### **Quantum Graphs** and their generalizations

Pavel Exner

exner@ujf.cas.cz

**Doppler Institute** 

for Mathematical Physics and Applied Mathematics

Prague



Summer School Lectures: Les Diablerets, June 6-10, 2011 – p. 1/9

## Lecture V

Leaky graphs – strong coupling, approximation of leaky graphs, eigenvalues and resonances



Spectral behaviour of leaky graphs in case of a strong coupling



- Spectral behaviour of leaky graphs in case of a strong coupling
- A point-interaction approximation: a method how to find leaky graph spectra numerically



- Spectral behaviour of leaky graphs in case of a strong coupling
- A point-interaction approximation: a method how to find leaky graph spectra numerically
- Geometrically induced spectral bound states of leaky wires and graphs: bent edges



- Spectral behaviour of leaky graphs in case of a strong coupling
- A point-interaction approximation: a method how to find leaky graph spectra numerically
- Geometrically induced spectral bound states of leaky wires and graphs: bent edges
- Leaky-graph resonances: a solvable model



Let  $\Gamma$  have a single component, smooth and compact **Theorem** [EY01, 02; EK03, Ex04]: *(i)* Let  $\Gamma$  be a  $C^4$  smooth manifold. In the limit  $(-1)^{\operatorname{codim}\Gamma-1}\alpha \to \infty$  we have

$$\#\sigma_{\rm disc}(H_{\alpha,\Gamma}) = \frac{|\Gamma|\alpha}{2\pi} + \mathcal{O}(\ln \alpha)$$

for dim  $\Gamma = 1$ , codim  $\Gamma = 1$ ,



Let  $\Gamma$  have a single component, smooth and compact **Theorem** [EY01, 02; EK03, Ex04]: *(i)* Let  $\Gamma$  be a  $C^4$  smooth manifold. In the limit  $(-1)^{\operatorname{codim}\Gamma-1}\alpha \to \infty$  we have

$$#\sigma_{\text{disc}}(H_{\alpha,\Gamma}) = \frac{|\Gamma|\alpha}{2\pi} + \mathcal{O}(\ln \alpha)$$

for dim  $\Gamma = 1$ , codim  $\Gamma = 1$ ,

$$\#\sigma_{\rm disc}(H_{\alpha,\Gamma}(h)) = \frac{|\Gamma|\alpha^2}{16\pi^2} + \mathcal{O}(\ln\alpha)$$

for dim  $\Gamma = 2$ , codim  $\Gamma = 1$ , and



Let  $\Gamma$  have a single component, smooth and compact **Theorem** [EY01, 02; EK03, Ex04]: *(i)* Let  $\Gamma$  be a  $C^4$  smooth manifold. In the limit  $(-1)^{\operatorname{codim}\Gamma-1}\alpha \to \infty$  we have

$$\#\sigma_{\operatorname{disc}}(H_{\alpha,\Gamma}) = \frac{|\Gamma|\alpha}{2\pi} + \mathcal{O}(\ln \alpha)$$

for dim  $\Gamma = 1$ , codim  $\Gamma = 1$ ,

$$\#\sigma_{\rm disc}(H_{\alpha,\Gamma}(h)) = \frac{|\Gamma|\alpha^2}{16\pi^2} + \mathcal{O}(\ln\alpha)$$

for dim  $\Gamma = 2$ , codim  $\Gamma = 1$ , and  $\#\sigma_{\text{disc}}(H_{\alpha,\Gamma}) = \frac{|\Gamma|(-\epsilon_{\alpha})^{1/2}}{-} + \mathcal{O}(e^{-\pi\alpha})$ 

for dim  $\Gamma = 1$ , codim  $\Gamma = 2$ . Here  $|\Gamma|$  is the curve length or surface area, respectively, and  $\epsilon_{\alpha} = -4 e^{2(-2\pi\alpha + \psi(1))}$ 



**Theorem**, continued: *(ii)* In addition, suppose that  $\Gamma$  has *no* boundary. Then the *j*-th eigenvalue of  $H_{\alpha,\Gamma}$  behaves as

$$\lambda_j(\alpha) = -\frac{\alpha^2}{4} + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$

for  $\operatorname{codim} \Gamma = 1$  and

$$\lambda_j(\alpha) = \epsilon_\alpha + \mu_j + \mathcal{O}(e^{\pi\alpha})$$

for  $\operatorname{codim} \Gamma = 2$ ,



**Theorem**, continued: *(ii)* In addition, suppose that  $\Gamma$  has *no* boundary. Then the *j*-th eigenvalue of  $H_{\alpha,\Gamma}$  behaves as

$$\lambda_j(\alpha) = -\frac{\alpha^2}{4} + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$

for  $\operatorname{codim} \Gamma = 1$  and

$$\lambda_j(\alpha) = \epsilon_\alpha + \mu_j + \mathcal{O}(e^{\pi\alpha})$$

for  $\operatorname{codim} \Gamma = 2$ , where  $\mu_j$  is the *j*-th eigenvalue of

$$S_{\Gamma} = -\frac{\mathrm{d}}{\mathrm{d}s^2} - \frac{1}{4}k(s)^2$$

on  $L^2((0, |\Gamma|))$  for dim  $\Gamma = 1$ , where k is curvature of  $\Gamma$ , and  $S_{\Gamma} = -\Delta_{\Gamma} + K - M^2$ 

on  $L^2(\Gamma, d\Gamma)$  for dim  $\Gamma = 2$ , where  $-\Delta_{\Gamma}$  is Laplace-Beltrami operator on  $\Gamma$  and K, M, respectively, are the corresponding *Gauss* and *mean* curvatures



