Scattering and resonances in leaky quantum wires

Pavel Exner
in collaboration with Sylwia Kondej, Kateřina Němcová, and also Takashi Ichinose, Kazushi Yoshitomi

exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties
- Scattering on a locally deformed line

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties
- Scattering on a locally deformed line
- Approximation by point interaction Hamiltonians and indications for existence of resonances

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties
- Scattering on a locally deformed line
- Approximation by point interaction Hamiltonians and indications for existence of resonances
- A solvable resonance model: interaction supported by a line and a family of points

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties
- Scattering on a locally deformed line
- Approximation by point interaction Hamiltonians and indications for existence of resonances
- A solvable resonance model: interaction supported by a line and a family of points
- Open questions

Scattering on quantum-wire systems

Widely used: scattering on "ideal" graphs, e.g.

Here we study Schrödinger operator on graph, with appropriate b.c. at vertices. Scattering is an ODE problem and it is easy to study resonances; for reviews see, e.g., [Kostrykin-Schrader'99], [Kuchment'04], etc.

Scattering on quantum-wire systems

Widely used: scattering on "ideal" graphs, e.g.

Here we study Schrödinger operator on graph, with appropriate b.c. at vertices. Scattering is an ODE problem and it is easy to study resonances; for reviews see, e.g., [Kostrykin-Schrader'99], [Kuchment'04], etc.
More realistic models of quantum wires treat them as finite-width channels, typically with Dirichlet b.c. Various scattering problems studied numerically in many papers.
Rigorous results not so common, for instance, resonances existence in smoothly bent tubes was demonstrated in
[Duclos-E.-Štovíček'95], [Duclos-E.-Meller'98].

Drawbacks of these models

- Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description

However, a partial answer is known so far only for Neumann-type situations [Rubinstein-Schatzman'01], [Kuchment-Zeng'01], [E.-Post'05], the Dirichlet case needed here is open (and difficult indeed)

Drawbacks of these models

- Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description

However, a partial answer is known so far only for Neumann-type situations [Rubinstein-Schatzman'01], [Kuchment-Zeng'01], [E.-Post'05], the Dirichlet case needed here is open (and difficult indeed)

- Quantum tunneling is neglected: recall that a true quantum-wire boundary is a finite potential jump

Leaky quantum graphs

We consider "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$, where Γ is the graph in question.

Leaky quantum graphs

We consider "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$, where Γ is the graph in question.
A proper definition of $H_{\alpha, \Gamma}$: it can be associated naturally with the quadratic form,

$$
\psi \mapsto\|\nabla \psi\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}-\alpha \int_{\Gamma}|\psi(x)|^{2} \mathrm{~d} x
$$

which is closed and below bounded in $W^{1,2}\left(\mathbb{R}^{n}\right)$; the second term makes sense in view of Sobolev embedding. This definition also works for various "wilder" sets Γ

Leaky quantum-graph Hamiltonians

For Γ with locally finite number of smooth edges and no cusps we can use an alternative definition by boundary conditions: $H_{\alpha, \Gamma}$ acts as $-\Delta$ on functions from $W_{\text {loc }}^{1,2}\left(\mathbb{R}^{2} \backslash \Gamma\right)$, which are continuous and exhibit a normal-derivative jump,

$$
\left.\frac{\partial \psi}{\partial n}(x)\right|_{+}-\left.\frac{\partial \psi}{\partial n}(x)\right|_{-}=-\alpha \psi(x)
$$

Leaky quantum-graph Hamiltonians

For Γ with locally finite number of smooth edges and no cusps we can use an alternative definition by boundary conditions: $H_{\alpha, \Gamma}$ acts as $-\Delta$ on functions from $W_{\text {loc }}^{1,2}\left(\mathbb{R}^{2} \backslash \Gamma\right)$, which are continuous and exhibit a normal-derivative jump,

$$
\left.\frac{\partial \psi}{\partial n}(x)\right|_{+}-\left.\frac{\partial \psi}{\partial n}(x)\right|_{-}=-\alpha \psi(x)
$$

Remarks:

- for graphs in \mathbb{R}^{3} we use generalized b.c. which define a two-dimensional point interaction in normal plane
- one can combine "edges" of different dimensions as long as codim Γ does not exceed three

Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha, \Gamma}$. Consider a piecewise C^{1}-smooth $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ parameterized by its arc length, and assume:

Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha, \Gamma}$. Consider a piecewise C^{1}-smooth $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ parameterized by its arc length, and assume:

- $\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right| \geq c\left|s-s^{\prime}\right|$ holds for some $c \in(0,1)$
- Γ is asymptotically straight: there are $d>0, \mu>\frac{1}{2}$ and $\omega \in(0,1)$ such that

$$
1-\frac{\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|}{\left|s-s^{\prime}\right|} \leq d\left[1+\left|s+s^{\prime}\right|^{2 \mu}\right]^{-1 / 2}
$$

in the sector $S_{\omega}:=\left\{\left(s, s^{\prime}\right): \omega<\frac{s}{s^{\prime}}<\omega^{-1}\right\}$

- straight line is excluded, i.e. $\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|<\left|s-s^{\prime}\right|$ holds for some $s, s^{\prime} \in \mathbb{R}$

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$ and $H_{\alpha, \Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4} \alpha^{2}$

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$ and $H_{\alpha, \Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4} \alpha^{2}$

- The same for curves in \mathbb{R}^{3}, under stronger regularity, with $-\frac{1}{4} \alpha^{2}$ is replaced by the corresponding 2D p.i. ev
- For curved surfaces $\Gamma \subset \mathbb{R}^{3}$ such a result is proved in the strong coupling asymptotic regime only
- Implications for graphs: let $\tilde{\Gamma} \supset \Gamma$ in the set sense, then $H_{\alpha, \tilde{\Gamma}} \leq H_{\alpha, \Gamma}$. If the essential spectrum threshold is the same for both graphs and Γ fits the above assumptions, we have $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right) \neq \emptyset$ by minimax principle

Geometrically induced spectrum, contd

(b) Strong coupling asymptotics: let $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be as above, now supposed to be C^{4}-smooth
Theorem [E.-Yoshitomi, 2001]: The j-th ev of $H_{\alpha, \Gamma}$ is

$$
\lambda_{j}(\alpha)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty,
$$

where μ_{j} is the j-th ev of $K_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{d} s^{2}}-\frac{1}{4} \gamma(s)^{2}$ on $L^{2}(\mathbb{R})$ and γ is the curvature of Γ.

Geometrically induced spectrum, contd

(b) Strong coupling asymptotics: let $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be as above, now supposed to be C^{4}-smooth
Theorem [E.-Yoshitomi, 2001]: The j-th ev of $H_{\alpha, \Gamma}$ is

$$
\lambda_{j}(\alpha)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty
$$

where μ_{j} is the j-th ev of $K_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{d} s^{2}}-\frac{1}{4} \gamma(s)^{2}$ on $L^{2}(\mathbb{R})$ and γ is the curvature of Γ. The same holds if Γ is a loop; then we also have

$$
\# \sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)=\frac{|\Gamma| \alpha}{2 \pi}+\mathcal{O}(\ln \alpha) \quad \text { as } \quad \alpha \rightarrow \infty
$$

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $K_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $K_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by mg field, homogeneous, AB flux line, etc.

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $K_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by mg field, homogeneous, AB flux line, etc.
- Higher dimensions: the results extend to loops, infinite and periodic curves in \mathbb{R}^{3}

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $K_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by $m g$ field, homogeneous, AB flux line, etc.
- Higher dimensions: the results extend to loops, infinite and periodic curves in \mathbb{R}^{3}
- and to curved surfaces in \mathbb{R}^{3}; then the comparison operator is $-\Delta_{\mathrm{LB}}+K-M^{2}$, where K, M, respectively, are the corresponding Gauss and mean curvatures

Scattering on a locally deformed line

Scattering requires to specify a free dynamics. In this talk we suppose that the latter is described by $H_{\alpha, \Sigma}$, where Σ is a straight line, $\Sigma=\left\{\left(x_{1}, 0\right): x_{1} \in\right\}$, and that the graph Γ in question differs from Σ by a local deformation only

Assumptions

We will consider the following class of local deformations:

- there exists a compact $M \subset \mathbb{R}^{2}$ such that $\Gamma \backslash M=\Sigma \backslash M$,
- the set $\Gamma \backslash \Sigma$ admits a finite decomposition,

$$
\Gamma \backslash \Sigma=\bigcup_{i=1}^{N} \Gamma_{i}, \quad N<\infty,
$$

where the Γ_{i} 's are finite C^{1} curves such that no pair of components of Γ crosses at their interior points, neither a component has a self-intersection; we allow the components to touch at their endpoints but assume they do not form a cusp there

