# Scattering and resonances in leaky quantum wires

Pavel Exner

in collaboration with *Sylwia Kondej, Kateřina Němcová*, and also *Takashi Ichinose, Kazushi Yoshitomi* 

exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University



What is known about scattering and resonances in "quantum wire" systems?



- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs,  $H_{\alpha,\Gamma}=-\Delta-\alpha\delta(x-\Gamma)$



- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs,  $H_{\alpha,\Gamma}=-\Delta-\alpha\delta(x-\Gamma)$
- Geometrically induced spectral properties



- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs,  $H_{\alpha,\Gamma}=-\Delta-\alpha\delta(x-\Gamma)$
- Geometrically induced spectral properties
- Scattering on a locally deformed line



- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs,  $H_{\alpha,\Gamma}=-\Delta-\alpha\delta(x-\Gamma)$
- Geometrically induced spectral properties
- Scattering on a locally deformed line
- Approximation by point interaction Hamiltonians and indications for existence of resonances



- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs,  $H_{\alpha,\Gamma} = -\Delta \alpha\delta(x-\Gamma)$
- Geometrically induced spectral properties
- Scattering on a locally deformed line
- Approximation by point interaction Hamiltonians and indications for existence of resonances
- A solvable resonance model: interaction supported by a line and a family of points



- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs,  $H_{\alpha,\Gamma}=-\Delta-\alpha\delta(x-\Gamma)$
- Geometrically induced spectral properties
- Scattering on a locally deformed line
- Approximation by point interaction Hamiltonians and indications for existence of resonances
- A solvable resonance model: interaction supported by a line and a family of points
- Open questions



## Scattering on quantum-wire systems

Widely used: scattering on "ideal" graphs, e.g.

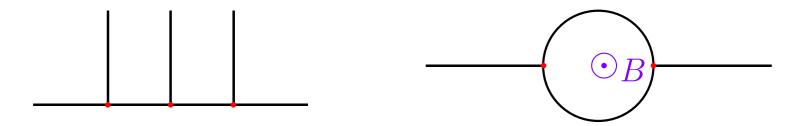


Here we study Schrödinger operator on graph, with appropriate b.c. at vertices. Scattering is an *ODE problem* and it is easy to study resonances; for reviews see, e.g., [Kostrykin-Schrader'99], [Kuchment'04], etc.



## Scattering on quantum-wire systems

Widely used: scattering on "ideal" graphs, e.g.



Here we study Schrödinger operator on graph, with appropriate b.c. at vertices. Scattering is an *ODE problem* and it is easy to study resonances; for reviews see, e.g., [Kostrykin-Schrader'99], [Kuchment'04], etc.

More realistic models of quantum wires treat them as *finite-width channels*, typically with Dirichlet b.c. Various scattering problems studied numerically in many papers.

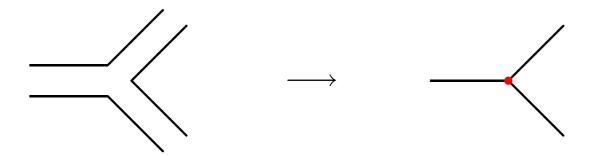
Rigorous results not so common, for instance, resonances existence in smoothly bent tubes was demonstrated in

[Duclos-E.-Šťovíček'95], [Duclos-E.-Meller'98].



#### Drawbacks of these models

Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description

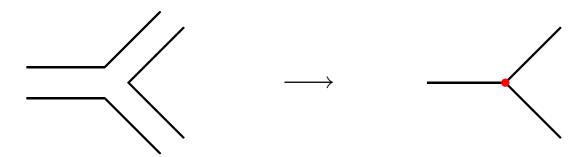


However, a partial answer is known so far only for Neumann-type situations [Rubinstein-Schatzman'01], [Kuchment-Zeng'01], [E.-Post'05], the Dirichlet case needed here is open (and difficult indeed)



#### Drawbacks of these models

Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description



However, a partial answer is known so far only for Neumann-type situations [Rubinstein-Schatzman'01], [Kuchment-Zeng'01], [E.-Post'05], the Dirichlet case needed here is open (and difficult indeed)

Quantum tunneling is neglected: recall that a true quantum-wire boundary is a finite potential jump



## Leaky quantum graphs

We consider "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma), \quad \alpha > 0,$$

in  $L^2(\mathbb{R}^2)$ , where  $\Gamma$  is the graph in question.



## Leaky quantum graphs

We consider "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma), \quad \alpha > 0,$$

in  $L^2(\mathbb{R}^2)$ , where  $\Gamma$  is the graph in question.

A proper definition of  $H_{\alpha,\Gamma}$ : it can be associated naturally with the quadratic form,

$$\psi \mapsto \|\nabla \psi\|_{L^2(\mathbb{R}^n)}^2 - \alpha \int_{\Gamma} |\psi(x)|^2 dx$$

which is closed and below bounded in  $W^{1,2}(\mathbb{R}^n)$ ; the second term makes sense in view of Sobolev embedding. This definition also works for various "wilder" sets  $\Gamma$ 



## Leaky quantum-graph Hamiltonians

For  $\Gamma$  with locally finite number of smooth edges and *no* cusps we can use an alternative definition by boundary conditions:  $H_{\alpha,\Gamma}$  acts as  $-\Delta$  on functions from  $W^{1,2}_{\mathrm{loc}}(\mathbb{R}^2 \setminus \Gamma)$ , which are continuous and exhibit a normal-derivative jump,

$$\left. \frac{\partial \psi}{\partial n}(x) \right|_{+} - \left. \frac{\partial \psi}{\partial n}(x) \right|_{-} = -\alpha \psi(x)$$



## Leaky quantum-graph Hamiltonians

For  $\Gamma$  with locally finite number of smooth edges and *no* cusps we can use an alternative definition by boundary conditions:  $H_{\alpha,\Gamma}$  acts as  $-\Delta$  on functions from  $W^{1,2}_{loc}(\mathbb{R}^2 \setminus \Gamma)$ , which are continuous and exhibit a normal-derivative jump,

$$\left. \frac{\partial \psi}{\partial n}(x) \right|_{+} - \left. \frac{\partial \psi}{\partial n}(x) \right|_{-} = -\alpha \psi(x)$$

#### Remarks:

- for graphs in  $\mathbb{R}^3$  we use generalized b.c. which define a two-dimensional point interaction in normal plane
- one can combine "edges" of different dimensions as long as  $\operatorname{codim}\Gamma$  does not exceed three



## Geometrically induced spectrum

(a) *Bending means binding*, i.e. it may create isolated eigenvalues of  $H_{\alpha,\Gamma}$ . Consider a *piecewise*  $C^1$ -smooth  $\Gamma: \mathbb{R} \to \mathbb{R}^2$  parameterized by its arc length, and assume:



## Geometrically induced spectrum

- (a) Bending means binding, i.e. it may create isolated eigenvalues of  $H_{\alpha,\Gamma}$ . Consider a piecewise  $C^1$ -smooth  $\Gamma: \mathbb{R} \to \mathbb{R}^2$  parameterized by its arc length, and assume:
  - $|\Gamma(s) \Gamma(s')| \ge c|s s'|$  holds for some  $c \in (0, 1)$
  - $\Gamma$  is asymptotically straight: there are d>0,  $\mu>\frac{1}{2}$  and  $\omega\in(0,1)$  such that

$$1 - \frac{|\Gamma(s) - \Gamma(s')|}{|s - s'|} \le d \left[ 1 + |s + s'|^{2\mu} \right]^{-1/2}$$

in the sector  $S_{\omega} := \{(s, s') : \omega < \frac{s}{s'} < \omega^{-1}\}$ 

• straight line is excluded, i.e.  $|\Gamma(s) - \Gamma(s')| < |s - s'|$  holds for some  $s, s' \in \mathbb{R}$ 



## Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions,  $\sigma_{\rm ess}(H_{\alpha,\Gamma})=[-\frac{1}{4}\alpha^2,\infty)$  and  $H_{\alpha,\Gamma}$  has at least one eigenvalue below the threshold  $-\frac{1}{4}\alpha^2$ 



## Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions,  $\sigma_{\rm ess}(H_{\alpha,\Gamma})=[-\frac{1}{4}\alpha^2,\infty)$  and  $H_{\alpha,\Gamma}$  has at least one eigenvalue below the threshold  $-\frac{1}{4}\alpha^2$ 

- The same for *curves in*  $\mathbb{R}^3$ , under stronger regularity, with  $-\frac{1}{4}\alpha^2$  is replaced by the corresponding 2D p.i. ev
- For curved surfaces  $\Gamma \subset \mathbb{R}^3$  such a result is proved in the strong coupling asymptotic regime only
- Implications for graphs: let  $\tilde{\Gamma} \supset \Gamma$  in the set sense, then  $H_{\alpha,\tilde{\Gamma}} \leq H_{\alpha,\Gamma}$ . If the essential spectrum threshold is the same for both graphs and  $\Gamma$  fits the above assumptions, we have  $\sigma_{\rm disc}(H_{\alpha,\Gamma}) \neq \emptyset$  by minimax principle



## Geometrically induced spectrum, contd

(b) Strong coupling asymptotics: let  $\Gamma: \mathbb{R} \to \mathbb{R}^2$  be as above, now supposed to be  $C^4$ -smooth

**Theorem** [E.-Yoshitomi, 2001]: The *j*-th ev of  $H_{\alpha,\Gamma}$  is

$$\lambda_j(\alpha) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$
 as  $\alpha \to \infty$ ,

where  $\mu_j$  is the j-th ev of  $K_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{d}s^2}-\frac{1}{4}\gamma(s)^2$  on  $L^2(\mathbb{R})$  and  $\gamma$  is the curvature of  $\Gamma$ .



## Geometrically induced spectrum, contd

(b) Strong coupling asymptotics: let  $\Gamma: \mathbb{R} \to \mathbb{R}^2$  be as above, now supposed to be  $C^4$ -smooth

**Theorem** [E.-Yoshitomi, 2001]: The *j*-th ev of  $H_{\alpha,\Gamma}$  is

$$\lambda_j(\alpha) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$
 as  $\alpha \to \infty$ ,

where  $\mu_j$  is the j-th ev of  $K_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{d}s^2}-\frac{1}{4}\gamma(s)^2$  on  $L^2(\mathbb{R})$  and  $\gamma$  is the curvature of  $\Gamma$ . The same holds if  $\Gamma$  is a loop; then we also have

$$\#\sigma_{\mathrm{disc}}(H_{\alpha,\Gamma}) = \frac{|\Gamma|\alpha}{2\pi} + \mathcal{O}(\ln \alpha) \quad \text{as} \quad \alpha \to \infty$$



•  $H_{\alpha,\Gamma}$  with a *periodic*  $\Gamma$  has a band-type spectrum, but analogous asymptotics is valid for its *Floquet* components  $H_{\alpha,\Gamma}(\theta)$ , with the comparison operator  $K_{\Gamma}(\theta)$  satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t.  $\theta$ 



- $H_{\alpha,\Gamma}$  with a *periodic*  $\Gamma$  has a band-type spectrum, but analogous asymptotics is valid for its *Floquet* components  $H_{\alpha,\Gamma}(\theta)$ , with the comparison operator  $K_{\Gamma}(\theta)$  satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t.  $\theta$
- Similar result holds for planar loops threaded by mg field, homogeneous, AB flux line, etc.



