⊂ I × I} and infinite edges
L∞ = {Lj∞ : Xj ∈ IC}. The state Hilbert space is

H =
⊕

Lj∈L

L2([0, lj ]) ⊕
⊕

Lj∞∈L∞

L2([0,∞)),

its elements are columns ψ = (fj : Lj ∈ L, gj : Lj∞ ∈ L∞)T .
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Preliminaries

Consider a graph Γ with vertices V = {Xj : j ∈ I}, finite
edges L = {Ljn : (Xj ,Xn) ∈ IL ⊂ I × I} and infinite edges
L∞ = {Lj∞ : Xj ∈ IC}. The state Hilbert space is

H =
⊕

Lj∈L

L2([0, lj ]) ⊕
⊕

Lj∞∈L∞

L2([0,∞)),

its elements are columns ψ = (fj : Lj ∈ L, gj : Lj∞ ∈ L∞)T .

The Hamiltonian acts as −d2/dx2 on each link satisfying the
boundary conditions

(Uj − I)Ψj + i(Uj + I)Ψ′
j = 0

characterized by unitary matrices Uj at the vertices Xj.
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A universal setting for graphs with leads

A useful trick is to replace Γ “flower-like” graph with one
vertex by putting all the vertices to a single point,

l1

l2l3

l4

lN

Its degree is 2N +M where N := cardL and M := cardL∞
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A universal setting for graphs with leads

A useful trick is to replace Γ “flower-like” graph with one
vertex by putting all the vertices to a single point,

l1

l2l3

l4

lN

Its degree is 2N +M where N := cardL and M := cardL∞

The coupling is described by “big”, (2N +M) × (2N +M)
unitary block diagonal matrix U consisting of blocks Uj as
follows,

(U − I)Ψ + i(U + I)Ψ′ = 0 ;

the block structure of U encodes the original topology of Γ.
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Equivalence of resonance definitions

Resonances as poles of analytically continued resolvent ,
(H − λ id)−1. One way to reveal the poles is to use exterior
complex scaling. Looking for complex eigenvalues of the
scaled operator we do not change the compact-graph part:
we set fj(x) = aj sin kx+ bj cos kx on the internal edges
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Equivalence of resonance definitions

Resonances as poles of analytically continued resolvent ,
(H − λ id)−1. One way to reveal the poles is to use exterior
complex scaling. Looking for complex eigenvalues of the
scaled operator we do not change the compact-graph part:
we set fj(x) = aj sin kx+ bj cos kx on the internal edges

On the semi-infinite edges are scaled by gjθ(x) = eθ/2gj(xe
θ)

with an imaginary θ rotating the essential spectrum into the
lower complex halfplane so that the poles of the resolvent
on the second sheet become “uncovered” for θ large
enough. The “exterior” boundary values are thus equal to

gj(0) = e−θ/2gjθ, g′j(0) = ike−θ/2gjθ
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Resolvent resonances

Substituting into the boundary conditions we get

(U − I)C1(k)

0BBBBBBBBBBBBBBBBBB�

a1

b1

a2

...

bN

e−θ/2g1θ

...

e−θ/2gMθ

1CCCCCCCCCCCCCCCCCCA+ ik(U + I)C2(k)
0BBBBBBBBBBBBBBBBBB�

a1

b1

a2

...

bN

e−θ/2g1θ

...

e−θ/2gMθ

1CCCCCCCCCCCCCCCCCCA = 0,

where Cj := diag (C
(1)
j (k), C

(2)
j (k), . . . , C

(N)
j (k), ij−1IM×M ), with

C
(j)
1 (k) =

0� 0 1

sin klj cos klj

1A , C
(j)
2 (k) =

0� 1 0

− cos klj sin klj

1A

The OTAMP 2010 conference; Bedłewo, August 6, 2010 – p. 30/67



Scattering resonances

In this case we choose a combination of two planar waves,
gj = cje

−ikx + dje
ikx, as an Ansatz on the external edges;

we ask about poles of the matrix S = S(k) which maps the
amplitudes of the incoming waves c = {cn} into amplitudes
of the outgoing waves d = {dn} by d = Sc.

0BBBBBBBBBBBBBBBBBB�
1CCCCCCCCCCCCCCCCCCA
0BBBBBBBBBBBBBBBBBB�
1CCCCCCCCCCCCCCCCCCA
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Scattering resonances

In this case we choose a combination of two planar waves,
gj = cje

−ikx + dje
ikx, as an Ansatz on the external edges;

we ask about poles of the matrix S = S(k) which maps the
amplitudes of the incoming waves c = {cn} into amplitudes
of the outgoing waves d = {dn} by d = Sc. The b.c. give

(U − I)C1(k)

0BBBBBBBBBBBBBBBBBB�
a1

b1

a2

...

bN

c1 + d1

...

cM + dM

1CCCCCCCCCCCCCCCCCCA+ ik(U + I)C2(k)

0BBBBBBBBBBBBBBBBBB�
a1

b1

a2

...