As we have said, $H_{\alpha, \Gamma}$ is then well defined

Krein's formula

Our main tool will be a formula comparing the resolvents of $H_{\alpha, \Gamma}$ and $H_{\alpha, \Sigma}$. We will use the decomposition

$$
\Lambda=\Lambda_{0} \cup \Lambda_{1} \quad \text { with } \quad \Lambda_{0}:=\Sigma \backslash \Gamma, \Lambda_{1}:=\Gamma \backslash \Sigma=\bigcup_{i=1}^{N} \Gamma_{i} ;
$$

the coupling constant of the perturbation will be naturally equal to α on the "subtracted" set Λ_{0} and $-\alpha$ on Λ_{1}

Krein's formula

Our main tool will be a formula comparing the resolvents of $H_{\alpha, \Gamma}$ and $H_{\alpha, \Sigma}$. We will use the decomposition

$$
\Lambda=\Lambda_{0} \cup \Lambda_{1} \quad \text { with } \quad \Lambda_{0}:=\Sigma \backslash \Gamma, \Lambda_{1}:=\Gamma \backslash \Sigma=\bigcup_{i=1}^{N} \Gamma_{i} ;
$$

the coupling constant of the perturbation will be naturally equal to α on the "subtracted" set Λ_{0} and $-\alpha$ on Λ_{1} To construct resolvent of $H_{\alpha, \Sigma}$ we use R^{k}, the one of $-\Delta$, which is for $k^{2} \in \rho(-\Delta)$ an integral operator with the kernel

$$
G^{k}(x-y)=\frac{1}{(2 \pi)^{2}} \int_{\mathbb{R}^{2}} \frac{\mathrm{e}^{i p(x-y)}}{p^{2}-k^{2}} \mathrm{~d} p=\frac{1}{2 \pi} K_{0}(i k|x-y|)
$$

where $K_{0}(\cdot)$ stands for the Macdonald function

Krein's formula, continued

A straightforward computation shows that the resolvent R_{Σ}^{k} of $H_{\alpha, \Sigma}$ has the kernel $G_{\Sigma}^{k}(x-y)$ given by

$$
G^{k}(x-y)+\frac{\alpha}{4 \pi^{3}} \int_{3} \frac{\mathrm{e}^{i p x-i p^{\prime} y}}{\left(p^{2}-k^{2}\right)\left(p^{\prime 2}-k^{2}\right)} \frac{\tau_{k}\left(p_{1}\right)}{2 \tau_{k}\left(p_{1}\right)-\alpha} \mathrm{d} p \mathrm{~d} p_{2}^{\prime},
$$

where $\tau_{k}\left(p_{1}\right):=\left(p_{1}^{2}-k^{2}\right)^{1 / 2}$ and $p=\left(p_{1}, p_{2}\right), p^{\prime}=\left(p_{1}, p_{2}^{\prime}\right)$

Krein's formula, continued

A straightforward computation shows that the resolvent R_{Σ}^{k} of $H_{\alpha, \Sigma}$ has the kernel $G_{\Sigma}^{k}(x-y)$ given by

$$
G^{k}(x-y)+\frac{\alpha}{4 \pi^{3}} \int_{3} \frac{\mathrm{e}^{i p x-i p^{\prime} y}}{\left(p^{2}-k^{2}\right)\left(p^{\prime 2}-k^{2}\right)} \frac{\tau_{k}\left(p_{1}\right)}{2 \tau_{k}\left(p_{1}\right)-\alpha} \mathrm{d} p \mathrm{~d} p_{2}^{\prime},
$$

where $\tau_{k}\left(p_{1}\right):=\left(p_{1}^{2}-k^{2}\right)^{1 / 2}$ and $p=\left(p_{1}, p_{2}\right), p^{\prime}=\left(p_{1}, p_{2}^{\prime}\right)$
We need embeddings of R_{Σ}^{k} to $L^{2}(\nu)$, where $\nu \equiv \nu_{\Lambda}$ is the Dirac measure on Λ. It can be written as $\nu_{\Lambda}=\nu_{0}+\sum_{i=1}^{N} \nu_{i}$, where ν_{0} is the Dirac measure on Λ_{0}. It convenient also to introduce the space $\mathrm{h} \equiv L^{2}(\nu)$ which decomposes into
$\mathrm{h}=\mathrm{h}_{0} \oplus \mathrm{~h}_{1} \quad$ with $\quad \mathrm{h}_{0} \equiv L^{2}\left(\nu_{0}\right) \quad$ and $\quad \mathrm{h}_{1} \equiv \bigoplus_{i=1}^{N} L^{2}\left(\nu_{i}\right)$

Embeddings

Now we are able to introduce the operator

$$
\mathrm{R}_{\Sigma, \nu}^{k}: \mathrm{h} \rightarrow L^{2}, \quad \mathrm{R}_{\Sigma, \nu}^{k} f=G_{\Sigma}^{k} * f \nu \quad \text { for } \quad f \in \mathrm{~h}
$$

defined for suitable values of k. Similarly, $\left(\mathrm{R}_{\Sigma, \nu}^{k}\right)^{*}: L^{2} \rightarrow \mathrm{~h}$ is its adjoint and $\mathrm{R}_{\Sigma, \nu \nu}^{k}$ denotes the operator-valued matrix in h with the "block elements" $G_{\Sigma, i j}^{k} \equiv G_{\Sigma, \nu_{i} \nu_{j}}^{k}: L^{2}\left(\nu_{j}\right) \rightarrow L^{2}\left(\nu_{i}\right)$

Embeddings

Now we are able to introduce the operator

$$
\mathrm{R}_{\Sigma, \nu}^{k}: \mathrm{h} \rightarrow L^{2}, \quad \mathrm{R}_{\Sigma, \nu}^{k} f=G_{\Sigma}^{k} * f \nu \quad \text { for } \quad f \in \mathrm{~h}
$$

defined for suitable values of k. Similarly, $\left(\mathrm{R}_{\Sigma, \nu}^{k}\right)^{*}: L^{2} \rightarrow \mathrm{~h}$ is its adjoint and $\mathrm{R}_{\Sigma, \nu \nu}^{k}$ denotes the operator-valued matrix in h with the "block elements" $G_{\Sigma, i j}^{k} \equiv G_{\Sigma, \nu_{i} \nu_{j}}^{k}: L^{2}\left(\nu_{j}\right) \rightarrow L^{2}\left(\nu_{i}\right)$
They have the following properties:

- For any $\kappa \in(\alpha / 2, \infty)$ the operator $\mathrm{R}_{\Sigma, \nu}^{i \kappa}$ is bounded. In fact, $\mathrm{R}_{\Sigma, \nu}^{i \kappa}$ is a continuous embedding into $W^{1,2}$
- For any $\sigma>0$ there exists κ_{σ} such that for $\kappa>\kappa_{\sigma}$ the operator $\mathrm{R}_{\Sigma, \nu \nu}^{i \kappa}$ is bounded with the norm less than σ

Krein's formula, continued

Introduce an operator-valued matrix in $\mathrm{h}=\mathrm{h}_{0} \oplus \mathrm{~h}_{1}$ as

$$
\Theta^{k}=-\left(\alpha^{-1} \check{\mathbb{I}}+\mathrm{R}_{\Sigma, \nu \nu}^{k}\right) \quad \text { with } \quad \check{\mathbb{I}}=\left(\begin{array}{cc}
\mathbb{I}_{0} & 0 \\
0 & -\mathbb{I}_{1}
\end{array}\right),
$$

where \mathbb{I}_{i} are the unit operators in h_{i}. Using the properties of the embeddings we prove the following claim:

Krein's formula, continued

Introduce an operator-valued matrix in $\mathrm{h}=\mathrm{h}_{0} \oplus \mathrm{~h}_{1}$ as

$$
\Theta^{k}=-\left(\alpha^{-1} \check{\mathbb{I}}+\mathrm{R}_{\Sigma, \nu \nu}^{k}\right) \quad \text { with } \quad \check{\mathbb{I}}=\left(\begin{array}{cc}
\mathbb{I}_{0} & 0 \\
0 & -\mathbb{I}_{1}
\end{array}\right),
$$

where \mathbb{I}_{i} are the unit operators in h_{i}. Using the properties of the embeddings we prove the following claim:

Theorem [E.-Kondej, 2005]: Let Θ^{k} have inverse in $\mathcal{B}(h)$ for $k \in \mathbb{C}^{+}$and let the operator

$$
R_{\Gamma}^{k}=R_{\Sigma}^{k}+\mathrm{R}_{\Sigma, \nu}^{k}\left(\Theta^{k}\right)^{-1}\left(\mathrm{R}_{\Sigma, \nu}^{k}\right)^{*}
$$

be defined everywhere on L^{2}. Then k^{2} belongs to $\rho\left(H_{\alpha, \Gamma}\right)$ and the resolvent $\left(H_{\alpha, \Gamma}-k^{2}\right)^{-1}$ is given by R_{Γ}^{k}

Spectrum of $H_{\alpha, \Gamma}$

Let us first look at the essential spectrum:
Proposition: $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=\sigma_{\text {ess }}\left(H_{\alpha, \Sigma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$
Proof: Check that $B^{k}:=\mathrm{R}_{\Sigma, \nu}^{k}\left(\Theta^{k}\right)^{-1}\left(\mathrm{R}_{\Sigma, \nu}^{k}\right)^{*}$ is compact for some $k \in \mathbb{C}^{+}$. We know that $\left(\Theta^{i \kappa}\right)^{-1} \in \mathcal{B}(\mathrm{~h})$ and $\left(\mathrm{R}_{\Sigma, \nu}^{i \kappa}\right)^{*}$ is bounded if κ is large enough. By [BEKŠ'94] we have $\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|G^{i \kappa}(x-y)\right|^{2} \nu_{j}(\mathrm{~d} y) \mathrm{d} x<\infty$, and for $\kappa>\frac{1}{2} \alpha$ and $j=0, \ldots, N$ the second component ξ^{k} of $G_{\Sigma}^{i \kappa}$ satisfies

$$
\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|\xi^{k}(x, y)\right|^{2} \nu_{j}(\mathrm{~d} y) \mathrm{d} x<C L_{j} \int_{\mathbb{R}^{2}} \frac{\mathrm{~d} p}{\left(p^{2}+\kappa\right)^{2}}<\infty,
$$

where C is a constant and L_{j} denote the length of Λ_{j}. This yields compactness of $R_{\Sigma, \nu}^{k}$, and thus the same for B^{k}.

