On quantum particles that change dimension

In memoriam Vladimir Geyler
on the subject he used to like

Pavel Exner

Doppler Institute
for Mathematical Physics and Applied Mathematics
Prague

What we will speak about

In both classical and QM there are systems with constraints for which the configuration space is a nontrivivial subset of \mathbb{R}^{n}. Sometimes it happens that one can idealize as a union of components of lower dimension

What we will speak about

In both classical and QM there are systems with constraints for which the configuration space is a nontrivivial subset of \mathbb{R}^{n}. Sometimes it happens that one can idealize as a union of components of lower dimension

A nontrivial configuration space

In CM it is not a big problem: few examples, and moreover, the motion is "local" so we can "magnify" the junction region and study trajectories there

A nontrivial configuration space

In CM it is not a big problem: few examples, and moreover, the motion is "local" so we can "magnify" the junction region and study trajectories there

In contrast, QM offers interesting examples, e.g.

- point-contact spectroscopy,
- STEM-type devices,
- compositions of nanotubes with fullerene molecules,
etc. One can also consider some electromagnetic systems such as flat microwave resonators with attached antennas
Systems like these ones were for Volodya Geyler a source of inspiration and a way to interesting results

Coupling by means of s-a extensions

A method to treat such systems can be traced back to
J. von Neumann, specifically to his theory of self-adjoint extensions of symmetric operators. Let us show how to apply it to our problem.

Coupling by means of s-a extensions

A method to treat such systems can be traced back to
J. von Neumann, specifically to his theory of self-adjoint extensions of symmetric operators. Let us show how to apply it to our problem.

The idea: Quantum dynamics on $M_{1} \cup M_{2}$ coupled by a point contact $x_{0} \in M_{1} \cap M_{2}$. Take Hamiltonians H_{j} on the isolated manifold M_{j} and restrict them to functions vanishing in the vicinity of x_{0}

Coupling by means of s -a extensions

A method to treat such systems can be traced back to
J. von Neumann, specifically to his theory of self-adjoint extensions of symmetric operators. Let us show how to apply it to our problem.

The idea: Quantum dynamics on $M_{1} \cup M_{2}$ coupled by a point contact $x_{0} \in M_{1} \cap M_{2}$. Take Hamiltonians H_{j} on the isolated manifold M_{j} and restrict them to functions vanishing in the vicinity of x_{0}
The operator $H_{0}:=H_{1,0} \oplus H_{2,0}$ is symmetric, in general not s-a. We seek Hamiltonian of the coupled system among its self-adjoint extensions

Coupling by means of s-a extensions

Limitations: In nonrelativistic QM considered here, where H_{j} is a second-order operator the method works for $\operatorname{dim} M_{j} \leq 3$ (more generally, codimension of the contact should not exceed three), since otherwise the restriction is e.s.a. [similarly for Dirac operators we require the codimension to be at most one]

Coupling by means of s-a extensions

Limitations: In nonrelativistic QM considered here, where H_{j} is a second-order operator the method works for $\operatorname{dim} M_{j} \leq 3$ (more generally, codimension of the contact should not exceed three), since otherwise the restriction is e.s.a. [similarly for Dirac operators we require the codimension to be at most one]
Non-uniqueness: Apart of the trivial case, there are many s -a extensions. A junction where n configuration-space components meet contributes typically by n to deficiency indices of H_{0}, and thus adds n^{2} parameters to the resulting Hamiltonian class

Coupling by means of s-a extensions

Limitations: In nonrelativistic QM considered here, where H_{j} is a second-order operator the method works for $\operatorname{dim} M_{j} \leq 3$ (more generally, codimension of the contact should not exceed three), since otherwise the restriction is e.s.a. [similarly for Dirac operators we require the codimension to be at most one]
Non-uniqueness: Apart of the trivial case, there are many s -a extensions. A junction where n configuration-space components meet contributes typically by n to deficiency indices of H_{0}, and thus adds n^{2} parameters to the resulting Hamiltonian class

Physical meaning: The construction guarantees that the probability current is conserved at the junction

Couplings to consider

Here we will be mostly concerned with cases " $2+1$ " and " $2+2$ ", i.e. manifolds of these dimensions coupled through point contacts. Other combinations are similar
We use "rational" units, in particular, the Hamiltonian acts at each configuration component as $-\Delta$ (or Laplace-Beltrami operator if M_{j} has a nontrivial metric)

Couplings to consider

Here we will be mostly concerned with cases " $2+1$ " and " $2+2$ ", i.e. manifolds of these dimensions coupled through point contacts. Other combinations are similar
We use "rational" units, in particular, the Hamiltonian acts at each configuration component as $-\Delta$ (or Laplace-Beltrami operator if M_{j} has a nontrivial metric)
An archetypal example, $\mathcal{H}=L^{2}\left(\mathbb{R}_{-}\right) \oplus L^{2}\left(\mathbb{R}^{2}\right)$, so the wavefunctions are pairs $\phi:=\binom{\phi_{1}}{\Phi_{2}}$ of square integrable functions

Boundary values

Restricting $\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\right)_{\mathrm{D}} \oplus-\Delta$ to functions vanishing in the vicinity of the junction gives symmetric operator with deficiency indices $(2,2)$.

Boundary values

Restricting $\left(-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}\right)_{\mathrm{D}} \oplus-\Delta$ to functions vanishing in the vicinity of the junction gives symmetric operator with deficiency indices $(2,2)$.
von Neumann theory gives a general prescription to construct the s-a extensions, however, it is practical to characterize the by means of boundary conditions. We need generalized boundary values

$$
L_{0}(\Phi):=\lim _{r \rightarrow 0} \frac{\Phi(\vec{x})}{\ln r}, L_{1}(\Phi):=\lim _{r \rightarrow 0}\left[\Phi(\vec{x})-L_{0}(\Phi) \ln r\right]
$$

(in view of the 2D character, in three dimensions L_{0} would be the coefficient at the pole singularity)

$2+1$ point-contact coupling

Typical b.c. determining a s-a extension

$$
\begin{aligned}
\phi_{1}^{\prime}(0-) & =A \phi_{1}(0-)+B L_{0}\left(\Phi_{2}\right), \\
L_{1}\left(\Phi_{2}\right) & =C \phi_{1}(0-)+D L_{0}\left(\Phi_{2}\right),
\end{aligned}
$$

$2+1$ point-contact coupling

Typical b.c. determining a s-a extension

$$
\begin{aligned}
& \phi_{1}^{\prime}(0-)=A \phi_{1}(0-)+B L_{0}\left(\Phi_{2}\right), \\
& L_{1}\left(\Phi_{2}\right)=C \phi_{1}(0-)+D L_{0}\left(\Phi_{2}\right),
\end{aligned}
$$

where

$$
A, D \in \mathbb{R} \quad \text { and } \quad B=2 \pi \bar{C}
$$

$2+1$ point-contact coupling

Typical b.c. determining a s-a extension

$$
\begin{aligned}
\phi_{1}^{\prime}(0-) & =A \phi_{1}(0-)+B L_{0}\left(\Phi_{2}\right), \\
L_{1}\left(\Phi_{2}\right) & =C \phi_{1}(0-)+D L_{0}\left(\Phi_{2}\right),
\end{aligned}
$$

where

$$
A, D \in \mathbb{R} \quad \text { and } \quad B=2 \pi \bar{C}
$$

The easiest way to see that is to compute the boundary form to H_{0}^{*}, recall that the latter is given by the same differential expression.
Notice that only the s-wave part of Φ in the plane, $\Phi_{2}(r, \varphi)=(2 \pi)^{-1 / 2} \phi_{2}(r)$ can be coupled nontrivially to the halfline

$2+1$ point-contact coupling

An integration by parts gives

$$
\begin{aligned}
\left(\phi, H_{0}^{*} \psi\right)- & \left(H_{0}^{*} \phi, \psi\right)=\bar{\phi}_{1}^{\prime}(0) \psi_{1}(0)-\bar{\phi}_{1}(0) \psi_{1}^{\prime}(0) \\
& +\lim _{\varepsilon \rightarrow 0+} \varepsilon\left(\bar{\phi}_{2}(\varepsilon) \psi_{1}^{\prime}(\varepsilon)-\bar{\phi}_{2}^{\prime}(\varepsilon) \psi_{2}(\varepsilon)\right),
\end{aligned}
$$