## **Proof technique**

Consider first the 1 + 1 case. Take a closed curve  $\Gamma$  and call  $L = |\Gamma|$ . We start from a *tubular neighborhood* of  $\Gamma$ 



# **Proof technique**

Consider first the 1 + 1 case. Take a closed curve  $\Gamma$  and call  $L = |\Gamma|$ . We start from a *tubular neighborhood* of  $\Gamma$ 

**Lemma**:  $\Phi_a$  :  $[0, L) \times (-a, a) \rightarrow \mathbb{R}^2$  defined by

 $(s,u) \mapsto (\gamma_1(s) - u\gamma_2'(s), \gamma_2(s) + u\gamma_1'(s)).$ 

is a diffeomorphism for all a > 0 small enough



constant-width strip, do not take the LaTeX drawing too literary!



# **DN bracketing**

The idea is to apply to the operator  $H_{\alpha,\Gamma}$  in question *Dirichlet-Neumann bracketing* at the boundary of  $\Sigma_a := \Phi([0, L) \times (-a, a))$ . This yields

$$(-\Delta_{\Lambda_a}^{\mathrm{N}}) \oplus L_{a,\alpha}^{-} \leq H_{\alpha,\Gamma} \leq (-\Delta_{\Lambda_a}^{\mathrm{D}}) \oplus L_{a,\alpha}^{+},$$

where  $\Lambda_a = \Lambda_a^{\text{in}} \cup \Lambda_a^{\text{out}}$  is the exterior domain, and  $L_{a,\alpha}^{\pm}$  are self-adjoint operators associated with the forms

$$q_{a,\alpha}^{\pm}[f] = \|\nabla f\|_{L^2(\Sigma_a)}^2 - \alpha \int_{\Gamma} |f(x)|^2 \,\mathrm{d}S$$

where  $f \in W_0^{1,2}(\Sigma_a)$  and  $W^{1,2}(\Sigma_a)$  for  $\pm$ , respectively



# **DN bracketing**

The idea is to apply to the operator  $H_{\alpha,\Gamma}$  in question *Dirichlet-Neumann bracketing* at the boundary of  $\Sigma_a := \Phi([0, L) \times (-a, a))$ . This yields

$$(-\Delta_{\Lambda_a}^{\mathrm{N}}) \oplus L_{a,\alpha}^{-} \leq H_{\alpha,\Gamma} \leq (-\Delta_{\Lambda_a}^{\mathrm{D}}) \oplus L_{a,\alpha}^{+},$$

where  $\Lambda_a = \Lambda_a^{\text{in}} \cup \Lambda_a^{\text{out}}$  is the exterior domain, and  $L_{a,\alpha}^{\pm}$  are self-adjoint operators associated with the forms

$$q_{a,\alpha}^{\pm}[f] = \|\nabla f\|_{L^2(\Sigma_a)}^2 - \alpha \int_{\Gamma} |f(x)|^2 \,\mathrm{d}S$$

where  $f \in W_0^{1,2}(\Sigma_a)$  and  $W^{1,2}(\Sigma_a)$  for  $\pm$ , respectively *Important*: The exterior part does not contribute to the negative spectrum, so we may consider  $L_{a,\alpha}^{\pm}$  only



# **Transformed interior operator**

We use the curvilinear coordinates passing from  $L_{a,\alpha}^{\pm}$  to unitarily equivalent operators given by quadratic forms

$$b_{a,\alpha}^{+}[f] = \int_{0}^{L} \int_{-a}^{a} (1+uk(s))^{-2} \left| \frac{\partial f}{\partial s} \right|^{2} du ds + \int_{0}^{L} \int_{-a}^{a} \left| \frac{\partial f}{\partial u} \right|^{2} du ds$$
$$+ \int_{0}^{L} \int_{-a}^{a} V(s,u) |f|^{2} ds du - \alpha \int_{0}^{L} |f(s,0)|^{2} ds$$

with  $f \in W^{1,2}((0,L) \times (-a,a))$  satisfying periodic b.c. in the variable s and Dirichlet b.c. at  $u = \pm a$ , and

$$b_{a,\alpha}^{-}[f] = b_{a,\alpha}^{+}[f] - \sum_{j=0}^{1} \frac{1}{2} (-1)^{j} \int_{0}^{L} \frac{k(s)}{1 + (-1)^{j} a k(s)} |f(s, (-1)^{j} a)|^{2} ds$$

where V is the curvature induced potential,

$$V(s,u) = -\frac{k(s)^2}{4(1+uk(s))^2} + \frac{uk''(s)}{2(1+uk(s))^3} - \frac{5u^2k'(s)^2}{4(1+uk(s))^4}$$



# **Estimates with separated variables**

We pass to rougher bounds squeezing  $H_{\alpha,\Gamma}$  between  $\tilde{H}_{a,\alpha}^{\pm} = U_a^{\pm} \otimes 1 + 1 \otimes T_{a,\alpha}^{\pm}$ 



## **Estimates with separated variables**

We pass to rougher bounds squeezing  $H_{\alpha,\Gamma}$  between  $\tilde{H}_{a,\alpha}^{\pm} = U_a^{\pm} \otimes 1 + 1 \otimes T_{a,\alpha}^{\pm}$ 