Spectrum of $H_{\alpha, \Gamma}$

Let us first look at the essential spectrum:
Proposition: $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=\sigma_{\text {ess }}\left(H_{\alpha, \Sigma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$
Proof: Check that $B^{k}:=\mathrm{R}_{\Sigma, \nu}^{k}\left(\Theta^{k}\right)^{-1}\left(\mathrm{R}_{\Sigma, \nu}^{k}\right)^{*}$ is compact for some $k \in \mathbb{C}^{+}$. We know that $\left(\Theta^{i \kappa}\right)^{-1} \in \mathcal{B}(\mathrm{~h})$ and $\left(\mathrm{R}_{\Sigma, \nu}^{i \kappa}\right)^{*}$ is bounded if κ is large enough. By [BEKŠ'94] we have $\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|G^{i \kappa}(x-y)\right|^{2} \nu_{j}(\mathrm{~d} y) \mathrm{d} x<\infty$, and for $\kappa>\frac{1}{2} \alpha$ and $j=0, \ldots, N$ the second component ξ^{k} of $G_{\Sigma}^{i \kappa}$ satisfies

$$
\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}}\left|\xi^{k}(x, y)\right|^{2} \nu_{j}(\mathrm{~d} y) \mathrm{d} x<C L_{j} \int_{\mathbb{R}^{2}} \frac{\mathrm{~d} p}{\left(p^{2}+\kappa\right)^{2}}<\infty,
$$

where C is a constant and L_{j} denote the length of Λ_{j}. This yields compactness of $\mathrm{R}_{\Sigma, \nu}^{k}$, and thus the same for B^{k}. \square Remark: $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ given by singularities of Θ^{k} is often non-empty - see above - but it is not our concern here

Wave operators

The existence and completeness of wave operators for the pair ($H_{\alpha, \Gamma}, H_{\alpha, \Sigma}$) follows from the standard trace-class criterion, conventionally called Birman-Kuroda theorem. Specifically, we have
Theorem [E.-Kondej, 2005]: $B^{i \kappa}$ is a trace class operator for κ sufficiently large

Wave operators

The existence and completeness of wave operators for the pair ($H_{\alpha, \Gamma}, H_{\alpha, \Sigma}$) follows from the standard trace-class criterion, conventionally called Birman-Kuroda theorem. Specifically, we have

Theorem [E.-Kondej, 2005]: $B^{i \kappa}$ is a trace class operator for κ sufficiently large
Proof is inspired by [Brasche-Teta'92]. We use the estimate $\left(\Theta^{i \kappa}\right)^{-1} \leq C^{\prime}\left(\Theta^{i \kappa,+}\right)^{-1}$, where $\Theta^{i \kappa,+}:=\alpha^{-1} \mathbb{I}+R_{\Sigma, \nu \nu}^{i \kappa}$ and \mathbb{I} is the $(N+1) \times(N+1)$ unit matrix, for some $C^{\prime}>0$ and all κ sufficiently large; it is clear that $\left(\Theta^{i \kappa,+}\right)^{-1}$ is positive and bounded. This gives

$$
B^{i \kappa} \leq C^{\prime} B^{i \kappa,+}, \quad B^{i \kappa,+}:=\mathrm{R}_{\Sigma, \nu}^{i \kappa}\left(\Theta^{i \kappa,+}\right)^{-1}\left(\mathrm{R}_{\Sigma, \nu}^{i \kappa}\right)^{*}
$$

Proof, continued

Define $B_{\delta}^{i \kappa,+}$ as integral operator with the kernel

$$
B_{\delta}^{i \kappa,+}(x, y)=\chi_{\delta}(x) B^{i \kappa,+}(x, y) \chi_{\delta}(y),
$$

where χ_{δ} stands for the indicator function of the ball $\mathcal{B}(0, \delta)$; one has $B_{\delta}^{i \kappa,+} \rightarrow B^{i \kappa,+}$ as $\delta \rightarrow \infty$ in the weak sense.

Proof, continued

Define $B_{\delta}^{i \kappa,+}$ as integral operator with the kernel

$$
B_{\delta}^{i \kappa,+}(x, y)=\chi_{\delta}(x) B^{i \kappa,+}(x, y) \chi_{\delta}(y),
$$

where χ_{δ} stands for the indicator function of the ball $\mathcal{B}(0, \delta)$; one has $B_{\delta}^{i \kappa,+} \rightarrow B^{i \kappa,+}$ as $\delta \rightarrow \infty$ in the weak sense. Then

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} B_{\delta}^{i \kappa,+}(x, x) \mathrm{d} x=\int_{\mathbb{R}^{2}}\left(G_{\Sigma}^{i \kappa}(\cdot, x) \chi_{\delta}(x),\left(\Theta^{i \kappa,+}\right)^{-1} G_{\Sigma}^{i \kappa}(\cdot, x) \chi_{\delta}(x)\right)_{\mathrm{h}} \mathrm{~d} x \\
& \quad \leq\left\|\left(\Theta^{i \kappa,+}\right)^{-1}\right\| \int_{\mathbb{R}^{2}}\left\|G_{\Sigma}^{i \kappa}(\cdot, x) \chi_{\delta}(x)\right\|_{\mathrm{h}}^{2} \mathrm{~d} x \leq C\left\|\left(\Theta^{i \kappa,+}\right)^{-1}\right\|,
\end{aligned}
$$

hence $B_{\delta}^{i \kappa,+}$ is trace class for any $\delta>0$, and the same is true for the limiting operator.

Proof, continued

Define $B_{\delta}^{i \kappa,+}$ as integral operator with the kernel

$$
B_{\delta}^{i \kappa,+}(x, y)=\chi_{\delta}(x) B^{i \kappa,+}(x, y) \chi_{\delta}(y),
$$

where χ_{δ} stands for the indicator function of the ball $\mathcal{B}(0, \delta)$; one has $B_{\delta}^{i \kappa,+} \rightarrow B^{i \kappa,+}$ as $\delta \rightarrow \infty$ in the weak sense. Then

$$
\begin{array}{r}
\int_{\mathbb{R}^{2}} B_{\delta}^{i \kappa,+}(x, x) \mathrm{d} x=\int_{\mathbb{R}^{2}}\left(G_{\Sigma}^{i \kappa}(\cdot, x) \chi_{\delta}(x),\left(\Theta^{i \kappa,+}\right)^{-1} G_{\Sigma}^{i \kappa}(\cdot, x) \chi_{\delta}(x)\right)_{\mathrm{h}} \mathrm{~d} x \\
\leq\left\|\left(\Theta^{i \kappa,+}\right)^{-1}\right\| \int_{\mathbb{R}^{2}}\left\|G_{\Sigma}^{i \kappa}(\cdot, x) \chi_{\delta}(x)\right\|_{\mathrm{h}}^{2} \mathrm{~d} x \leq C\left\|\left(\Theta^{i \kappa,+}\right)^{-1}\right\|,
\end{array}
$$

hence $B_{\delta}^{i \kappa,+}$ is trace class for any $\delta>0$, and the same is true for the limiting operator.
Similarly one finds a Hermitian trace class operator $B^{i \kappa,-}$ which provides an estimate from below, $B^{i \kappa,-} \leq B^{i \kappa}$; this means that $B^{i \kappa}$ is a trace class operator too.

Generalized eigenfunctions

We want to find the S-matrix, $S \psi_{\lambda}^{-}=\psi_{\lambda}^{+}$, for scattering in the negative part of the spectrum with a fixed energy $\lambda \in\left(-\frac{1}{4} \alpha^{2}, 0\right)$ corresponding to the effective momentum $k_{\alpha}(\lambda):=\left(\lambda+\alpha^{2} / 4\right)^{1 / 2}$. We employ generalized ef's of $H_{\alpha, \Sigma}$,

$$
\omega_{\lambda}\left(x_{1}, x_{2}\right)=\mathrm{e}^{i\left(\lambda+\alpha^{2} / 4\right)^{1 / 2} x_{1}} \mathrm{e}^{-\alpha\left|x_{2}\right| / 2},
$$

their analogues ω_{z} for complex energies and regularizations $\omega_{z}^{\delta}(x)=\mathrm{e}^{-\delta x_{1}^{2}} \omega_{z}(x)$ for $z \in \rho\left(H_{\alpha, \Sigma}\right)$, belonging to $D\left(H_{\alpha, \Sigma}\right)$.