bN

d1 − c1
...

dM − cM

1CCCCCCCCCCCCCCCCCCA = 0
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Equivalence of resonance definitions, contd

Since we are interested in zeros of detS−1, we regard the
above relation as an equation for variables aj, bj and dj

while cj are just parameters. Eliminating the variables aj, bj
one derives from here a system of M equations expressing
the map S−1d = c. It is not solvable, detS−1 = 0, if

det [(U − I)C1(k) + ik(U + I)C2(k)] = 0
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Equivalence of resonance definitions, contd

Since we are interested in zeros of detS−1, we regard the
above relation as an equation for variables aj, bj and dj

while cj are just parameters. Eliminating the variables aj, bj
one derives from here a system of M equations expressing
the map S−1d = c. It is not solvable, detS−1 = 0, if

det [(U − I)C1(k) + ik(U + I)C2(k)] = 0

This is the same condition as for the previous system of
equations, hence we are able to conclude:

Proposition [E-Lipovský’10]: The two above resonance
notions, the resolvent and scattering one, are equivalent
for quantum graphs.
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Effective coupling on the finite graph
The problem can be reduced to the compact subgraph only.

We write U in the block form, U =

0� U1 U2

U3 U4

1A, where U1 is the

2N × 2N refers to the compact subgraph, U4 is the M ×M
matrix related to the exterior part, and U2 and U3 are
rectangular matrices connecting the two.
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Effective coupling on the finite graph
The problem can be reduced to the compact subgraph only.

We write U in the block form, U =

0� U1 U2

U3 U4

1A, where U1 is the

2N × 2N refers to the compact subgraph, U4 is the M ×M
matrix related to the exterior part, and U2 and U3 are
rectangular matrices connecting the two.
Eliminating the external part leads to an effective coupling
on the compact subgraph expressed by the condition

(Ũ(k) − I)(f1, . . . , f2N )T + i(Ũ(k) + I)(f ′1, . . . , f
′
2N )T = 0 ,

where the corresponding coupling matrix

Ũ(k) := U1 − (1 − k)U2[(1 − k)U4 − (k + 1)I]−1U3

is obviously energy-dependent and, in general, non-unitary
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Embedded ev’s for commensurate edges

Suppose that the compact part contains a loop consisting
of rationally related edges

U1

U2

U3

U4

Un

Un+1

l1 l2

l3ln
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Embedded ev’s for commensurate edges

Suppose that the compact part contains a loop consisting
of rationally related edges

U1

U2

U3

U4

Un

Un+1

l1 l2

l3ln

Then the graph Hamiltonian can have eigenvalues with
compactly supported eigenfunctions; they are embedded in
the continuum corresponding to external semiinfinite edges
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Embedded eigenvalues
Theorem [E-Lipovský’10]: Let Γ consist of a single vertex and N finite edges emanating
from this vertex and ending at it, with the coupling described by a 2N × 2N unitary matrix U .
Let the lengths of the first n edges be integer multiples of a positive real number l0. If the
rectangular 2N × 2n matrix

Meven =

0BBBBBBBBBBBBBB�

u11 u12 − 1 u13 u14 · · · u1,2n−1 u1,2n

u21 − 1 u22 u23 u24 · · · u2,2n−1 u2,2n

u31 u32 u33 u34 − 1 · · · u3,2n−1 u3,2n

u41 u42 u43 − 1 u44 · · · u4,2n−1 u4,2n

...
...

...
...

. . .
...

...

u2N−1,1 u2N−1,2 u2N−1,3 u2N−1,4 · · · u2N−1,2n−1 u2N−1,2n

u2N,1 u2N,2 u2N,3 u2N,4 · · · u2N,2n−1 u2N,2n

1CCCCCCCCCCCCCCA

has rank smaller than 2n then the spectrum of the corresponding Hamiltonian H = HU

contains eigenvalues of the form ǫ = 4m2π2/l20 with m ∈ N and the multiplicity of these
eigenvalues is at least the difference between 2n and the rank of Meven.
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Embedded eigenvalues
Theorem [E-Lipovský’10]: Let Γ consist of a single vertex and N finite edges emanating
from this vertex and ending at it, with the coupling described by a 2N × 2N unitary matrix U .
Let the lengths of the first n edges be integer multiples of a positive real number l0. If the
rectangular 2N × 2n matrix

Meven =

0BBBBBBBBBBBBBB�

u11 u12 − 1 u13 u14 · · · u1,2n−1 u1,2n

u21 − 1 u22 u23 u24 · · · u2,2n−1 u2,2n

u31 u32 u33 u34 − 1 · · · u3,2n−1 u3,2n

u41 u42 u43 − 1 u44 · · · u4,2n−1 u4,2n

...
...

...
...

. . .
...

