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Motivation
Isoperimetric problems are traditional in mathematical
physics. Recall, e.g., the Faber-Krahn inequality for the
Dirichlet Laplacian −∆M

D in a compact M ⊂ R
2: among all

regions with a fixed area the ground state is uniquely
minimized by the circle,

inf σ(−∆M
D ) ≥ π j20,1 |M |−1;

similarly a ball is a minimizer for a compact M ⊂ R
d, d ≥ 3
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Motivation
Isoperimetric problems are traditional in mathematical
physics. Recall, e.g., the Faber-Krahn inequality for the
Dirichlet Laplacian −∆M

D in a compact M ⊂ R
2: among all

regions with a fixed area the ground state is uniquely
minimized by the circle,

inf σ(−∆M
D ) ≥ π j20,1 |M |−1;

similarly a ball is a minimizer for a compact M ⊂ R
d, d ≥ 3

Another classical example is the PPW conjecture proved
by Ashbaugh and Benguria: in the 2D situation we have

λ2(M)

λ1(M)
≤

(

j1,1

j0,1

)2
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Notice that topology is important

If M is not simply connected, rotational symmetry may
again lead to an extremum but its nature can be different.
Recall a a strip of fixed length and width [E.-Harrell-Loss’99]
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ground state of ground state of<

whenever the strip is not a circular annulus
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again lead to an extremum but its nature can be different.
Recall a a strip of fixed length and width [E.-Harrell-Loss’99]
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ground state of ground state of<

whenever the strip is not a circular annulus
Another example is a circular obstacle in circular cavity
[Harrell-Kröger-Kurata’01]
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ground state of ground state of<

whenever the obstacle is off center

6th Congress of Romanian Mathematicians; Bucharest, June 30, 2007 – p. 4/46



Singular Schrödinger operators

Topology loses meaning when the confinement is due to a
potential. For simplicity, we suppose is a singular one,

Hα,Γ = −∆ − αδ(x− Γ) , α > 0 ,

in L2(R2), where Γ is a loop in the plane; we suppose that it
has no zero-angle self-intersections

6th Congress of Romanian Mathematicians; Bucharest, June 30, 2007 – p. 5/46



Singular Schrödinger operators

Topology loses meaning when the confinement is due to a
potential. For simplicity, we suppose is a singular one,

Hα,Γ = −∆ − αδ(x− Γ) , α > 0 ,

in L2(R2), where Γ is a loop in the plane; we suppose that it
has no zero-angle self-intersections

Hα,Γ can be naturally associated with the quadratic form,

ψ 7→ ‖∇ψ‖2
L2(R2) − α

∫

Γ
|ψ(x)|2dx ,

which is closed and below bounded in W 1,2(R2); the second
term makes sense in view of Sobolev embedding. This
definition also works for various “wilder” sets Γ
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Definition by boundary conditions
Since Γ is piecewise smooth with no cusps we can use an
alternative definition by boundary conditions: Hα,Γ acts as
−∆ on functions from W 2,1

loc (R2 \ Γ), which are continuous
and exhibit a normal-derivative jump,

∂ψ

∂n
(x)

∣

∣

∣

∣

+

−
∂ψ

∂n
(x)

∣

∣

∣

∣

−

= −αψ(x)

6th Congress of Romanian Mathematicians; Bucharest, June 30, 2007 – p. 6/46



Definition by boundary conditions
Since Γ is piecewise smooth with no cusps we can use an
alternative definition by boundary conditions: Hα,Γ acts as
−∆ on functions from W 2,1

loc (R2 \ Γ), which are continuous
and exhibit a normal-derivative jump,

∂ψ

∂n
(x)

∣

∣

∣

∣

+

−
∂ψ

∂n
(x)

∣

∣

∣

∣

−

= −αψ(x)

Remarks:

this definition has an illustrative meaning which
corresponds to a δ potential in the cross cut of Γ

using the form associated with Hα,Γ one can check
directly that σdisc(Hα,Γ) is not void for any α > 0; one
has, of course, σess(Hα,Γ) = [0,∞). We will ask about Γ

of a fixed length which maximizes the ground state
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Charged loops

Let us mention another problem which comes from classical
electrostatics and at a glance it has a little in common with
the quantum mechanical question posed above
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Let us mention another problem which comes from classical
electrostatics and at a glance it has a little in common with
the quantum mechanical question posed above

Let Γ : [0, L] → R
3 be a smooth loop and suppose that it is

homogeneously charged and non-conducting. We ask
about the shape which it will take in absence of external
forces, i.e. about minimum of the potential energy of the
Coulombic repulsion.
Remark: The latter has to be renormalized. The question
makes sense because the divergent factor comes from the
short-distance behavior being shape-independent
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Charged loops

Let us mention another problem which comes from classical
electrostatics and at a glance it has a little in common with
the quantum mechanical question posed above

Let Γ : [0, L] → R
3 be a smooth loop and suppose that it is

homogeneously charged and non-conducting. We ask
about the shape which it will take in absence of external
forces, i.e. about minimum of the potential energy of the
Coulombic repulsion.
Remark: The latter has to be renormalized. The question
makes sense because the divergent factor comes from the
short-distance behavior being shape-independent

We are going to show that both the mentioned problems
reduce essentially to the same geometric question
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Inequalities for Lp norms of chords

It is convenient to work in an arbitrary dimension d ≥ 2.
Let Γ be a piecewise differentiable function Γ : [0, L] → R

d

such that Γ(0) = Γ(L) and |Γ̇(s)| = 1 for any s ∈ [0, L].
Consider chords corresponding to a fixed arc length
u ∈ (0, 1

2L]; we are interested in the inequalities

Cp
L(u) : cpΓ(u) :=

∫ L
0 |Γ(s+u) − Γ(s)|p ds ≤ L1+p

πp sinp πu
L , p > 0

C−p
L (u) : c−p

Γ (u) :=
∫ L
0 |Γ(s+u) − Γ(s)|−p ds ≥ πpL1−p

sinp πu

L

, p > 0
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Inequalities for Lp norms of chords