$2+1$ point-contact coupling

An integration by parts gives

$$
\begin{aligned}
\left(\phi, H_{0}^{*} \psi\right)- & \left(H_{0}^{*} \phi, \psi\right)=\bar{\phi}_{1}^{\prime}(0) \psi_{1}(0)-\bar{\phi}_{1}(0) \psi_{1}^{\prime}(0) \\
& +\lim _{\varepsilon \rightarrow 0+} \varepsilon\left(\bar{\phi}_{2}(\varepsilon) \psi_{1}^{\prime}(\varepsilon)-\bar{\phi}_{2}^{\prime}(\varepsilon) \psi_{2}(\varepsilon)\right),
\end{aligned}
$$

and using the asymptotic behaviour

$$
\phi_{2}(\varepsilon)=\sqrt{2 \pi}\left[L_{0}\left(\Phi_{2}\right) \ln \varepsilon+L_{1}\left(\Phi_{2}\right)+\mathcal{O}(\varepsilon)\right],
$$

$2+1$ point-contact coupling

An integration by parts gives

$$
\begin{aligned}
\left(\phi, H_{0}^{*} \psi\right)- & \left(H_{0}^{*} \phi, \psi\right)=\bar{\phi}_{1}^{\prime}(0) \psi_{1}(0)-\bar{\phi}_{1}(0) \psi_{1}^{\prime}(0) \\
& +\lim _{\varepsilon \rightarrow 0+} \varepsilon\left(\bar{\phi}_{2}(\varepsilon) \psi_{1}^{\prime}(\varepsilon)-\bar{\phi}_{2}^{\prime}(\varepsilon) \psi_{2}(\varepsilon)\right),
\end{aligned}
$$

and using the asymptotic behaviour

$$
\phi_{2}(\varepsilon)=\sqrt{2 \pi}\left[L_{0}\left(\Phi_{2}\right) \ln \varepsilon+L_{1}\left(\Phi_{2}\right)+\mathcal{O}(\varepsilon)\right],
$$

we can express the above limit term as

$$
2 \pi\left[L_{1}\left(\Phi_{2}\right) L_{0}\left(\Psi_{2}\right)-L_{0}\left(\Phi_{2}\right) L_{1}\left(\Psi_{2}\right)\right],
$$

so the form vanishes under the stated boundary conditions

Transport through point contact

Using the b.c. we match plane wave solution $\mathrm{e}^{i k x}+r(k) \mathrm{e}^{-i k x}$ on the halfline with $t(k)(\pi k r / 2)^{1 / 2} H_{0}^{(1)}(k r)$ in the plane obtaining

$$
r(k)=-\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k)=\frac{2 i C k}{\mathcal{D}_{+}}
$$

Transport through point contact

Using the b.c. we match plane wave solution $\mathrm{e}^{i k x}+r(k) \mathrm{e}^{-i k x}$ on the halfline with $t(k)(\pi k r / 2)^{1 / 2} H_{0}^{(1)}(k r)$ in the plane obtaining

$$
r(k)=-\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k)=\frac{2 i C k}{\mathcal{D}_{+}}
$$

with

$$
\mathcal{D}_{ \pm}:=(A \pm i k)\left[1+\frac{2 i}{\pi}\left(\gamma_{\mathrm{E}}-D+\ln \frac{k}{2}\right)\right]+\frac{2 i}{\pi} B C
$$

where $\gamma_{\mathrm{E}} \approx 0.5772$ is Euler-Mascheroni constant

Transport through point contact

Using the b.c. we match plane wave solution $\mathrm{e}^{i k x}+r(k) \mathrm{e}^{-i k x}$ on the halfline with $t(k)(\pi k r / 2)^{1 / 2} H_{0}^{(1)}(k r)$ in the plane obtaining

$$
r(k)=-\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k)=\frac{2 i C k}{\mathcal{D}_{+}}
$$

with

$$
\mathcal{D}_{ \pm}:=(A \pm i k)\left[1+\frac{2 i}{\pi}\left(\gamma_{\mathrm{E}}-D+\ln \frac{k}{2}\right)\right]+\frac{2 i}{\pi} B C
$$

where $\gamma_{\mathrm{E}} \approx 0.5772$ is Euler-Mascheroni constant
Remark: More general coupling, $\mathcal{A}\binom{\phi_{1}}{L_{0}}+\mathcal{B}\binom{\phi_{1}^{1}}{L_{1}}=0$, gives rise to similar formulae (an invertible \mathcal{B} can be put to one)

Transport through point contact

Let us finish discussion of this "point contact spectroscopy" model by a few remarks:

- Scattering in nontrivial if $\mathcal{A}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is not diagonal. For any choice of s-a extension, the on-shell S-matrix is unitary, in particular, we have $|r(k)|^{2}+|t(k)|^{2}=1$

Transport through point contact

Let us finish discussion of this "point contact spectroscopy" model by a few remarks:

- Scattering in nontrivial if $\mathcal{A}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is not diagonal. For any choice of s-a extension, the on-shell S-matrix is unitary, in particular, we have $|r(k)|^{2}+|t(k)|^{2}=1$
- Notice that reflection dominates at high energies, since $|t(k)|^{2}=\mathcal{O}\left((\ln k)^{-2}\right)$ holds as $k \rightarrow \infty$

Transport through point contact

Let us finish discussion of this "point contact spectroscopy" model by a few remarks:

- Scattering in nontrivial if $\mathcal{A}=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$ is not diagonal. For any choice of s-a extension, the on-shell S-matrix is unitary, in particular, we have $|r(k)|^{2}+|t(k)|^{2}=1$
- Notice that reflection dominates at high energies, since $|t(k)|^{2}=\mathcal{O}\left((\ln k)^{-2}\right)$ holds as $k \rightarrow \infty$
- For some \mathcal{A} there are also bound states decaying exponentially away of the junction, at most two

Single-mode geometric scatterers

Consider next a compact manifold with two leads attached

with the coupling at both vertices given by the same \mathcal{A}

Single-mode geometric scatterers

Consider next a compact manifold with two leads attached

with the coupling at both vertices given by the same \mathcal{A}
Three one-parameter families of \mathcal{A} were investigated [Kiselev, 1997; E.-Tater-Vaněk, 2001; Brüning-Geyler-Margulis-Pyataev, 2002]; it appears that scattering properties en gross are not very sensitive to the coupling:

- there numerous resonances
- in the background reflection dominates as $k \rightarrow \infty$

Geometric scatterer transport

Let us describe the argument in more details: construction of generalized eigenfunctions means to couple plane-wave solution at leads with

$$
u(x)=a_{1} G\left(x, x_{1} ; k\right)+a_{2} G\left(x, x_{2} ; k\right),
$$

where $G(\cdot, \cdot ; k)$ is Green's function of Δ_{LB} on the sphere

Geometric scatterer transport

Let us describe the argument in more details: construction of generalized eigenfunctions means to couple plane-wave solution at leads with

$$
u(x)=a_{1} G\left(x, x_{1} ; k\right)+a_{2} G\left(x, x_{2} ; k\right),
$$

where $G(\cdot, \cdot ; k)$ is Green's function of Δ_{LB} on the sphere The latter has a logarithmic singularity so $L_{j}(u)$ express in terms of $g:=G\left(x_{1}, x_{2} ; k\right)$ and

$$
\xi_{j} \equiv \xi\left(x_{j} ; k\right):=\lim _{x \rightarrow x_{j}}\left[G\left(x, x_{j} ; k\right)+\frac{\ln \left|x-x_{j}\right|}{2 \pi}\right]
$$

Geometric scatterer transport

Introduce $Z_{j}:=\frac{D_{j}}{2 \pi}+\xi_{j}$ and $\Delta:=g^{2}-Z_{1} Z_{2}$, and consider,
e.g., $\mathcal{A}_{j}=\left(\begin{array}{cc}(2 a)^{-1} & (2 \pi / a)^{1 / 2} \\ (2 \pi a)^{-1 / 2} & -\ln a\end{array}\right)$ with $a>0$. Then the solution of the matching condition is given by

Geometric scatterer transport

Introduce $Z_{j}:=\frac{D_{j}}{2 \pi}+\xi_{j}$ and $\Delta:=g^{2}-Z_{1} Z_{2}$, and consider,
e.g., $\mathcal{A}_{j}=\left(\begin{array}{cc}(2 a)^{-1} & (2 \pi / a)^{1 / 2} \\ (2 \pi a)^{-1 / 2} & -\ln a\end{array}\right)$ with $a>0$. Then the
solution of the matching condition is given by

$$
\begin{aligned}
r(k) & =-\frac{\pi \Delta+Z_{1}+Z_{2}-\pi^{-1}+2 i k a\left(Z_{2}-Z_{1}\right)+4 \pi k^{2} a^{2} \Delta}{\pi \Delta+Z_{1}+Z_{2}-\pi^{-1}+2 i k a\left(Z_{1}+Z_{2}+2 \pi \Delta\right)-4 \pi k^{2} a^{2} \Delta}, \\
t(k) & =-\frac{4 i k a g}{\pi \Delta+Z_{1}+Z_{2}-\pi^{-1}+2 i k a\left(Z_{1}+Z_{2}+2 \pi \Delta\right)-4 \pi k^{2} a^{2} \Delta} .
\end{aligned}
$$