...

u2N−1,1 u2N−1,2 u2N−1,3 u2N−1,4 · · · u2N−1,2n−1 u2N−1,2n

u2N,1 u2N,2 u2N,3 u2N,4 · · · u2N,2n−1 u2N,2n

1CCCCCCCCCCCCCCA

has rank smaller than 2n then the spectrum of the corresponding Hamiltonian H = HU

contains eigenvalues of the form ǫ = 4m2π2/l20 with m ∈ N and the multiplicity of these
eigenvalues is at least the difference between 2n and the rank of Meven. This result
corresponds to sin kl0/2 = 0, an analogous claim is valid in the odd case, cos kl0/2 = 0.
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Example: a loop with two leads

g1(x) g2(x)

f1(x)

f2(x)

0
l1
l2
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Example: a loop with two leads

g1(x) g2(x)

f1(x)

f2(x)

0
l1
l2

The setting is as above, the b.c. at the nodes are

f1(0) = f2(0) , f1(l1) = f2(l2) ,

f1(0) = α−1
1 (f ′1(0) + f ′2(0)) + γ1g

′
1(0) ,

f1(l1) = −α−1
2 (f ′1(l1) + f ′2(l2)) + γ2g

′
2(0) ,

g1(0) = γ̄1(f
′
1(0) + f ′2(0)) + α̃−1

1 g′1(0) ,

g2(0) = −γ̄2(f
′
1(l1) + f ′2(l2)) + α̃−1

2 g′2(0)
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Resonance condition

Writing the loop edges as l1 = l(1 − λ), l2 = l(1 + λ),
λ ∈ [0, 1] — which effectively means shifting one of the
connections points around the loop as λ is changing –
one arrives at the final resonance condition

sin kl(1 − λ) sin kl(1 + λ) − 4k2β−1
1 (k)β−1

2 (k) sin2 kl

+k[β−1
1 (k) + β−1

2 (k)] sin 2kl = 0 ,

where β−1
i (k) := α−1

i + ik|γi|
2

1−ikα̃−1
i

.
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Resonance condition

Writing the loop edges as l1 = l(1 − λ), l2 = l(1 + λ),
λ ∈ [0, 1] — which effectively means shifting one of the
connections points around the loop as λ is changing –
one arrives at the final resonance condition

sin kl(1 − λ) sin kl(1 + λ) − 4k2β−1
1 (k)β−1

2 (k) sin2 kl

+k[β−1
1 (k) + β−1

2 (k)] sin 2kl = 0 ,

where β−1
i (k) := α−1

i + ik|γi|
2

1−ikα̃−1
i

.

The condition can be solved numerically to find the
resonance trajectories with respect to the variable λ.
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Pole trajectory

The trajectory of the resonance pole in the lower complex halfplane
starting from k0 = 2π for the coefficients values α−1

1 = 1, α̃−1
1 = −2,

|γ1|2 = 1, α−1
2 = 0, α̃−1

2 = 1, |γ2|2 = 1, n = 2. The colour coding shows
the dependence on λ changing from red (λ = 0) to blue (λ = 1).
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Pole trajectory

The trajectory of the resonance pole starting at k0 = 3π for the coefficients
values α−1

1 = 1, α−1
2 = 1, α̃−1

1 = 1, α̃−1
2 = 1, |γ1|2 = |γ2|2 = 1, n = 3. The

colour coding is the same as in the previous picture.
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Pole trajectory

The trajectory of the resonance pole starting at k0 = 2π for the coefficients
values α−1

1 = 1, α−1
2 = 1, α̃−1

1 = 1, α̃−1
2 = 1, |γ1|2 = 1, |γ2|2 = 1, n = 2.

The colour coding is the same as above.
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Example: a cross-shaped graph

g1(x) g2(x)
f1(x)

f2(x)

l1 = l (1 − λ)

l2 = l (1 + λ)

0
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Example: a cross-shaped graph

g1(x) g2(x)
f1(x)

f2(x)

l1 = l (1 − λ)

l2 = l (1 + λ)

0

This time we restrict ourselves to the δ coupling as the
boundary condition at the vertex and we consider Dirichlet
conditions at the loose ends, i.e.

f1(0) = f2(0) = g1(0) = g2(0) ,

f1(l1) = f2(l2) = 0 ,

αf1(0) = f ′

1(0) + f ′

2(0) + g′1(0) + g′2(0) .

leading to the resonance condition

2k sin 2kl + (α− 2ik)(cos 2klλ− cos 2kl) = 0
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Pole trajectory

The trajectory of the resonance pole starting at k0 = 2π for the coefficients
values α = 10, n = 2. The colour coding is the same as in the previous
figures.
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Pole trajectory

The trajectory of the resonance pole for the coefficients values α = 1,
n = 2. The colour coding is the same as above.
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Pole trajectory

The trajectories of two resonance poles for the coefficients values
α = 2.596, n = 2. We can see an avoided resonance crossing – the
former eigenvalue “travelling from the left to the right” interchanges with
the former resonance “travelling the other way” and ending up as an
embedded eigenvalue. The colour coding is the same as above.
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Multiplicity preservation
In a similar way resonances can be generated in the
general case. What is important, nothing is “lost”:

Theorem [E-Lipovský’10]: Let Γ have N finite edges of
lengths li, M infinite edges, and the coupling given by

U =

0� U1 U2

U3 U4

1A, where U4 refers to infinite edge coupling.