Here  $U_a^{\pm}$  are s-a operators on  $L^2(0, L)$  $U_a^{\pm} = -(1 \mp a ||k||_{\infty})^{-2} \frac{\mathrm{d}^2}{\mathrm{d}s^2} + V_{\pm}(s)$ 

with PBC, where  $V_{-}(s) \leq V(s, u) \leq V_{+}(s)$  with an  $\mathcal{O}(a)$  error, and the transverse operators are associated with the forms

$$t_{a,\alpha}^{+}[f] = \int_{-a}^{a} |f'(u)|^2 \,\mathrm{d}u - \alpha |f(0)|^2$$

and

$$t_{a,\alpha}^{-}[f] = t_{a,\alpha}^{-}[f] - ||k||_{\infty}(|f(a)|^2 + |f(-a)|^2)$$
  
with  $f \in W_0^{1,2}(-a,a)$  and  $W^{1,2}(-a,a)$ , respectively

# **Concluding the planar curve case**

**Lemma**: There are positive c,  $c_N$  such that  $T_{\alpha,a}^{\pm}$  has for  $\alpha$  large enough a single negative eigenvalue  $\kappa_{\alpha,a}^{\pm}$  satisfying

$$-\frac{\alpha^2}{4} \left( 1 + c_N e^{-\alpha a/2} \right) < \kappa_{\alpha,a}^- < -\frac{\alpha^2}{4} < \kappa_{\alpha,a}^+ < -\frac{\alpha^2}{4} \left( 1 - 8e^{-\alpha a/2} \right)$$



# **Concluding the planar curve case**

**Lemma**: There are positive c,  $c_N$  such that  $T_{\alpha,a}^{\pm}$  has for  $\alpha$  large enough a single negative eigenvalue  $\kappa_{\alpha,a}^{\pm}$  satisfying

$$-\frac{\alpha^2}{4}\left(1+c_N \mathrm{e}^{-\alpha a/2}\right) < \kappa_{\alpha,a}^- < -\frac{\alpha^2}{4} < \kappa_{\alpha,a}^+ < -\frac{\alpha^2}{4}\left(1-8\mathrm{e}^{-\alpha a/2}\right)$$

#### Finishing the proof:

- the eigenvalues of  $U_a^{\pm}$  differ by  $\mathcal{O}(a)$  from those of the comparison operator
- we choose  $a = 6\alpha^{-1} \ln \alpha$  as the neighbourhood width
- putting the estimates together we get the eigenvalue asymptotics for a planar loop, i.e. the claim (ii)
- if  $\Gamma$  is not closed, the same can be done with the comparison operators  $S_{\Gamma}^{D,N}$  having appropriate b.c. at the endpoints of  $\Gamma$ . This yields the claim *(i)*



The argument is similar:





Summer School Lectures: Les Diablerets, June 6-10, 2011 – p. 11/9





The "straightening" transformation  $\Phi_a$  is defined by

 $\Phi_a(s, r, \theta) := \gamma(s) - r[n(s)\cos(\theta - \beta(s)) + b(s)\sin(\theta - \beta(s))]$ 

To separate variables, we choose  $\beta$  so that  $\dot{\beta}(s)$  equals the torsion  $\tau(s)$  of  $\Gamma$ . The *effective potential* is then

$$V = -\frac{k^2}{4h^2} + \frac{h_{ss}}{2h^3} - \frac{5h_s^2}{4h^4},$$

where  $h := 1 + rk\cos(\theta - \beta)$ . It is important that the *leading* term is  $-\frac{1}{4}k^2$  again, the torsion part being O(a)

# A curve in $\mathbb{R}^3$

The transverse estimate is replaced by

**Lemma**: There are  $c_1$ ,  $c_2 > 0$  such that  $T_{\alpha}^{\pm}$  has for large enough negative  $\alpha$  a single negative ev  $\kappa_{\alpha,a}^{\pm}$  which satisfies

 $\epsilon_{\alpha} - S(\alpha) < \kappa_{\alpha,a}^{-} < \xi_{\alpha} < \kappa_{\alpha,a}^{+} < \xi_{\alpha} + S(\alpha)$ 

as  $\alpha \to -\infty$ , where  $S(\alpha) = c_1 e^{-2\pi\alpha} \exp(-c_2 e^{-\pi\alpha})$ 

The rest of the argument is the same as above



# A curve in $\mathbb{R}^3$

The transverse estimate is replaced by

**Lemma**: There are  $c_1$ ,  $c_2 > 0$  such that  $T^{\pm}_{\alpha}$  has for large enough negative  $\alpha$  a single negative ev  $\kappa^{\pm}_{\alpha,a}$  which satisfies

 $\epsilon_{\alpha} - S(\alpha) < \kappa_{\alpha,a}^{-} < \xi_{\alpha} < \kappa_{\alpha,a}^{+} < \xi_{\alpha} + S(\alpha)$ 

as  $\alpha \to -\infty$ , where  $S(\alpha) = c_1 e^{-2\pi\alpha} \exp(-c_2 e^{-\pi\alpha})$ 

The rest of the argument is the same as above

**Remark:** Notice that the result extends easily to  $\Gamma$ 's consisting of a *finite number of connected components* (curves) which are  $C^4$  and do not intersect. The same will be true for surfaces considered below



## A surface in $\mathbb{R}^3$

The argument modifies easily;  $\Sigma_a$  is now a *layer neighborhood*. However, the intrinsic geometry of  $\Gamma$ can no longer be neglected



## A surface in $\mathbb{R}^3$

The argument modifies easily;  $\Sigma_a$  is now a *layer neighborhood*. However, the intrinsic geometry of  $\Gamma$ can no longer be neglected

Let  $\Gamma \subset \mathbb{R}^3$  be a  $C^4$  smooth compact Riemann surface of a finite genus g. The metric tensor given in the local coordinates by  $g_{\mu\nu} = p_{,\mu} \cdot p_{,\nu}$  defines the invariant surface area element  $d\Gamma := g^{1/2}d^2s$ , where  $g := \det(g_{\mu\nu})$ .