Geometric scatterers: needed quantities

So far formulae are valid for any compact manifold G. To make use of them we need to know g, Z_{1}, Z_{2}, Δ. The spectrum $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of $\Delta_{\text {LB }}$ on G is purely discrete with eigenfunctions $\left\{\phi(x)_{n}\right\}_{n=1}^{\infty}$. Then we find easily

$$
g(k)=\sum_{n=1}^{\infty} \frac{\phi_{n}\left(x_{1}\right) \overline{\phi_{n}\left(x_{2}\right)}}{\lambda_{n}-k^{2}}
$$

Geometric scatterers: needed quantities

So far formulae are valid for any compact manifold G. To make use of them we need to know g, Z_{1}, Z_{2}, Δ. The spectrum $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ of $\Delta_{\text {LB }}$ on G is purely discrete with eigenfunctions $\left\{\phi(x)_{n}\right\}_{n=1}^{\infty}$. Then we find easily

$$
g(k)=\sum_{n=1}^{\infty} \frac{\phi_{n}\left(x_{1}\right) \overline{\phi_{n}\left(x_{2}\right)}}{\lambda_{n}-k^{2}}
$$

and

$$
\xi\left(x_{j}, k\right)=\sum_{n=1}^{\infty}\left(\frac{\left|\phi_{n}\left(x_{j}\right)\right|^{2}}{\lambda_{n}-k^{2}}-\frac{1}{4 \pi n}\right)+c(G),
$$

where $c(G)$ depends of the manifold only (changing it is equivalent to a coupling constant renormalization)

A symmetric spherical scatterer

Theorem [Kiselev, 1997, E.-Tater-Vaněk, 2001]: For any l large enough the interval $(l(l-1), l(l+1))$ contains a point μ_{l} such that $\Delta\left(\sqrt{\mu_{l}}\right)=0$. Let $\varepsilon(\cdot)$ be a positive, strictly increasing function which tends to ∞ and obeys the inequality $|\varepsilon(x)| \leq x \ln x$ for $x>1$. Furthermore, denote $K_{\varepsilon}:=\backslash \bigcup_{l=2}^{\infty}\left(\mu_{l}-\varepsilon(l)(\ln l)^{-2}, \mu_{l}+\varepsilon(l)(\ln l)^{-2}\right)$.

A symmetric spherical scatterer

Theorem [Kiselev, 1997, E.-Tater-Vaněk, 2001]: For any l large enough the interval $(l(l-1), l(l+1))$ contains a point μ_{l} such that $\Delta\left(\sqrt{\mu_{l}}\right)=0$. Let $\varepsilon(\cdot)$ be a positive, strictly increasing function which tends to ∞ and obeys the inequality $|\varepsilon(x)| \leq x \ln x$ for $x>1$. Furthermore, denote $K_{\varepsilon}:=\backslash \bigcup_{l=2}^{\infty}\left(\mu_{l}-\varepsilon(l)(\ln l)^{-2}, \mu_{l}+\varepsilon(l)(\ln l)^{-2}\right)$. Then there is $c>0$ such that the transmission probability satisfies

$$
|t(k)|^{2} \leq c \varepsilon(l)^{-2}
$$

in the background, i.e. for $k^{2} \in K_{\varepsilon} \cap(l(l-1), l(l+1))$ and any l large enough. On the other hand, there are resonance peaks localized at K_{ε} with the property

$$
\left|t\left(\sqrt{\mu_{l}}\right)\right|^{2}=1+\mathcal{O}\left((\ln l)^{-1}\right) \quad \text { as } \quad l \rightarrow \infty
$$

A symmetric spherical scatterer

The high-energy behavior shares features with strongly singular interaction such as δ^{\prime}, for which $|t(k)|^{2}=\mathcal{O}\left(k^{-2}\right)$. One can conjecture that coarse-grained transmission through our "bubble" has the same decay as $k \rightarrow \infty$

A symmetric spherical scatterer

The high-energy behavior shares features with strongly singular interaction such as δ^{\prime}, for which $|t(k)|^{2}=\mathcal{O}\left(k^{-2}\right)$. One can conjecture that coarse-grained transmission through our "bubble" has the same decay as $k \rightarrow \infty$

Figure 7

An asymmetric spherical scatterer

While the above general features are expected to be the same if the angular distance of junctions is less than π, the transmission plot changes [Brüning-Geyler-et al., 2002]:

An asymmetric spherical scatterer

While the above general features are expected to be the same if the angular distance of junctions is less than π, the transmission plot changes [Brüning-Geyler-et al., 2002]:

Arrays of geometric scatterers

In a similar way one can construct general scattering theory on such "hedgehog" manifolds composed of compact scatterers, connecting edges and external leads
[Brüning-Geyler, 2003]

Arrays of geometric scatterers

In a similar way one can construct general scattering theory on such "hedgehog" manifolds composed of compact scatterers, connecting edges and external leads
[Brüning-Geyler, 2003]
Furthermore, infinite periodic systems can be treated by Floquet-Bloch decomposition

Sphere array spectrum

A band spectrum example from [E.-Tater-Vaněk, 2001]: radius $R=1$, segment length $\ell=1,0.01$ and coupling ρ

Sphere array spectrum

A band spectrum example from [E.-Tater-Vaněk, 2001]: radius $R=1$, segment length $\ell=1,0.01$ and coupling ρ

 [-G.0] (lower figure, p is the conlect madur,

How do gaps behave as $k \rightarrow \infty$?

Question: Are the scattering properties of such junctions reflected in gap behaviour of periodic families of geometric scatterers at high energies? And if we ask so, why it should be interesting?

How do gaps behave as $k \rightarrow \infty$?

Question: Are the scattering properties of such junctions reflected in gap behaviour of periodic families of geometric scatterers at high energies? And if we ask so, why it should be interesting?

Recall properties of singular Wannier-Stark systems:

How do gaps behave as $k \rightarrow \infty$?

Question: Are the scattering properties of such junctions reflected in gap behaviour of periodic families of geometric scatterers at high energies? And if we ask so, why it should be interesting?

Recall properties of singular Wannier-Stark systems:

Spectrum of such systems is purely discrete which is proved for "most" values of the parameters [Asch-DuclosE., 1998] and conjectured for all values. The reason behind are large gaps of δ^{\prime} Kronig-Penney systems

Periodic systems - assumptions

Consider periodic combinations of spheres and segments and
 adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")

Periodic systems - assumptions

Consider periodic combinations of spheres and segments and
 adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals π or $\pi / 2$

Periodic systems - assumptions

Consider periodic combinations of spheres and segments and
 adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals π or $\pi / 2$
- sphere-segment coupling $\mathcal{A}=\left(\begin{array}{cc}0 & 2 \pi \alpha^{-1} \\ \bar{\alpha}^{-1} & 0\end{array}\right)$

Periodic systems - assumptions

Consider periodic combinations of spheres and segments and
 adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals π or $\pi / 2$
- sphere-segment coupling $\mathcal{A}=\left(\begin{array}{cc}0 & 2 \pi \alpha^{-1} \\ \bar{\alpha}^{-1} & 0\end{array}\right)$
- we allow also tight coupling when the spheres touch

Tightly coupled spheres

Tightly coupled spheres

The tight-coupling boundary conditions will be

$$
\begin{aligned}
& L_{1}\left(\Phi_{1}\right)=A L_{0}\left(\Phi_{1}\right)+C L_{0}\left(\Phi_{2}\right), \\
& L_{1}\left(\Phi_{2}\right)=\bar{C} L_{0}\left(\Phi_{1}\right)+D L_{0}\left(\Phi_{2}\right)
\end{aligned}
$$

with $A, D \in C \in \mathbb{C}$. For simplicity we put $A=D=0$

Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum θ. Denote by B_{n}, G_{n} the widths ot the nth band and gap, respectively; then we have

Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum θ. Denote by B_{n}, G_{n} the widths ot the nth band and gap, respectively; then we have
Theorem [Brüning-E.-Geyler, 2003]: There is a $c>0$ s.t.