Let k0 satisfying det [(1 − k0)U4 − (1 + k0)I] 6= 0 be a pole
of the resolvent (H − λ id)−1 of a multiplicity d. Let Γε be a
geometrically perturbed quantum graph with edge lengths
li(1 + ε) and the same coupling. Then there is ε0 > 0 s.t. for
all ~ε ∈ Uε0(0) the sum of multiplicities of the resolvent poles
in a sufficiently small neighbourhood of k0 is d.
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Multiplicity preservation
In a similar way resonances can be generated in the
general case. What is important, nothing is “lost”:

Theorem [E-Lipovský’10]: Let Γ have N finite edges of
lengths li, M infinite edges, and the coupling given by

U =

0� U1 U2

U3 U4

1A, where U4 refers to infinite edge coupling.

Let k0 satisfying det [(1 − k0)U4 − (1 + k0)I] 6= 0 be a pole
of the resolvent (H − λ id)−1 of a multiplicity d. Let Γε be a
geometrically perturbed quantum graph with edge lengths
li(1 + ε) and the same coupling. Then there is ε0 > 0 s.t. for
all ~ε ∈ Uε0(0) the sum of multiplicities of the resolvent poles
in a sufficiently small neighbourhood of k0 is d.

Remark: The result holds only perturbatively, for larger
values of ε poles may, e.g., escape to infinity.
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Third resonance problem: Weyl asymptotics?

Let us now look into high-energy asymptotics of graph
resonances. Introduce counting function N(R,F ) as the
number of zeros of F (k) in the circle {k : |k| < R} of given
radius R > 0, algebraic multiplicities taken into account.

If F comes from resonance secular equation we count in
this way number of resonances within the given circle
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Third resonance problem: Weyl asymptotics?

Let us now look into high-energy asymptotics of graph
resonances. Introduce counting function N(R,F ) as the
number of zeros of F (k) in the circle {k : |k| < R} of given
radius R > 0, algebraic multiplicities taken into account.

If F comes from resonance secular equation we count in
this way number of resonances within the given circle

[Davies-Pushnitski’10] came with an intriguing observation:
if the coupling is Kirchhoff and some external vertices are
balanced , i.e. connecting the same number of internal and
external edges, then the leading term in the asymptotics
may be less than Weyl formula prediction
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Third resonance problem: Weyl asymptotics?

Let us now look into high-energy asymptotics of graph
resonances. Introduce counting function N(R,F ) as the
number of zeros of F (k) in the circle {k : |k| < R} of given
radius R > 0, algebraic multiplicities taken into account.

If F comes from resonance secular equation we count in
this way number of resonances within the given circle

[Davies-Pushnitski’10] came with an intriguing observation:
if the coupling is Kirchhoff and some external vertices are
balanced , i.e. connecting the same number of internal and
external edges, then the leading term in the asymptotics
may be less than Weyl formula prediction

Let us look how the situation looks like for graphs with more
general vertex couplings
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Recall the resonance condition

Denote e±j := e±iklj and e± := ΠN
j=1e

±
j , then secular eq-n is

0 = det

(

1

2
[(U−I) + k(U+I)]E1(k) +

1

2
[(U−I) + k(U+I)]E2 + k(U+I)E3

+ (U−I)E4 + [(U−I) − k(U+I)] diag (0, . . . , 0, IM×M )

)
,

where Ei(k) = diag
(

E
(1)
i , E

(2)
i , . . . , E

(N)
i , 0, . . . , 0

)

,

i = 1, 2, 3, 4, consists of N nontrivial 2 × 2 blocks

E
(j)
1 =

0� 0 0

−ie+
j e+

j

1A , E
(j)
2 =

0� 0 0

ie−j e−j

1A , E
(j)
3 =

0� i 0

0 0

1A , E
(j)
4 =

0� 0 1

0 0

1A

and the trivial M ×M part.

The OTAMP 2010 conference; Bedłewo, August 6, 2010 – p. 47/67



Recall the resonance condition

Denote e±j := e±iklj and e± := ΠN
j=1e

±
j , then secular eq-n is

0 = det

(

1

2
[(U−I) + k(U+I)]E1(k) +

1

2
[(U−I) + k(U+I)]E2 + k(U+I)E3

+ (U−I)E4 + [(U−I) − k(U+I)] diag (0, . . . , 0, IM×M )

)
,

where Ei(k) = diag
(

E
(1)
i , E

(2)
i , . . . , E

(N)
i , 0, . . . , 0

)

,

i = 1, 2, 3, 4, consists of N nontrivial 2 × 2 blocks

E
(j)
1 =

0� 0 0

−ie+
j e+

j

1A , E
(j)
2 =

0� 0 0

ie−j e−j

1A , E
(j)
3 =

0� i 0

0 0

1A , E
(j)
4 =

0� 0 1

0 0

1A

and the trivial M ×M part.