Generalized eigenfunctions

We want to find the S-matrix, $S \psi_{\lambda}^{-}=\psi_{\lambda}^{+}$, for scattering in the negative part of the spectrum with a fixed energy $\lambda \in\left(-\frac{1}{4} \alpha^{2}, 0\right)$ corresponding to the effective momentum $k_{\alpha}(\lambda):=\left(\lambda+\alpha^{2} / 4\right)^{1 / 2}$. We employ generalized ef's of $H_{\alpha, \Sigma}$,

$$
\omega_{\lambda}\left(x_{1}, x_{2}\right)=\mathrm{e}^{i\left(\lambda+\alpha^{2} / 4\right)^{1 / 2} x_{1}} \mathrm{e}^{-\alpha\left|x_{2}\right| / 2},
$$

their analogues ω_{z} for complex energies and regularizations $\omega_{z}^{\delta}(x)=\mathrm{e}^{-\delta x_{1}^{2}} \omega_{z}(x)$ for $z \in \rho\left(H_{\alpha, \Sigma}\right)$, belonging to $D\left(H_{\alpha, \Sigma}\right)$. Consider now ψ_{z}^{δ} such that $\left(H_{\alpha, \Gamma}-z\right) \psi_{z}^{\delta}=\left(H_{\alpha, \Sigma}-z\right) \omega_{z}^{\delta}$. After taking the limit $\lim _{\epsilon \rightarrow 0} \psi_{\lambda+i \epsilon}^{\delta}=\psi_{\lambda}^{\delta}$ in the topology of L^{2} the function ψ_{λ}^{δ} still belongs to $D\left(H_{\alpha, \Sigma}\right)$ and we have

$$
\psi_{\lambda}^{\delta}=\omega_{\lambda}^{\delta}+\mathrm{R}_{\Sigma, \nu}^{k_{\alpha}(\lambda)}\left(\Theta^{k_{\alpha}(\lambda)}\right)^{-1} I_{\Lambda} \omega_{\lambda}^{\delta}
$$

Generalized eigenfunctions, continued

Here $R_{\Sigma, \nu}^{k_{\alpha}(\lambda)}$ is integral operator on the Hilbert space h with the kernel $G_{\Sigma}^{k_{\alpha}(\lambda)}(x-y):=\lim _{\varepsilon \rightarrow 0} G_{\Sigma}^{k_{\alpha}(\lambda+i \varepsilon)}(x-y)$ and $\Theta^{k_{\alpha}(\lambda)}:=-\alpha^{-1} \check{\mathbb{I}}-\mathrm{R}_{\Sigma, \nu \nu}^{k_{\alpha}(\lambda)}$ are the operators on h with $\mathrm{R}_{\Sigma, \nu \nu}^{k_{\alpha}(\lambda)}$ being the natural embedding. By a direct computation, the kernel is found to be

$$
\begin{aligned}
& G_{\Sigma}^{k_{\alpha}(\lambda)}(x-y)=K_{0}(i \sqrt{\lambda}|x-y|) \\
& \quad+\mathcal{P} \int_{0}^{\infty} \frac{\mu_{0}(t ; x, y)}{t-\lambda-\alpha^{2} / 4} \mathrm{~d} t+s_{\alpha}(\lambda) \mathrm{e}^{i k_{\alpha}(\lambda)\left|x_{1}-y_{1}\right|} \mathrm{e}^{-\alpha / 2\left(\left|x_{2}\right|+\left|y_{2}\right|\right)},
\end{aligned}
$$

where $s_{\alpha}(\lambda):=i \alpha\left(2^{3} k_{\alpha}(\lambda)\right)^{-1}$ and

$$
\mu_{0}(t ; x, y):=-\frac{i \alpha}{2^{5} \pi} \frac{\mathrm{e}^{i t^{1 / 2}\left(x_{1}-y_{1}\right)} \mathrm{e}^{-(t-\lambda)^{1 / 2}\left(\left|x_{2}\right|+\left|y_{2}\right|\right)^{1 / 2}}}{t^{1 / 2}\left((t-\lambda)^{1 / 2}\right)} .
$$

Generalized eigenfunctions, continued

Of course, the pointwise limits $\psi_{\lambda}=\lim _{\delta \rightarrow 0} \psi_{\lambda}^{\delta}$ cease to L^{2}, however, they still belong to L^{2} locally and provide us with the generalized eigenfunction of $H_{\alpha, \Gamma}$ in the form

$$
\psi_{\lambda}=\omega_{\lambda}+\mathrm{R}_{\Sigma, \nu}^{k_{\alpha}(\lambda)}\left(\Theta^{k_{\alpha}(\lambda)}\right)^{-1} J_{\Lambda} \omega_{\lambda}
$$

where $J_{\Lambda} \omega_{\lambda}$ is an embedding of ω_{λ} to $L^{2}\left(\nu_{\Lambda}\right)$

Generalized eigenfunctions, continued

Of course, the pointwise limits $\psi_{\lambda}=\lim _{\delta \rightarrow 0} \psi_{\lambda}^{\delta}$ cease to L^{2}, however, they still belong to L^{2} locally and provide us with the generalized eigenfunction of $H_{\alpha, \Gamma}$ in the form

$$
\psi_{\lambda}=\omega_{\lambda}+\mathrm{R}_{\Sigma, \nu}^{k_{\alpha}(\lambda)}\left(\Theta^{k_{\alpha}(\lambda)}\right)^{-1} J_{\Lambda} \omega_{\lambda},
$$

where $J_{\Lambda} \omega_{\lambda}$ is an embedding of ω_{λ} to $L^{2}\left(\nu_{\Lambda}\right)$
To find the S-matrix we have to investigate the behavior of ψ_{λ} for $\left|x_{1}\right| \rightarrow \infty$. By a direct computation, we find that for y of a compact $M \subset \mathbb{R}^{2}$ and $\left|x_{1}\right| \rightarrow \infty$ we have

$$
G_{\Sigma}^{k_{\alpha}(\lambda)}(x-y) \approx s_{\alpha}(\lambda) \mathrm{e}^{i k_{\alpha}(\lambda)\left|x_{1}-y_{1}\right|} e^{-\alpha / 2\left(\left|x_{2}\right|+\left|y_{2}\right|\right)}
$$

S-matrix at negative energy

Using this asymptotics we find the sought on-shell S-matrix:
Theorem [E.-Kondej, 2005]: For a fixed $\lambda \in\left(-\frac{1}{4} \alpha^{2}, 0\right)$ the generalized eigenfunctions behave asymptotically as
$\psi_{\lambda}(x) \approx\left\{\begin{array}{lll}\mathcal{T}(\lambda) \mathrm{e}^{i k_{\alpha}(\lambda) x_{1}} \mathrm{e}^{-\alpha\left|x_{2}\right| / 2} & \text { for } & x_{1} \rightarrow \infty \\ \mathrm{e}^{i k_{\alpha}(\lambda) x_{1}} \mathrm{e}^{-\alpha\left|x_{2}\right| / 2}+\mathcal{R}(\lambda) \mathrm{e}^{-i k_{\alpha}(\lambda) x_{1}} \mathrm{e}^{-\alpha\left|x_{2}\right| / 2} & \text { for } & x_{1} \rightarrow-\infty\end{array}\right.$
where $k_{\alpha}(\lambda):=\left(\lambda+\alpha^{2} / 4\right)^{1 / 2}$ and the transmission and reflection amplitudes $\mathcal{T}(\lambda), \mathcal{R}(\lambda)$ are given respectively by

$$
\mathcal{T}(\lambda)=1-s_{\alpha}(\lambda)\left(\left(\Theta^{k_{\alpha}(\lambda)}\right)^{-1} J_{\Lambda} \omega_{\lambda}, J_{\Lambda} \omega_{\lambda}\right)_{\mathrm{h}}
$$

and

$$
\mathcal{R}(\lambda)=s_{\alpha}(\lambda)\left(\left(\Theta^{k_{\alpha}(\lambda)}\right)^{-1} J_{\Lambda} \omega_{\lambda}, J_{\Lambda} \bar{\omega}_{\lambda}\right)_{\mathrm{h}}
$$

Strong coupling: a conjecture

Consider Γ which is a C^{4}-smooth local deformation of a line. In analogy with the spectral result of [E.-Yoshitomi'01] quoted above one expects that in strong coupling case the scattering will be determined in the leading order by the local geometry of Γ through the same comparison operator, namely $K_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{d} s^{2}}-\frac{1}{4} \gamma(s)^{2}$ on $L^{2}(\mathbb{R})$.