$$
\frac{B_{n}}{G_{n}} \leq c n^{-\epsilon}
$$

holds as $n \rightarrow \infty$ for loosely connected systems, where $\epsilon=\frac{1}{2}$ for arrays and $\epsilon=\frac{1}{4}$ for carpets. For tightly coupled systems to any $\epsilon \in(0,1)$ there is a $\tilde{c}>0$ such that the inequality $B_{n} / G_{n} \leq \tilde{c}(\ln n)^{-\epsilon}$ holds as $n \rightarrow \infty$

Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum θ. Denote by B_{n}, G_{n} the widths ot the nth band and gap, respectively; then we have
Theorem [Brüning-E.-Geyler, 2003]: There is a $c>0$ s.t.

$$
\frac{B_{n}}{G_{n}} \leq c n^{-\epsilon}
$$

holds as $n \rightarrow \infty$ for loosely connected systems, where $\epsilon=\frac{1}{2}$ for arrays and $\epsilon=\frac{1}{4}$ for carpets. For tightly coupled systems to any $\epsilon \in(0,1)$ there is a $\tilde{c}>0$ such that the inequality $B_{n} / G_{n} \leq \tilde{c}(\ln n)^{-\epsilon}$ holds as $n \rightarrow \infty$
Conjecture: Similar results hold for other couplings and angular distances of the junctions. The problem is just technical; the dispersion curves are less in general

A heuristic way to choose the coupling

Try something else: return to the plane+halfline model and compare low-energy scattering to situation when the halfline is replaced by tube of radius a (we disregard effect of the sharp edge at interface of the two parts)

A heuristic way to choose the coupling

Try something else: return to the plane+halfline model and compare low-energy scattering to situation when the halfline is replaced by tube of radius a (we disregard effect of the sharp edge at interface of the two parts)

Plane plus tube scattering

Rotational symmetry allows us again to treat each partial wave separately. Given orbital quantum number ℓ one has to match smoothly the corresponding solutions

$$
\psi(x):=\left\{\begin{array}{ccc}
e^{i k x}+r_{a}^{(\ell)}(t) e^{-i k x} & \ldots & x \leq 0 \\
\sqrt{\frac{\pi k r}{2}} t_{a}^{(\ell)}(k) H_{\ell}^{(1)}(k r) & \ldots & r \geq a
\end{array}\right.
$$

Plane plus tube scattering

Rotational symmetry allows us again to treat each partial wave separately. Given orbital quantum number ℓ one has to match smoothly the corresponding solutions

$$
\psi(x):=\left\{\begin{array}{ccc}
e^{i k x}+r_{a}^{(\ell)}(t) e^{-i k x} & \ldots & x \leq 0 \\
\sqrt{\frac{\pi k r}{2}} t_{a}^{(\ell)}(k) H_{\ell}^{(1)}(k r) & \ldots & r \geq a
\end{array}\right.
$$

This yields

$$
r_{a}^{(\ell)}(k)=-\frac{\mathcal{D}_{-}^{a}}{\mathcal{D}_{+}^{a}}, \quad t_{a}^{(\ell)}(k)=4 i \sqrt{\frac{2 k a}{\pi}}\left(\mathcal{D}_{+}^{a}\right)^{-1}
$$

with

$$
\mathcal{D}_{ \pm}^{a}:=(1 \pm 2 i k a) H_{\ell}^{(1)}(k a)+2 k a\left(H_{\ell}^{(1)}\right)^{\prime}(k a)
$$

Plane plus point: low energy behavior

Wronskian relation $W\left(J_{\nu}(z), Y_{\nu}(z)\right)=2 / \pi z$ implies scattering unitarity, in particular, it shows that

$$
\left|r_{a}^{(\ell)}(k)\right|^{2}+\left|t_{a}^{(\ell)}(k)\right|^{2}=1
$$

Plane plus point: low energy behavior

Wronskian relation $W\left(J_{\nu}(z), Y_{\nu}(z)\right)=2 / \pi z$ implies scattering unitarity, in particular, it shows that

$$
\left|r_{a}^{(\ell)}(k)\right|^{2}+\left|t_{a}^{(\ell)}(k)\right|^{2}=1
$$

Using asymptotic properties of Bessel functions with for small values of the argument we get

$$
\left|t_{a}^{(\ell)}(k)\right|^{2} \approx \frac{4 \pi}{((\ell-1)!)^{2}}\left(\frac{k a}{2}\right)^{2 \ell-1}
$$

for $\ell \neq 0$, so the transmission probability vanishes fast as $k \rightarrow 0$ for higher partial waves

Heuristic choice of coupling parameters

The situation is different for $\ell=0$ where

$$
H_{0}^{(1)}(z)=1+\frac{2 i}{\pi}\left(\gamma+\ln \frac{k a}{2}\right)+\mathcal{O}\left(z^{2} \ln z\right)
$$

Heuristic choice of coupling parameters

The situation is different for $\ell=0$ where

$$
H_{0}^{(1)}(z)=1+\frac{2 i}{\pi}\left(\gamma+\ln \frac{k a}{2}\right)+\mathcal{O}\left(z^{2} \ln z\right)
$$

Comparison shows that $t_{a}^{(0)}(k)$ coincides, in the leading order as $k \rightarrow 0$, with the plane+halfline expression if

$$
A:=\frac{1}{2 a}, \quad D:=-\ln a, \quad B=2 \pi C=\sqrt{\frac{2 \pi}{a}}
$$

Heuristic choice of coupling parameters

The situation is different for $\ell=0$ where

$$
H_{0}^{(1)}(z)=1+\frac{2 i}{\pi}\left(\gamma+\ln \frac{k a}{2}\right)+\mathcal{O}\left(z^{2} \ln z\right)
$$

Comparison shows that $t_{a}^{(0)}(k)$ coincides, in the leading order as $k \rightarrow 0$, with the plane+halfline expression if

$$
A:=\frac{1}{2 a}, \quad D:=-\ln a, \quad B=2 \pi C=\sqrt{\frac{2 \pi}{a}}
$$

Notice that the "right" s-a extensions depend on a single parameter, namely radius of the "thin" component

Illustration on microwave experiments

Our models do not apply to QM only. Consider an electromagnetic resonator. If it is very flat, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation

Illustration on microwave experiments

Our models do not apply to QM only. Consider an electromagnetic resonator. If it is very flat, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation
Let a rectangular resonator be equipped with an antenna which serves a source. Such a system has many resonances; we ask about distribution of their spacings

Illustration on microwave experiments

Our models do not apply to QM only. Consider an electromagnetic resonator. If it is very flat, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation
Let a rectangular resonator be equipped with an antenna which serves a source. Such a system has many resonances; we ask about distribution of their spacings The reflection amplitude for a compact manifold with one lead attached at x_{0} is found as above: we have

$$
r(k)=-\frac{\pi Z(k)(1-2 i k a)-1}{\pi Z(k)(1+2 i k a)-1},
$$

where $Z(k):=\xi\left(\vec{x}_{0} ; k\right)-\frac{\ln a}{2 \pi}$

Finding the resonances

To evaluate regularized Green's function we use ev's and ef's of Dirichlet Laplacian in $M=\left[0, c_{1}\right] \times\left[0, c_{2}\right]$, namely

$$
\begin{aligned}
\phi_{n m}(x, y) & =\frac{2}{\sqrt{c_{1} c_{2}}} \sin \left(n \frac{\pi}{c_{1}} x\right) \sin \left(m \frac{\pi}{c_{2}} y\right) \\
\lambda_{n m} & =\frac{n^{2} \pi^{2}}{c_{1}^{2}}+\frac{m^{2} \pi^{2}}{c_{2}^{2}}
\end{aligned}
$$

Finding the resonances

To evaluate regularized Green's function we use ev's and ef's of Dirichlet Laplacian in $M=\left[0, c_{1}\right] \times\left[0, c_{2}\right]$, namely

$$
\begin{aligned}
\phi_{n m}(x, y) & =\frac{2}{\sqrt{c_{1} c_{2}}} \sin \left(n \frac{\pi}{c_{1}} x\right) \sin \left(m \frac{\pi}{c_{2}} y\right), \\
\lambda_{n m} & =\frac{n^{2} \pi^{2}}{c_{1}^{2}}+\frac{m^{2} \pi^{2}}{c_{2}^{2}}
\end{aligned}
$$

Resonances are given by complex zeros of the denominator of $r(k)$, i.e. by solutions of the algebraic equation

$$
\xi\left(\vec{x}_{0}, k\right)=\frac{\ln (a)}{2 \pi}+\frac{1}{\pi(1+i k a)}
$$