Looking for zeros of the rhs we can employ a modification of
a classical result on zeros of exponential sums [Langer’31]
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Exponential sum zeros

Theorem: Let F (k) =
∑n

r=0 ar(k) eikσr , where ar(k) are
rational functions of the complex variable k with complex
coefficients, and σr ∈ R, σ0 < σ1 < . . . < σn. Suppose that
limk→∞ a0(k) 6= 0 and limk→∞ an(k) 6= 0. There exist a
compact Ω ⊂ C, real numbers mr and positive Kr,
r = 1, . . . , n, such that the zeros of F (k) outside Ω
lie in the logarithmic strips bounded by the curves
−Im k +mr log |k| = ±Kr and the counting function
behaves in the limit R → ∞ as

N(R,F ) =
σn − σ0

π
R + O(1)
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Application of the theorem

We need the coefficients at e± in the resonance condition.
Let us pass to the effective b.c. formulation,

0 = det

(

1

2
[(Ũ(k) − I) + k(Ũ(k) + I)]Ẽ1(k)

+
1

2
[(Ũ(k) − I) − k(Ũ(k) + I)]Ẽ2(k) + k(Ũ(k) + I)Ẽ3 + (Ũ(k) − I)Ẽ4

)
,

where Ẽj are the nontrivial 2N × 2N parts of the matrices
Ej and I denotes the 2N × 2N unit matrix
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Application of the theorem

We need the coefficients at e± in the resonance condition.
Let us pass to the effective b.c. formulation,

0 = det

(

1

2
[(Ũ(k) − I) + k(Ũ(k) + I)]Ẽ1(k)

+
1

2
[(Ũ(k) − I) − k(Ũ(k) + I)]Ẽ2(k) + k(Ũ(k) + I)Ẽ3 + (Ũ(k) − I)Ẽ4

)
,

where Ẽj are the nontrivial 2N × 2N parts of the matrices
Ej and I denotes the 2N × 2N unit matrix

By a direct computation we get

Lemma: The coefficient of e± in the above equation is
(

i
2

)N
det [(Ũ(k) − I) ± k(Ũ(k) + I)]
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The resonance asymptotics
Theorem [Davies-E-Lipovský’10]: Consider a quantum
graph (Γ, HU ) corresponding to Γ with finitely many edges
and the coupling at vertices Xj given by unitary matrices Uj.
The asymptotics of the resonance counting function as
R → ∞ is of the form

N(R,F ) =
2W

π
R + O(1) ,

where W is the effective size of the graph. One always has

0 ≤ W ≤ V :=
N∑

j=1

lj .

Moreover W < V (graph is non-Weyl in the terminology of
[Davies-Pushnitski’10] if and only if there exists a vertex
where the corresponding energy dependent coupling matrix
Ũj(k) has an eigenvalue (1 − k)/(1 + k) or (1 + k)/(1 − k).

The OTAMP 2010 conference; Bedłewo, August 6, 2010 – p. 50/67



Permutation invariant couplings
Now we apply the result to graphs with coupling invariant
w.r.t. edge permutations. These are described by matrices
Uj = ajJ + bjI, where aj , bj ∈ C such that |bj | = 1 and
|bj + ajdegXj | = 1; matrix J has all entries equal to one.
Note that δ and δ′s are particular cases of such a coupling
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Permutation invariant couplings
Now we apply the result to graphs with coupling invariant
w.r.t. edge permutations. These are described by matrices
Uj = ajJ + bjI, where aj , bj ∈ C such that |bj | = 1 and
|bj + ajdegXj | = 1; matrix J has all entries equal to one.
Note that δ and δ′s are particular cases of such a coupling

We need two simple auxiliary statements:
Lemma: The matrix U = aJn×n + bIn×n has n− 1
eigenvalues b and one eigenvalue na+ b. Its inverse
is U−1 = − a

b(an+b)Jn×n + 1
bIn×n.
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Permutation invariant couplings
Now we apply the result to graphs with coupling invariant
w.r.t. edge permutations. These are described by matrices
Uj = ajJ + bjI, where aj , bj ∈ C such that |bj | = 1 and
|bj + ajdegXj | = 1; matrix J has all entries equal to one.
Note that δ and δ′s are particular cases of such a coupling

We need two simple auxiliary statements:
Lemma: The matrix U = aJn×n + bIn×n has n− 1
eigenvalues b and one eigenvalue na+ b. Its inverse
is U−1 = − a

b(an+b)Jn×n + 1
bIn×n.