- $H_{\alpha,\Gamma}$  with a *periodic*  $\Gamma$  has a band-type spectrum, but analogous asymptotics is valid for its *Floquet* components  $H_{\alpha,\Gamma}(\theta)$ , with the comparison operator  $K_{\Gamma}(\theta)$  satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t.  $\theta$
- Similar result holds for planar loops threaded by mg field, homogeneous, AB flux line, etc.
- Higher dimensions: the results extend to loops, infinite and periodic curves in  $\mathbb{R}^3$

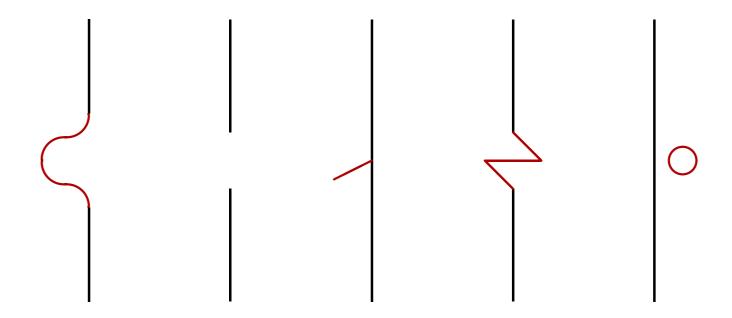


- $H_{\alpha,\Gamma}$  with a *periodic*  $\Gamma$  has a band-type spectrum, but analogous asymptotics is valid for its *Floquet* components  $H_{\alpha,\Gamma}(\theta)$ , with the comparison operator  $K_{\Gamma}(\theta)$  satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t.  $\theta$
- Similar result holds for planar loops threaded by mg field, homogeneous, AB flux line, etc.
- Higher dimensions: the results extend to loops, infinite and periodic curves in  $\mathbb{R}^3$
- and to curved surfaces in  $\mathbb{R}^3$ ; then the comparison operator is  $-\Delta_{\mathrm{LB}} + K M^2$ , where K, M, respectively, are the corresponding Gauss and mean curvatures



## Scattering on a locally deformed line

Scattering requires to specify a *free dynamics*. In this talk we suppose that the latter is described by  $H_{\alpha,\Sigma}$ , where  $\Sigma$  is a *straight line*,  $\Sigma = \{(x_1,0): x_1 \in \}$ , and that the graph  $\Gamma$  in question differs from  $\Sigma$  by a *local deformation* only





#### **Assumptions**

We will consider the following class of local deformations:

- there exists a *compact*  $M \subset \mathbb{R}^2$  such that  $\Gamma \setminus M = \Sigma \setminus M$ ,
- the set  $\Gamma \setminus \Sigma$  admits a finite decomposition,

$$\Gamma \setminus \Sigma = \bigcup_{i=1}^{N} \Gamma_i, \quad N < \infty,$$

where the  $\Gamma_i$ 's are finite  $C^1$  curves such that *no pair* of components of  $\Gamma$  *crosses* at their interior points, neither a component has a *self-intersection*; we allow the components to touch at their endpoints but assume they do not form a *cusp* there

As we have said,  $H_{\alpha,\Gamma}$  is then well defined



#### Krein's formula

Our main tool will be a formula comparing the resolvents of  $H_{\alpha,\Gamma}$  and  $H_{\alpha,\Sigma}$ . We will use the decomposition

$$\Lambda = \Lambda_0 \cup \Lambda_1$$
 with  $\Lambda_0 := \Sigma \setminus \Gamma$ ,  $\Lambda_1 := \Gamma \setminus \Sigma = \bigcup_{i=1}^N \Gamma_i$ ;

the coupling constant of the perturbation will be naturally equal to  $\alpha$  on the "subtracted" set  $\Lambda_0$  and  $-\alpha$  on  $\Lambda_1$ 



#### Krein's formula

Our main tool will be a formula comparing the resolvents of  $H_{\alpha,\Gamma}$  and  $H_{\alpha,\Sigma}$ . We will use the decomposition

$$\Lambda = \Lambda_0 \cup \Lambda_1$$
 with  $\Lambda_0 := \Sigma \setminus \Gamma$ ,  $\Lambda_1 := \Gamma \setminus \Sigma = \bigcup_{i=1}^N \Gamma_i$ ;

the coupling constant of the perturbation will be naturally equal to  $\alpha$  on the "subtracted" set  $\Lambda_0$  and  $-\alpha$  on  $\Lambda_1$  To construct resolvent of  $H_{\alpha,\Sigma}$  we use  $R^k$ , the one of  $-\Delta$ , which is for  $k^2 \in \rho(-\Delta)$  an integral operator with the kernel

$$G^{k}(x-y) = \frac{1}{(2\pi)^{2}} \int_{\mathbb{R}^{2}} \frac{e^{ip(x-y)}}{p^{2} - k^{2}} dp = \frac{1}{2\pi} K_{0}(ik|x-y|),$$

where  $K_0(\cdot)$  stands for the Macdonald function



## Krein's formula, continued

A straightforward computation shows that the resolvent  $R_{\Sigma}^k$  of  $H_{\alpha,\Sigma}$  has the kernel  $G_{\Sigma}^k(x-y)$  given by

$$G^{k}(x-y) + \frac{\alpha}{4\pi^{3}} \int_{3}^{\infty} \frac{e^{ipx-ip'y}}{(p^{2}-k^{2})(p'^{2}-k^{2})} \frac{\tau_{k}(p_{1})}{2\tau_{k}(p_{1})-\alpha} dp dp'_{2},$$

where 
$$\tau_k(p_1) := (p_1^2 - k^2)^{1/2}$$
 and  $p = (p_1, p_2), p' = (p_1, p'_2)$ 



## Krein's formula, continued

A straightforward computation shows that the resolvent  $R_{\Sigma}^k$  of  $H_{\alpha,\Sigma}$  has the kernel  $G_{\Sigma}^k(x-y)$  given by

$$G^{k}(x-y) + \frac{\alpha}{4\pi^{3}} \int_{3}^{\infty} \frac{e^{ipx-ip'y}}{(p^{2}-k^{2})(p'^{2}-k^{2})} \frac{\tau_{k}(p_{1})}{2\tau_{k}(p_{1})-\alpha} dp dp'_{2},$$

where  $\tau_k(p_1) := (p_1^2 - k^2)^{1/2}$  and  $p = (p_1, p_2), p' = (p_1, p'_2)$ 

We need embeddings of  $R_{\Sigma}^k$  to  $L^2(\nu)$ , where  $\nu \equiv \nu_{\Lambda}$  is the Dirac measure on  $\Lambda$ . It can be written as  $\nu_{\Lambda} = \nu_0 + \sum_{i=1}^{N} \nu_i$ ,

where  $\nu_0$  is the Dirac measure on  $\Lambda_0$ . It convenient also to introduce the space  $h \equiv L^2(\nu)$  which decomposes into

$$h = h_0 \oplus h_1$$
 with  $h_0 \equiv L^2(\nu_0)$  and  $h_1 \equiv \bigoplus_{i=1}^N L^2(\nu_i)$ 



## **Embeddings**

Now we are able to introduce the operator

$$R_{\Sigma,\nu}^k: h \to L^2, \quad R_{\Sigma,\nu}^k f = G_{\Sigma}^k * f\nu \quad \text{for} \quad f \in h$$

defined for suitable values of k. Similarly,  $(\mathbb{R}^k_{\Sigma,\nu})^*:L^2\to \mathbf{h}$  is its adjoint and  $\mathbb{R}^k_{\Sigma,\nu\nu}$  denotes the operator-valued matrix in  $\mathbf{h}$  with the "block elements"  $G^k_{\Sigma,ij}\equiv G^k_{\Sigma,\nu_i\nu_i}:L^2(\nu_j)\to L^2(\nu_i)$ 



## **Embeddings**

Now we are able to introduce the operator

$$R_{\Sigma,\nu}^k: h \to L^2, \quad R_{\Sigma,\nu}^k f = G_{\Sigma}^k * f\nu \quad \text{for} \quad f \in h$$

defined for suitable values of k. Similarly,  $(\mathbb{R}^k_{\Sigma,\nu})^*:L^2\to \mathbf{h}$  is its adjoint and  $\mathbb{R}^k_{\Sigma,\nu\nu}$  denotes the operator-valued matrix in  $\mathbf{h}$  with the "block elements"  $G^k_{\Sigma,ij}\equiv G^k_{\Sigma,\nu_i\nu_j}:L^2(\nu_j)\to L^2(\nu_i)$ 

They have the following properties:

- For any  $\kappa \in (\alpha/2, \infty)$  the operator  $\mathbf{R}^{i\kappa}_{\Sigma,\nu}$  is bounded. In fact,  $\mathbf{R}^{i\kappa}_{\Sigma,\nu}$  is a continuous embedding into  $W^{1,2}$
- For any  $\sigma>0$  there exists  $\kappa_{\sigma}$  such that for  $\kappa>\kappa_{\sigma}$  the operator  $\mathbf{R}_{\Sigma,\nu\nu}^{i\kappa}$  is bounded with the norm less than  $\sigma$



## Krein's formula, continued

Introduce an operator-valued matrix in  $h = h_0 \oplus h_1$  as

$$\Theta^{k} = -(\alpha^{-1} \check{\mathbb{I}} + \mathbf{R}_{\Sigma,\nu\nu}^{k}) \quad \text{with} \quad \check{\mathbb{I}} = \begin{pmatrix} \mathbb{I}_{0} & 0 \\ 0 & -\mathbb{I}_{1} \end{pmatrix},$$

where  $\mathbb{I}_i$  are the unit operators in  $h_i$ . Using the properties of the embeddings we prove the following claim:



## Krein's formula, continued

Introduce an operator-valued matrix in  $h = h_0 \oplus h_1$  as

$$\Theta^{k} = -(\alpha^{-1} \check{\mathbb{I}} + \mathbf{R}_{\Sigma,\nu\nu}^{k}) \quad \text{with} \quad \check{\mathbb{I}} = \begin{pmatrix} \mathbb{I}_{0} & 0 \\ 0 & -\mathbb{I}_{1} \end{pmatrix},$$

where  $\mathbb{I}_i$  are the unit operators in  $h_i$ . Using the properties of the embeddings we prove the following claim:

**Theorem** [E.-Kondej, 2005]: Let  $\Theta^k$  have inverse in  $\mathcal{B}(h)$  for  $k \in \mathbb{C}^+$  and let the operator

$$R_{\Gamma}^{k} = R_{\Sigma}^{k} + R_{\Sigma,\nu}^{k}(\Theta^{k})^{-1}(R_{\Sigma,\nu}^{k})^{*}$$

be defined everywhere on  $L^2$ . Then  $k^2$  belongs to  $\rho(H_{\alpha,\Gamma})$  and the resolvent  $(H_{\alpha,\Gamma}-k^2)^{-1}$  is given by  $R_{\Gamma}^k$ 