It is convenient to work in an arbitrary dimension d ≥ 2.
Let Γ be a piecewise differentiable function Γ : [0, L] → R

d

such that Γ(0) = Γ(L) and |Γ̇(s)| = 1 for any s ∈ [0, L].
Consider chords corresponding to a fixed arc length
u ∈ (0, 1

2L]; we are interested in the inequalities

Cp
L(u) : cpΓ(u) :=

∫ L
0 |Γ(s+u) − Γ(s)|p ds ≤ L1+p

πp sinp πu
L , p > 0

C−p
L (u) : c−p

Γ (u) :=
∫ L
0 |Γ(s+u) − Γ(s)|−p ds ≥ πpL1−p

sinp πu

L

, p > 0

The right sides correspond to the maximally symmetric
case, the planar circle. It is clear that the inequalities are
invariant under scaling, so without loss of generality we may
fix the length, say, to L = 2π. Notice also that for p = 0 the
inequalities Cp

L(u) and C−p
L (u) turn into trivial identities.
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Simple properties

Using convexity of x 7→ xα in (0,∞) for α > 1 we get

Proposition: Cp
L(u) ⇒ Cp′

L (u) if p > p′ > 0
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Simple properties

Using convexity of x 7→ xα in (0,∞) for α > 1 we get

Proposition: Cp
L(u) ⇒ Cp′

L (u) if p > p′ > 0

Furthermore, Schwarz inequality implies

Proposition: Cp
L(u) ⇒ C−p

L (u) for any p > 0.

The norm can be expressed through curvature of Γ. Using
then a Fourier analysis, one can prove

Proposition [E’05b]: If Γ is C2, the inequality C2
L(u), and

thus also Cp
L(u) for |p| ≤ 2, holds locally.
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The global result

Theorem [Lükő’66; Abrams et al.’03; E-Harrell-Loss’05]:
Let Γ be piecewise C1 with no cusps. Then C2

L(u) is valid
for any u ∈ (0, 1

2L], and the inequality is strict unless Γ is
a planar circle.
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The global result

Theorem [Lükő’66; Abrams et al.’03; E-Harrell-Loss’05]:
Let Γ be piecewise C1 with no cusps. Then C2

L(u) is valid
for any u ∈ (0, 1

2L], and the inequality is strict unless Γ is
a planar circle.

Proof: Without loss of generality we put L = 2π and write

Γ(s) =
∑

06=n∈Z

cn eins

with cn ∈ C
d. Since Γ(s) ∈ R

d the coefficients have to satisfy
c−n = c̄n; the absence of c0 can be always achieved by a
choice of the origin of the coordinate system.

In view of the Weierstrass theorem and continuity of the
functional in question, we may suppose that Γ is C2, apart
of the last part of the theorem.
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Proof, continued

If Γ is C2 its derivative is a sum of the uniformly convergent
Fourier series

Γ̇(s) = i
∑

06=n∈Z

ncn eins
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Proof, continued

If Γ is C2 its derivative is a sum of the uniformly convergent
Fourier series

Γ̇(s) = i
∑

06=n∈Z

ncn eins

By assumption, |Γ̇(s)| = 1, and hence from the relation

2π =

∫ 2π

0
|Γ̇(s)|2 ds =

∫ 2π

0

∑

06=m∈Z

∑

06=n∈Z

nmc∗m · cn ei(n−m)s ds ,

where c∗m denotes the row vector (c̄m,1, . . . , c̄m,d) and dot
marks the inner product in C

d, we infer that
∑

06=n∈Z

n2|cn|
2 = 1
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Proof, continued

In a similar way we can rewrite the right-hand side
expression of C2

2π(u) using the Parseval relation as

∫

2π

0

∣

∣

∣

∣

∣

∑

0 6=n∈Z

cn (einu − 1) eins

∣

∣

∣

∣

∣

2

ds = 8π
∑

0 6=n∈Z

|cn|
2

(

sin
nu

2

)2
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Proof, continued

In a similar way we can rewrite the right-hand side
expression of C2

2π(u) using the Parseval relation as

∫

2π

0

∣

∣

∣

∣

∣

∑

0 6=n∈Z

cn (einu − 1) eins

∣

∣

∣

∣

∣

2

ds = 8π
∑

0 6=n∈Z

|cn|
2

(

sin
nu

2

)2

Thus the sought inequality is equivalent to

∑

06=n∈Z

n2|cn|
2

(

sin nu
2

n sin u
2

)2

≤ 1

and it is sufficient to prove that |sinnx| ≤ n sin x holds for all
positive integers n and all x ∈ (0, 1

2π].
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Proof, continued
We use induction. The claim is valid for n = 1 and

(n+1) sinx∓sin(n+1)x = n sin x∓sinnx cos x+sinx(1∓cosnx) ,

so if it holds for n, the sum of the first two terms at the rhs is
non-negative, and the same is clearly true for the last one
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Proof, continued
We use induction. The claim is valid for n = 1 and

(n+1) sinx∓sin(n+1)x = n sin x∓sinnx cos x+sinx(1∓cosnx) ,

so if it holds for n, the sum of the first two terms at the rhs is
non-negative, and the same is clearly true for the last one

We also see that if |sinnx| < n sin x the inequality is strict for
n+ 1 as well. Since this is true for for n = 2, equality can
occur only for n = 1. Hence C2

2π(u) is strict unless cn = 0 for
|n| ≥ 2, being saturated only if the jth projection of Γ equals

Γj(s) = 2|c1,j | cos(s+ arg c1,j) .