Strong coupling: a conjecture

Consider Γ which is a C^{4}-smooth local deformation of a line. In analogy with the spectral result of [E.-Yoshitomi'01] quoted above one expects that in strong coupling case the scattering will be determined in the leading order by the local geometry of Γ through the same comparison operator, namely $K_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{d} s^{2}}-\frac{1}{4} \gamma(s)^{2}$ on $L^{2}(\mathbb{R})$.
Let $\mathcal{T}_{K}(k), \mathcal{R}_{K}(k)$ be the corresponding transmission and reflection amplitudes at a fixed momentum k. Denote by $\mathrm{S}_{\Gamma, \alpha}(\lambda)$ and $\mathbf{S}_{K}(\lambda)$ the on-shell S-matrixes of $H_{\alpha, \Gamma}$ and K at energy λ, respectively.
Conjecture: For a fixed $k \neq 0$ and $\alpha \rightarrow \infty$ we have the relation

$$
\mathbf{S}_{\Gamma, \alpha}\left(k^{2}-\frac{1}{4} \alpha^{2}\right) \rightarrow \mathbf{S}_{K}\left(k^{2}\right)
$$

How to find the spectrum?

To say something about resonances, let us return to the spectral problem. The general results do not tell us how to find the spectrum for a particular Γ. The options:

- Direct solution of the PDE problem $H_{\alpha, \Gamma} \psi=\lambda \psi$ is feasible in a few simple examples only

How to find the spectrum?

To say something about resonances, let us return to the spectral problem. The general results do not tell us how to find the spectrum for a particular Γ. The options:

- Direct solution of the PDE problem $H_{\alpha, \Gamma} \psi=\lambda \psi$ is feasible in a few simple examples only
- Using trace maps of $R^{k} \equiv\left(-\Delta-k^{2}\right)^{-1}$ and the generalized BS principle

$$
R^{k}:=R_{0}^{k}+\alpha R_{\mathrm{d} x, m}^{k}\left[I-\alpha R_{m, m}^{k}\right]^{-1} R_{m, \mathrm{~d} x}^{k},
$$

where m is δ measure on Γ, we pass to a 1D integral operator problem, $\alpha R_{m, m}^{k} \psi=\psi$

How to find the spectrum?

To say something about resonances, let us return to the spectral problem. The general results do not tell us how to find the spectrum for a particular Γ. The options:

- Direct solution of the PDE problem $H_{\alpha, \Gamma} \psi=\lambda \psi$ is feasible in a few simple examples only
- Using trace maps of $R^{k} \equiv\left(-\Delta-k^{2}\right)^{-1}$ and the generalized BS principle

$$
R^{k}:=R_{0}^{k}+\alpha R_{\mathrm{d} x, m}^{k}\left[I-\alpha R_{m, m}^{k}\right]^{-1} R_{m, \mathrm{~d} x}^{k},
$$

where m is δ measure on Γ, we pass to a 1D integral operator problem, $\alpha R_{m, m}^{k} \psi=\psi$

- discretization of the latter which amounts to a point-interaction approximations to $H_{\alpha, \Gamma}$

2D point interactions

Such an interaction at the point a with the "coupling constant" α is defined by b.c. which change locally the domain of $-\Delta$: the functions behave as

$$
\psi(x)=-\frac{1}{2 \pi} \log |x-a| L_{0}(\psi, a)+L_{1}(\psi, a)+\mathcal{O}(|x-a|),
$$

where the generalized b.v. $L_{0}(\psi, a)$ and $L_{1}(\psi, a)$ satisfy

$$
L_{1}(\psi, a)+2 \pi \alpha L_{0}(\psi, a)=0, \quad \alpha \in \mathbb{R}
$$

2D point interactions

Such an interaction at the point a with the "coupling constant" α is defined by b.c. which change locally the domain of $-\Delta$: the functions behave as

$$
\psi(x)=-\frac{1}{2 \pi} \log |x-a| L_{0}(\psi, a)+L_{1}(\psi, a)+\mathcal{O}(|x-a|),
$$

where the generalized b.v. $L_{0}(\psi, a)$ and $L_{1}(\psi, a)$ satisfy

$$
L_{1}(\psi, a)+2 \pi \alpha L_{0}(\psi, a)=0, \quad \alpha \in \mathbb{R}
$$

For our purpose, the coupling should depend on the set Y approximating Γ. To see how compare a line Γ with the solvable straight-polymer model [AGHH]

2D point-interaction approximation

Spectral threshold convergence requires $\alpha_{n}=\alpha n$ which means that individual point interactions get weaker. Hence we approximate $H_{\alpha, \Gamma}$ by point-interaction Hamiltonians $H_{\alpha_{n}, Y_{n}}$ with $\alpha_{n}=\alpha\left|Y_{n}\right|$, where $\left|Y_{n}\right|:=\sharp Y_{n}$.

2D point-interaction approximation

Spectral threshold convergence requires $\alpha_{n}=\alpha n$ which means that individual point interactions get weaker. Hence we approximate $H_{\alpha, \Gamma}$ by point-interaction Hamiltonians $H_{\alpha_{n}, Y_{n}}$ with $\alpha_{n}=\alpha\left|Y_{n}\right|$, where $\left|Y_{n}\right|:=\sharp Y_{n}$.

Theorem [E.-Němcová, 2003]: Let a family $\left\{Y_{n}\right\}$ of finite sets $Y_{n} \subset \Gamma \subset \mathbb{R}^{2}$ be such that

$$
\frac{1}{\left|Y_{n}\right|} \sum_{y \in Y_{n}} f(y) \rightarrow \int_{\Gamma} f \mathrm{~d} m
$$

holds for any bounded continuous function $f: \Gamma \rightarrow \mathbb{C}$, together with technical conditions, then $H_{\alpha_{n}, Y_{n}} \rightarrow H_{\alpha, \Gamma}$ in the strong resolvent sense as $n \rightarrow \infty$.

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant
- The result applies to finite graphs, however, an infinite Γ can be approximated in strong resolvent sense by a family of cut-off graphs

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant
- The result applies to finite graphs, however, an infinite $Г$ can be approximated in strong resolvent sense by a family of cut-off graphs
- The idea is due to Brasche, Figari and Teta, 1998, who analyzed point-interaction approximations of measure perturbations with codim $\Gamma=1$ in \mathbb{R}^{3}. There are differences, however, for instance in the 2D case we can approximate attractive interactions only

Scheme of the proof

Resolvent of $H_{\alpha_{n}, Y_{n}}$ is given Krein's formula. Given $k^{2} \in \rho\left(H_{\alpha_{n}, Y_{n}}\right)$ define $\left|Y_{n}\right| \times\left|Y_{n}\right|$ matrix by

$$
\begin{aligned}
\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2} ; x, y\right)= & \frac{1}{2 \pi}\left[2 \pi\left|Y_{n}\right| \alpha+\ln \left(\frac{i k}{2}\right)+\gamma_{E}\right] \delta_{x y} \\
& -G_{k}(x-y)\left(1-\delta_{x y}\right)
\end{aligned}
$$

for $x, y \in Y_{n}$, where γ_{E} is Euler' constant.

Scheme of the proof

Resolvent of $H_{\alpha_{n}, Y_{n}}$ is given Krein's formula. Given $k^{2} \in \rho\left(H_{\alpha_{n}, Y_{n}}\right)$ define $\left|Y_{n}\right| \times\left|Y_{n}\right|$ matrix by

$$
\begin{aligned}
\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2} ; x, y\right)= & \frac{1}{2 \pi}\left[2 \pi\left|Y_{n}\right| \alpha+\ln \left(\frac{i k}{2}\right)+\gamma_{E}\right] \delta_{x y} \\
& -G_{k}(x-y)\left(1-\delta_{x y}\right)
\end{aligned}
$$

for $x, y \in Y_{n}$, where γ_{E} is Euler' constant. Then

$$
\begin{aligned}
& \left(H_{\alpha_{n}, Y_{n}}-k^{2}\right)^{-1}(x, y)=G_{k}(x-y) \\
& \quad+\sum_{x^{\prime}, y^{\prime} \in Y_{n}}\left[\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2}\right)\right]^{-1}\left(x^{\prime}, y^{\prime}\right) G_{k}\left(x-x^{\prime}\right) G_{k}\left(y-y^{\prime}\right)
\end{aligned}
$$

Scheme of the proof

Resolvent of $H_{\alpha, \Gamma}$ is given by the generalized BS formula given above; one has to check directly that the difference of the two vanishes as $n \rightarrow \infty \square$

Scheme of the proof

Resolvent of $H_{\alpha, \Gamma}$ is given by the generalized $B S$ formula given above; one has to check directly that the difference of the two vanishes as $n \rightarrow \infty \square$

Remarks:

- Spectral condition in the n-th approximation, i.e. $\operatorname{det} \Lambda_{\alpha_{n}, Y_{n}}\left(k^{2}\right)=0$, is a discretization of the integral equation coming from the generalized BS principle
- A solution to $\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2}\right) \eta=0$ determines the approximating ef by $\psi(x)=\sum_{y_{j} \in Y_{n}} \eta_{j} G_{k}\left(x-y_{j}\right)$
- A match with solvable models illustrates the convergence and shows that it is not fast, slower than n^{-1} in the eigenvalues. This comes from singular "spikes" in the approximating functions

Finally, the resonances

Consider infinite curves Γ, straight outside a compact, and ask for examples of resonances. Recall the L^{2}-approach: in 1D potential scattering one explores spectral properties of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum - for a recent proof see Hagedorn-Meller, 2000. Try the same here:

Finally, the resonances

Consider infinite curves Γ, straight outside a compact, and ask for examples of resonances. Recall the L^{2}-approach: in 1D potential scattering one explores spectral properties of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum - for a recent proof see Hagedorn-Meller, 2000. Try the same here:

- Broken line: absence of "intrinsic" resonances due lack of higher transverse thresholds
- Z-shaped Γ : if a single bend has a significant reflection, a double band should exhibit resonances
- Bottleneck curve: a good candidate to demonstrate tunneling resonances

Broken line

$$
\begin{aligned}
& \square \\
& \alpha=1
\end{aligned}
$$

Broken line

\mathbf{Z} shape with $\theta=\frac{\pi}{2}$

$$
\begin{aligned}
& \square L_{c}=10 \\
& \alpha=5
\end{aligned}
$$

\mathbf{Z} shape with $\theta=\frac{\pi}{2}$

\mathbf{Z} shape with $\theta=0.32 \pi$

$$
\begin{aligned}
& \angle L_{c}=10 \\
& \alpha=5
\end{aligned}
$$

\mathbf{Z} shape with $\theta=0.32 \pi$

$$
\begin{aligned}
& L_{C}=10 \\
& a=5
\end{aligned}
$$

A bottleneck curve

Consider a straight line deformation which shaped as an open loop with a bottleneck the width a of which we will vary

A bottleneck curve

Consider a straight line deformation which shaped as an open loop with a bottleneck the width a of which we will vary

If Γ is a straight line, the transverse eigenfunction is $\mathrm{e}^{-\alpha|y| / 2}$, hence the distance at which tunneling becomes significant is $\approx 4 \alpha^{-1}$. In the example, we choose $\alpha=1$

Bottleneck with $a=5.2$

Bottleneck with $a=2.9$

Bottleneck with $a=1.9$

Line and points - a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight leaky wire and a family of leaky dots.

Line and points - a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight leaky wire and a family of leaky dots. Formal Hamiltonian

$$
-\Delta-\alpha \delta(x-\Sigma)+\sum_{i=1}^{n} \tilde{\beta}_{i} \delta\left(x-y^{(i)}\right)
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$ with $\alpha>0$. The 2D point interactions at $\Pi=\left\{y^{(i)}\right\}$ with couplings $\beta=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ are properly introduced through b.c. mentioned above, giving Hamiltonian $H_{\alpha, \beta}$

Line and points - a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight leaky wire and a family of leaky dots. Formal Hamiltonian

$$
-\Delta-\alpha \delta(x-\Sigma)+\sum_{i=1}^{n} \tilde{\beta}_{i} \delta\left(x-y^{(i)}\right)
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$ with $\alpha>0$. The 2D point interactions at $\Pi=\left\{y^{(i)}\right\}$ with couplings $\beta=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ are properly introduced through b.c. mentioned above, giving Hamiltonian $H_{\alpha, \beta}$
Resolvent by Krein-type formula: given $z \in \mathbb{C} \backslash[0, \infty)$ we start from the free resolvent $R(z):=(-\Delta-z)^{-1}$, also interpreted as unitary $\mathbf{R}(z)$ acting from L^{2} to $W^{2,2}$. Then

Resolvent by Krein-type formula

- we introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,

Resolvent by Krein-type formula

- we introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,
- then we define canonical embeddings of $\mathbf{R}(z)$ to \mathcal{H}_{i} by $\mathbf{R}_{i, L}(z):=\tau_{i} R(z): L^{2} \rightarrow \mathcal{H}_{i}, \mathbf{R}_{L, i}(z):=\left[\mathbf{R}_{i, L}(z)\right]^{*}$, and $\mathbf{R}_{j, i}(z):=\tau_{j} \mathbf{R}_{L, i}(z): \mathcal{H}_{i} \rightarrow \mathcal{H}_{j}$, and

Resolvent by Krein-type formula

- we introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,
- then we define canonical embeddings of $\mathbf{R}(z)$ to \mathcal{H}_{i} by $\mathbf{R}_{i, L}(z):=\tau_{i} R(z): L^{2} \rightarrow \mathcal{H}_{i}, \mathbf{R}_{L, i}(z):=\left[\mathbf{R}_{i, L}(z)\right]^{*}$, and $\mathbf{R}_{j, i}(z):=\tau_{j} \mathbf{R}_{L, i}(z): \mathcal{H}_{i} \rightarrow \mathcal{H}_{j}$, and
- operator-valued matrix $\Gamma(z): \mathcal{H}_{0} \oplus \mathcal{H}_{1} \rightarrow \mathcal{H}_{0} \oplus \mathcal{H}_{1}$ by

$$
\begin{aligned}
\Gamma_{i j}(z) g & :=-\mathbf{R}_{i, j}(z) g \text { for } i \neq j \text { and } g \in \mathcal{H}_{j}, \\
\Gamma_{00}(z) f & :=\left[\alpha^{-1}-\mathbf{R}_{0,0}(z)\right] f \text { if } f \in \mathcal{H}_{0}, \\
\Gamma_{11}(z) \varphi & :=\left(s_{\beta}(z) \delta_{k l}-G_{z}\left(y^{(k)}, y^{(l)}\right)\left(1-\delta_{k l}\right)\right) \varphi,
\end{aligned}
$$

with $s_{\beta}(z):=\beta+s(z):=\beta+\frac{1}{2 \pi}\left(\ln \frac{\sqrt{z}}{2 i}-\psi(1)\right)$

Resolvent by Krein-type formula

To invert it we define the "reduced determinant"

$$
D(z):=\Gamma_{11}(z)-\Gamma_{10}(z) \Gamma_{00}(z)^{-1} \Gamma_{01}(z): \mathcal{H}_{1} \rightarrow \mathcal{H}_{1},
$$

Resolvent by Krein-type formula

To invert it we define the "reduced determinant"

$$
D(z):=\Gamma_{11}(z)-\Gamma_{10}(z) \Gamma_{00}(z)^{-1} \Gamma_{01}(z): \mathcal{H}_{1} \rightarrow \mathcal{H}_{1},
$$

then an easy algebra yields expressions for "blocks" of $[\Gamma(z)]^{-1}$ in the form

$$
\begin{aligned}
& {[\Gamma(z)]_{11}^{-1}=D(z)^{-1},} \\
& {[\Gamma(z)]_{00}^{-1}=\Gamma_{00}(z)^{-1}+\Gamma_{00}(z)^{-1} \Gamma_{01}(z) D(z)^{-1} \Gamma_{10}(z) \Gamma_{00}(z)^{-1},} \\
& {[\Gamma(z)]_{01}^{-1}=-\Gamma_{00}(z)^{-1} \Gamma_{01}(z) D(z)^{-1},} \\
& {[\Gamma(z)]_{10}^{-1}=-D(z)^{-1} \Gamma_{10}(z) \Gamma_{00}(z)^{-1} ;}
\end{aligned}
$$

thus to determine singularities of $[\Gamma(z)]^{-1}$ one has to find the null space of $D(z)$

Resolvent by Krein-type formula

With this notation we can state the sought formula:
Theorem [E.-Kondej, 2004]: For $z \in \rho\left(H_{\alpha, \beta}\right)$ with $\operatorname{Im} z>0$ the resolvent $R_{\alpha, \beta}(z):=\left(H_{\alpha, \beta}-z\right)^{-1}$ equals

$$
R_{\alpha, \beta}(z)=R(z)+\sum_{i, j=0}^{1} \mathbf{R}_{L, i}(z)[\Gamma(z)]_{i j}^{-1} \mathbf{R}_{j, L}(z)
$$

Resolvent by Krein-type formula

With this notation we can state the sought formula:
Theorem [E.-Kondej, 2004]: For $z \in \rho\left(H_{\alpha, \beta}\right)$ with $\operatorname{Im} z>0$ the resolvent $R_{\alpha, \beta}(z):=\left(H_{\alpha, \beta}-z\right)^{-1}$ equals

$$
R_{\alpha, \beta}(z)=R(z)+\sum_{i, j=0}^{1} \mathbf{R}_{L, i}(z)[\Gamma(z)]_{i j}^{-1} \mathbf{R}_{j, L}(z)
$$

Remark: One can also compare resolvent of $H_{\alpha, \beta}$ to that of $H_{\alpha} \equiv H_{\alpha, \Sigma}$ using trace maps of the latter,

$$
R_{\alpha, \beta}(z)=R_{\alpha}(z)+\mathbf{R}_{\alpha ; L 1}(z) D(z)^{-1} \mathbf{R}_{\alpha ; 1 L}(z)
$$