# Spectrum of $H_{\alpha,\Gamma}$

Let us first look at the essential spectrum:

Proposition: 
$$\sigma_{\rm ess}(H_{\alpha,\Gamma}) = \sigma_{\rm ess}(H_{\alpha,\Sigma}) = \left[-\frac{1}{4}\alpha^2,\infty\right)$$

*Proof:* Check that  $B^k:=\mathrm{R}^k_{\Sigma,\nu}(\Theta^k)^{-1}(\mathrm{R}^k_{\Sigma,\nu})^*$  is compact for some  $k \in \mathbb{C}^+$ . We know that  $(\Theta^{i\kappa})^{-1} \in \mathcal{B}(h)$  and  $(R^{i\kappa}_{\Sigma,\nu})^*$  is bounded if  $\kappa$  is large enough. By [BEKŠ'94] we have  $\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} |G^{i\kappa}(x-y)|^2 \nu_j(\mathrm{d}y) \,\mathrm{d}x < \infty$ , and for  $\kappa > \frac{1}{2}\alpha$  and j=0,...,N the second component  $\xi^k$  of  $G^{i\kappa}_{\Sigma}$  satisfies  $\int_{\mathbb{D}^2} \int_{\mathbb{D}^2} |\xi^k(x,y)|^2 \, \nu_j(\mathrm{d}y) \, \mathrm{d}x < CL_j \int_{\mathbb{D}^2} \frac{\mathrm{d}p}{(p^2 + \kappa)^2} < \infty \,,$ 

$$\int_{\mathbb{R}^2} \int_{\mathbb{R}^2} |\xi^k(x,y)|^2 \nu_j(\mathrm{d}y) \,\mathrm{d}x < CL_j \int_{\mathbb{R}^2} \frac{\mathrm{d}p}{(p^2 + \kappa)^2} < \infty,$$

where C is a constant and  $L_i$  denote the length of  $\Lambda_i$ . This yields compactness of  $\mathbf{R}^k_{\Sigma,\nu}$  , and thus the same for  $B^k$ .  $\square$ 



# Spectrum of $H_{\alpha,\Gamma}$

Let us first look at the essential spectrum:

Proposition: 
$$\sigma_{\rm ess}(H_{\alpha,\Gamma}) = \sigma_{\rm ess}(H_{\alpha,\Sigma}) = \left[-\frac{1}{4}\alpha^2,\infty\right)$$

*Proof:* Check that  $B^k:=\mathrm{R}^k_{\Sigma,\nu}(\Theta^k)^{-1}(\mathrm{R}^k_{\Sigma,\nu})^*$  is compact for some  $k\in\mathbb{C}^+$ . We know that  $(\Theta^{i\kappa})^{-1}\in\mathcal{B}(\mathrm{h})$  and  $(\mathrm{R}^{i\kappa}_{\Sigma,\nu})^*$  is bounded if  $\kappa$  is large enough. By [BEKŠ'94] we have  $\int_{\mathbb{R}^2}\int_{\mathbb{R}^2}|G^{i\kappa}(x-y)|^2\,\nu_j(\mathrm{d}y)\,\mathrm{d}x<\infty$ , and for  $\kappa>\frac12\alpha$  and j=0,...,N the second component  $\xi^k$  of  $G^{i\kappa}_\Sigma$  satisfies  $\int_{\mathbb{R}^2}\int_{\mathbb{R}^2}|\xi^k(x,y)|^2\,\nu_j(\mathrm{d}y)\,\mathrm{d}x< CL_j\int_{\mathbb{R}^2}\frac{\mathrm{d}p}{(p^2+\kappa)^2}<\infty\,,$ 

where C is a constant and  $L_j$  denote the length of  $\Lambda_j$ . This yields compactness of  $\mathbf{R}^k_{\Sigma,\nu}$ , and thus the same for  $B^k$ .  $\square$ 

Remark:  $\sigma_{\rm disc}(H_{\alpha,\Gamma})$  given by singularities of  $\Theta^k$  is often non-empty – see above – but it is not our concern here



#### **Wave operators**

The existence and completeness of wave operators for the pair  $(H_{\alpha,\Gamma},H_{\alpha,\Sigma})$  follows from the standard trace-class criterion, conventionally called Birman-Kuroda theorem. Specifically, we have

**Theorem** [E.-Kondej, 2005]:  $B^{i\kappa}$  is a trace class operator for  $\kappa$  sufficiently large



#### **Wave operators**

The existence and completeness of wave operators for the pair  $(H_{\alpha,\Gamma},H_{\alpha,\Sigma})$  follows from the standard trace-class criterion, conventionally called Birman-Kuroda theorem. Specifically, we have

**Theorem** [E.-Kondej, 2005]:  $B^{i\kappa}$  is a trace class operator for  $\kappa$  sufficiently large

*Proof* is inspired by [Brasche-Teta'92]. We use the estimate  $(\Theta^{i\kappa})^{-1} \leq C'(\Theta^{i\kappa,+})^{-1}$ , where  $\Theta^{i\kappa,+} := \alpha^{-1}\mathbb{I} + \mathrm{R}^{i\kappa}_{\Sigma,\nu\nu}$  and  $\mathbb{I}$  is the  $(N+1)\times(N+1)$  unit matrix, for some C'>0 and all  $\kappa$  sufficiently large; it is clear that  $(\Theta^{i\kappa,+})^{-1}$  is positive and bounded. This gives

$$B^{i\kappa} \leq C' B^{i\kappa,+}, \quad B^{i\kappa,+} := \mathcal{R}^{i\kappa}_{\Sigma,\nu}(\Theta^{i\kappa,+})^{-1}(\mathcal{R}^{i\kappa}_{\Sigma,\nu})^*$$



#### **Proof, continued**

Define  $B_{\delta}^{i\kappa,+}$  as integral operator with the kernel

$$B_{\delta}^{i\kappa,+}(x,y) = \chi_{\delta}(x)B^{i\kappa,+}(x,y)\chi_{\delta}(y),$$

where  $\chi_{\delta}$  stands for the indicator function of the ball  $\mathcal{B}(0,\delta)$ ; one has  $B_{\delta}^{i\kappa,+} \to B^{i\kappa,+}$  as  $\delta \to \infty$  in the weak sense.



#### **Proof, continued**

Define  $B^{i\kappa,+}_{\delta}$  as integral operator with the kernel

$$B_{\delta}^{i\kappa,+}(x,y) = \chi_{\delta}(x)B^{i\kappa,+}(x,y)\chi_{\delta}(y),$$

where  $\chi_{\delta}$  stands for the indicator function of the ball  $\mathcal{B}(0,\delta)$ ; one has  $B^{i\kappa,+}_{\delta} \to B^{i\kappa,+}$  as  $\delta \to \infty$  in the weak sense. Then

$$\int_{\mathbb{R}^2} B_{\delta}^{i\kappa,+}(x,x) dx = \int_{\mathbb{R}^2} (G_{\Sigma}^{i\kappa}(\cdot,x)\chi_{\delta}(x), (\Theta^{i\kappa,+})^{-1} G_{\Sigma}^{i\kappa}(\cdot,x)\chi_{\delta}(x))_{h} dx$$

$$\leq \|(\Theta^{i\kappa,+})^{-1}\| \int_{\mathbb{R}^2} \|G_{\Sigma}^{i\kappa}(\cdot,x)\chi_{\delta}(x)\|_{h}^{2} dx \leq C \|(\Theta^{i\kappa,+})^{-1}\|,$$

hence  $B_{\delta}^{i\kappa,+}$  is trace class for any  $\delta>0$ , and the same is true for the limiting operator.



#### **Proof, continued**

Define  $B_{\delta}^{i\kappa,+}$  as integral operator with the kernel

$$B_{\delta}^{i\kappa,+}(x,y) = \chi_{\delta}(x)B^{i\kappa,+}(x,y)\chi_{\delta}(y),$$

where  $\chi_{\delta}$  stands for the indicator function of the ball  $\mathcal{B}(0,\delta)$ ; one has  $B_{\delta}^{i\kappa,+} \to B^{i\kappa,+}$  as  $\delta \to \infty$  in the weak sense. Then

$$\int_{\mathbb{R}^{2}} B_{\delta}^{i\kappa,+}(x,x) dx = \int_{\mathbb{R}^{2}} (G_{\Sigma}^{i\kappa}(\cdot,x)\chi_{\delta}(x), (\Theta^{i\kappa,+})^{-1} G_{\Sigma}^{i\kappa}(\cdot,x)\chi_{\delta}(x))_{h} dx 
\leq \|(\Theta^{i\kappa,+})^{-1}\| \int_{\mathbb{R}^{2}} \|G_{\Sigma}^{i\kappa}(\cdot,x)\chi_{\delta}(x)\|_{h}^{2} dx \leq C \|(\Theta^{i\kappa,+})^{-1}\|,$$

hence  $B_{\delta}^{i\kappa,+}$  is trace class for any  $\delta>0$ , and the same is true for the limiting operator.

Similarly one finds a Hermitian trace class operator  $B^{i\kappa,-}$  which provides an estimate from below,  $B^{i\kappa,-} \leq B^{i\kappa}$ ; this means that  $B^{i\kappa}$  is a trace class operator too.  $\square$ 



# Generalized eigenfunctions

We want to find the S-matrix,  $S\psi_{\lambda}^{-}=\psi_{\lambda}^{+}$ , for scattering in the *negative part of the spectrum* with a fixed energy  $\lambda \in (-\frac{1}{4}\alpha^{2},0)$  corresponding to the effective momentum  $k_{\alpha}(\lambda) := (\lambda + \alpha^{2}/4)^{1/2}$ . We employ generalized ef's of  $H_{\alpha,\Sigma}$ ,

$$\omega_{\lambda}(x_1, x_2) = e^{i(\lambda + \alpha^2/4)^{1/2} x_1} e^{-\alpha |x_2|/2},$$

their analogues  $\omega_z$  for complex energies and regularizations  $\omega_z^{\delta}(x) = \mathrm{e}^{-\delta x_1^2}\omega_z(x)$  for  $z \in \rho(H_{\alpha,\Sigma})$ , belonging to  $D(H_{\alpha,\Sigma})$ .



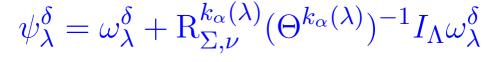
# Generalized eigenfunctions

We want to find the S-matrix,  $S\psi_{\lambda}^{-}=\psi_{\lambda}^{+}$ , for scattering in the *negative part of the spectrum* with a fixed energy  $\lambda \in (-\frac{1}{4}\alpha^{2},0)$  corresponding to the effective momentum  $k_{\alpha}(\lambda) := (\lambda + \alpha^{2}/4)^{1/2}$ . We employ generalized ef's of  $H_{\alpha,\Sigma}$ ,

$$\omega_{\lambda}(x_1, x_2) = e^{i(\lambda + \alpha^2/4)^{1/2} x_1} e^{-\alpha |x_2|/2},$$

their analogues  $\omega_z$  for complex energies and regularizations  $\omega_z^{\delta}(x) = \mathrm{e}^{-\delta x_1^2}\omega_z(x)$  for  $z \in \rho(H_{\alpha,\Sigma})$ , belonging to  $D(H_{\alpha,\Sigma})$ .