Furthermore, |Γ̇(s)| = 1 can be true only if there is a basis in
R

d where c1,1 = ic1,2 = 1
2 and c1,j = 0 for j = 3, . . . , d, in other

words, if Γ is a planar circle
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Proof, conclusion

It remains to check that the inequality cannot be saturated
for a curve Γ that is not C2, so that the sum

∑

06=n∈Z
n2|cn|

2

diverges
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Proof, conclusion

It remains to check that the inequality cannot be saturated
for a curve Γ that is not C2, so that the sum

∑

06=n∈Z
n2|cn|

2

diverges

This would require

∑

1≤n≤N n2|cn|
2
(

sin nu

2

n sin u

2

)2

∑

1≤n≤N n2|cn|2
→ 1

as N → ∞. This is impossible, however, because the sum
in the numerator is bounded by sec2 u

2

∑

1≤n≤N |cn|
2 so it has

a finite limit; this concludes the proof. �
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Application to charged loops

Let Γ be a closed C2 curve in R
3, to be compared with a

planar circle. The energy cost of such a deformation is
q2δ(Γ), where

δ(Γ) := 2

∫ L/2

0
du

∫ L

0
ds
[

|Γ(s+u) − Γ(s)|−1 −
π

L
csc

πu

L

]

and q is the charge density along the loop
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Application to charged loops

Let Γ be a closed C2 curve in R
3, to be compared with a

planar circle. The energy cost of such a deformation is
q2δ(Γ), where

δ(Γ) := 2

∫ L/2

0
du

∫ L

0
ds
[

|Γ(s+u) − Γ(s)|−1 −
π

L
csc

πu

L

]

and q is the charge density along the loop

Corollary: δ(Γ) is finite and non-negative; it is zero if and
only if Γ = CL, up to Euclidean equivalence.

Proof: The integrand is ≥ 0 by C−1
L (u), strictly so if Γ 6= CL.

Moreover, we have |Γ(s+u) − Γ(s)|−1 = u−1 + O(1) with the
error dependent on curvature and torsion of Γ but uniform
in s, hence the integral converges. �
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Application to leaky loops

Let us turn to the singular Schrödinger operators
Hα,Γ = −∆ − αδ(x− Γ). We have mentioned that the
discrete spectrum is nonempty and finite, in particular,

ǫ1 ≡ ǫ1(α,Γ) := inf σ
(

Hα,Γ

)

< 0
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Application to leaky loops

Let us turn to the singular Schrödinger operators
Hα,Γ = −∆ − αδ(x− Γ). We have mentioned that the
discrete spectrum is nonempty and finite, in particular,

ǫ1 ≡ ǫ1(α,Γ) := inf σ
(

Hα,Γ

)

< 0

Theorem [E’05b]: Let Γ : [0, L] → R
2 have the indicated

properties; then for any fixed α > 0 and L > 0 the ground
state ǫ1(α,Γ) is globally uniquely maximized by the circle
of radius L/2π.

Proof is based on the generalized Birman-Schwinger
principle, plus symmetry and convexity arguments
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Birman-Schwinger reformulation

We employ the generalized Birman-Schwinger principle
[BEKŠ’94]. One starts from the free resolvent Rk

0 which is
an integral operator in L2(R2) with the kernel

Gk(x−y) =
i

4
H

(1)
0 (k|x−y|)
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Birman-Schwinger reformulation

We employ the generalized Birman-Schwinger principle
[BEKŠ’94]. One starts from the free resolvent Rk

0 which is
an integral operator in L2(R2) with the kernel

Gk(x−y) =
i

4
H

(1)
0 (k|x−y|)

Then we introduce embedding operators associated with
Rk

0 for measures µ, ν which are the Dirac measure m
supported by Γ and the Lebesgue measure dx on R

2; by
Rk

ν,µ we denote the integral operator from L2(µ) to L2(ν)

with the kernel Gk, i.e. we suppose that

Rk
ν,µφ = Gk ∗ φµ

holds ν-a.e. for all φ ∈ D(Rk
ν,µ) ⊂ L2(µ)
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BS reformulation, continued

Proposition [BEKŠ’94, Posilicano’04]: (i) There is κ0 > 0

s.t. I−αRiκ
m,m on L2(m) has a bounded inverse for κ ≥ κ0

(ii) Let Im k > 0 and I − αRk
m,m be invertible with

Rk := Rk
0 + αRk

dx,m[I − αRk
m,m]−1Rk

m,dx

from L2(R2) to L2(R2) everywhere defined. Then k2 belongs
to ρ(Hα,Γ) and (Hα,Γ − k2)−1 = Rk

(iii) dim ker(Hα,Γ − k2) = dim ker(I − αRk
m,m) for Im k > 0

(iv) an ef of Hα,Γ associated with k2 can be written as

ψ(x) =

∫ L

0
Rk

dx,m(x, s)φ(s) ds ,

where φ is the corresponding ef of αRk
m,m with the ev one
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BS reformulation, continued

Putting k = iκ with κ > 0 we look thus for solutions to the
integral-operator equation

Rκ
α,Γφ = φ , Rκ

α,Γ(s, s′) :=
α

2π
K0(κ|Γ(s)−Γ(s′)|) ,

on L2([0, L]). The function κ 7→ Rκ
α,Γ is strictly decreasing in

(0,∞) and ‖Rκ
α,Γ‖ → 0 as κ→ ∞, hence we seek the point

where the largest ev of Rκ
α,Γ crosses one
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BS reformulation, continued

Putting k = iκ with κ > 0 we look thus for solutions to the
integral-operator equation

Rκ
α,Γφ = φ , Rκ

α,Γ(s, s′) :=
α

2π
K0(κ|Γ(s)−Γ(s′)|) ,

on L2([0, L]). The function κ 7→ Rκ
α,Γ is strictly decreasing in

(0,∞) and ‖Rκ
α,Γ‖ → 0 as κ→ ∞, hence we seek the point

where the largest ev of Rκ
α,Γ crosses one

We observe that this ev is simple, since Rκ
α,Γ is positivity

improving and ergodic. The ground state of Hα,Γ is, of
course, also simple. Using its rotational symmetry and the
claim (iv) of the Proposition we find that the respective
eigenfunction of Rκ̃1