The Weingarten tensor is then obtained by raising the index in the second fundamental form,  $h_{\mu}{}^{\nu} := -n_{,\mu} \cdot p_{,\sigma}g^{\sigma\nu}$ ; the eigenvalues  $k_{\pm}$  of  $(h_{\mu}{}^{\nu})$  are the principal curvatures. They determine *Gauss curvature* K and *mean curvature* M by

$$K = \det(h_{\mu}{}^{\nu}) = k_{+}k_{-}, \ M = \frac{1}{2}\operatorname{Tr}(h_{\mu}{}^{\nu}) = \frac{1}{2}(k_{+}+k_{-})$$



#### **Proof sketch in the surface case**

The bracketing argument proceeds as before,

$$-\Delta_{\Lambda_a}^N \oplus H_{\alpha,\Gamma}^- \leq H_{\alpha,\Gamma} \leq -\Delta_{\Lambda_a}^D \oplus H_{\alpha,\Gamma}^+, \ \Lambda_a := \mathbb{R}^3 \setminus \overline{\Sigma}_a,$$

the interior only contributing to the negative spectrum



### **Proof sketch in the surface case**

The bracketing argument proceeds as before,

$$-\Delta_{\Lambda_a}^N \oplus H_{\alpha,\Gamma}^- \leq H_{\alpha,\Gamma} \leq -\Delta_{\Lambda_a}^D \oplus H_{\alpha,\Gamma}^+, \ \Lambda_a := \mathbb{R}^3 \setminus \overline{\Sigma}_a,$$

the interior only contributing to the negative spectrum Using the curvilinear coordinates: For small enough a we have the "straightening" diffeomorphism

 $\mathcal{L}_a(x,u) = x + un(x), \quad (x,u) \in \mathcal{N}_a := \Gamma \times (-a,a)$ 

Then we transform  $H_{\alpha,\Gamma}^{\pm}$  by the unitary operator

$$\hat{U}\psi = \psi \circ \mathcal{L}_a : L^2(\Omega_a) \to L^2(\mathcal{N}_a, \mathrm{d}\Omega)$$

and estimate the operators  $\hat{H}_{\alpha,\Gamma}^{\pm} := \hat{U} H_{\alpha,\Gamma}^{\pm} \hat{U}^{-1}$  in  $L^2(\mathcal{N}_a, \mathrm{d}\Omega)$ 



# **Straightening transformation**

Denote the pull-back metric tensor by  $G_{ij}$ ,

$$G_{ij} = \begin{pmatrix} (G_{\mu\nu}) & 0\\ 0 & 1 \end{pmatrix}, \ G_{\mu\nu} = (\delta^{\sigma}_{\mu} - uh_{\mu}{}^{\sigma})(\delta^{\rho}_{\sigma} - uh_{\sigma}{}^{\rho})g_{\rho\nu},$$

so  $d\Sigma := G^{1/2} d^2 s \, du$  with  $G := \det(G_{ij})$  given by  $G = g \left[ (1 - uk_+)(1 - uk_-) \right]^2 = g (1 - 2Mu + Ku^2)^2$ 



# **Straightening transformation**

Denote the pull-back metric tensor by  $G_{ij}$ ,

$$G_{ij} = \begin{pmatrix} (G_{\mu\nu}) & 0\\ 0 & 1 \end{pmatrix}, \ G_{\mu\nu} = (\delta^{\sigma}_{\mu} - uh_{\mu}{}^{\sigma})(\delta^{\rho}_{\sigma} - uh_{\sigma}{}^{\rho})g_{\rho\nu},$$

so  $d\Sigma := G^{1/2} d^2 s \, du$  with  $G := \det(G_{ij})$  given by  $G = g \left[ (1 - uk_+)(1 - uk_-) \right]^2 = g (1 - 2Mu + Ku^2)^2$ 

Let  $(\cdot, \cdot)_G$  denote the inner product in  $L^2(\mathcal{N}_a, \mathrm{d}\Omega)$ . Then  $\hat{H}_{\alpha,\Gamma}^{\pm}$  are associated with the forms

$$\eta_{\alpha,\Gamma}^{\pm}[\hat{U}^{-1}\psi] := (\partial_i\psi, G^{ij}\partial_j\psi)_G - \alpha \int_{\Gamma} |\psi(s,0)|^2 \,\mathrm{d}\Gamma \,,$$

with the domains  $W_0^{1,2}(\mathcal{N}_a,\mathrm{d}\Omega)$  and  $W^{1,2}(\mathcal{N}_a,\mathrm{d}\Omega)$  for the  $\pm$  sign, respectively

# **Straightening continued**

Next we remove  $1 - 2Mu + Ku^2$  from the weight  $G^{1/2}$  in the inner product of  $L^2(\mathcal{N}_a, d\Omega)$  by the unitary transformation  $U: L^2(\mathcal{N}_a, d\Omega) \to L^2(\mathcal{N}_a, d\Gamma du)$ ,