Comparison with experiment

Compare now experimental results obtained at University of Marburg with the model for $a=1 \mathrm{~mm}$, averaging over x_{0} and $c_{1}, c_{2}=20 \sim 50 \mathrm{~cm}$

Comparison with experiment

Compare now experimental results obtained at University of Marburg with the model for $a=1 \mathrm{~mm}$, averaging over x_{0} and $c_{1}, c_{2}=20 \sim 50 \mathrm{~cm}$

Important: An agreement is achieved with the lower third of measured frequencies - confirming thus validity of our approximation, since shorter wavelengths are comparable with the antenna radius a and $k a \ll 1$ is no longer valid

Spin conductance oscillations

Note also that manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem
[Hu et al., 2001] measured conductance of polarized electrons through an InAs sample; the results depended on length L of the semiconductor "bar", in particular, that for some L spin-flip processes dominated

Spin conductance oscillations

Note also that manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem
[Hu et al., 2001] measured conductance of polarized electrons through an InAs sample; the results depended on length L of the semiconductor "bar", in particular, that for some L spin-flip processes dominated

Physical mechanism of the spin flip is the spin-orbit interaction with impurity atoms. It is complicated and no realistic transport theory of that type was constructed

Spin conductance oscillations

Note also that manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem
[Hu et al., 2001] measured conductance of polarized electrons through an InAs sample; the results depended on length L of the semiconductor "bar", in particular, that for some L spin-flip processes dominated

Physical mechanism of the spin flip is the spin-orbit interaction with impurity atoms. It is complicated and no realistic transport theory of that type was constructed
We construct a model in which spin-flipping interaction has a point character. Semiconductor bar is described as two strips coupled at the impurity sites by the boundary condition described above

Spin-orbit coupled strips

We assume that impurities are randomly distributed with the same coupling, $A=D$ and $C \in \mathbb{R}$. Then we can instead study a pair of decoupled strips,

$$
L_{1}\left(\Phi_{1} \pm \Phi_{2}\right)=(A \pm C) L_{0}\left(\Phi_{1} \pm \Phi_{2}\right),
$$

which have naturally different localizations lengths

Compare with measured conductance

Returning to original functions Φ_{j}, spin conductance oscillations are expected. This is indeed what we see if the parameters assume realistic values:

What he did not manage to say

If somebody like Volodya leaves us we suffer a great loss. Nobody knows where his spirit would venture was he given at least a couple more years

What he did not manage to say

If somebody like Volodya leaves us we suffer a great loss. Nobody knows where his spirit would venture was he given at least a couple more years
For me the sad news have a personal touch because the last talk he announced bore the title Exner-Šeba hybrid plane with the Rashba Hamiltonian; he passed away at the opening of the conference in the Isaac Newton Institute in Cambridge where it had to be presented

What he did not manage to say

If somebody like Volodya leaves us we suffer a great loss. Nobody knows where his spirit would venture was he given at least a couple more years

For me the sad news have a personal touch because the last talk he announced bore the title Exner-Šeba hybrid plane with the Rashba Hamiltonian; he passed away at the opening of the conference in the Isaac Newton Institute in Cambridge where it had to be presented
As the last part of this talk let me therefore attempt to reconstruct, without going to details, what he might want to say in that lecture which never occurred

Spin-orbit interaction

Let us thus return to our first example and see how it changes when the particle is an electron with spin which is subject to spin-orbit interaction. Recall first a few facts:

Spin-orbit interaction

Let us thus return to our first example and see how it changes when the particle is an electron with spin which is subject to spin-orbit interaction. Recall first a few facts:
Consider the state Hilbert space is $\mathcal{H}_{\text {plane }}=L^{2}\left(\mathbb{R}^{2}, \mathbb{C}^{2}\right)$ with the free Hamiltonian $\hat{H}_{0}=\frac{1}{2 m^{*}} \mathbf{p}^{2} \sigma_{0}$, where $p_{j}=-i \hbar \partial_{j}$ and σ_{0} is the 2×2 unit matrix. One uses conventionally either the Rashba Hamiltonian

$$
\hat{H}_{\mathrm{R}}:=\hat{H}_{0}+\frac{\alpha_{\mathrm{R}}}{\hbar} \hat{U}_{\mathrm{R}}, \quad \hat{U}_{\mathrm{R}}:=\sigma_{1} p_{2}-\sigma_{2} p_{1},
$$

where $\alpha_{\mathrm{R}} \in$ is the Rashba constant and σ_{j} are the usual Pauli matrices, or the Dresselhaus Hamiltonian

$$
\hat{H}_{\mathrm{D}}:=\hat{H}_{0}+\frac{\alpha_{\mathrm{D}}}{\hbar} \hat{U}_{\mathrm{D}}, \quad \hat{U}_{\mathrm{D}}:=\sigma_{2} p_{2}-\sigma_{1} p_{1} .
$$

Getting rid of the constants

Since the choice of the units is again unimportant we get rid of the constants in the usual way introducing $\mathrm{k}:=\hbar^{-1} \mathrm{p}$ and $\varkappa_{j}:=\hbar^{-2} m^{*} \alpha_{\mathrm{J}}, \mathrm{J}=\mathrm{R}, \mathrm{D}$. Up to the multiplicative factor, $\hat{H}_{\mathrm{J}}=\frac{\hbar^{2}}{2 m^{*}} H_{\mathrm{J}}, \mathrm{J}=\mathrm{R}, \mathrm{D}$, the both versions of the Hamiltonian acquire then the simple form

$$
H_{\mathrm{J}}=H_{0}+2 \varkappa_{\mathrm{J}} U_{\mathrm{J}}, \quad U_{\mathrm{R}}:=\sigma_{1} k_{2}-\sigma_{2} k_{1}, \quad U_{\mathrm{D}}:=\sigma_{2} k_{2}-\sigma_{1} k_{1}
$$

with $H_{0}:=\mathbf{p}^{2} \sigma_{0}$, which we shall use in the following

Green's function of H_{J}

It was derived in [Brüning-Geyler-Pankrashkin'07]. By a nice algebraic trick, so characteristic for the work of Volodya Geyler, the problem is reformulated as a scalar one which involves the kernel $G_{0}\left(\mathbf{x}, \mathbf{x}^{\prime} ; z\right)=\frac{1}{2 \pi} K_{0}\left(\sqrt{-z}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)$ of the Laplacian in $L^{2}\left(\mathbb{R}^{2}\right)$, leading to

$$
G_{\mathrm{J}}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right)=\left(\begin{array}{cc}
G_{\mathrm{J}}^{11}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right) & G_{\mathrm{J}}^{12}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right) \\
G_{\mathrm{J}}^{21}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right) & G_{\mathrm{J}}^{22}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right)
\end{array}\right)
$$

Green's function of H_{J}

It was derived in [Brüning-Geyler-Pankrashkin'07]. By a nice algebraic trick, so characteristic for the work of Volodya Geyler, the problem is reformulated as a scalar one which involves the kernel $G_{0}\left(\mathbf{x}, \mathbf{x}^{\prime} ; z\right)=\frac{1}{2 \pi} K_{0}\left(\sqrt{-z}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)$ of the Laplacian in $L^{2}\left(\mathbb{R}^{2}\right)$, leading to

$$
G_{\mathrm{J}}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right)=\left(\begin{array}{cc}
G_{\mathrm{J}}^{11}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right) & G_{\mathrm{J}}^{12}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right) \\
G_{\mathrm{J}}^{21}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right) & G_{\mathrm{J}}^{22}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right)
\end{array}\right)
$$

Here the diagonal elements are

$$
\begin{aligned}
& G_{\mathrm{J}}^{11}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right)=G_{\mathrm{J}}^{22}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right)=\frac{1}{4 \pi}\left[-\frac{\varkappa_{\mathrm{J}}}{\mathrm{i} \sqrt{-\left(z+\varkappa_{J}^{2}\right)}}\right. \\
& \left.\quad \times\left(K_{0}\left(\zeta_{J}^{+}\left|\mathbf{x}-\mathrm{x}^{\prime}\right|\right)-K_{0}\left(\zeta_{J}^{-}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right)\right)+K_{0}\left(\zeta_{J}^{+}\left|\mathrm{x}-\mathrm{x}^{\prime}\right|\right)+K_{0}\left(\zeta_{J}^{-}\left|\mathrm{x}-\mathrm{x}^{\prime}\right|\right)\right]
\end{aligned}
$$

for both the $\mathrm{J}=\mathrm{R}, \mathrm{D}$.