α,C corresponding to the unit eigenvalue

is constant; we can choose it as φ̃1(s) = L−1/2.
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BS reformulation, continued
Then we have

maxσ(Rκ̃1

α,C) = (φ̃1,R
κ̃1

α,Cφ̃1) =
1

L

∫ L

0

∫ L

0
Rκ̃1

α,C(s, s
′) dsds′ ,

and on the other hand, for the same quantity referring to a
general Γ a simple variational estimate gives

maxσ(Rκ̃1

α,Γ) ≥ (φ̃1,R
κ̃1

α,Γφ̃1) =
1

L

∫ L

0

∫ L

0
Rκ̃1

α,Γ(s, s′) dsds′ .
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BS reformulation, continued
Then we have

maxσ(Rκ̃1

α,C) = (φ̃1,R
κ̃1

α,Cφ̃1) =
1

L

∫ L

0

∫ L

0
Rκ̃1

α,C(s, s
′) dsds′ ,

and on the other hand, for the same quantity referring to a
general Γ a simple variational estimate gives

maxσ(Rκ̃1

α,Γ) ≥ (φ̃1,R
κ̃1

α,Γφ̃1) =
1

L

∫ L

0

∫ L

0
Rκ̃1

α,Γ(s, s′) dsds′ .

Hence it is sufficient to show that
∫ L

0

∫ L

0
K0(κ|Γ(s)−Γ(s′)|) dsds′ ≥

∫ L

0

∫ L

0
K0(κ|C(s)−C(s′)|) dsds′

holds for all κ > 0 and Γ in the vicinity of C
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Convexity argument

By a simple change of variables the claim is equivalent to
positivity of the functional

Fκ(Γ) :=

∫ L/2

0

du

∫ L

0

ds

[

K0

(

κ|Γ(s+u)− Γ(s)|
)

−K0

(

κ|C(s+u)−C(s)|
)

]

;

the s-independent second term is equal to K0(
κL
π sin πu

L )
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By a simple change of variables the claim is equivalent to
positivity of the functional

Fκ(Γ) :=

∫ L/2

0

du

∫ L

0

ds

[

K0

(

κ|Γ(s+u)− Γ(s)|
)

−K0

(

κ|C(s+u)−C(s)|
)

]

;

the s-independent second term is equal to K0(
κL
π sin πu

L )

The (strict) convexity of K0 yields by means of Jensen
inequality the estimate

1

L
Fκ(Γ) ≥

∫ L/2

0

[

K0

(

κ

L

∫ L

0

|Γ(s+u) − Γ(s)|ds

)

− K0

(

κL

π
sin

πu

L

)

]

du ,

where the inequality is sharp unless
∫ L
0 |Γ(s+u) − Γ(s)|ds is

independent of s
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Monotonicity argument

Finally, we observe that K0 is decreasing in (0,∞), hence it
is sufficient to check the inequality

∫ L

0
|Γ(s+u) − Γ(s)| ds ≤

L2

π
sin

πu

L

for all u ∈ (0, 1
2L] and furthermore, to show that it is strict

unless Γ is a circle
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Monotonicity argument

Finally, we observe that K0 is decreasing in (0,∞), hence it
is sufficient to check the inequality

∫ L

0
|Γ(s+u) − Γ(s)| ds ≤

L2

π
sin

πu

L

for all u ∈ (0, 1
2L] and furthermore, to show that it is strict

unless Γ is a circle

In this way our problem is reduced to the C1
L(u) inequality

which follows from C2
L(u) proved above. �
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For which p do the inequalities hold?
It is natural to expect that the inequality Cp

L(u) may be
invalid for large enough p. A “stadium-perimeter” example
in [E-Harrell-Loss’05] shows it is the case for p & 3.15295
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For which p do the inequalities hold?
It is natural to expect that the inequality Cp

L(u) may be
invalid for large enough p. A “stadium-perimeter” example
in [E-Harrell-Loss’05] shows it is the case for p & 3.15295

To find critical p notice that for a C2-smooth Γ we have

cp
Γ
(u) =

L
∫

0

ds





s+u
∫

s

ds′
s+u
∫

s

ds′′ cos





s′′
∫

s′

γ(τ)dτ









p/2

,

where γ := Γ̇2Γ̈1 − Γ̇1Γ̈2 is signed curvature of Γ. Recall that

Γ(s) =

(∫ s

0
cos β(t) dt,

∫ s

0
sin β(t) dt

)

,

where β(s) :=
∫ s
0 γ(t) d is the arc bending.
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Variations of the circle
Let us inspect the functional Γ 7→ cpΓ(u) for curves

γ(s) =
2π

L
+ εg(s),

where g is continuous and L-periodic, so we can write

g(s) = a0 +
∞
∑

n=1

an sin

(

2πns

L

)

+ bn cos

(

2πns

L

)

with {a}, {b} ∈ ℓ2, and ε is small, i.e. ε‖g‖∞ ≪ 1.
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Variations of the circle
Let us inspect the functional Γ 7→ cpΓ(u) for curves

γ(s) =
2π

L
+ εg(s),

where g is continuous and L-periodic, so we can write

g(s) = a0 +
∞
∑

n=1

an sin

(

2πns

L

)

+ bn cos

(

2πns

L

)

with {a}, {b} ∈ ℓ2, and ε is small, i.e. ε‖g‖∞ ≪ 1.