Consider now  $\psi_z^\delta$  such that  $(H_{\alpha,\Gamma}-z)\psi_z^\delta=(H_{\alpha,\Sigma}-z)\omega_z^\delta$ . After taking the limit  $\lim_{\epsilon\to 0}\psi_{\lambda+i\epsilon}^\delta=\psi_\lambda^\delta$  in the topology of  $L^2$  the function  $\psi_\lambda^\delta$  still belongs to  $D(H_{\alpha,\Sigma})$  and we have





# Generalized eigenfunctions, continued

Here  $\mathrm{R}_{\Sigma,\nu}^{k_{\alpha}(\lambda)}$  is integral operator on the Hilbert space  $\mathrm{h}$  with the kernel  $G_{\Sigma}^{k_{\alpha}(\lambda)}(x-y):=\lim_{\varepsilon\to 0}G_{\Sigma}^{k_{\alpha}(\lambda+i\varepsilon)}(x-y)$  and  $\Theta^{k_{\alpha}(\lambda)}:=-\alpha^{-1}\check{\mathbb{I}}-\mathrm{R}_{\Sigma,\nu\nu}^{k_{\alpha}(\lambda)}$  are the operators on  $\mathrm{h}$  with  $\mathrm{R}_{\Sigma,\nu\nu}^{k_{\alpha}(\lambda)}$  being the natural embedding . By a direct computation, the kernel is found to be

$$G_{\Sigma}^{k_{\alpha}(\lambda)}(x-y) = K_{0}(i\sqrt{\lambda}|x-y|) + \mathcal{P} \int_{0}^{\infty} \frac{\mu_{0}(t;x,y)}{t-\lambda-\alpha^{2}/4} dt + s_{\alpha}(\lambda) e^{ik_{\alpha}(\lambda)|x_{1}-y_{1}|} e^{-\alpha/2(|x_{2}|+|y_{2}|)},$$

where  $s_{\alpha}(\lambda) := i\alpha(2^3k_{\alpha}(\lambda))^{-1}$  and

$$\mu_0(t; x, y) := -\frac{i\alpha}{2^5 \pi} \frac{e^{it^{1/2}(x_1 - y_1)} e^{-(t - \lambda)^{1/2}(|x_2| + |y_2|)^{1/2}}}{t^{1/2}((t - \lambda)^{1/2})}$$



# Generalized eigenfunctions, continued

Of course, the pointwise limits  $\psi_{\lambda} = \lim_{\delta \to 0} \psi_{\lambda}^{\delta}$  cease to  $L^2$ , however, they still belong to  $L^2$  locally and provide us with the generalized eigenfunction of  $H_{\alpha,\Gamma}$  in the form

$$\psi_{\lambda} = \omega_{\lambda} + R_{\Sigma,\nu}^{k_{\alpha}(\lambda)} (\Theta^{k_{\alpha}(\lambda)})^{-1} J_{\Lambda} \omega_{\lambda} ,$$

where  $J_{\Lambda}\omega_{\lambda}$  is an embedding of  $\omega_{\lambda}$  to  $L^{2}(\nu_{\Lambda})$ 



# Generalized eigenfunctions, continued

Of course, the pointwise limits  $\psi_{\lambda} = \lim_{\delta \to 0} \psi_{\lambda}^{\delta}$  cease to  $L^2$ , however, they still belong to  $L^2$  locally and provide us with the generalized eigenfunction of  $H_{\alpha,\Gamma}$  in the form

$$\psi_{\lambda} = \omega_{\lambda} + R_{\Sigma,\nu}^{k_{\alpha}(\lambda)} (\Theta^{k_{\alpha}(\lambda)})^{-1} J_{\Lambda} \omega_{\lambda} ,$$

where  $J_{\Lambda}\omega_{\lambda}$  is an embedding of  $\omega_{\lambda}$  to  $L^{2}(\nu_{\Lambda})$ 

To find the S-matrix we have to investigate the behavior of  $\psi_{\lambda}$  for  $|x_1| \to \infty$ . By a direct computation, we find that for y of a compact  $M \subset \mathbb{R}^2$  and  $|x_1| \to \infty$  we have

$$G_{\Sigma}^{k_{\alpha}(\lambda)}(x-y) \approx s_{\alpha}(\lambda) e^{ik_{\alpha}(\lambda)|x_1-y_1|} e^{-\alpha/2(|x_2|+|y_2|)}$$



# S-matrix at negative energy

Using this asymptotics we find the sought on-shell S-matrix:

**Theorem** [E.-Kondej, 2005]: For a fixed  $\lambda \in (-\frac{1}{4}\alpha^2, 0)$  the generalized eigenfunctions behave asymptotically as

$$\psi_{\lambda}(x) \approx \begin{cases} \mathcal{T}(\lambda) e^{ik_{\alpha}(\lambda)x_{1}} e^{-\alpha|x_{2}|/2} & \text{for } x_{1} \to \infty \\ e^{ik_{\alpha}(\lambda)x_{1}} e^{-\alpha|x_{2}|/2} + \mathcal{R}(\lambda) e^{-ik_{\alpha}(\lambda)x_{1}} e^{-\alpha|x_{2}|/2} & \text{for } x_{1} \to -\infty \end{cases}$$

where  $k_{\alpha}(\lambda) := (\lambda + \alpha^2/4)^{1/2}$  and the *transmission and* reflection amplitudes  $\mathcal{T}(\lambda)$ ,  $\mathcal{R}(\lambda)$  are given respectively by

$$\mathcal{T}(\lambda) = 1 - s_{\alpha}(\lambda) \left( (\Theta^{k_{\alpha}(\lambda)})^{-1} J_{\Lambda} \omega_{\lambda}, J_{\Lambda} \omega_{\lambda} \right)_{h}$$

and

$$\mathcal{R}(\lambda) = s_{\alpha}(\lambda) \left( (\Theta^{k_{\alpha}(\lambda)})^{-1} J_{\Lambda} \omega_{\lambda}, J_{\Lambda} \bar{\omega}_{\lambda} \right)_{h}$$



# Strong coupling: a conjecture

Consider  $\Gamma$  which is a  $C^4$ -smooth local deformation of a line. In analogy with the spectral result of [E.-Yoshitomi'01] quoted above one expects that in *strong coupling* case the scattering will be determined in the leading order by the *local geometry* of  $\Gamma$  through the same comparison operator, namely  $K_{\Gamma} := -\frac{\mathrm{d}}{\mathrm{d}s^2} - \frac{1}{4}\gamma(s)^2$  on  $L^2(\mathbb{R})$ .



#### Strong coupling: a conjecture

Consider  $\Gamma$  which is a  $C^4$ -smooth local deformation of a line. In analogy with the spectral result of [E.-Yoshitomi'01] quoted above one expects that in strong coupling case the scattering will be determined in the leading order by the local geometry of  $\Gamma$  through the same comparison operator, namely  $K_{\Gamma} := -\frac{\mathrm{d}}{\mathrm{d}s^2} - \frac{1}{4}\gamma(s)^2$  on  $L^2(\mathbb{R})$ .

Let  $\mathcal{T}_K(k)$ ,  $\mathcal{R}_K(k)$  be the corresponding transmission and reflection amplitudes at a fixed momentum k. Denote by  $\mathbf{S}_{\Gamma,\alpha}(\lambda)$  and  $\mathbf{S}_K(\lambda)$  the on-shell S-matrixes of  $H_{\alpha,\Gamma}$  and K at energy  $\lambda$ , respectively.

Conjecture: For a fixed  $k \neq 0$  and  $\alpha \to \infty$  we have the relation

$$\mathbf{S}_{\Gamma,\alpha}\left(k^2 - \frac{1}{4}\alpha^2\right) \to \mathbf{S}_K(k^2)$$



#### How to find the spectrum?

To say something about resonances, let us return to the spectral problem. The general results do not tell us how to find the spectrum for a particular  $\Gamma$ . The options:

• Direct solution of the PDE problem  $H_{\alpha,\Gamma}\psi=\lambda\psi$  is feasible in a few simple examples only



#### How to find the spectrum?

To say something about resonances, let us return to the spectral problem. The general results do not tell us how to find the spectrum for a particular  $\Gamma$ . The options:

- Direct solution of the PDE problem  $H_{\alpha,\Gamma}\psi=\lambda\psi$  is feasible in a few simple examples only
- Using trace maps of  $R^k \equiv (-\Delta k^2)^{-1}$  and the generalized BS principle

$$R^{k} := R_{0}^{k} + \alpha R_{dx,m}^{k} [I - \alpha R_{m,m}^{k}]^{-1} R_{m,dx}^{k},$$

where m is  $\delta$  measure on  $\Gamma$ , we pass to a 1D integral operator problem,  $\alpha R_{m,m}^k \psi = \psi$ 



#### How to find the spectrum?

To say something about resonances, let us return to the spectral problem. The general results do not tell us how to find the spectrum for a particular  $\Gamma$ . The options:

- Direct solution of the PDE problem  $H_{\alpha,\Gamma}\psi=\lambda\psi$  is feasible in a few simple examples only
- Using trace maps of  $R^k \equiv (-\Delta k^2)^{-1}$  and the generalized BS principle

$$R^{k} := R_{0}^{k} + \alpha R_{dx,m}^{k} [I - \alpha R_{m,m}^{k}]^{-1} R_{m,dx}^{k},$$

where m is  $\delta$  measure on  $\Gamma$ , we pass to a 1D integral operator problem,  $\alpha R_{m,m}^k \psi = \psi$ 

• discretization of the latter which amounts to a point-interaction approximations to  $H_{\alpha,\Gamma}$ 



#### 2D point interactions

Such an interaction at the point a with the "coupling constant"  $\alpha$  is defined by b.c. which change *locally* the domain of  $-\Delta$ : the functions behave as

$$\psi(x) = -\frac{1}{2\pi} \log|x - a| L_0(\psi, a) + L_1(\psi, a) + \mathcal{O}(|x - a|),$$

where the generalized b.v.  $L_0(\psi, a)$  and  $L_1(\psi, a)$  satisfy

$$L_1(\psi, a) + 2\pi\alpha L_0(\psi, a) = 0, \quad \alpha \in \mathbb{R}$$



#### 2D point interactions

Such an interaction at the point a with the "coupling constant"  $\alpha$  is defined by b.c. which change *locally* the domain of  $-\Delta$ : the functions behave as

$$\psi(x) = -\frac{1}{2\pi} \log|x - a| L_0(\psi, a) + L_1(\psi, a) + \mathcal{O}(|x - a|),$$

where the generalized b.v.  $L_0(\psi, a)$  and  $L_1(\psi, a)$  satisfy

$$L_1(\psi, a) + 2\pi\alpha L_0(\psi, a) = 0, \quad \alpha \in \mathbb{R}$$

For our purpose, the coupling should depend on the set Y approximating  $\Gamma$ . To see how compare a line  $\Gamma$  with the solvable *straight-polymer* model [AGHH]





# 2D point-interaction approximation

Spectral threshold convergence requires  $\alpha_n = \alpha n$  which means that individual point interactions get *weaker*. Hence we approximate  $H_{\alpha,\Gamma}$  by point-interaction Hamiltonians  $H_{\alpha_n,Y_n}$  with  $\alpha_n = \alpha |Y_n|$ , where  $|Y_n| := \sharp Y_n$ .