Green's function of H_{J}, continued

On the other hand, the off-diagonal ones are

$$
\begin{aligned}
& G_{\mathrm{R}}^{12}\left(\mathbf{x}, \mathbf{x}^{\prime} ; z\right)=\frac{\mathrm{i}\left(x_{2}-x_{2}^{\prime}\right)-\left(x_{1}-x_{1}^{\prime}\right)}{4 \pi \mathrm{i} \sqrt{-\left(z+\varkappa_{\mathrm{R}}^{2}\right)}\left|\mathbf{x}-\mathrm{x}^{\prime}\right|} \sum_{\nu= \pm} \nu \zeta_{\mathrm{R}}^{\nu} K_{1}\left(\zeta_{\mathrm{R}}^{\nu}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right), \\
& G_{\mathrm{D}}^{12}\left(\mathbf{x}, \mathbf{x}^{\prime} ; z\right)=\frac{\left(x_{2}-x_{2}^{\prime}\right)-\mathrm{i}\left(x_{1}-x_{1}^{\prime}\right)}{4 \pi \mathrm{i} \sqrt{-\left(z+x_{\mathrm{D}}^{2}\right)}\left|\mathbf{x}-\mathrm{x}^{\prime}\right|} \sum_{\nu= \pm} \nu \zeta_{\mathrm{D}}^{\nu} K_{1}\left(\zeta_{\mathrm{D}}^{\nu}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right),
\end{aligned}
$$

and $G_{\mathrm{J}}^{21}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right)=\overline{G_{\mathrm{J}}^{12}\left(\mathrm{x}^{\prime}, \mathrm{x} ; \bar{z}\right)}$; the effective momenta appearing in these expressions are defined as

$$
\zeta_{\mathrm{J}}^{ \pm}:=\sqrt{-\left(z+\varkappa_{\mathrm{J}}^{2}\right)} \pm \mathrm{i} \varkappa_{\mathrm{J}}
$$

Renormalized Green's function

Subtracting the divergence of the diagonal we get

$$
G_{\mathrm{J}}^{\mathrm{ren}}(z):=\lim _{\mathrm{x}^{\prime} \rightarrow \mathbf{x}}\left[G_{\mathrm{J}}\left(\mathbf{x}, \mathbf{x}^{\prime} ; z\right)+\frac{1}{2 \pi} \ln \left|\mathbf{x}-\mathbf{x}^{\prime}\right| \sigma_{0}\right]
$$

the limit is independent of the position x in view of the translational invariance of H_{J}. By a direct computation the off-diagonal elements vanish in the limit while
$G_{\mathrm{J}}^{\mathrm{ren} ; j j}(z)=-\frac{\varkappa_{\mathrm{J}}}{2 \mathrm{i} \sqrt{-\left(z+\varkappa_{\mathrm{J}}^{2}\right)}}\left(Q\left(\zeta^{+}\right)-Q\left(\zeta^{-}\right)\right)+\frac{1}{2}\left(Q\left(\zeta^{+}\right)+Q\left(\zeta^{-}\right)\right)$
with $Q(z):=\frac{1}{2 \pi}\left(\psi(1)-\frac{1}{2} \ln (-z)+\ln 2\right)$.

Renormalized Green's function

Subtracting the divergence of the diagonal we get

$$
G_{\mathrm{J}}^{\mathrm{ren}}(z):=\lim _{\mathrm{x}^{\prime} \rightarrow \mathbf{x}}\left[G_{\mathrm{J}}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right)+\frac{1}{2 \pi} \ln \left|\mathrm{x}-\mathrm{x}^{\prime}\right| \sigma_{0}\right] ;
$$

the limit is independent of the position x in view of the translational invariance of H_{J}. By a direct computation the off-diagonal elements vanish in the limit while

$$
G_{\mathrm{J}}^{\mathrm{ren} ; j j}(z)=-\frac{\varkappa_{\mathrm{J}}}{2 \mathrm{i} \sqrt{-\left(z+\varkappa_{\mathrm{J}}^{2}\right)}}\left(Q\left(\zeta^{+}\right)-Q\left(\zeta^{-}\right)\right)+\frac{1}{2}\left(Q\left(\zeta^{+}\right)+Q\left(\zeta^{-}\right)\right)
$$

with $Q(z):=\frac{1}{2 \pi}\left(\psi(1)-\frac{1}{2} \ln (-z)+\ln 2\right)$. This yields

$$
G_{\mathrm{J}}^{\mathrm{ren}}(z)=\frac{1}{2 \pi}\left[\psi(1)-\frac{1}{2} \ln \left(-\frac{z}{4}\right)+\frac{\varkappa_{\mathrm{J}}}{2 \mathrm{i} \sqrt{-\left(z+\varkappa_{\mathrm{J}}^{2}\right)}} \ln \frac{\sqrt{-\left(z+\varkappa_{\mathrm{J}}^{2}\right)}+i \varkappa_{\mathrm{J}}}{\sqrt{-\left(z+\varkappa_{\mathrm{J}}^{2}\right)}-\mathrm{i} \varkappa_{\mathrm{J}}}\right] \sigma_{0},
$$

where $-\psi(1) \approx 0.577$ is the Euler-Mascheroni constant

A remark on the magnetic case

The case when a homogeneous magnetic field $B=\frac{\hbar c}{e} b$ perpendicular to the plane is applied is treated in an analogous manner
The momentum k in the Hamiltonian has to be replaced with $\mathrm{K}=\mathrm{k}-\mathrm{a}$ where $\mathrm{A}=\frac{\hbar c}{e} \mathbf{a}$ is the vector potential associated with the field, and the Zeeman term $\gamma b \sigma_{3}$ with $\gamma:=\frac{1}{2} g_{*} \frac{m_{*}}{m_{e}}$ has to be added.
The the reduction to the scalar case works again and yields explicit expression for Green's functions in terms of confluent hypergeometric instead of Bessel functions - see [Brüning-Geyler-Pankrashkin'07]

"Hybrid plane" with SO interaction

Since the lead carries the same spin $\frac{1}{2}$ particle its component Hilbert space is $\mathcal{H}_{\text {lead }}=L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{2}\right)$, and the whole state space of the system is the consequently the orthogonal sum $\mathcal{H}:=\mathcal{H}_{\text {lead }} \oplus \mathcal{H}_{\text {plane }}$.
The wave functions are thus of the form $\Psi=\left\{\psi_{\text {lead }}, \psi_{\text {plane }}\right\}^{\mathrm{T}}$ where each of the components is a 2×1 column.

"Hybrid plane" with SO interaction

Since the lead carries the same spin $\frac{1}{2}$ particle its component Hilbert space is $\mathcal{H}_{\text {lead }}=L^{2}\left(\mathbb{R}_{+}, \mathbb{C}^{2}\right)$, and the whole state space of the system is the consequently the orthogonal sum $\mathcal{H}:=\mathcal{H}_{\text {lead }} \oplus \mathcal{H}_{\text {plane }}$.
The wave functions are thus of the form $\Psi=\left\{\psi_{\text {lead }}, \psi_{\text {plane }}\right\}^{T}$ where each of the components is a 2×1 column.

We start from the decoupled operator $H^{0}:=H_{\text {lead }} \oplus H_{J}$ where the first component acts as $H_{\text {lead }} \psi_{\text {lead }}=-\psi_{\text {lead }}^{\prime \prime}$ with Neumann boundary condition at the endpoint. We restrict H^{0} to functions which vanish in the vicinity of the junction, obtaining thus a symmetric operator of deficiency indices $(4,4)$, and after that we seek admissible Hamiltonians among its self-adjoint extensions.

The self-adjoint extensions

We need the boundary values. Those on the halfline are the columns $\psi_{\text {lead }}(0+)$ and $\psi_{\text {lead }}^{\prime}(0+)$; in the plane they are coefficients in the expansion

$$
\psi_{\text {plane }}(\mathbf{x})=-\frac{1}{2 \pi} L_{0}\left(\psi_{\text {plane }}\right) \ln |\mathbf{x}|+L_{1}\left(\psi_{\text {plane }}\right)+o(|\mathbf{x}|) .
$$

The self-adjoint extensions

We need the boundary values. Those on the halfline are the columns $\psi_{\text {lead }}(0+)$ and $\psi_{\text {lead }}^{\prime}(0+)$; in the plane they are coefficients in the expansion

$$
\psi_{\text {plane }}(\mathbf{x})=-\frac{1}{2 \pi} L_{0}\left(\psi_{\text {plane }}\right) \ln |\mathbf{x}|+L_{1}\left(\psi_{\text {plane }}\right)+o(|\mathbf{x}|) .
$$

Now we can write the sought boundary conditions as

$$
\begin{aligned}
\psi_{\text {lead }}^{\prime}(0+) & =A \psi_{\text {lead }}(0+)+C^{*} L_{0}\left(\psi_{\text {plane }}\right), \\
L_{1}\left(\psi_{\text {plane }}\right) & =C \psi_{\text {lead }}(0+)+D L_{0}\left(\psi_{\text {plane }}\right)
\end{aligned}
$$

where A, C, D are 2×2 matrices, the first and the third Hermitian, so $\mathcal{A}:=\binom{A C^{*} C^{*}}{C}$ depends of 16 real parameters
The analogous b.c. apply also to the magnetic case in view of the same character of the singularity.