Recall that the proof in [E’05b] used the Fourier expansion
to check that circle is a local minimum for p = 2. Let us now
compute the first and second Gâteaux derivatives of the
map Γ 7→ cpΓ(u) at the circle for a general p

6th Congress of Romanian Mathematicians; Bucharest, June 30, 2007 – p. 24/46



Closeness ofΓ

We must make sure that Γ is closed (up to higher terms)

Proposition: The tangent to Γ ∈ C2 is L-periodic iff a0 = 0.
Furthermore, Γ(0) = Γ(L) + O(ε3) provided a1 = b1 = 0 and

∞
∑

n=2

bnbn+1 + anan+1

n(n+ 1)
=

∞
∑

n=2

an+1bn − bn+1an

n(n+ 1)
= 0
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Closeness ofΓ

We must make sure that Γ is closed (up to higher terms)

Proposition: The tangent to Γ ∈ C2 is L-periodic iff a0 = 0.
Furthermore, Γ(0) = Γ(L) + O(ε3) provided a1 = b1 = 0 and

∞
∑

n=2

bnbn+1 + anan+1

n(n+ 1)
=

∞
∑

n=2

an+1bn − bn+1an

n(n+ 1)
= 0

Proof is based on the mentioned “reconstruction” formula in
combination with expansions using b(s) :=

∫ s
0 g(t)dt, namely

cos β(s) =

(

1 −
1

2
ε2b2(s)

)

cos s− εb(s) sin s + O(ε3),

sin β(s) =

(

1 −
1

2
ε2b2(s)

)

sin s+ εb(s) cos s + O(ε3).
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Gâteaux derivatives

Put L = 2π. The first derivative in the direction g is

Dgc
p
Γ(u) = −

p

2

[

4 sin2 u

2

]p/2−1
2π
∫

0

ds

s+u
∫

s

ds′
s+u
∫

s

ds′′ sin





s′′

∫

s′

dt





s′′

∫

s′

g(τ) dτ

The integrals are equal to
(

4 sin2 u+ u sinu
)

L
∫

0

g(τ) dτ = 0

which shows that circle is for every p > 0 a critical point
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Gâteaux derivatives

Put L = 2π. The first derivative in the direction g is

Dgc
p
Γ(u) = −

p

2

[

4 sin2 u

2

]p/2−1
2π
∫

0

ds

s+u
∫

s

ds′
s+u
∫

s

ds′′ sin





s′′

∫

s′

dt





s′′

∫

s′

g(τ) dτ

The integrals are equal to
(

4 sin2 u+ u sinu
)

L
∫

0

g(τ) dτ = 0

which shows that circle is for every p > 0 a critical point
Next, the second Gâteaux derivative D

2
gc

p
Γ(u) equals

p

2

(p

2
− 1
) [

4 sin2 u

2

]p/2−2
2π
∫

0

ds





s+u
∫

s

ds′
s+u
∫

s

ds′′ sin(s′′−s′)

s′′

∫

s′

g(τ) dτ





2

−
p

2

[

4 sin2 u

2

]p/2−1
2π
∫

0

ds

s+u
∫

s

ds′
s+u
∫

s

ds′′ cos(s′′−s′)





s′′

∫

s′

g(τ) dτ





2
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Critical exponent

Inspecting the second derivative yields the following claim:

Theorem [E-Fraas-Harrell’07]: For a fixed u ∈ (0, 1
2L] define

pc(u) :=
4 − cos

(

2πu
L

)

1 − cos
(

2πu
L

) ,

then we have the alternative: for p > pc(u) the circle is either
a saddle point or a local minimum, while for p < pc(u) it is a
local maximum of Γ 7→ cpΓ(u). In particular, pc(

1
2L) = 5

2
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Critical exponent

Inspecting the second derivative yields the following claim:

Theorem [E-Fraas-Harrell’07]: For a fixed u ∈ (0, 1
2L] define

pc(u) :=
4 − cos

(

2πu
L

)

1 − cos
(

2πu
L

) ,

then we have the alternative: for p > pc(u) the circle is either
a saddle point or a local minimum, while for p < pc(u) it is a
local maximum of Γ 7→ cpΓ(u). In particular, pc(

1
2L) = 5

2

Remarks: (a) we do not discuss the critical case p = pc(u)

when higher derivatives of cpΓ(u) come into play

(b) It is natural to expect and easy to verify that for p > pc

circle is in fact a saddle point of the functional
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Critical exponent

 2.5

 3.5

 0.5

π

 10 5 2.5 0 p

II

I

u

Relation between the critical exponent pc and the arc length u
for L = 2π. The inequalities hold locally in the region I
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Sketch of the proof
Put again L = 2π. Using Fourier expansion we cast the
second derivative given above into the form

D
2
gc

p
Γ(u) =

∞
∑

n=2

(a2
n + b2n)

2pπ sinp−2
(

u
2

)

8(n− n3)2
p T (n, u, p),

where T (n, u, p) is denotes the following expression

−
(

2n4 − 6n2 − 2(n2 − 1)2 cos u + (n + 1)2 cos(n − 1)u + (n − 1)2 cos(n + 1)u
)

+2(p − 2)
(

−2n cos
(nu

2

)

sin
(u

2

)

+ 2 cos
(u

2

)

sin
(nu

2

))2
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Sketch of the proof
Put again L = 2π. Using Fourier expansion we cast the
second derivative given above into the form

D
2
gc

p
Γ(u) =

∞
∑

n=2

(a2
n + b2n)

2pπ sinp−2
(

u
2

)

8(n− n3)2
p T (n, u, p),

where T (n, u, p) is denotes the following expression

−
(

2n4 − 6n2 − 2(n2 − 1)2 cos u + (n + 1)2 cos(n − 1)u + (n − 1)2 cos(n + 1)u
)

+2(p − 2)
(

−2n cos
(nu

2

)

sin
(u

2

)

+ 2 cos
(u

2

)

sin
(nu

2

))2

Since sin(u/2) > 0 for u ∈ (0, π) the sign of each term is
determined by that of T (n, u, p). It is straightforward to
check that T (2, u, p) > 0 for p > pc(u), hence for p > pc(u)

the circle fails to be a local maximum of Γ 7→ cpΓ(u)
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Sketch of the proof