Lemma: Let p internal and q external edges be coupled
with b.c. given by U = aJ(p+q)×(p+q) + bI(p+q)×(p+q). Then the
energy-dependent effective matrix is

Ũ(k) =
ab(1 − k) − a(1 + k)

(aq + b)(1 − k) − (k + 1)
Jp×p + bIp×p .
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Asymptotics in the symmetric case

Combining them with the above theorem we find easily
that there are only two cases which exhibit non-Weyl
asymptotics here
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Asymptotics in the symmetric case

Combining them with the above theorem we find easily
that there are only two cases which exhibit non-Weyl
asymptotics here

Theorem [Davies-E-Lipovský’10]: Let (Γ, HU ) be a quantum
graph with permutation-symmetric coupling conditions at
the vertices, Uj = ajJ + bjI. Then it has non-Weyl
asymptotics if and only if at least one of its vertices is
balanced, p = q, and the coupling at this vertex is either

(a) fj = fn, ∀j, n ≤ 2p,
∑2p

j=1 f
′
j = 0,

i.e. U = 1
pJ2p×2p − I2p×2p , or

(b) f ′j = f ′n, ∀j, n ≤ 2p,
∑2p

j=1 fj = 0,

i.e. U = −1
pJ2p×2p + I2p×2p .
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Unbalanced non-Weyl graphs

On the other hand, in graphs with unbalanced vertices
there are many cases of non-Weyl behaviour. To this end
we employ a trick based on the unitary transformation
W−1UW , where W is block diagonal with a nontrivial
unitary q × q part W4,

W =

(

eiϕIp×p 0

0 W4

)
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Unbalanced non-Weyl graphs

On the other hand, in graphs with unbalanced vertices
there are many cases of non-Weyl behaviour. To this end
we employ a trick based on the unitary transformation
W−1UW , where W is block diagonal with a nontrivial
unitary q × q part W4,

W =

(

eiϕIp×p 0

0 W4

)

One can check easily the following claim

Lemma: The family of resonances of HU does not change
if the original coupling matrix U is replaced by W−1UW .
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Example: line with a stub

f1(x) f2(x)

u(x)

0

l

The Hamiltonian acts as −d2/dx2 on graph Γ consisting of
two half-lines and one internal edge of length l. Its domain
contains functions from W 2,2(Γ) which satisfy

0 = (U − I) (u(0), f1(0), f2(0))T + i(U + I) (u′(0), f ′
1(0), f ′

2(0))T ,

0 = u(l) + cu′(l) ,

fi(x) referring to half-lines and u(x) to the internal edge.
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Example, continued

We start from the matrix U0 =

0BB� 0 1 0

1 0 0

0 0 eiψ

1CCA, describing one

half-line separated from the rest of the graph. As mentioned
above such a graph has non-Weyl asymptotics (obviously, it
cannot have more than two resonances)

0BB� 1CCA0BB� 1CCA
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Example, continued

We start from the matrix U0 =

0BB� 0 1 0

1 0 0

0 0 eiψ

1CCA, describing one

half-line separated from the rest of the graph. As mentioned
above such a graph has non-Weyl asymptotics (obviously, it
cannot have more than two resonances)

Using UW = W−1UW with W =

0BB� 1 0 0

0 reiϕ1

√
1 − r2 eiϕ2

0
√

1 − r2 eiϕ3 −rei(ϕ2+ϕ3−ϕ1)

1CCA

we arrive at a three-parameter family with the same
resonances — thus non-Weyl — described by

U =

0BB� 0 reiϕ1

√
1 − r2eiϕ2

re−iϕ1 (1 − r2)eiψ −r
√

1 − r2e−i(−ψ+ϕ1−ϕ2)

√
1 − r2e−iϕ2 −r

√
1 − r2ei(ψ+ϕ1−ϕ2) r2eiψ

1CCA
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Remark

In particular, for Dirichlet condition both at the end of the
separated half-line, ψ = π, and at the remote end of the
internal edge, c = 0, one obtains a family of Hamiltonians
which have no resonances at all. This includes ϕ1 = ϕ2 = 0

and r = 1/
√

2, or the conditions

f1(0) = f2(0), u(0) =
√

2f1(0), f ′1(0) − f ′2(0) = −
√

2u′(0) ,

where the fact of resonance absence was first noted in
[E-Šerešová’94], and a similar behavior for ϕ1 = ϕ2 = π and
r = 1/

√
2. Notice that the absence of resonances is easily

understood if one regards the graph in question as a tree
and employs a unitary equivalence proposed first by
Solomyak – see, e.g., [Sobolev-Solomyak’02].
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Example: a loop with two leads

u(x)

f2(x)

f1(x)

0

l

To illustrate how the asymptotics can change with the graph
geometry , consider the above graph. The Hamiltonian acts
as above with coupling conditions

u(0) = f1(0) , u(l) = f2(0) ,

αu(0) = u′(0) + f ′1(0) + β(−u′(l) + f ′2(0)) ,

αu(l) = β(u′(0) + f ′1(0)) − u′(l) + f ′2(0)

with real parameters α, β ∈ R. The choice β = 1 gives the
“overall” δ-condition of strength α, while β = 0 corresponds
to a line with two δ-interactions at the distance l.

The OTAMP 2010 conference; Bedłewo, August 6, 2010 – p. 57/67



Example, continued
Using e± = e±ikx we write the resonance condition as

8
iα2e+ + 4kαβ − i[α(α− 4ik) + 4k2(β2 − 1)] e−

4(β2 − 1) + α(α− 4i)
= 0 .