# 2D point-interaction approximation

Spectral threshold convergence requires  $\alpha_n = \alpha n$  which means that individual point interactions get *weaker*. Hence we approximate  $H_{\alpha,\Gamma}$  by point-interaction Hamiltonians  $H_{\alpha_n,Y_n}$  with  $\alpha_n = \alpha |Y_n|$ , where  $|Y_n| := \sharp Y_n$ .

**Theorem** [E.-Němcová, 2003]: Let a family  $\{Y_n\}$  of finite sets  $Y_n \subset \Gamma \subset \mathbb{R}^2$  be such that

$$\frac{1}{|Y_n|} \sum_{y \in Y_n} f(y) \to \int_{\Gamma} f \, \mathrm{d}m$$

holds for any bounded continuous function  $f:\Gamma\to\mathbb{C}$ , together with technical conditions, then  $H_{\alpha_n,Y_n}\to H_{\alpha,\Gamma}$  in the strong resolvent sense as  $n\to\infty$ .



# Comments on the approximation

• A more general result is valid:  $\Gamma$  need not be a graph and the coupling may be non-constant



#### Comments on the approximation

- A more general result is valid:  $\Gamma$  need not be a graph and the coupling may be non-constant
- The result applies to finite graphs, however, an infinite Γ can be approximated in strong resolvent sense by a family of cut-off graphs



# Comments on the approximation

- A more general result is valid:  $\Gamma$  need not be a graph and the coupling may be non-constant
- The result applies to finite graphs, however, an infinite Γ can be approximated in strong resolvent sense by a family of cut-off graphs
- **●** The idea is due to Brasche, Figari and Teta, 1998, who analyzed point-interaction approximations of measure perturbations with  $\operatorname{codim} \Gamma = 1$  in  $\mathbb{R}^3$ . There are differences, however, for instance in the 2D case we can approximate *attractive* interactions only



Resolvent of  $H_{\alpha_n,Y_n}$  is given *Krein's formula*. Given  $k^2 \in \rho(H_{\alpha_n,Y_n})$  define  $|Y_n| \times |Y_n|$  matrix by

$$\Lambda_{\alpha_n, Y_n}(k^2; x, y) = \frac{1}{2\pi} \left[ 2\pi |Y_n| \alpha + \ln\left(\frac{ik}{2}\right) + \gamma_E \right] \delta_{xy}$$
$$-G_k(x-y) \left(1 - \delta_{xy}\right)$$

for  $x, y \in Y_n$ , where  $\gamma_E$  is *Euler' constant*.



Resolvent of  $H_{\alpha_n,Y_n}$  is given *Krein's formula*. Given  $k^2 \in \rho(H_{\alpha_n,Y_n})$  define  $|Y_n| \times |Y_n|$  matrix by

$$\Lambda_{\alpha_n, Y_n}(k^2; x, y) = \frac{1}{2\pi} \left[ 2\pi |Y_n| \alpha + \ln\left(\frac{ik}{2}\right) + \gamma_E \right] \delta_{xy}$$
$$-G_k(x-y) \left(1 - \delta_{xy}\right)$$

for  $x, y \in Y_n$ , where  $\gamma_E$  is *Euler' constant*. Then

$$(H_{\alpha_n, Y_n} - k^2)^{-1}(x, y) = G_k(x - y)$$

$$+ \sum_{x', y' \in Y_n} \left[ \Lambda_{\alpha_n, Y_n}(k^2) \right]^{-1} (x', y') G_k(x - x') G_k(y - y')$$



Resolvent of  $H_{\alpha,\Gamma}$  is given by the *generalized BS formula* given above; one has to check directly that the difference of the two vanishes as  $n \to \infty$ 



Resolvent of  $H_{\alpha,\Gamma}$  is given by the *generalized BS formula* given above; one has to check directly that the difference of the two vanishes as  $n\to\infty$ 

#### Remarks:

- Spectral condition in the n-th approximation, i.e.  $\det \Lambda_{\alpha_n,Y_n}(k^2)=0$ , is a discretization of the integral equation coming from the generalized BS principle
- A solution to  $\Lambda_{\alpha_n,Y_n}(k^2)\eta=0$  determines the approximating ef by  $\psi(x)=\sum_{y_j\in Y_n}\eta_jG_k(x-y_j)$
- A match with solvable models illustrates the convergence and shows that it is not fast, slower than  $n^{-1}$  in the eigenvalues. This comes from singular "spikes" in the approximating functions



#### Finally, the resonances

Consider infinite curves  $\Gamma$ , straight outside a compact, and ask for examples of resonances. Recall the  $L^2$ -approach: in 1D potential scattering one explores *spectral properties* of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum – for a recent proof see Hagedorn-Meller, 2000. Try the same here:



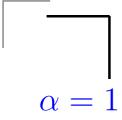
#### Finally, the resonances

Consider infinite curves  $\Gamma$ , straight outside a compact, and ask for examples of resonances. Recall the  $L^2$ -approach: in 1D potential scattering one explores *spectral properties* of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum – for a recent proof see Hagedorn-Meller, 2000. Try the same here:

- Broken line: absence of "intrinsic" resonances due lack of higher transverse thresholds
- Bottleneck curve: a good candidate to demonstrate tunneling resonances

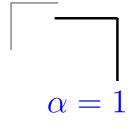


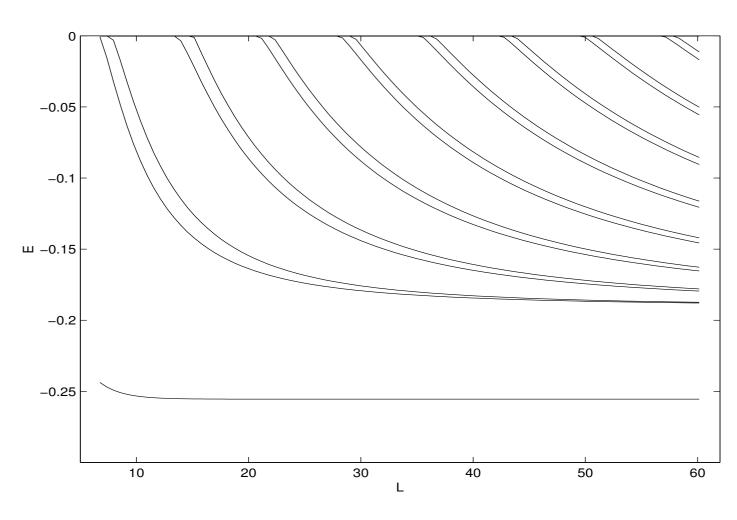
#### **Broken line**





#### **Broken line**





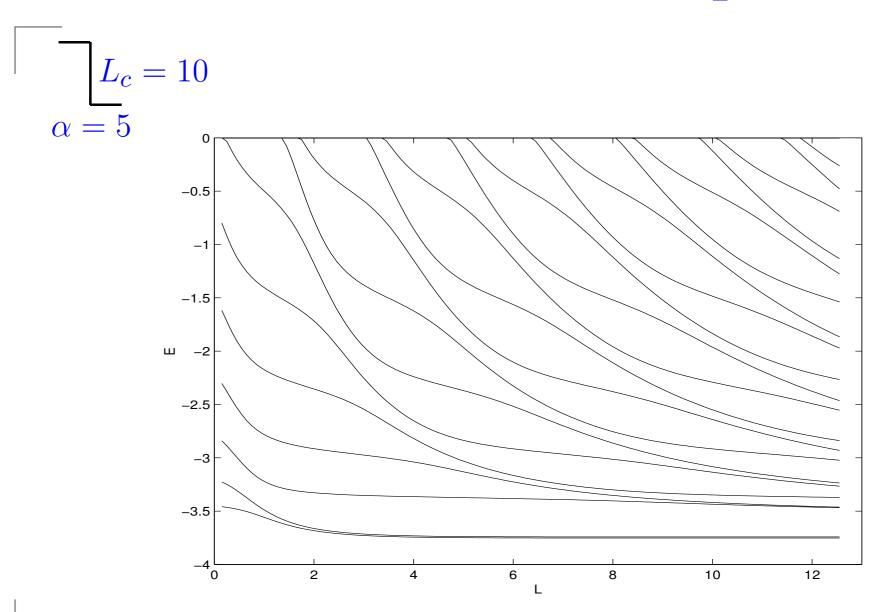


# **Z** shape with $\theta = \frac{\pi}{2}$

$$\begin{array}{c}
L_c = 10 \\
\alpha = 5
\end{array}$$



# **Z** shape with $\theta = \frac{\pi}{2}$





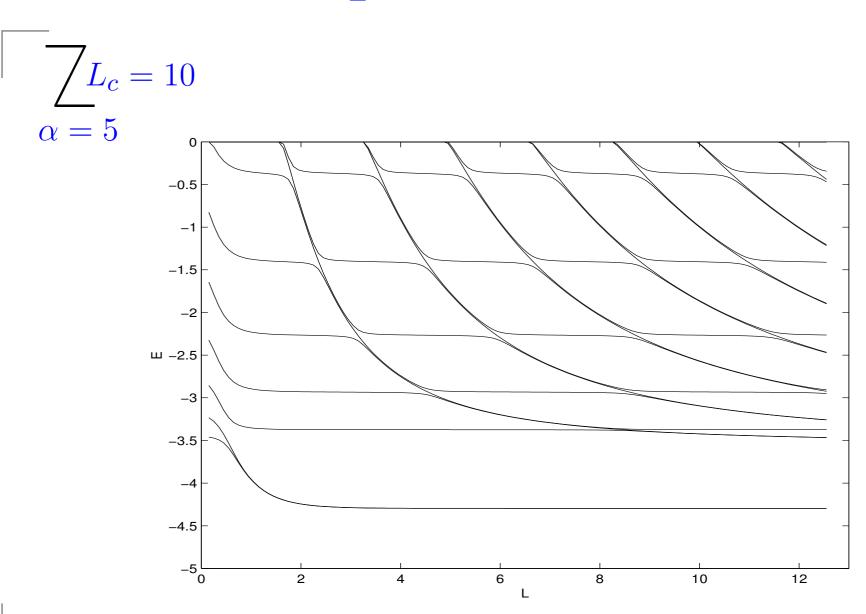
# **Z** shape with $\theta = 0.32\pi$

$$\overline{\sum} L_c = 10$$

$$\alpha = 5$$



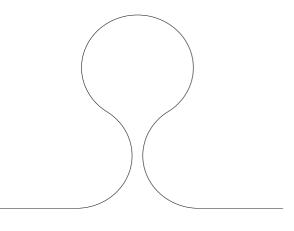
# Z shape with $\theta = 0.32\pi$





#### A bottleneck curve

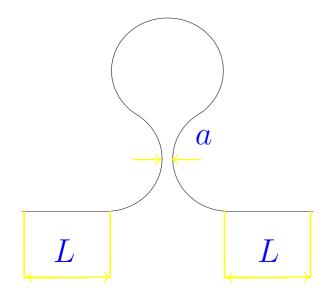
Consider a straight line deformation which shaped as an open loop with a bottleneck the width a of which we will vary