It is easy to see that p 7→ T (n, u, p) is strictly increasing,
hence to prove the other part of the theorem it is sufficient
to show that T (n, u, pc(u)) is negative for n ≥ 3. We define

S(n, u) = −(1 − cosu) T (n, u, pc(u))

and prove that this function is positive for n ≥ 3
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Sketch of the proof

It is easy to see that p 7→ T (n, u, p) is strictly increasing,
hence to prove the other part of the theorem it is sufficient
to show that T (n, u, pc(u)) is negative for n ≥ 3. We define

S(n, u) = −(1 − cosu) T (n, u, pc(u))

and prove that this function is positive for n ≥ 3

In the case n = 3 the positivity of S(n, u) is rather easily
established since

S(3, u) = 2
(

2 sin
u

2

)8
,

while for n ≥ 4 the same result follows from a series of
simple if somewhat tedious estimates. �
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A discrete analogue: polymer loops

Consider a problem related to the above one; following
[AGHH’88, 05] we can call it a polymer loop
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A discrete analogue: polymer loops

Consider a problem related to the above one; following
[AGHH’88, 05] we can call it a polymer loop

It is an extension of the “discrete” problem to a more
general class of curves: we take a closed loop Γ and
consider a class of singular Schrödinger operators in
L2(Rd), d = 2, 3, given formally by the expression

HN
α,Γ = −∆ + α̃

N−1
∑

j=0

δ

(

x− Γ

(

jL

N

))

We are interested in the shape of Γ which maximizes
the ground state energy provided, of course, that the
discrete spectrum of HN

α,Γ is non-empty.
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A reminder: 2D point interactions
Fixing the site yj and “coupling constant” α we define them
by b.c. which change locally the domain of −∆: we require

ψ(x) = −
1

2π
log |x− yj |L0(ψ, yj) + L1(ψ, yj) + O(|x− yj |) ,

where the generalized b.v. L0(ψ, yj) and L1(ψ, yj) satisfy

L1(ψ, yj) − αL0(ψ, yj) = 0 , α ∈ R
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A reminder: 2D point interactions
Fixing the site yj and “coupling constant” α we define them
by b.c. which change locally the domain of −∆: we require

ψ(x) = −
1

2π
log |x− yj |L0(ψ, yj) + L1(ψ, yj) + O(|x− yj |) ,

where the generalized b.v. L0(ψ, yj) and L1(ψ, yj) satisfy

L1(ψ, yj) − αL0(ψ, yj) = 0 , α ∈ R

For YΓ := {yj := Γ
(

jL
N

)

: j = 0, . . . , N − 1} we define in this

way −∆α,YΓ
in L2(R2). It holds σdisc

(

−∆α,YΓ

)

6= ∅, i.e.

ǫ1 ≡ ǫ1(α, YΓ) := inf σ
(

−∆α,YΓ

)

< 0 ,

which is always true in two dimensions – cf. [AGHH’88, 05]
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A reminder: 3D point interactions
Similarly, for yj and “coupling” α we define them by b.c.
which change locally the domain of −∆: we require

ψ(x) =
1

4π|x− yj |
L0(ψ, yj) + L1(ψ, yj) + O(|x− yj |) ,

where the b.v. L0(ψ, yj) and L1(ψ, yj) satisfy again

L1(ψ, yj) − αL0(ψ, yj) = 0 , α ∈ R,
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A reminder: 3D point interactions
Similarly, for yj and “coupling” α we define them by b.c.
which change locally the domain of −∆: we require

ψ(x) =
1

4π|x− yj |
L0(ψ, yj) + L1(ψ, yj) + O(|x− yj |) ,

where the b.v. L0(ψ, yj) and L1(ψ, yj) satisfy again

L1(ψ, yj) − αL0(ψ, yj) = 0 , α ∈ R,

giving −∆α,YΓ
in L2(R3). However, σdisc

(

−∆α,YΓ

)

6= ∅, i.e.

ǫ1 ≡ ǫ1(α, YΓ) := inf σ
(

−∆α,YΓ

)

< 0 ,

is now a nontrivial requirement; it holds only for α below
some critical value α0 – cf. [AGHH’88, 05]
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A geometric reformulation
By Krein’s formula, the spectral condition is reduced to an
algebraic problem. Using k = iκ with κ > 0, we find the ev’s
−κ2 of our operator from

det Γk = 0 with (Γk)ij := (α− ξk)δij − (1 − δij)g
k
ij ,

where the off-diagonal elements are gk
ij := Gk(yi − yj), or

equivalently

gk
ij =

1

2π
K0(κ|yi − yj |)

and the regularized Green’s function at the interaction site is

ξk = −
1

2π

(

ln
κ

2
+ γE

)
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Geometric reformulation, continued
The ground state refers to the point where the lowest ev
of Γiκ vanishes. Using smoothness and monotonicity
of the κ-dependence we have to check that

minσ(Γiκ̃1
) < minσ(Γ̃iκ̃1

)

holds locally for Γ 6= P̃N , where −κ̃2
1 := ǫ1(α, P̃N )
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Geometric reformulation, continued
The ground state refers to the point where the lowest ev
of Γiκ vanishes. Using smoothness and monotonicity
of the κ-dependence we have to check that

minσ(Γiκ̃1
) < minσ(Γ̃iκ̃1

)

holds locally for Γ 6= P̃N , where −κ̃2
1 := ǫ1(α, P̃N )

There is a one-to-one relation between an ef c = (c1, . . . , cN )
of Γiκ at that point and the corresponding ef of −∆α,Γ given

by c↔
∑N

j=1 cjGiκ(· − yj), up to normalization. In particular,

the lowest ev of Γ̃iκ̃1
corresponds to the eigenvector

φ̃1 = N−1/2(1, . . . , 1); hence the spectral threshold is

minσ(Γ̃iκ̃1
) = (φ̃1, Γ̃iκ̃1

φ̃1) = α− ξiκ̃1 −
2

N

∑

i<j

g̃iκ̃1

ij
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Geometric reformulation, continued