 $U\psi := (1 - 2Mu + Ku^2)^{1/2}\psi$ 



# **Straightening continued**

Next we remove  $1 - 2Mu + Ku^2$  from the weight  $G^{1/2}$  in the inner product of  $L^2(\mathcal{N}_a, d\Omega)$  by the unitary transformation  $U: L^2(\mathcal{N}_a, d\Omega) \to L^2(\mathcal{N}_a, d\Gamma du)$ ,

 $U\psi := (1 - 2Mu + Ku^2)^{1/2}\psi$ 

Denote the inner product in  $L^2(\mathcal{N}_a, \mathrm{d}\Gamma du)$  by  $(\cdot, \cdot)_g$ . The operators  $B^{\pm}_{\alpha,\Gamma} := U\hat{H}^{\pm}_{\alpha,\Gamma}U^{-1}$  are associated with the forms

$$b_{\alpha,\Gamma}^{+}[\psi] = (\partial_{\mu}\psi, G^{\mu\nu}\partial_{\nu}\psi)_{g} + (\psi, (V_{1}+V_{2})\psi)_{g} + \|\partial_{u}\psi\|_{g}^{2} - \alpha \int_{\Gamma} |\psi(s,0)|^{2} d\Gamma , b_{\alpha,\Gamma}^{-}[\psi] = b_{\alpha,\Gamma}^{+}[\psi] + \sum_{j=0}^{1} (-1)^{j} \int_{\Gamma} M_{(-1)^{j}a}(s) |\psi(s,(-1)^{j}a)|^{2} d\Gamma$$

for  $\psi$  from  $W_0^{2,1}(\Omega_a, d\Gamma du)$  and  $W^{2,1}(\Omega_a, d\Gamma du)$ , respectively



# **Effective potential**

Here  $M_u := (M - Ku)(1 - 2Mu + Ku^2)^{-1}$  is the mean curvature of the parallel surface to  $\Gamma$  and

 $V_1 = g^{-1/2} (g^{1/2} G^{\mu\nu} J_{,\nu})_{,\mu} + J_{,\mu} G^{\mu\nu} J_{,\nu} , \quad V_2 = \frac{K - M^2}{(1 - 2Mu + Ku^2)^2}$ with  $J := \frac{1}{2} \ln(1 - 2Mu + Ku^2)$ 



# **Effective potential**

Here  $M_u := (M - Ku)(1 - 2Mu + Ku^2)^{-1}$  is the mean curvature of the parallel surface to  $\Gamma$  and

 $V_1 = g^{-1/2} (g^{1/2} G^{\mu\nu} J_{,\nu})_{,\mu} + J_{,\mu} G^{\mu\nu} J_{,\nu} , \quad V_2 = \frac{K - M^2}{(1 - 2Mu + Ku^2)^2}$ with  $J := \frac{1}{2} \ln(1 - 2Mu + Ku^2)$ 

A rougher estimate with separated variables: squeeze  $1 - 2Mu + Ku^2$  between  $C_{\pm}(a) := (1 \pm a\varrho^{-1})^2$ , where  $\varrho := \max(\{\|k_+\|_{\infty}, \|k_-\|_{\infty}\})^{-1}$ . Consequently, the matrix inequality  $C_{-}(a)g_{\mu\nu} \leq G_{\mu\nu} \leq C_{+}(a)g_{\mu\nu}$  is valid



# **Effective potential**

Here  $M_u := (M - Ku)(1 - 2Mu + Ku^2)^{-1}$  is the mean curvature of the parallel surface to  $\Gamma$  and

 $V_1 = g^{-1/2} (g^{1/2} G^{\mu\nu} J_{,\nu})_{,\mu} + J_{,\mu} G^{\mu\nu} J_{,\nu} , \quad V_2 = \frac{K - M^2}{(1 - 2Mu + Ku^2)^2}$ with  $J := \frac{1}{2} \ln(1 - 2Mu + Ku^2)$ 

A rougher estimate with separated variables: squeeze  $1 - 2Mu + Ku^2$  between  $C_{\pm}(a) := (1 \pm a\varrho^{-1})^2$ , where  $\varrho := \max(\{\|k_+\|_{\infty}, \|k_-\|_{\infty}\})^{-1}$ . Consequently, the matrix inequality  $C_{-}(a)g_{\mu\nu} \leq G_{\mu\nu} \leq C_{+}(a)g_{\mu\nu}$  is valid

 $V_1$  behaves as  $\mathcal{O}(a)$  for  $a \to 0$ , while  $V_2$  can be squeezed between the functions  $C_{\pm}^{-2}(a)(K - M^2)$ , both uniformly in the surface variables



# **Concluding the estimate**

Hence we estimate  $B_{\alpha,\Gamma}^{\pm}$  by

 $\tilde{B}_{\alpha,a}^{\pm} := S_a^{\pm} \otimes I + I \otimes T_{\alpha,a}^{\pm}$ 

with  $S_a^{\pm} := -C_{\pm}(a)\Delta_{\Gamma} + C_{\pm}^{-2}(a)(K - M^2) \pm va$  in the space  $L^2(\Gamma, d\Gamma) \otimes L^2(-a, a)$  for a v > 0, where  $T_{\alpha, a}^{\pm}$  are the same as in the 1 + 1 case (the same lemma applies)