Spectral properties of $H_{\alpha, \beta}$

It is easy to check that

$$
\sigma_{\mathrm{ess}}\left(H_{\alpha, \beta}\right)=\sigma_{\mathrm{ac}}\left(H_{\alpha, \beta}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)
$$

Spectral properties of $H_{\alpha, \beta}$

It is easy to check that

$$
\sigma_{\mathrm{ess}}\left(H_{\alpha, \beta}\right)=\sigma_{\mathrm{ac}}\left(H_{\alpha, \beta}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)
$$

$\sigma_{\text {disc }}$ given by generalized Birman-Schwinger principle:

$$
\begin{aligned}
& \operatorname{dim} \operatorname{ker} \Gamma(z)=\operatorname{dim} \operatorname{ker} R_{\alpha, \beta}(z), \\
& H_{\alpha, \beta} \phi_{z}=z \phi_{z} \Leftrightarrow \phi_{z}=\sum_{i=0}^{1} \mathbf{R}_{L, i}(z) \eta_{i, z},
\end{aligned}
$$

where $\left(\eta_{0, z}, \eta_{1, z}\right) \in \operatorname{ker} \Gamma(z)$. Moreover, it is clear that $0 \in \sigma_{\text {disc }}(\Gamma(z)) \Leftrightarrow 0 \in \sigma_{\text {disc }}(D(z))$; this reduces the task of finding the spectrum to an algebraic problem

Spectral properties of $H_{\alpha, \beta}$

Theorem [E.-Kondej, 2004]: (a) Let $n=1$ and denote dist $(\sigma, \Pi)=: a$, then $H_{\alpha, \beta}$ has one isolated eigenvalue $-\kappa_{a}^{2}$. The function $a \mapsto-\kappa_{a}^{2}$ is increasing in $(0, \infty)$,

$$
\lim _{a \rightarrow \infty}\left(-\kappa_{a}^{2}\right)=\min \left\{\epsilon_{\beta},-\frac{1}{4} \alpha^{2}\right\},
$$

where $\epsilon_{\beta}:=-4 \mathrm{e}^{2(-2 \pi \beta+\psi(1))}$, while $\lim _{a \rightarrow 0}\left(-\kappa_{a}^{2}\right)$ is finite.

Spectral properties of $H_{\alpha, \beta}$

Theorem [E.-Kondej, 2004]: (a) Let $n=1$ and denote dist $(\sigma, \Pi)=: a$, then $H_{\alpha, \beta}$ has one isolated eigenvalue $-\kappa_{a}^{2}$. The function $a \mapsto-\kappa_{a}^{2}$ is increasing in $(0, \infty)$,

$$
\lim _{a \rightarrow \infty}\left(-\kappa_{a}^{2}\right)=\min \left\{\epsilon_{\beta},-\frac{1}{4} \alpha^{2}\right\},
$$

where $\epsilon_{\beta}:=-4 \mathrm{e}^{2(-2 \pi \beta+\psi(1))}$, while $\lim _{a \rightarrow 0}\left(-\kappa_{a}^{2}\right)$ is finite. (b) For any $\alpha>0, \beta \in \mathbb{R}^{n}$, and $n \in \mathbb{N}_{+}$the operator $H_{\alpha, \beta}$ has N isolated eigenvalues, $1 \leq N \leq n$. If all the point interactions are strong enough, we have $N=n$

Spectral properties of $H_{\alpha, \beta}$

Theorem [E.-Kondej, 2004]: (a) Let $n=1$ and denote dist $(\sigma, \Pi)=: a$, then $H_{\alpha, \beta}$ has one isolated eigenvalue $-\kappa_{a}^{2}$. The function $a \mapsto-\kappa_{a}^{2}$ is increasing in $(0, \infty)$,

$$
\lim _{a \rightarrow \infty}\left(-\kappa_{a}^{2}\right)=\min \left\{\epsilon_{\beta},-\frac{1}{4} \alpha^{2}\right\},
$$

where $\epsilon_{\beta}:=-4 \mathrm{e}^{2(-2 \pi \beta+\psi(1))}$, while $\lim _{a \rightarrow 0}\left(-\kappa_{a}^{2}\right)$ is finite. (b) For any $\alpha>0, \beta \in \mathbb{R}^{n}$, and $n \in \mathbb{N}_{+}$the operator $H_{\alpha, \beta}$ has N isolated eigenvalues, $1 \leq N \leq n$. If all the point interactions are strong enough, we have $N=n$

Remark: Embedded eigenvalues due to mirror symmetry w.r.t. Σ possible if $n \geq 2$

Resonance for $n=1$

Assume the point interaction eigenvalue becomes embedded as $a \rightarrow \infty$, i.e. that $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$

Resonance for $n=1$

Assume the point interaction eigenvalue becomes embedded as $a \rightarrow \infty$, i.e. that $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$
Observation: Birman-Schwinger works in the complex domain too; it is enough to look for analytical continuation of $D(\cdot)$, which acts for $z \in \mathbb{C} \backslash\left[-\frac{1}{4} \alpha^{2}, \infty\right)$ as a multiplication by

$$
\begin{aligned}
& d_{a}(z):=s_{\beta}(z)-\phi_{a}(z)=s_{\beta}(z)-\int_{0}^{\infty} \frac{\mu(z, t)}{t-z-\frac{1}{4} \alpha^{2}} \mathrm{~d} t \\
& \mu(z, t):=\frac{i \alpha}{16 \pi} \frac{\left(\alpha-2 i(z-t)^{1 / 2}\right) \mathrm{e}^{2 i a(z-t)^{1 / 2}}}{t^{1 / 2}(z-t)^{1 / 2}}
\end{aligned}
$$

Thus we have a situation reminiscent of Friedrichs model, just the functions involved are more complicated

Analytic continuation

Take a region Ω_{-}of the other sheet with $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ as a part of its boundary. Put $\mu^{0}(\lambda, t):=\lim _{\varepsilon \rightarrow 0} \mu(\lambda+i \varepsilon, t)$, define

$$
I(\lambda):=\mathcal{P} \int_{0}^{\infty} \frac{\mu^{0}(\lambda, t)}{t-\lambda-\frac{1}{4} \alpha^{2}} \mathrm{~d} t,
$$

and furthermore, $g_{\alpha, a}(z):=\frac{i \alpha}{4} \frac{\mathrm{e}^{-\alpha a}}{\left(z+\frac{1}{4} \alpha^{2}\right)^{1 / 2}}$.

Analytic continuation

Take a region Ω_{-}of the other sheet with $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ as a part of its boundary. Put $\mu^{0}(\lambda, t):=\lim _{\varepsilon \rightarrow 0} \mu(\lambda+i \varepsilon, t)$, define

$$
I(\lambda):=\mathcal{P} \int_{0}^{\infty} \frac{\mu^{0}(\lambda, t)}{t-\lambda-\frac{1}{4} \alpha^{2}} \mathrm{~d} t,
$$

and furthermore, $g_{\alpha, a}(z):=\frac{i \alpha}{4} \frac{\mathrm{e}^{-\alpha a}}{\left(z+\frac{1}{4} \alpha^{2}\right)^{1 / 2}}$.
Lemma: $z \mapsto \phi_{a}(z)$ is continued analytically to Ω_{-}as

$$
\begin{aligned}
\phi_{a}^{0}(\lambda) & =I(\lambda)+g_{\alpha, a}(\lambda) \text { for } \quad \lambda \in\left(-\frac{1}{4} \alpha^{2}, 0\right) \\
\phi_{a}^{-}(z) & =-\int_{0}^{\infty} \frac{\mu(z, t)}{t-z-\frac{1}{4} \alpha^{2}} \mathrm{~d} t-2 g_{\alpha, a}(z), z \in \Omega_{-}
\end{aligned}
$$

Analytic continuation

Proof: By a direct computation one checks

$$
\lim _{\varepsilon \rightarrow 0^{+}} \phi_{a}^{ \pm}(\lambda \pm i \varepsilon)=\phi_{a}^{0}(\lambda), \quad-\frac{1}{4} \alpha^{2}<\lambda<0,
$$

so the claim follows from edge-of-the-wedge theorem. \square

Analytic continuation

Proof: By a direct computation one checks

$$
\lim _{\varepsilon \rightarrow 0^{+}} \phi_{a}^{ \pm}(\lambda \pm i \varepsilon)=\phi_{a}^{0}(\lambda), \quad-\frac{1}{4} \alpha^{2}<\lambda<0,
$$

so the claim follows from edge-of-the-wedge theorem. \square
The continuation of d_{a} is thus the function $\eta_{a}: M \mapsto \mathbb{C}$, where $M=\{z: \operatorname{Im} z>0\} \cup\left(-\frac{1}{4} \alpha^{2}, 0\right) \cup \Omega_{-}$, acting as

$$
\eta_{a}(z)=s_{\beta}(z)-\phi_{a}^{l(z)}(z),
$$

and our problem reduces to solution if the implicit function problem $\eta_{a}(z)=0$.