The coefficient of e+ vanishes iff α = 0, the second term
vanishes for β = 0 or if |β| 6= 1 and α = 0, while the
polynomial multiplying e− does not vanish for any
combination of α and β.
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Example, continued
Using e± = e±ikx we write the resonance condition as

8
iα2e+ + 4kαβ − i[α(α− 4ik) + 4k2(β2 − 1)] e−

4(β2 − 1) + α(α− 4i)
= 0 .

The coefficient of e+ vanishes iff α = 0, the second term
vanishes for β = 0 or if |β| 6= 1 and α = 0, while the
polynomial multiplying e− does not vanish for any
combination of α and β.

In other words, the graph has a non-Weyl asymptotics iff
α = 0. If, in addition, |β| 6= 1, than all resonances are
confined to some circle, i.e. the graph “size” is zero. The
exceptions are Kirchhoff condition, β = 1 and α = 0, and its
counterpart, β = −1 and α = 0, for which “one half” of the
resonances is preserved, the “size” being l/2.
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Example, continued

Let us look at the δ-condition, β = 1, to illustrate the
disappearance of half of the resonances when the coupling
strength vanishes. The resonance equation becomes

−α sin kl + 2k(1 + i sin kl − cos kl)

α− 4i
= 0
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Example, continued

Let us look at the δ-condition, β = 1, to illustrate the
disappearance of half of the resonances when the coupling
strength vanishes. The resonance equation becomes

−α sin kl + 2k(1 + i sin kl − cos kl)

α− 4i
= 0

A simple calculation shows that there is a sequence of
embedded ev’s, k = 2nπ/l with n ∈ Z, and a family of
resonances given by solutions to eikl = −1 + 4ik

α . The former
do not depend on α, while the latter behave for small α as

Im k = −1

l
log

1

α
+ O(1) , Re k = nπ + O(α) ,

thus all the (true) resonances escape to infinity as α → 0.
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What can cause a non-Weyl asymptotics?
We will argue that (anti)Kirchhoff conditions at balanced
vertices are too easy to decouple diminishing in this way
effectively the graph size
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What can cause a non-Weyl asymptotics?
We will argue that (anti)Kirchhoff conditions at balanced
vertices are too easy to decouple diminishing in this way
effectively the graph size

Γ0

U (2) U (1)

l0

Consider the above graph with a balanced vertex X1 which
connects p internal edges of the same length l0 and p
external edges with the coupling given by a unitary
U (1) = aJ2p×2p + bI2p×2p. The coupling to the rest of the
graph, denoted as Γ0, is described by a q × q matrix U (2),
where q ≥ p; needless to say such a matrix can hide
different topologies of this part of the graph
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Unitary equivalence again

Proposition: Consider Γ be the the coupling given by
arbitrary U (1) and U (2). Let V be an arbitrary unitary p× p

matrix, V (1) := diag (V, V ) and V (2) := diag (I(q−p)×(q−p), V )

be 2p× 2p and q × q block diagonal matrices, respectively.
Then H on Γ is unitarily equivalent to the Hamiltonian HV

on topologically the same graph with the coupling given by
the matrices [V (1)]−1U (1)V (1) and [V (2)]−1U (2)V (2).
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Unitary equivalence again

Proposition: Consider Γ be the the coupling given by
arbitrary U (1) and U (2). Let V be an arbitrary unitary p× p

matrix, V (1) := diag (V, V ) and V (2) := diag (I(q−p)×(q−p), V )

be 2p× 2p and q × q block diagonal matrices, respectively.
Then H on Γ is unitarily equivalent to the Hamiltonian HV

on topologically the same graph with the coupling given by
the matrices [V (1)]−1U (1)V (1) and [V (2)]−1U (2)V (2).

Remark: The assumption that the same edge length is
made for convenience only; we can always get it fulfilled
by adding Kirchhhoff vertices
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Application to symmetric coupling

Let now U (1) = aJ2p×2p + bI2p×2p at X1. We choose columns of W as an
orthonormal set of eigenvectors of the p× p block aJp×p + bIp×p, the first
one being 1√

p
(1, 1, . . . , 1)T. The transformed matrix [V (1)]−1U (1)V (1)

decouples into blocks connecting only pairs (vj , gj).
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Application to symmetric coupling

Let now U (1) = aJ2p×2p + bI2p×2p at X1. We choose columns of W as an
orthonormal set of eigenvectors of the p× p block aJp×p + bIp×p, the first
one being 1√

p
(1, 1, . . . , 1)T. The transformed matrix [V (1)]−1U (1)V (1)

decouples into blocks connecting only pairs (vj , gj).