Boundary conditions, continued

The above b.c. are generic but do not cover the cases of a singular \mathcal{A}. More generally, we can take

$$
\mathcal{A}\binom{\psi_{\text {lead }}(0+)}{L_{0}\left(\psi_{\text {plane }}\right)}+\mathcal{B}\binom{\psi_{\text {lead }}^{\prime}(0+)}{L_{1}\left(\psi_{\text {plane }}\right)}=0,
$$

where $(\mathcal{A} \mid \mathcal{B})$ has rank four and $\mathcal{A B}^{*}$ is Hermitean

Boundary conditions, continued

The above b.c. are generic but do not cover the cases of a singular \mathcal{A}. More generally, we can take

$$
\mathcal{A}\binom{\psi_{\text {lead }}(0+)}{L_{0}\left(\psi_{\text {plane }}\right)}+\mathcal{B}\binom{\psi_{\text {lead }}^{\prime}(0+)}{L_{1}\left(\psi_{\text {plame }}\right)}=0,
$$

where $(\mathcal{A} \mid \mathcal{B})$ has rank four and $\mathcal{A B}^{*}$ is Hermitean
Sixteen parameters may be too many. Some simplifications:

- the contact does not couple the spin states, A, C, D diagonal
- the coupling is spin-independent, the matrices are scalar
- the "natural" conditions similar to the above,

$$
A=\frac{1}{2 \rho} \sigma_{0}, \quad C=\frac{1}{\sqrt{2 \pi \rho}} \sigma_{0}, \quad D=-\sigma_{0} \ln \rho .
$$

Full Green's function

We employ Krein's formula. The starting point is Green function of the decoupled system which is block-diagonal,

$$
G^{0}\left(x, x^{\prime} ; \mathbf{x}, \mathbf{x}^{\prime} ; z\right)=\left(\begin{array}{cc}
G_{\text {lead }}\left(x, x^{\prime} ; z\right) & 0 \\
0 & G_{\mathrm{J}}\left(\mathbf{x}, \mathbf{x}^{\prime} ; z\right)
\end{array}\right)
$$

where $G_{\text {lead }}\left(x, x^{\prime} ; z\right)=\frac{\mathrm{i}}{\sqrt{z}} \cos \sqrt{z} x_{<} \mathrm{e}^{-\mathrm{i} \sqrt{z} x}>\sigma_{0}$ corresponding to Neumann b.c., and $G_{\mathrm{J}}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right)$ was given above

Full Green's function

We employ Krein's formula. The starting point is Green function of the decoupled system which is block-diagonal,

$$
G^{0}\left(x, x^{\prime} ; \mathbf{x}, \mathbf{x}^{\prime} ; z\right)=\left(\begin{array}{cc}
G_{\text {lead }}\left(x, x^{\prime} ; z\right) & 0 \\
0 & G_{\mathrm{J}}\left(\mathbf{x}, \mathbf{x}^{\prime} ; z\right)
\end{array}\right)
$$

where $G_{\text {lead }}\left(x, x^{\prime} ; z\right)=\frac{\mathrm{i}}{\sqrt{z}} \cos \sqrt{z} x_{<} \mathrm{e}^{-\mathrm{i} \sqrt{z} x}>\sigma_{0}$ corresponding to Neumann b.c., and $G_{\mathrm{J}}\left(\mathrm{x}, \mathrm{x}^{\prime} ; z\right)$ was given above
The Krein function $Q(z)$, which is an analytic 4×4-matrix valued function of the spectral parameter z, is defined through diagonal values of the kernel, with renormalization,

$$
Q(z):=\left(\begin{array}{cc}
\frac{\mathrm{i}}{\sqrt{z}} \sigma_{0} & 0 \\
0 & G_{\mathrm{J}}^{\mathrm{ren}}(z)
\end{array}\right)
$$

Full Green's function, continued

Put $\tilde{\Gamma}_{1} \psi:=\binom{-\psi_{l_{\text {ead }}^{\prime}}^{\prime}(0+)}{L_{0}\left(\psi_{\text {plane }}\right)}$ and $\tilde{\Gamma}_{2} \psi:=\binom{\psi_{\text {lead }}(0+)}{L_{1}\left(\psi_{\text {plane }}\right)}$, then the b.c. can be rewritten as $\tilde{\mathcal{A}} \tilde{\Gamma}_{1} \psi+\tilde{\mathcal{B}} \tilde{\Gamma}_{2} \psi=0$ with $\tilde{\mathcal{B}}=-I$ and

$$
\tilde{\mathcal{A}}:=\left(\begin{array}{cc}
-A^{-1} & -A^{-1} C^{*} \\
-C A^{-1} & D-C A^{-1} C^{*}
\end{array}\right)
$$

the comparison operator H^{0} is characterized by $\tilde{\Gamma}_{1} \psi=0$.

Full Green's function, continued

Put $\tilde{\Gamma}_{1} \psi:=\binom{-\psi_{\text {lead }}^{\prime}(0+)}{L_{0}\left(\psi_{\text {plane }}\right)}$ and $\tilde{\Gamma}_{2} \psi:=\binom{\psi_{\text {lead }}(0+)}{L_{1}\left(\psi_{\text {plane }}\right)}$, then the b.c. can be rewritten as $\tilde{\mathcal{A}} \tilde{\Gamma}_{1} \psi+\tilde{\mathcal{B}} \tilde{\Gamma}_{2} \psi=0$ with $\tilde{\mathcal{B}}=-I$ and

$$
\tilde{\mathcal{A}}:=\left(\begin{array}{cc}
-A^{-1} & -A^{-1} C^{*} \\
-C A^{-1} & D-C A^{-1} C^{*}
\end{array}\right)
$$

the comparison operator H^{0} is characterized by $\tilde{\Gamma}_{1} \psi=0$.
By Krein's formula the resolvent kernel of $H_{\mathcal{A}}$ is given by

$$
\begin{aligned}
& G_{\mathcal{A}}\left(x, x^{\prime} ; \mathbf{x}, \mathbf{x}^{\prime} ; z\right)=G^{0}\left(x, x^{\prime} ; \mathbf{x}, \mathbf{x}^{\prime} ; z\right) \\
& \quad-G^{0}(x, 0 ; \mathbf{x}, \mathbf{0} ; z)[Q(z)-\tilde{\mathcal{A}}]^{-1} G^{0}\left(0, x^{\prime} ; \mathbf{0}, \mathbf{x}^{\prime} ; z\right)
\end{aligned}
$$

Full Green's function, continued

Put $\tilde{\Gamma}_{1} \psi:=\binom{-\psi_{\text {leae }}^{\prime}(0+)}{L_{0}\left(\psi_{\text {plane }}\right)}$ and $\tilde{\Gamma}_{2} \psi:=\binom{\psi_{\text {lead }}(0+)}{L_{1}\left(\psi_{\text {plane }}\right)}$, then the b.c. can be rewritten as $\tilde{\mathcal{A}} \tilde{\Gamma}_{1} \psi+\tilde{\mathcal{B}}_{2} \tilde{\Gamma}_{2} \psi=0$ with $\tilde{\mathcal{B}}=-I$ and

$$
\tilde{\mathcal{A}}:=\left(\begin{array}{cc}
-A^{-1} & -A^{-1} C^{*} \\
-C A^{-1} & D-C A^{-1} C^{*}
\end{array}\right) ;
$$

the comparison operator H^{0} is characterized by $\tilde{\Gamma}_{1} \psi=0$. By Krein's formula the resolvent kernel of $H_{\mathcal{A}}$ is given by

$$
\begin{aligned}
& G_{\mathcal{A}}\left(x, x^{\prime} ; \mathbf{x}, \mathbf{x}^{\prime} ; z\right)=G^{0}\left(x, x^{\prime} ; \mathbf{x}, \mathbf{x}^{\prime} ; z\right) \\
& \quad-G^{0}(x, 0 ; \mathbf{x}, \mathbf{0} ; z)[Q(z)-\tilde{\mathcal{A}}]^{-1} G^{0}\left(0, x^{\prime} ; \mathbf{0}, \mathbf{x}^{\prime} ; z\right) .
\end{aligned}
$$

Even if the coupling is spin-independent, $\mathcal{A}=\binom{a \bar{c}}{c d} \otimes \sigma_{0}$, the Green function does not decompose because spin states are coupled by the spin-orbit interaction in the plane.