### **Concluding the estimate**

Hence we estimate  $B_{\alpha,\Gamma}^{\pm}$  by

$$\tilde{B}_{\alpha,a}^{\pm} := S_a^{\pm} \otimes I + I \otimes T_{\alpha,a}^{\pm}$$

with  $S_a^{\pm} := -C_{\pm}(a)\Delta_{\Gamma} + C_{\pm}^{-2}(a)(K - M^2) \pm va$  in the space  $L^2(\Gamma, d\Gamma) \otimes L^2(-a, a)$  for a v > 0, where  $T_{\alpha, a}^{\pm}$  are the same as in the 1 + 1 case (the same lemma applies)

As above the eigenvalues of the operators  $S_a^{\pm}$  coincide up to an  $\mathcal{O}(a)$  error with those of  $S_{\Gamma}$ , and therefore choosing  $a := 6\alpha^{-1} \ln \alpha$ , we find

$$\lambda_j(\alpha) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$

as  $a \rightarrow 0$  which is equivalent to the claim (i)



### **Concluding the estimate**

Hence we estimate  $B_{\alpha,\Gamma}^{\pm}$  by

$$\tilde{B}_{\alpha,a}^{\pm} := S_a^{\pm} \otimes I + I \otimes T_{\alpha,a}^{\pm}$$

with  $S_a^{\pm} := -C_{\pm}(a)\Delta_{\Gamma} + C_{\pm}^{-2}(a)(K - M^2) \pm va$  in the space  $L^2(\Gamma, d\Gamma) \otimes L^2(-a, a)$  for a v > 0, where  $T_{\alpha, a}^{\pm}$  are the same as in the 1 + 1 case (the same lemma applies)

As above the eigenvalues of the operators  $S_a^{\pm}$  coincide up to an  $\mathcal{O}(a)$  error with those of  $S_{\Gamma}$ , and therefore choosing  $a := 6\alpha^{-1} \ln \alpha$ , we find

$$\lambda_j(\alpha) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$

as  $a \rightarrow 0$  which is equivalent to the claim (i)

To get *(ii)* we employ Weyl asymptotics for  $S_{\Gamma}$ . Extension to  $\Gamma$ 's having a finite # of connected components is easy

Bound states may exist also if  $\Gamma$  is *noncompact*. The comparison operator  $S_{\Gamma}$  has an attractive potential, so  $\sigma_{\text{disc}}(H_{\alpha,\Gamma}) \neq \emptyset$  can be expected in the strong coupling regime, *even if a direct proof is missing* as for surfaces



Bound states may exist also if  $\Gamma$  is *noncompact*. The comparison operator  $S_{\Gamma}$  has an attractive potential, so  $\sigma_{\text{disc}}(H_{\alpha,\Gamma}) \neq \emptyset$  can be expected in the strong coupling regime, *even if a direct proof is missing* as for surfaces

It is needed that  $\sigma_{ess}$  does not feel curvature, not only for  $H_{\alpha,\Gamma}$  but for the estimating operators as well. *Sufficient conditions:* 

- k(s), k'(s) and  $k''(s)^{1/2}$  are  $O(|s|^{-1-ε})$  as |s| → ∞ for a planar curve
- in addition, the torsion bounded for a curve in  $\mathbb{R}^3$
- a surface  $\Gamma$  admits a global normal parametrization with a uniformly elliptic metric,  $K, M \to 0$  as the geodesic radius  $r \to \infty$



We must also *assume* that there is a tubular neighborhood  $\Sigma_a$  without self-intersections for small a, i.e. to avoid





We must also *assume* that there is a tubular neighborhood  $\Sigma_a$  without self-intersections for small a, i.e. to avoid



**Theorem** [EY02; EK03, Ex04]: With the above listed assumptions, the asymptotic expansions *(ii)* for the eigenvalues derived in the compact case hold again



#### **Periodic manifolds**

One uses Floquet expansion. It is important to choose the periodic cells C of the space and  $\Gamma_C$  of the manifold consistently,  $\Gamma_C = \Gamma \cap C$ ; we assume that  $\Gamma_C$  is *connected* 





#### **Periodic manifolds**

One uses Floquet expansion. It is important to choose the periodic cells C of the space and  $\Gamma_C$  of the manifold consistently,  $\Gamma_C = \Gamma \cap C$ ; we assume that  $\Gamma_C$  is *connected* 



**Lemma**:  $\exists$  unitary  $\mathcal{U} : L^2(\mathbb{R}^3) \to \int_{[0,2\pi)^r}^{\oplus} L^2(\mathcal{C}) d\theta$  s.t.

 $\mathcal{U}H_{\alpha,\Gamma}\mathcal{U}^{-1} = \int_{[0,2\pi)^r}^{\oplus} H_{\alpha,\theta} \,\mathrm{d}\theta \quad \text{and} \quad \sigma(H_{\alpha,\Gamma}) = \bigcup_{[0,2\pi)^r} \sigma(H_{\alpha,\theta})$ 



#### **Comparison operators**

The fibre comparison operators are

$$S_{\theta} = -\frac{\mathrm{d}}{\mathrm{d}s^2} - \frac{1}{4}k(s)^2$$

on  $L^2(\Gamma_{\mathcal{C}})$  parameterized by arc length for  $\dim \Gamma = 1$ , with Floquet b.c., and

$$S_{\theta} = g^{-1/2} (-i\partial_{\mu} + \theta_{\mu}) g^{1/2} g^{\mu\nu} (-i\partial_{\nu} + \theta_{\nu}) + K - M^2$$

with periodic b.c. for dim  $\Gamma = 2$ , where  $\theta_{\mu}$ ,  $\mu = 1, ..., r$ , are *quasimomentum components*; recall that r = 1, 2, 3 depending on the manifold type