On the other hand, we have minσ(Γiκ̃1
) ≤ (φ̃1,Γiκ̃1

φ̃1), and
therefore it is sufficient to check that

∑

i<j

Giκ(yi − yj) >
∑

i<j

Giκ(ỹi − ỹj)

holds for all κ > 0 and Γ 6= P̃N .
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Geometric reformulation, continued

On the other hand, we have minσ(Γiκ̃1
) ≤ (φ̃1,Γiκ̃1

φ̃1), and
therefore it is sufficient to check that

∑

i<j

Giκ(yi − yj) >
∑

i<j

Giκ(ỹi − ỹj)

holds for all κ > 0 and Γ 6= P̃N . Call ℓij := |yi − yj | and
ℓ̃ij := |ỹi − ỹj | and define F : (R+)N(N−3)/2 → R by

F ({ℓij}) :=

[N/2]
∑

m=2

∑

|i−j|=m

[

Giκ(ℓij) − Giκ(ℓ̃ij)
]

;

Using the convexity of Giκ(·) for a fixed κ > 0 we get

F ({ℓij}) ≥

[N/2]
∑

m=2

νm



Giκ





1

νm

∑

|i−j|=m

ℓij



− Giκ(ℓ̃1,1+m)



 ,

where νn is the number of the appropriate chords
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Geometric reformulation, continued

It is easy to see that

νm :=

{

N . . . m = 1, . . . ,
[

1
2(N − 1)

]

1
2N . . . m = 1

2N for N even

since for an even N one has to prevent double counting
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Geometric reformulation, continued

It is easy to see that

νm :=

{

N . . . m = 1, . . . ,
[

1
2(N − 1)

]

1
2N . . . m = 1

2N for N even

since for an even N one has to prevent double counting

Since Giκ(·) is also monotonously decreasing in (0,∞),
we thus need only to demonstrate that

ℓ̃1,m+1 ≥
1

νn

∑

|i−j|=m

ℓij

with the sharp inequality for at least one m if PN 6= P̃N .
In this way the problem becomes again purely geometric
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“Discrete” chord inequalities

Recall that for Γ : [0, L] → R
2 we have used the notation

yj := Γ

(

jL

N

)

, j = 0, 1, . . . , N − 1 ;
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“Discrete” chord inequalities

Recall that for Γ : [0, L] → R
2 we have used the notation

yj := Γ

(

jL

N

)

, j = 0, 1, . . . , N − 1 ;

For fixed L > 0, N and m = 1, . . . , [12N ] we consider the
following inequalities for ℓp norms related to the chord

lengths, that is, the quantities Γ
(

· + jL
N

)

− Γ(·)

Dp
L,N (m) :

∑N
n=1 |yn+m − yn|

p ≤
N1−pLp sinp πm

N

sinp π

N

, p > 0 ,

D−p
L,N (m) :

∑N
n=1 |yn+m − yn|

−p ≥
N1+p sinp π

N

Lp sinp πm

N

, p > 0 .

The RHS’s correspond to regular planar polygon P̃N
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More on the "discrete" inequalities

In general, the inequalities are not valid for p > 2 as the
example of a rhomboid shows: Dp

L,4(2) is equivalent to

sinp φ+ cosp φ ≤ 21−(p/2) for 0 < φ < π which obviously holds
for p ≤ 2 only
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More on the "discrete" inequalities

In general, the inequalities are not valid for p > 2 as the
example of a rhomboid shows: Dp

L,4(2) is equivalent to

sinp φ+ cosp φ ≤ 21−(p/2) for 0 < φ < π which obviously holds
for p ≤ 2 only

Proposition: Dp
L,N (m) ⇒ Dp′

L,N (m) if p > p′ > 0 and

Dp
L,N (m) ⇒ D−p

L,N (m) for any p > 0
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More on the "discrete" inequalities

In general, the inequalities are not valid for p > 2 as the
example of a rhomboid shows: Dp

L,4(2) is equivalent to

sinp φ+ cosp φ ≤ 21−(p/2) for 0 < φ < π which obviously holds
for p ≤ 2 only

Proposition: Dp
L,N (m) ⇒ Dp′

L,N (m) if p > p′ > 0 and

Dp
L,N (m) ⇒ D−p

L,N (m) for any p > 0

Theorem [E’05c]: The inequality D2
L,N (m) is valid
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More on the "discrete" inequalities

In general, the inequalities are not valid for p > 2 as the
example of a rhomboid shows: Dp

L,4(2) is equivalent to

sinp φ+ cosp φ ≤ 21−(p/2) for 0 < φ < π which obviously holds
for p ≤ 2 only

Proposition: Dp
L,N (m) ⇒ Dp′

L,N (m) if p > p′ > 0 and

Dp
L,N (m) ⇒ D−p

L,N (m) for any p > 0

Theorem [E’05c]: The inequality D2
L,N (m) is valid

Remark: By D−1
L,N (m) this implies that the unique

minimizers of the “discrete” electrostatic problem is the
regular planar polygon P̃N
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Global validity of D2
L,N(m)

Let us to adapt the above proof the “discrete” case. We put
L = 2π and express Γ through its Fourier series,

Γ(s) =
∑

06=n∈Z

cn eins

with cn ∈ C
d; since Γ(s) ∈ R

d one has to require c−n = c̄n.
Again, we can choose c0 = 0 and the normalization
condition

∑

06=n∈Z
n2|cn|

2 = 1 follows from |Γ̇(s)| = 1
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L,N(m)

Let us to adapt the above proof the “discrete” case. We put
L = 2π and express Γ through its Fourier series,