#### A bottleneck curve

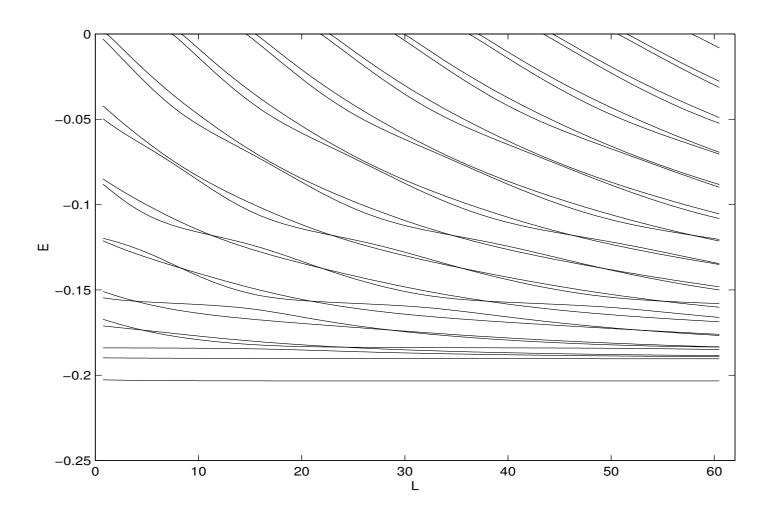
Consider a straight line deformation which shaped as an open loop with a bottleneck the width a of which we will vary



If  $\Gamma$  is a straight line, the transverse eigenfunction is  $e^{-\alpha|y|/2}$ , hence the distance at which tunneling becomes significant is  $\approx 4\alpha^{-1}$ . In the example, we choose  $\alpha=1$ 

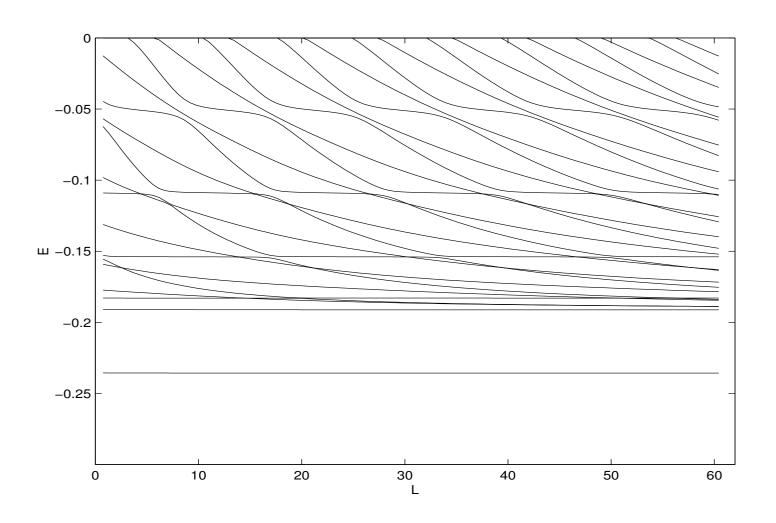


#### Bottleneck with a = 5.2



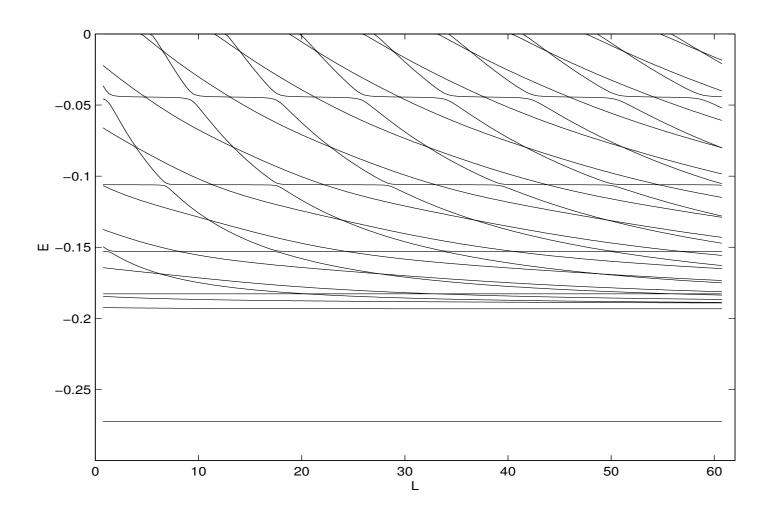


#### Bottleneck with a=2.9





#### Bottleneck with a = 1.9





### Line and points – a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight *leaky wire* and a family of *leaky dots*.



#### Line and points – a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight *leaky wire* and a family of *leaky dots*. Formal Hamiltonian

$$-\Delta - \alpha \delta(x - \Sigma) + \sum_{i=1}^{n} \tilde{\beta}_{i} \delta(x - y^{(i)})$$

in  $L^2(\mathbb{R}^2)$  with  $\alpha > 0$ . The 2D point interactions at  $\Pi = \{y^{(i)}\}$  with couplings  $\beta = \{\beta_1, \dots, \beta_n\}$  are properly introduced through b.c. mentioned above, giving Hamiltonian  $H_{\alpha,\beta}$ 



## Line and points – a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight *leaky wire* and a family of *leaky dots*. Formal Hamiltonian

$$-\Delta - \alpha \delta(x - \Sigma) + \sum_{i=1}^{n} \tilde{\beta}_{i} \delta(x - y^{(i)})$$

in  $L^2(\mathbb{R}^2)$  with  $\alpha > 0$ . The 2D point interactions at  $\Pi = \{y^{(i)}\}$  with couplings  $\beta = \{\beta_1, \dots, \beta_n\}$  are properly introduced through b.c. mentioned above, giving Hamiltonian  $H_{\alpha,\beta}$ 

Resolvent by Krein-type formula: given  $z \in \mathbb{C} \setminus [0, \infty)$  we start from the free resolvent  $R(z) := (-\Delta - z)^{-1}$ , also interpreted as unitary  $\mathbf{R}(z)$  acting from  $L^2$  to  $W^{2,2}$ . Then



we introduce auxiliary Hilbert spaces,  $\mathcal{H}_0 := L^2(\mathbb{R})$  and  $\mathcal{H}_1 := \mathbb{C}^n$ , and trace maps  $\tau_j : W^{2,2}(\mathbb{R}^2) \to \mathcal{H}_j$  defined by  $\tau_0 f := f \upharpoonright_{\Sigma}$  and  $\tau_1 f := f \upharpoonright_{\Pi}$ ,



- we introduce auxiliary Hilbert spaces,  $\mathcal{H}_0 := L^2(\mathbb{R})$  and  $\mathcal{H}_1 := \mathbb{C}^n$ , and trace maps  $\tau_j : W^{2,2}(\mathbb{R}^2) \to \mathcal{H}_j$  defined by  $\tau_0 f := f \upharpoonright_{\Sigma}$  and  $\tau_1 f := f \upharpoonright_{\Pi}$ ,
- then we define canonical embeddings of  $\mathbf{R}(z)$  to  $\mathcal{H}_i$  by  $\mathbf{R}_{i,L}(z) := \tau_i R(z) : L^2 \to \mathcal{H}_i$ ,  $\mathbf{R}_{L,i}(z) := [\mathbf{R}_{i,L}(z)]^*$ , and  $\mathbf{R}_{j,i}(z) := \tau_j \mathbf{R}_{L,i}(z) : \mathcal{H}_i \to \mathcal{H}_j$ , and



- we introduce auxiliary Hilbert spaces,  $\mathcal{H}_0 := L^2(\mathbb{R})$  and  $\mathcal{H}_1 := \mathbb{C}^n$ , and trace maps  $\tau_j : W^{2,2}(\mathbb{R}^2) \to \mathcal{H}_j$  defined by  $\tau_0 f := f \upharpoonright_{\Sigma}$  and  $\tau_1 f := f \upharpoonright_{\Pi}$ ,
- then we define canonical embeddings of  $\mathbf{R}(z)$  to  $\mathcal{H}_i$  by  $\mathbf{R}_{i,L}(z) := \tau_i R(z) : L^2 \to \mathcal{H}_i$ ,  $\mathbf{R}_{L,i}(z) := [\mathbf{R}_{i,L}(z)]^*$ , and  $\mathbf{R}_{j,i}(z) := \tau_j \mathbf{R}_{L,i}(z) : \mathcal{H}_i \to \mathcal{H}_j$ , and
- operator-valued matrix  $\Gamma(z): \mathcal{H}_0 \oplus \mathcal{H}_1 \to \mathcal{H}_0 \oplus \mathcal{H}_1$  by

$$\Gamma_{ij}(z)g := -\mathbf{R}_{i,j}(z)g \text{ for } i \neq j \text{ and } g \in \mathcal{H}_j,$$

$$\Gamma_{00}(z)f := \left[\alpha^{-1} - \mathbf{R}_{0,0}(z)\right]f \text{ if } f \in \mathcal{H}_0,$$

$$\Gamma_{11}(z)\varphi := \left(s_{\beta}(z)\delta_{kl} - G_z(y^{(k)}, y^{(l)})(1 - \delta_{kl})\right)\varphi,$$

with 
$$s_{\beta}(z) := \beta + s(z) := \beta + \frac{1}{2\pi} (\ln \frac{\sqrt{z}}{2i} - \psi(1))$$



To invert it we define the "reduced determinant"

$$D(z) := \Gamma_{11}(z) - \Gamma_{10}(z)\Gamma_{00}(z)^{-1}\Gamma_{01}(z) : \mathcal{H}_1 \to \mathcal{H}_1,$$



To invert it we define the "reduced determinant"

$$D(z) := \Gamma_{11}(z) - \Gamma_{10}(z)\Gamma_{00}(z)^{-1}\Gamma_{01}(z) : \mathcal{H}_1 \to \mathcal{H}_1,$$

then an easy algebra yields expressions for "blocks" of  $[\Gamma(z)]^{-1}$  in the form

$$\begin{aligned} & [\Gamma(z)]_{11}^{-1} &= D(z)^{-1}, \\ & [\Gamma(z)]_{00}^{-1} &= \Gamma_{00}(z)^{-1} + \Gamma_{00}(z)^{-1} \Gamma_{01}(z) D(z)^{-1} \Gamma_{10}(z) \Gamma_{00}(z)^{-1}, \\ & [\Gamma(z)]_{01}^{-1} &= -\Gamma_{00}(z)^{-1} \Gamma_{01}(z) D(z)^{-1}, \\ & [\Gamma(z)]_{10}^{-1} &= -D(z)^{-1} \Gamma_{10}(z) \Gamma_{00}(z)^{-1}; \end{aligned}$$

thus to determine singularities of  $[\Gamma(z)]^{-1}$  one has to find the null space of D(z)



With this notation we can state the sought formula:

Theorem [E.-Kondej, 2004]: For  $z \in \rho(H_{\alpha,\beta})$  with Im z > 0 the resolvent  $R_{\alpha,\beta}(z) := (H_{\alpha,\beta} - z)^{-1}$  equals

$$R_{\alpha,\beta}(z) = R(z) + \sum_{i,j=0}^{1} \mathbf{R}_{L,i}(z) [\Gamma(z)]_{ij}^{-1} \mathbf{R}_{j,L}(z)$$



With this notation we can state the sought formula:

Theorem [E.-Kondej, 2004]: For  $z \in \rho(H_{\alpha,\beta})$  with  $\operatorname{Im} z > 0$  the resolvent  $R_{\alpha,\beta}(z) := (H_{\alpha,\beta} - z)^{-1}$  equals

$$R_{\alpha,\beta}(z) = R(z) + \sum_{i,j=0}^{1} \mathbf{R}_{L,i}(z) [\Gamma(z)]_{ij}^{-1} \mathbf{R}_{j,L}(z)$$

*Remark:* One can also compare resolvent of  $H_{\alpha,\beta}$  to that of  $H_{\alpha} \equiv H_{\alpha,\Sigma}$  using trace maps of the latter,

$$R_{\alpha,\beta}(z) = R_{\alpha}(z) + \mathbf{R}_{\alpha;L1}(z)D(z)^{-1}\mathbf{R}_{\alpha;1L}(z)$$



It is easy to check that

$$\sigma_{\rm ess}(H_{\alpha,\beta}) = \sigma_{\rm ac}(H_{\alpha,\beta}) = [-\frac{1}{4}\alpha^2, \infty)$$



It is easy to check that

$$\sigma_{\rm ess}(H_{\alpha,\beta}) = \sigma_{\rm ac}(H_{\alpha,\beta}) = [-\frac{1}{4}\alpha^2, \infty)$$

 $\sigma_{\rm disc}$  given by generalized Birman-Schwinger principle:

$$\dim \ker \Gamma(z) = \dim \ker R_{\alpha,\beta}(z),$$

$$H_{\alpha,\beta}\phi_z = z\phi_z \iff \phi_z = \sum_{i=0}^{1} \mathbf{R}_{L,i}(z)\eta_{i,z},$$

where  $(\eta_{0,z},\eta_{1,z}) \in \ker \Gamma(z)$ . Moreover, it is clear that  $0 \in \sigma_{\mathrm{disc}}(\Gamma(z)) \Leftrightarrow 0 \in \sigma_{\mathrm{disc}}(D(z))$ ; this reduces the task of finding the spectrum to an algebraic problem



Theorem [E.-Kondej, 2004]: (a) Let n=1 and denote  $\operatorname{dist}(\sigma,\Pi)=:a$ , then  $H_{\alpha,\beta}$  has one isolated eigenvalue  $-\kappa_a^2$ . The function  $a\mapsto -\kappa_a^2$  is increasing in  $(0,\infty)$ ,

$$\lim_{a \to \infty} (-\kappa_a^2) = \min \left\{ \epsilon_\beta, \, -\frac{1}{4}\alpha^2 \right\},\,$$

where  $\epsilon_{\beta}:=-4\mathrm{e}^{2(-2\pi\beta+\psi(1))}$ , while  $\lim_{a\to 0}(-\kappa_a^2)$  is finite.



Theorem [E.-Kondej, 2004]: (a) Let n=1 and denote  $\operatorname{dist}(\sigma,\Pi)=:a$ , then  $H_{\alpha,\beta}$  has one isolated eigenvalue  $-\kappa_a^2$ . The function  $a\mapsto -\kappa_a^2$  is increasing in  $(0,\infty)$ ,

$$\lim_{a \to \infty} (-\kappa_a^2) = \min \left\{ \epsilon_\beta, \, -\frac{1}{4}\alpha^2 \right\},\,$$

where  $\epsilon_{\beta}:=-4\mathrm{e}^{2(-2\pi\beta+\psi(1))}$ , while  $\lim_{a\to 0}(-\kappa_a^2)$  is finite. (b) For any  $\alpha>0,\ \beta\in\mathbb{R}^n$ , and  $n\in\mathbb{N}_+$  the operator  $H_{\alpha,\beta}$  has N isolated eigenvalues,  $1\leq N\leq n$ . If all the point interactions are strong enough, we have N=n



Theorem [E.-Kondej, 2004]: (a) Let n=1 and denote  $\operatorname{dist}(\sigma,\Pi)=:a$ , then  $H_{\alpha,\beta}$  has one isolated eigenvalue  $-\kappa_a^2$ . The function  $a\mapsto -\kappa_a^2$  is increasing in  $(0,\infty)$ ,

$$\lim_{a \to \infty} (-\kappa_a^2) = \min \left\{ \epsilon_\beta, \, -\frac{1}{4}\alpha^2 \right\},\,$$

where  $\epsilon_{\beta}:=-4\mathrm{e}^{2(-2\pi\beta+\psi(1))}$ , while  $\lim_{a\to 0}(-\kappa_a^2)$  is finite. (b) For any  $\alpha>0,\ \beta\in\mathbb{R}^n$ , and  $n\in\mathbb{N}_+$  the operator  $H_{\alpha,\beta}$  has N isolated eigenvalues,  $1\leq N\leq n$ . If all the point interactions are strong enough, we have N=n

*Remark:* Embedded eigenvalues due to mirror symmetry w.r.t.  $\Sigma$  possible if  $n \ge 2$ 



#### **Resonance for** n=1

Assume the point interaction eigenvalue *becomes* embedded as  $a \to \infty$ , i.e. that  $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$ 



#### **Resonance for** n=1

Assume the point interaction eigenvalue *becomes embedded* as  $a \to \infty$ , i.e. that  $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$ 

Observation: Birman-Schwinger works in the complex domain too; it is enough to look for analytical continuation of  $D(\cdot)$ , which acts for  $z \in \mathbb{C} \setminus [-\frac{1}{4}\alpha^2, \infty)$  as a multiplication by

$$d_a(z) := s_{\beta}(z) - \phi_a(z) = s_{\beta}(z) - \int_0^{\infty} \frac{\mu(z, t)}{t - z - \frac{1}{4}\alpha^2} dt,$$
$$\mu(z, t) := \frac{i\alpha}{16\pi} \frac{(\alpha - 2i(z - t)^{1/2}) e^{2ia(z - t)^{1/2}}}{t^{1/2}(z - t)^{1/2}}$$

Thus we have a situation reminiscent of Friedrichs model, just the functions involved are more complicated



Take a region  $\Omega_-$  of the other sheet with  $(-\frac{1}{4}\alpha^2,0)$  as a part of its boundary. Put  $\mu^0(\lambda,t):=\lim_{\varepsilon\to 0}\mu(\lambda+i\varepsilon,t)$ , define

$$I(\lambda) := \mathcal{P} \int_0^\infty \frac{\mu^0(\lambda, t)}{t - \lambda - \frac{1}{4}\alpha^2} dt,$$

and furthermore,  $g_{\alpha,a}(z):=rac{ilpha}{4}\,rac{{
m e}^{-lpha a}}{(z+rac{1}{4}lpha^2)^{1/2}}$  .



Take a region  $\Omega_-$  of the other sheet with  $(-\frac{1}{4}\alpha^2, 0)$  as a part of its boundary. Put  $\mu^0(\lambda, t) := \lim_{\varepsilon \to 0} \mu(\lambda + i\varepsilon, t)$ , define

$$I(\lambda) := \mathcal{P} \int_0^\infty \frac{\mu^0(\lambda, t)}{t - \lambda - \frac{1}{4}\alpha^2} dt,$$

and furthermore,  $g_{\alpha,a}(z):=rac{ilpha}{4}\,rac{{
m e}^{-lpha a}}{(z+rac{1}{4}lpha^2)^{1/2}}$  .

**Lemma**:  $z \mapsto \phi_a(z)$  is continued analytically to  $\Omega_-$  as

$$\phi_a^0(\lambda) = I(\lambda) + g_{\alpha,a}(\lambda) \quad \text{for} \quad \lambda \in \left(-\frac{1}{4}\alpha^2, 0\right),$$

$$\phi_a^-(z) = -\int_0^\infty \frac{\mu(z,t)}{t-z-\frac{1}{4}\alpha^2} dt - 2g_{\alpha,a}(z), \ z \in \Omega_-$$



*Proof:* By a direct computation one checks

$$\lim_{\varepsilon \to 0^+} \phi_a^{\pm}(\lambda \pm i\varepsilon) = \phi_a^0(\lambda), \qquad -\frac{1}{4}\alpha^2 < \lambda < 0,$$

so the claim follows from edge-of-the-wedge theorem.  $\square$ 



*Proof:* By a direct computation one checks

$$\lim_{\varepsilon \to 0^+} \phi_a^{\pm}(\lambda \pm i\varepsilon) = \phi_a^0(\lambda), \qquad -\frac{1}{4}\alpha^2 < \lambda < 0,$$

so the claim follows from edge-of-the-wedge theorem.  $\Box$ 

The continuation of  $d_a$  is thus the function  $\eta_a: M \mapsto \mathbb{C}$ , where  $M = \{z : \operatorname{Im} z > 0\} \cup (-\frac{1}{4}\alpha^2, 0) \cup \Omega_-$ , acting as

$$\eta_a(z) = s_{\beta}(z) - \phi_a^{l(z)}(z),$$

and our problem reduces to solution if the implicit function problem  $\eta_a(z) = 0$ .



#### **Resonance for** n=1

Theorem [E.-Kondej, 2004]: Assume  $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$ . For any a large enough the equation  $\eta_a(z) = 0$  has a unique solution  $z(a) = \mu(b) + i\nu(b) \in \Omega_-$ , i.e.  $\nu(a) < 0$ , with the following asymptotic behaviour as  $a \to \infty$ ,

$$\mu(a) = \epsilon_{\beta} + \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}}), \quad \nu(a) = \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}})$$



#### **Resonance for** n=1

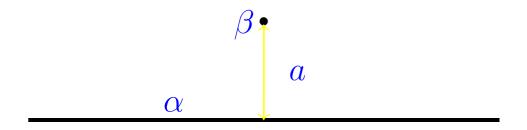
Theorem [E.-Kondej, 2004]: Assume  $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$ . For any a large enough the equation  $\eta_a(z) = 0$  has a unique solution  $z(a) = \mu(b) + i\nu(b) \in \Omega_-$ , i.e.  $\nu(a) < 0$ , with the following asymptotic behaviour as  $a \to \infty$ ,

$$\mu(a) = \epsilon_{\beta} + \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}}), \quad \nu(a) = \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}})$$

Remark: We have  $|\phi_a^-(z)| \to 0$  uniformly in a and  $|s_\beta(z)| \to \infty$  as  ${\rm Im}\, z \to -\infty$ . Hence the imaginary part z(a) is bounded as a function of a, in particular, the resonance pole survives as  $a \to 0$ .