#### **Periodic manifold asymptotics**

**Theorem** [EY01; EK03, Ex04]: Let  $\Gamma$  be a  $C^4$ -smooth r-periodic manifold without boundary. The strong coupling asymptotic behavior of the j-th Floquet eigenvalue is

$$\lambda_j(\alpha, \theta) = -\frac{1}{4}\alpha^2 + \mu_j(\theta) + \mathcal{O}(\alpha^{-1}\ln\alpha) \quad \text{as} \quad \alpha \to \infty$$

for  $\operatorname{codim} \Gamma = 1$  and

$$\lambda_j(\alpha, \theta) = \epsilon_\alpha + \mu_j(\theta) + \mathcal{O}(e^{\pi \alpha}) \quad \text{as} \quad \alpha \to -\infty$$

for  $\operatorname{codim} \Gamma = 2$ . The error terms are uniform w.r.t.  $\theta$ 



#### **Periodic manifold asymptotics**

**Theorem** [EY01; EK03, Ex04]: Let  $\Gamma$  be a  $C^4$ -smooth r-periodic manifold without boundary. The strong coupling asymptotic behavior of the j-th Floquet eigenvalue is

$$\lambda_j(\alpha, \theta) = -\frac{1}{4}\alpha^2 + \mu_j(\theta) + \mathcal{O}(\alpha^{-1}\ln\alpha) \quad \text{as} \quad \alpha \to \infty$$

for  $\operatorname{codim} \Gamma = 1$  and

$$\lambda_j(\alpha, \theta) = \epsilon_\alpha + \mu_j(\theta) + \mathcal{O}(e^{\pi \alpha}) \text{ as } \alpha \to -\infty$$

for  $\operatorname{codim} \Gamma = 2$ . The error terms are uniform w.r.t.  $\theta$ 

**Corollary**: If dim  $\Gamma = 1$  and coupling is strong enough,  $H_{\alpha,\Gamma}$  has open spectral gaps



# Large gaps in the disconnected case

If  $\Gamma$  is not connected and each connected component is contained in a translate of  $\Gamma_c$ , the comparison operator is independent of  $\theta$  and asymptotic formula reads

$$\lambda_j(\alpha, \theta) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha) \quad \text{as} \quad \alpha \to \infty$$

for  $\operatorname{codim} \Gamma = 1$  and similarly for for  $\operatorname{codim} \Gamma = 2$ 



# Large gaps in the disconnected case

If  $\Gamma$  is not connected and each connected component is contained in a translate of  $\Gamma_c$ , the comparison operator is independent of  $\theta$  and asymptotic formula reads

$$\lambda_j(\alpha, \theta) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha) \quad \text{as} \quad \alpha \to \infty$$

for  $\operatorname{codim} \Gamma = 1$  and similarly for for  $\operatorname{codim} \Gamma = 2$ Moreover, the assumptions can be weakened





# Soft graphs with magnetic field

Add a homogeneous magnetic field with the vector potential  $A = \frac{1}{2}B(-x_2, x_1)$ . We ask about existence of *persistent currents*, i.e. nonzero probability flux along a closed loop

$$\frac{\partial \lambda_n(\varphi)}{\partial \varphi} = -\frac{1}{c} I_n \,,$$

where  $\lambda_n(\varphi)$  is the *n*-th eigenvalue of the Hamiltonian

$$H_{\alpha,\Gamma}(B) := (-i\nabla - A)^2 - \alpha\delta(x - \Gamma)$$

and  $\varphi$  is the magnetic flux through the loop (in standard units its quantum equals  $2\pi\hbar c|e|^{-1}$ )



# Soft graphs with magnetic field

Add a homogeneous magnetic field with the vector potential  $A = \frac{1}{2}B(-x_2, x_1)$ . We ask about existence of *persistent currents*, i.e. nonzero probability flux along a closed loop

$$\frac{\partial \lambda_n(\varphi)}{\partial \varphi} = -\frac{1}{c} I_n \,,$$

where  $\lambda_n(\varphi)$  is the *n*-th eigenvalue of the Hamiltonian

$$H_{\alpha,\Gamma}(B) := (-i\nabla - A)^2 - \alpha\delta(x - \Gamma)$$

and  $\varphi$  is the magnetic flux through the loop (in standard units its quantum equals  $2\pi\hbar c|e|^{-1}$ )





#### **Persistent currents**

The same technique, different comparison operator, namely  $S_{\Gamma}(B)=-\frac{{\rm d}}{{\rm d}s^2}-\frac{1}{4}k(s)^2$ 

on  $L^2(0, L)$  with  $\psi(L-) = e^{iB|\Omega|}\psi(0+), \ \psi'(L-) = e^{iB|\Omega|}\psi'(0+),$ where  $\Omega$  is the area encircled by  $\Gamma$ 



#### **Persistent currents**

The same technique, different comparison operator, namely  $S_{\Gamma}(B)=-\frac{{\rm d}}{{\rm d}s^2}-\frac{1}{4}k(s)^2$ 

on  $L^2(0,L)$  with  $\psi(L-) = e^{iB|\Omega|}\psi(0+), \ \psi'(L-) = e^{iB|\Omega|}\psi'(0+),$ where  $\Omega$  is the area encircled by  $\Gamma$ 