The first one corresponding to a symmetrization of all the uj ’s and fj ’s,
leads to the 2 × 2 matrix U2×2 = apJ2×2 + bI2×2, while the other lead to
separation of the corresponding internal and external edges described by
the Robin conditions, (b− 1)vj(0) + i(b+ 1)v′j(0) = 0 and
(b− 1)gj(0) + i(b+ 1)g′j(0) = 0 for j = 2, . . . , p.
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Application to symmetric coupling

Let now U (1) = aJ2p×2p + bI2p×2p at X1. We choose columns of W as an
orthonormal set of eigenvectors of the p× p block aJp×p + bIp×p, the first
one being 1√

p
(1, 1, . . . , 1)T. The transformed matrix [V (1)]−1U (1)V (1)

decouples into blocks connecting only pairs (vj , gj).

The first one corresponding to a symmetrization of all the uj ’s and fj ’s,
leads to the 2 × 2 matrix U2×2 = apJ2×2 + bI2×2, while the other lead to
separation of the corresponding internal and external edges described by
the Robin conditions, (b− 1)vj(0) + i(b+ 1)v′j(0) = 0 and
(b− 1)gj(0) + i(b+ 1)g′j(0) = 0 for j = 2, . . . , p.

The “overall” Kirchhoff/anti-Kirchhoff condition at X1 is transformed to the
“line” Kirchhoff/anti-Kirchhoff condition in the subspace of permutation-
symmetric functions, reducing the graph size by l0. In all the other cases
the point interaction corresponding to the matrix apJ2×2 + bI2×2 is
nontrivial, and consequently, the graph size is preserved .
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Effective size is a global property

One may ask whether there are geometrical rules that
would quantify the effect of each balanced vertex on the
asymptotics. The following example shows that this is not
likely:
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Effective size is a global property

One may ask whether there are geometrical rules that
would quantify the effect of each balanced vertex on the
asymptotics. The following example shows that this is not
likely:

l

l

l

l

l

For a fixed integer n ≥ 3 we start with a regular n-gon, each
edge having length ℓ, and attach two semi-infinite leads to
each vertex, so that each vertex is balanced; thus the
effective size Wn is strictly less than Vn = nℓ.
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Example, continued

Proposition: The effective size of the graph Γn is given by

Wn =

{

nℓ/2 if n 6= 0 mod 4,

(n− 2)ℓ/2 if n = 0 mod 4.
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Example, continued

Proposition: The effective size of the graph Γn is given by

Wn =

{

nℓ/2 if n 6= 0 mod 4,

(n− 2)ℓ/2 if n = 0 mod 4.

Sketch of the proof: We employ Bloch/Floquet decomposition of H w.r.t.
the cyclic rotation group Zn. It leads to analysis of one segment with
“quasimomentum” ω satisfying ωn = 1; after a short computation we find
that Hω has a resonance iff

−2(ω2 + 1) + 4ωe−ikℓ = 0.

Hence the effective size Wω of the system of resonances of Hω is ℓ/2 if
ω2 + 1 6= 0 but it is zero if ω2 + 1 = 0. Now ω2 + 1 = 0 is not soluble if
ωn = 1 and n 6= 0 mod 4, but it has two solutions if n = 0 mod 4. �
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Concluding remarks

The present results inspire various questions, e.g.

Effect of more general geometric perturbations,
possibly in combination with external fields on
quantum graph spectra and resonances
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Can the inequality for resonances be valid not only
asymptotically , in the spirit of Pólya conjecture for
Dirichlet Laplacians?
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possibly in combination with external fields on
quantum graph spectra and resonances

Can the inequality for resonances be valid not only
asymptotically , in the spirit of Pólya conjecture for
Dirichlet Laplacians?

How these effects will look like for more general
operators? in [DEL’10] criteria for occurrence of
non-Weyl asymptotics were derived for weighted
Laplacians, but there are others
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Concluding remarks

The present results inspire various questions, e.g.

Effect of more general geometric perturbations,
possibly in combination with external fields on
quantum graph spectra and resonances

Can the inequality for resonances be valid not only
asymptotically , in the spirit of Pólya conjecture for
Dirichlet Laplacians?

How these effects will look like for more general
operators? in [DEL’10] criteria for occurrence of
non-Weyl asymptotics were derived for weighted
Laplacians, but there are others

etc.
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Mathematics” Series, vol. 77, Providence, R.I., 2008

[DP10] E.B. Davies, A. Pushnitski: Non-Weyl resonance asymptotics for quantum graphs,
arXiv: 1003.0051 [math.SP]

[DEL10] E.B. Davies, P.E., J. Lipovský: NNon-Weyl asymptotics for quantum graphs with
general coupling conditions, J. Phys. A: Math. Theor. A43 (2010), to appear; arXiv:
1004.08560 [math-phys]

[DET08] P. Duclos, P.E., O. Turek: On the spectrum of a bent chain graph, J. Phys. A:
Math. Theor. A41 (2008), 415206

[EL10] P.E., J. Lipovský: Resonances from perturbations of quantum graphs with rationally
related edges, J. Phys. A: Math. Theor. A43 (2010), 105301

The OTAMP 2010 conference; Bedłewo, August 6, 2010 – p. 66/67



Thank you for your attention!
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