Resonance for $n=1$

Theorem [E.-Kondej, 2004]: Assume $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$. For any a large enough the equation $\eta_{a}(z)=0$ has a unique solution $z(a)=\mu(b)+i \nu(b) \in \Omega_{-}$, i.e. $\nu(a)<0$, with the following asymptotic behaviour as $a \rightarrow \infty$,

$$
\mu(a)=\epsilon_{\beta}+\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right), \quad \nu(a)=\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right)
$$

Resonance for $n=1$

Theorem [E.-Kondej, 2004]: Assume $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$. For any a large enough the equation $\eta_{a}(z)=0$ has a unique solution $z(a)=\mu(b)+i \nu(b) \in \Omega_{-}$, i.e. $\nu(a)<0$, with the following asymptotic behaviour as $a \rightarrow \infty$,

$$
\mu(a)=\epsilon_{\beta}+\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right), \quad \nu(a)=\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right)
$$

Remark: We have $\left|\phi_{a}^{-}(z)\right| \rightarrow 0$ uniformly in a and $\left|s_{\beta}(z)\right| \rightarrow \infty$ as $\operatorname{Im} z \rightarrow-\infty$. Hence the imaginary part $z(a)$ is bounded as a function of a, in particular, the resonance pole survives as $a \rightarrow 0$.

Scattering for $n=1$

The same as scattering problem for $\left(H_{\alpha, \beta}, H_{\alpha}\right)$

$$
\beta \bullet
$$

Scattering for $n=1$

The same as scattering problem for $\left(H_{\alpha, \beta}, H_{\alpha}\right)$

Existence and completeness by Birman-Kuroda theorem; we seek on-shell S-matrix in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$. By Krein formula, resolvent for $\operatorname{Im} z>0$ expresses as

$$
R_{\alpha, \beta}(z)=R_{\alpha}(z)+\eta_{a}(z)^{-1}\left(\cdot, v_{z}\right) v_{z},
$$

where $v_{z}:=R_{\alpha ; L, 1}(z)$

Scattering for $n=1$

Apply this operator to vector

$$
\omega_{\lambda, \varepsilon}(x):=\mathrm{e}^{i\left(\lambda+\alpha^{2} / 4\right)^{1 / 2} x_{1}-\varepsilon^{2} x_{1}^{2}} \mathrm{e}^{-\alpha\left|x_{2}\right| / 2}
$$

and take limit $\varepsilon \rightarrow 0+$ in the sense of distributions; then a straightforward calculation give generalized eigenfunction of $H_{\alpha, \beta}$. In particular, we have

Scattering for $n=1$

Apply this operator to vector

$$
\omega_{\lambda, \varepsilon}(x):=\mathrm{e}^{i\left(\lambda+\alpha^{2} / 4\right)^{1 / 2} x_{1}-\varepsilon^{2} x_{1}^{2}} \mathrm{e}^{-\alpha\left|x_{2}\right| / 2}
$$

and take limit $\varepsilon \rightarrow 0+$ in the sense of distributions; then a straightforward calculation give generalized eigenfunction of $H_{\alpha, \beta}$. In particular, we have
Proposition: For any $\lambda \in\left(-\frac{1}{4} \alpha^{2}, 0\right)$ the reflection and transmission amplitudes are

$$
\mathcal{R}(\lambda)=\mathcal{T}(\lambda)-1=\frac{i}{4} \alpha \eta_{a}(\lambda)^{-1} \frac{\mathrm{e}^{-\alpha a}}{\left(\lambda+\frac{1}{4} \alpha^{2}\right)^{1 / 2}} ;
$$

they have the same pole in the analytical continuation to Ω_{-}as the continued resolvent

Resonances from perturbed symmetry

Take the simplest situation, $n=2$

Resonances from perturbed symmetry

Take the simplest situation, $n=2$

$$
\beta_{0}{ }^{\bullet}
$$

a

Let $\sigma_{\text {disc }}\left(H_{0, \beta_{0}}\right) \cap\left(-\frac{1}{4} \alpha^{2}, 0\right) \neq \emptyset$, so that Hamiltonian $H_{0, \beta_{0}}$ has two eigenvalues, the larger of which, ϵ_{2}, exceeds $-\frac{1}{4} \alpha^{2}$. Then $H_{\alpha, \beta_{0}}$ has the same eigenvalue ϵ_{2} embedded in the negative part of continuous spectrum

Resonances from perturbed symmetry

Take the simplest situation, $n=2$

$$
\beta_{0}{ }^{\bullet}
$$

a
α

$$
{ }^{a} \cdot \beta_{0}+b
$$

Let $\sigma_{\text {disc }}\left(H_{0, \beta_{0}}\right) \cap\left(-\frac{1}{4} \alpha^{2}, 0\right) \neq \emptyset$, so that Hamiltonian $H_{0, \beta_{0}}$ has two eigenvalues, the larger of which, ϵ_{2}, exceeds $-\frac{1}{4} \alpha^{2}$. Then $H_{\alpha, \beta_{0}}$ has the same eigenvalue ϵ_{2} embedded in the negative part of continuous spectrum
One has now to continue analytically the 2×2 matrix function $D(\cdot)$. Put $\kappa_{2}:=\sqrt{-\epsilon_{2}}$ and $\breve{s}_{\beta}(\kappa):=s_{\beta}\left(-\kappa^{2}\right)$

Resonances from perturbed symmetry

Proposition: Assume $\epsilon_{2} \in\left(-\frac{1}{4} \alpha^{2}, 0\right)$ and denote $\tilde{g}(\lambda):=-i g_{\alpha, a}(\lambda)$. Then for all b small enough the continued function has a unique zero $z_{2}(b)=\mu_{2}(b)+i \nu_{2}(b) \in \Omega_{-}$with the asymptotic expansion

$$
\begin{aligned}
\mu_{2}(b) & =\epsilon_{2}+\frac{\kappa_{2} b}{s_{\beta}^{\prime}\left(\kappa_{2}\right)+K_{0}^{\prime}\left(2 a \kappa_{2}\right)}+\mathcal{O}\left(b^{2}\right), \\
\nu_{2}(b) & =-\frac{\kappa_{2} \tilde{g}\left(\epsilon_{2}\right) b^{2}}{2\left(\tilde{s}_{\beta}^{\prime}\left(\kappa_{2}\right)+K_{0}^{\prime}\left(2 a \kappa_{2}\right)\right)\left|\breve{s}_{\beta}^{\prime}\left(\kappa_{2}\right)-\phi_{a}^{0}\left(\epsilon_{2}\right)\right|}+\mathcal{O}\left(b^{3}\right)
\end{aligned}
$$

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess beyond the local deformation case

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess beyond the local deformation case
- Scattering on leaky curves: strong coupling asymptotics, proving the stated conjecture

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess beyond the local deformation case
- Scattering on leaky curves: strong coupling asymptotics, proving the stated conjecture
- Resonances: existence, properties in less trivial models

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess beyond the local deformation case
- Scattering on leaky curves: strong coupling asymptotics, proving the stated conjecture
- Resonances: existence, properties in less trivial models
- Periodic Г, in one direction: absolute continuity (proved so far only at the bottom of the spectrum)

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess beyond the local deformation case
- Scattering on leaky curves: strong coupling asymptotics, proving the stated conjecture
- Resonances: existence, properties in less trivial models
- Periodic Г, in one direction: absolute continuity (proved so far only at the bottom of the spectrum)
- More: random and magnetic graphs, justification of the L^{2} approach for leaky-graph resonances, etc.

The talk was based on

[EIO1] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A34 (2001), 1439-1450.
[EK02] P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by a curve in \mathbb{R}^{3}, Ann. H. Poincaré 3 (2002), 967-981.
[EK03] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, J. Phys. A36 (2003), 443-457.
[EK04] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, J. Phys. A37 (2004), 8255-8277.
[EK05] P.E., S. Kondej: Scattering by local deformations of a straight leaky wire, J. Phys. A38 (2005), to appear
[EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, J. Phys. A36 (2003), 10173-10193.
[EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ-interaction on a periodic curve, Ann. H. Poincaré 2 (2001), 1139-1158.
[EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358.
[EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong δ-interaction on a loop, J. Phys. A35 (2002), 3479-3487.

The talk was based on

[EIO1] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A34 (2001), 1439-1450.
[EK02] P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by a curve in \mathbb{R}^{3}, Ann. H. Poincaré 3 (2002), 967-981.
[EK03] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, J. Phys. A36 (2003), 443-457.
[EK04] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, J. Phys. A37 (2004), 8255-8277.
[EK05] P.E., S. Kondej: Scattering by local deformations of a straight leaky wire, J. Phys. A38 (2005), to appear
[EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, J. Phys. A36 (2003), 10173-10193.
[EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ-interaction on a periodic curve, Ann. H. Poincaré 2 (2001), 1139-1158.
[EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358.
[EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong δ-interaction on a loop, J. Phys. A35 (2002), 3479-3487.

for more information see http://www.ujf.cas.cz/ exner