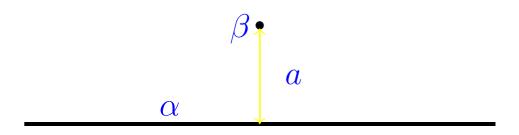


The same as scattering problem for  $(H_{\alpha,\beta}, H_{\alpha})$ 





The same as scattering problem for  $(H_{\alpha,\beta}, H_{\alpha})$ 



Existence and completeness by Birman-Kuroda theorem; we seek on-shell S-matrix in  $(-\frac{1}{4}\alpha^2, 0)$ . By Krein formula, resolvent for Im z>0 expresses as

$$R_{\alpha,\beta}(z) = R_{\alpha}(z) + \eta_a(z)^{-1}(\cdot, v_z)v_z,$$

where  $v_z := R_{\alpha;L,1}(z)$ 



Apply this operator to vector

$$\omega_{\lambda,\varepsilon}(x) := e^{i(\lambda + \alpha^2/4)^{1/2}x_1 - \varepsilon^2 x_1^2} e^{-\alpha|x_2|/2}$$

and take limit  $\varepsilon \to 0+$  in the sense of distributions; then a straightforward calculation give generalized eigenfunction of  $H_{\alpha,\beta}$ . In particular, we have



Apply this operator to vector

$$\omega_{\lambda,\varepsilon}(x) := e^{i(\lambda + \alpha^2/4)^{1/2}x_1 - \varepsilon^2 x_1^2} e^{-\alpha|x_2|/2}$$

and take limit  $\varepsilon \to 0+$  in the sense of distributions; then a straightforward calculation give generalized eigenfunction of  $H_{\alpha,\beta}$ . In particular, we have

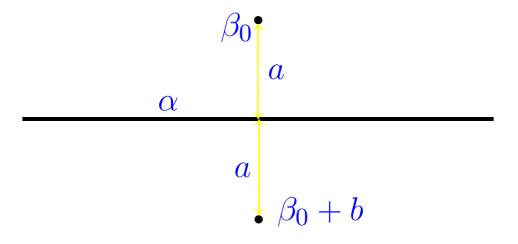
**Proposition**: For any  $\lambda \in (-\frac{1}{4}\alpha^2, 0)$  the reflection and transmission amplitudes are

$$\mathcal{R}(\lambda) = \mathcal{T}(\lambda) - 1 = \frac{i}{4} \alpha \eta_a(\lambda)^{-1} \frac{e^{-\alpha a}}{(\lambda + \frac{1}{4}\alpha^2)^{1/2}};$$

they have the same pole in the analytical continuation to  $\Omega_-$  as the continued resolvent

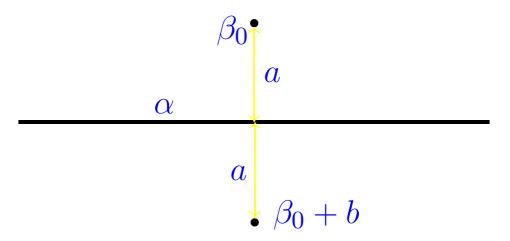


Take the simplest situation, n=2





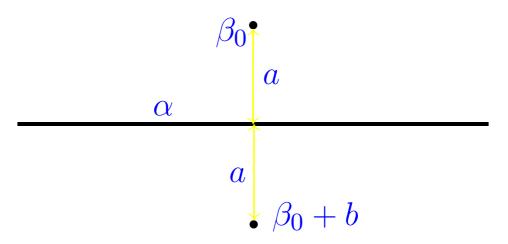
Take the simplest situation, n=2



Let  $\sigma_{\mathrm{disc}}(H_{0,\beta_0}) \cap \left(-\frac{1}{4}\alpha^2,0\right) \neq \emptyset$ , so that Hamiltonian  $H_{0,\beta_0}$  has two eigenvalues, the larger of which,  $\epsilon_2$ , exceeds  $-\frac{1}{4}\alpha^2$ . Then  $H_{\alpha,\beta_0}$  has the same eigenvalue  $\epsilon_2$  embedded in the negative part of continuous spectrum



Take the simplest situation, n=2



Let  $\sigma_{\mathrm{disc}}(H_{0,\beta_0}) \cap \left(-\frac{1}{4}\alpha^2,0\right) \neq \emptyset$ , so that Hamiltonian  $H_{0,\beta_0}$  has two eigenvalues, the larger of which,  $\epsilon_2$ , exceeds  $-\frac{1}{4}\alpha^2$ . Then  $H_{\alpha,\beta_0}$  has the same eigenvalue  $\epsilon_2$  embedded in the negative part of continuous spectrum

One has now to continue analytically the  $2 \times 2$  matrix function  $D(\cdot)$ . Put  $\kappa_2 := \sqrt{-\epsilon_2}$  and  $\check{s}_{\beta}(\kappa) := s_{\beta}(-\kappa^2)$ 



**Proposition**: Assume  $\epsilon_2 \in (-\frac{1}{4}\alpha^2, 0)$  and denote  $\tilde{g}(\lambda) := -ig_{\alpha,a}(\lambda)$ . Then for all b small enough the continued function has a unique zero  $z_2(b) = \mu_2(b) + i\nu_2(b) \in \Omega_-$  with the asymptotic expansion

$$\mu_{2}(b) = \epsilon_{2} + \frac{\kappa_{2}b}{\breve{s}'_{\beta}(\kappa_{2}) + K'_{0}(2a\kappa_{2})} + \mathcal{O}(b^{2}),$$

$$\nu_{2}(b) = -\frac{\kappa_{2}\tilde{g}(\epsilon_{2})b^{2}}{2(\breve{s}'_{\beta}(\kappa_{2}) + K'_{0}(2a\kappa_{2}))|\breve{s}'_{\beta}(\kappa_{2}) - \phi_{a}^{0}(\epsilon_{2})|} + \mathcal{O}(b^{3})$$



• Strong coupling asymptotics of  $\sigma_{\rm disc}(H_{\alpha,\Gamma})$  is not known for curves with open ends (manifolds with boundaries). For smooth  $\Gamma$ , one conjectures similar asymptotics, where  $S_{\Gamma}$  has Dirichlet b.c. For non-smooth  $\Gamma$  the leading term is expected to be different



- Strong coupling asymptotics of  $\sigma_{\rm disc}(H_{\alpha,\Gamma})$  is not known for curves with open ends (manifolds with boundaries). For smooth  $\Gamma$ , one conjectures similar asymptotics, where  $S_{\Gamma}$  has Dirichlet b.c. For non-smooth  $\Gamma$  the leading term is expected to be different
- Scattering on leaky graphs: existence and completess beyond the local deformation case



- Strong coupling asymptotics of  $\sigma_{\rm disc}(H_{\alpha,\Gamma})$  is not known for curves with open ends (manifolds with boundaries). For smooth  $\Gamma$ , one conjectures similar asymptotics, where  $S_{\Gamma}$  has Dirichlet b.c. For non-smooth  $\Gamma$  the leading term is expected to be different
- Scattering on leaky graphs: existence and completess beyond the local deformation case
- Scattering on leaky curves: strong coupling asymptotics, proving the stated conjecture



- Strong coupling asymptotics of  $\sigma_{\rm disc}(H_{\alpha,\Gamma})$  is not known for curves with open ends (manifolds with boundaries). For smooth  $\Gamma$ , one conjectures similar asymptotics, where  $S_{\Gamma}$  has Dirichlet b.c. For non-smooth  $\Gamma$  the leading term is expected to be different
- Scattering on leaky graphs: existence and completess beyond the local deformation case
- Scattering on leaky curves: strong coupling asymptotics, proving the stated conjecture
- Resonances: existence, properties in less trivial models



- Strong coupling asymptotics of  $\sigma_{\rm disc}(H_{\alpha,\Gamma})$  is not known for curves with open ends (manifolds with boundaries). For smooth  $\Gamma$ , one conjectures similar asymptotics, where  $S_{\Gamma}$  has Dirichlet b.c. For non-smooth  $\Gamma$  the leading term is expected to be different
- Scattering on leaky graphs: existence and completess beyond the local deformation case
- Scattering on leaky curves: strong coupling asymptotics, proving the stated conjecture
- Resonances: existence, properties in less trivial models
- Periodic  $\Gamma$ , in one direction: absolute continuity (proved so far only at the bottom of the spectrum)



- Strong coupling asymptotics of  $\sigma_{\rm disc}(H_{\alpha,\Gamma})$  is not known for curves with open ends (manifolds with boundaries). For smooth  $\Gamma$ , one conjectures similar asymptotics, where  $S_{\Gamma}$  has Dirichlet b.c. For non-smooth  $\Gamma$  the leading term is expected to be different
- Scattering on leaky graphs: existence and completess beyond the local deformation case
- Scattering on leaky curves: strong coupling asymptotics, proving the stated conjecture
- Resonances: existence, properties in less trivial models
- Periodic  $\Gamma$ , in one direction: absolute continuity (proved so far only at the bottom of the spectrum)
- More: random and magnetic graphs, justification of the  $L^2$  approach for leaky-graph resonances, etc.



#### The talk was based on

- [EI01] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, *J. Phys.* **A34** (2001), 1439-1450.
- [EK02] P.E., S. Kondej: Curvature-induced bound states for a  $\delta$  interaction supported by a curve in  $\mathbb{R}^3$ , *Ann. H. Poincaré* **3** (2002), 967-981.
- [EK03] P.E., S. Kondej: Bound states due to a strong  $\delta$  interaction supported by a curved surface, *J. Phys.* **A36** (2003), 443-457.
- [EK04] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, *J. Phys.* **A37** (2004), 8255-8277.
- [EK05] P.E., S. Kondej: Scattering by local deformations of a straight leaky wire, *J. Phys.* **A38** (2005), to appear
- [EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, *J. Phys.* **A36** (2003), 10173-10193.
- [EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong  $\delta$ -interaction on a periodic curve, *Ann. H. Poincaré* **2** (2001), 1139-1158.
- [EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong  $\delta$ -interaction on a loop, *J. Geom. Phys.* **41** (2002), 344-358.
- [EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong  $\delta$ -interaction on a loop, *J. Phys.* **A35** (2002), 3479-3487.



#### The talk was based on

- [EI01] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, *J. Phys.* **A34** (2001), 1439-1450.
- [EK02] P.E., S. Kondej: Curvature-induced bound states for a  $\delta$  interaction supported by a curve in  $\mathbb{R}^3$ , *Ann. H. Poincaré* **3** (2002), 967-981.
- [EK03] P.E., S. Kondej: Bound states due to a strong  $\delta$  interaction supported by a curved surface, *J. Phys.* **A36** (2003), 443-457.
- [EK04] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, *J. Phys.* **A37** (2004), 8255-8277.
- [EK05] P.E., S. Kondej: Scattering by local deformations of a straight leaky wire, *J. Phys.* **A38** (2005), to appear
- [EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, *J. Phys.* **A36** (2003), 10173-10193.
- [EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong  $\delta$ -interaction on a periodic curve, *Ann. H. Poincaré* **2** (2001), 1139-1158.
- [EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong  $\delta$ -interaction on a loop, *J. Geom. Phys.* **41** (2002), 344-358.
- [EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong  $\delta$ -interaction on a loop, *J. Phys.* **A35** (2002), 3479-3487.

for more information see <a href="http://www.ujf.cas.cz/~exner">http://www.ujf.cas.cz/~exner</a>