Γ(s) =
∑

06=n∈Z

cn eins

with cn ∈ C
d; since Γ(s) ∈ R

d one has to require c−n = c̄n.
Again, we can choose c0 = 0 and the normalization
condition

∑

06=n∈Z
n2|cn|

2 = 1 follows from |Γ̇(s)| = 1

On the other hand, the left-hand side of D2
2π,N (m) equals

N
∑

n=1

∑

06=j,k∈Z

c∗j · ck

(

e−2πimj/N − 1
)(

e2πimk/N − 1
)

e2πin(k−j)/N
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Global validity, continued

Next we change the order of summation and observe that
∑N

n=1 e2πin(k−j)/N = N if j = k (modN) and zero otherwise;
this allows us to write the last expression as

4N
∑

l∈Z

∑

0 6= j, k ∈ Z

j − k = lN

|j|c∗j · |k|ck

∣

∣

∣

∣

j−1 sin
πmj

N

∣

∣

∣

∣

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

.
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Global validity, continued

Next we change the order of summation and observe that
∑N

n=1 e2πin(k−j)/N = N if j = k (modN) and zero otherwise;
this allows us to write the last expression as

4N
∑

l∈Z

∑

0 6= j, k ∈ Z

j − k = lN

|j|c∗j · |k|ck

∣

∣

∣

∣

j−1 sin
πmj

N

∣

∣

∣

∣

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

.

Hence the sought inequality D2
2π,N (m) is equivalent to

(

d, (A(N,m) ⊗ I)d
)

≤

(

π sin πm
N

N sin π
N

)2
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Global validity, continued
Here the vector d ∈ ℓ2(Z) ⊗ C

d has the components
dj := |j|cj and the operator A(N,m) on ℓ2(Z) is defined as

A
(N,m)
jk :=











∣

∣j−1 sin πmj
N

∣

∣

∣

∣k−1 sin πmk
N

∣

∣ if 0 6= j, k ∈ Z, j − k = lN

0 otherwise

A(N,m) is obviously bounded because its Hilbert-Schmidt
norm is finite; we have to estimate its norm
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Global validity, continued
Here the vector d ∈ ℓ2(Z) ⊗ C

d has the components
dj := |j|cj and the operator A(N,m) on ℓ2(Z) is defined as

A
(N,m)
jk :=











∣

∣j−1 sin πmj
N

∣

∣

∣

∣k−1 sin πmk
N

∣

∣ if 0 6= j, k ∈ Z, j − k = lN

0 otherwise

A(N,m) is obviously bounded because its Hilbert-Schmidt
norm is finite; we have to estimate its norm

Remark: The “continuous” case corresponds formally to
N = ∞. Then A(N,m) is a multiple of I and it is only
necessary to employ |sin jx| ≤ j sin x for any j ∈ N and
x ∈ (0, 1

2π]. Here due to infinitely many side diagonals such
a simple estimate yields an unbounded Toeplitz-type
operator, and one has use the matrix-element decay
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Global validity, continued
For a given j 6= 0 and d ∈ ℓ2(Z) we have

(

A(N,m)d
)

j
=

∣

∣

∣

∣

j−1 sin
πmj

N

∣

∣

∣

∣

∑

0 6= k ∈ Z

k = j(mod N)

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

dk
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Global validity, continued
For a given j 6= 0 and d ∈ ℓ2(Z) we have

(

A(N,m)d
)

j
=

∣

∣

∣

∣

j−1 sin
πmj

N

∣

∣

∣

∣

∑

0 6= k ∈ Z

k = j(mod N)

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

dk

The norm ‖A(N,m)d‖ is then easily estimated by means of
Schwarz inequality,

‖A(N,m)d‖2 =
∑

06=j∈Z

j−2 sin2 πmj

N

∣

∣

∣

∣

∣

∑

0 6= k ∈ Z

k = j(mod N)

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

dk

∣

∣

∣

∣

∣

2

≤
N−1
∑

n=0

sin4 πmn

N
S2

n

∑

n + lN 6= 0
l ∈ Z

|dn+lN |2
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Global validity, concluded
Here we have introduced

Sn :=
∑

n + lN 6= 0
l ∈ Z

1

(n + lN)2
=

∞
∑

l=1

{

1

(lN − n)2
+

1

(lN − N + n)2

}

which is easily evaluated to be Sn =
(

π
N sin πn

N

)2
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Global validity, concluded
Here we have introduced

Sn :=
∑

n + lN 6= 0
l ∈ Z

1

(n + lN)2
=

∞
∑

l=1

{

1

(lN − n)2
+

1

(lN − N + n)2

}

which is easily evaluated to be Sn =
(

π
N sin πn

N

)2

The sought claim, the validity of D2
L,N (m), then follows from

sin
πm

N
sin

πr

N
>
∣

∣

∣
sin

π

N
sin

πmr

N

∣

∣

∣
, 2 ≤ r < m ≤

[

1

2
N

]

This can be also equivalently written as the inequalities
Um−1

(

cos π
N

)

>
∣

∣Um−1

(

cos πr
N

)∣

∣ for Chebyshev polynomials
of the second kind; they are verified directly �
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Summary and outlook

We have analyzed a class of inequalities with applications
to physically interesting isoperimetric problems. Various
questions remains open, for instance

to find extrema in situations without a built-in symmetry ,
i.e. with different couplings or source spacing. Of
course, this problem is no longer purely geometric
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We have analyzed a class of inequalities with applications
to physically interesting isoperimetric problems. Various
questions remains open, for instance

to find extrema in situations without a built-in symmetry ,
i.e. with different couplings or source spacing. Of
course, this problem is no longer purely geometric

to analyze regular-potential analogues of our problem,
i.e. systems with a loop-shaped potential ditch

it is not clear whether there are higher-dimensional
analogues of the inequalities discussed here – it is only
known that naive extensions do not hold

on the mathematical side, what is generally the critical
value of p in the discrete case, etc.
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