Properties of $H_{\mathcal{A}}$

We suppose that the coupling is nontrivial, i.e. \mathcal{A} is not block-diagonal. Moreover, we suppose that the coupling is spin-independent, $\mathcal{A}=\binom{a \bar{c}}{c d} \otimes \sigma_{0}$ with $c \neq 0$, so

$$
Q(z)=\left(\begin{array}{cc}
\frac{\mathrm{i}}{\sqrt{z}}-\tilde{a} & -\tilde{\bar{c}} \\
-\tilde{c} & G_{\mathrm{J}}^{\mathrm{ren}}(z)-\tilde{d}
\end{array}\right) \otimes \sigma_{0} .
$$

Properties of $H_{\mathcal{A}}$

We suppose that the coupling is nontrivial, i.e. \mathcal{A} is not block-diagonal. Moreover, we suppose that the coupling is spin-independent, $\mathcal{A}=\binom{a \bar{c}}{c d} \otimes \sigma_{0}$ with $c \neq 0$, so

$$
Q(z)=\left(\begin{array}{cc}
\frac{\mathrm{i}}{\sqrt{z}}-\tilde{a} & -\tilde{\bar{c}} \\
-\tilde{c} & G_{\mathrm{J}}^{\mathrm{ren}}(z)-\tilde{d}
\end{array}\right) \otimes \sigma_{0} .
$$

Note first that the junction can bind: to any $-\kappa^{2} \in\left(-\varkappa_{J}^{2}, 0\right)$ one can find $H_{\mathcal{A}}$ for which it is an eigenvalue. Indeed, $Q(z)$ is singular if the relation $\left(\kappa^{-1}-\tilde{a}\right)\left(G_{J}^{\mathrm{ren}}\left(-\kappa^{2}\right)-\tilde{d}\right)=|\tilde{c}|^{2}$ is valid, or in the original parameters

$$
(\kappa-a)\left(G_{\mathrm{J}}^{\mathrm{ren}}\left(-\kappa^{2}\right)-d\right)=|c|^{2} .
$$

Since $G_{\mathrm{J}}^{\text {ren }}\left(-\kappa^{2}\right)$ is real-valued for $\kappa^{2}<\varkappa_{\mathrm{J}}^{2}$, it is easy to pick a, d in such a way that the condition is satisfied.

The scattering problem

Let us pass to the transport through the junction. Using Krein's formula and the fact that any vector of \mathcal{H} can be written as $\left(H^{0}-z\right)^{-1} \psi^{0}$ for $\psi^{0} \in D\left(H^{0}\right)$ and $\operatorname{Im} z \neq 0$, we get

$$
\psi=\psi^{0}-\gamma_{z}[Q(z)-\mathcal{A}]^{-1} \gamma_{\bar{z}}^{*}\left(H^{0}-z\right)^{-1} \psi^{0},
$$

where $\gamma_{z}: \mathbb{C}^{4} \rightarrow \mathcal{H}$ is the trace operator given by the kernel $G^{0}(x, 0 ; \mathbf{x}, \mathbf{0} ; z)$ and γ_{z}^{*} is its adjoint.

The scattering problem

Let us pass to the transport through the junction. Using Krein's formula and the fact that any vector of \mathcal{H} can be written as $\left(H^{0}-z\right)^{-1} \psi^{0}$ for $\psi^{0} \in D\left(H^{0}\right)$ and $\operatorname{Im} z \neq 0$, we get

$$
\psi=\psi^{0}-\gamma_{z}[Q(z)-\mathcal{A}]^{-1} \gamma_{\bar{z}}^{*}\left(H^{0}-z\right)^{-1} \psi^{0},
$$

where $\gamma_{z}: \mathbb{C}^{4} \rightarrow \mathcal{H}$ is the trace operator given by the kernel $G^{0}(x, 0 ; \mathbf{x}, \mathbf{0} ; z)$ and γ_{z}^{*} is its adjoint.
Note that $\gamma_{\bar{z}}^{*}\left(H^{0}-z\right)^{-1} \psi^{0}$ is just the vector of the values at the junction and $Q(z)-\mathcal{A}$ is position-independent, so the second term at the RHS is easy to compute.
We employ the usual trick letting z to approach a real value k^{2}. The resulting function ceases to be L^{2} but it still satisfies locally the boundary conditions at the junction yielding a generalized eigenfunction associated with the scattering.

Reflection amplitude

In particular, let us choose the vector ψ^{0} with the "upper" component only, $\psi_{\text {plane }}^{0}=0$ and $\psi_{\text {lead }}^{0}=\cos k x$ (recall the Neumann b.c. at the origin!). It is straightforward to invert $Q(z)$ and to compute ψ; it yields the reflection amplitude at momentum k,

$$
\mathcal{R}(k)=\frac{\left(-\frac{i}{k}-\tilde{a}\right)\left(G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)-\tilde{d}\right)-|\tilde{c}|^{2}}{\left(\frac{\mathrm{i}}{k}-\tilde{a}\right)\left(G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)-\tilde{d}\right)-|\tilde{c}|^{2}},
$$

naturally independent of the particle spin state

Reflection amplitude

In particular, let us choose the vector ψ^{0} with the "upper" component only, $\psi_{\text {plane }}^{0}=0$ and $\psi_{\text {lead }}^{0}=\cos k x$ (recall the Neumann b.c. at the origin!). It is straightforward to invert $Q(z)$ and to compute ψ; it yields the reflection amplitude at momentum k,

$$
\mathcal{R}(k)=\frac{\left(-\frac{\mathrm{i}}{k}-\tilde{a}\right)\left(G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)-\tilde{d}\right)-|\tilde{c}|^{2}}{\left(\frac{\mathrm{i}}{k}-\tilde{a}\right)\left(G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)-\tilde{d}\right)-|\tilde{c}|^{2}},
$$

naturally independent of the particle spin state, or in terms of the original parameters

$$
\mathcal{R}(k)=-\frac{(a+\mathrm{i} k)\left(G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)-d\right)+|c|^{2}}{(a-\mathrm{i} k)\left(G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)-d\right)+|c|^{2}} .
$$

Observations

- Since $G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)$ is generally complex $|\mathcal{R}(k)|^{2} \neq 1$ for $|c| \neq 0$ which is natural because the coupling allows the particle to pass from the lead to the plane

Observations

- Since $G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)$ is generally complex $|\mathcal{R}(k)|^{2} \neq 1$ for $|c| \neq 0$ which is natural because the coupling allows the particle to pass from the lead to the plane
- In particular, in the absence of the SO coupling we return to the formulæ we derived in the spinless case

Observations

- Since $G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)$ is generally complex $|\mathcal{R}(k)|^{2} \neq 1$ for $|c| \neq 0$ which is natural because the coupling allows the particle to pass from the lead to the plane
- In particular, in the absence of the SO coupling we return to the formulæ we derived in the spinless case
- In the magnetic case one can proceed in the same way replacing $G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)$ by the renormalized magnetic Green's function. There is a substantial difference, though. The Green function is real-valued. Hence the scattering on the halfline is unitary, $|\mathcal{R}(k)|^{2}=1$, and the scattering will exhibit resonances due to the discrete spectrum of the spin-orbit Hamiltonian in the plane

Observations

- Since $G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)$ is generally complex $|\mathcal{R}(k)|^{2} \neq 1$ for $|c| \neq 0$ which is natural because the coupling allows the particle to pass from the lead to the plane
- In particular, in the absence of the SO coupling we return to the formulæ we derived in the spinless case
- In the magnetic case one can proceed in the same way replacing $G_{\mathrm{J}}^{\mathrm{ren}}\left(k^{2}\right)$ by the renormalized magnetic Green's function. There is a substantial difference, though. The Green function is real-valued. Hence the scattering on the halfline is unitary, $|\mathcal{R}(k)|^{2}=1$, and the scattering will exhibit resonances due to the discrete spectrum of the spin-orbit Hamiltonian in the plane
- Various ways from here are open and inviting

Coda

Time came to fall silent, recall what the old ones were saying

Curae leves loquuntur, ingentes stupent

Slight griefs talk, great ones are speechless