**Theorem [E.-Yoshitomi'03]:** Let  $\Gamma$  be a  $C^4$ -smooth. The for large  $\alpha$  the operator  $H_{\alpha,\Gamma}(B)$  has a non-empty discrete spectrum and the *j*-th eigenvalue behaves as

$$\lambda_j(\alpha, B) = -\frac{1}{4}\alpha^2 + \mu_j(B) + \mathcal{O}(\alpha^{-1}\ln\alpha),$$

where  $\mu_j(B)$  is the *j*-th eigenvalue of  $S_{\Gamma}(B)$  and the error term is uniform in *B*. In particular, for a fixed *j* and  $\alpha$  large enough the function  $\lambda_j(\alpha, \cdot)$  cannot be constant



#### **Persistent currents**

The same technique, different comparison operator, namely  $S_{\Gamma}(B)=-\frac{{\rm d}}{{\rm d}s^2}-\frac{1}{4}k(s)^2$ 

on  $L^2(0,L)$  with  $\psi(L-) = e^{iB|\Omega|}\psi(0+), \ \psi'(L-) = e^{iB|\Omega|}\psi'(0+),$ where  $\Omega$  is the area encircled by  $\Gamma$ 

**Theorem [E.-Yoshitomi'03]:** Let  $\Gamma$  be a  $C^4$ -smooth. The for large  $\alpha$  the operator  $H_{\alpha,\Gamma}(B)$  has a non-empty discrete spectrum and the *j*-th eigenvalue behaves as

$$\lambda_j(\alpha, B) = -\frac{1}{4}\alpha^2 + \mu_j(B) + \mathcal{O}(\alpha^{-1}\ln\alpha) \,,$$

where  $\mu_j(B)$  is the *j*-th eigenvalue of  $S_{\Gamma}(B)$  and the error term is uniform in *B*. In particular, for a fixed *j* and  $\alpha$  large enough the function  $\lambda_j(\alpha, \cdot)$  cannot be constant

*Remark:* [Honnouvo-Hounkonnou'04] proved the same for AB flux

One is also interested in the nature of the spectrum of  $H_{\alpha,\Gamma}$ with a periodic  $\Gamma$ . By [Birman-Suslina-Shterenberg'00,01] the spectrum is *absolutely continuous* if  $\operatorname{codim} \Gamma = 1$  and the period cell is compact. This tells us nothing, e.g., about a single periodic curve in  $\mathbb{R}^d$ , d = 2, 3.



One is also interested in the nature of the spectrum of  $H_{\alpha,\Gamma}$ with a periodic  $\Gamma$ . By [Birman-Suslina-Shterenberg'00,01] the spectrum is *absolutely continuous* if  $\operatorname{codim} \Gamma = 1$  and the period cell is compact. This tells us nothing, e.g., about a single periodic curve in  $\mathbb{R}^d$ , d = 2, 3.

The assumption about connectedness of  $\Gamma_{\mathcal{C}}$  can be always satisfied if d = 2 but not for d = 3; recall the *crochet curve* 





**Theorem [Bentosela-Duclos-E'03]:** To any E > 0 there is an  $\alpha_E > 0$  such that the spectrum of  $H_{\alpha,\Gamma}$  is absolutely continuous in  $(-\infty, \xi(\alpha) + E)$  as long as  $(-1)^d \alpha > \alpha_E$ , where  $\xi(\alpha) = -\frac{1}{4}\alpha^2$  and  $\epsilon_{\alpha}$  for d = 2, 3, respectively



**Theorem [Bentosela-Duclos-E'03]:** To any E > 0 there is an  $\alpha_E > 0$  such that the spectrum of  $H_{\alpha,\Gamma}$  is absolutely continuous in  $(-\infty, \xi(\alpha) + E)$  as long as  $(-1)^d \alpha > \alpha_E$ , where  $\xi(\alpha) = -\frac{1}{4}\alpha^2$  and  $\epsilon_{\alpha}$  for d = 2, 3, respectively

**Proof:** The fiber operators  $H_{\alpha,\Gamma}(\theta)$  form a type A analytic family. In a finite interval each of them has a finite number of ev's, so one has just to check non-constancy of the functions  $\lambda_j(\alpha, \cdot)$  as in the case of persistent currents  $\Box$ 



### How can one find the spectrum?

The above general results do not tell us how to find the spectrum for a particular  $\Gamma$ . There are various possibilities:

• Direct solution of the PDE problem  $H_{\alpha,\Gamma}\psi = \lambda\psi$  is feasible in a few simple examples only



### How can one find the spectrum?

The above general results do not tell us how to find the spectrum for a particular  $\Gamma$ . There are various possibilities:

- Direct solution of the PDE problem  $H_{\alpha,\Gamma}\psi = \lambda\psi$  is feasible in a few simple examples only
- Using trace maps of  $R^k \equiv (-\Delta k^2)^{-1}$  and the generalized BS principle

$$R^{k} := R_{0}^{k} + \alpha R_{dx,m}^{k} [I - \alpha R_{m,m}^{k}]^{-1} R_{m,dx}^{k},$$

where *m* is  $\delta$  measure on  $\Gamma$ , we pass to a 1D integral operator problem,  $\alpha R_{m,m}^k \psi = \psi$ 



## How can one find the spectrum?

The above general results do not tell us how to find the spectrum for a particular  $\Gamma$ . There are various possibilities:

- Direct solution of the PDE problem  $H_{\alpha,\Gamma}\psi = \lambda\psi$  is feasible in a few simple examples only
- Using trace maps of  $R^k \equiv (-\Delta k^2)^{-1}$  and the generalized BS principle

$$R^{k} := R_{0}^{k} + \alpha R_{dx,m}^{k} [I - \alpha R_{m,m}^{k}]^{-1} R_{m,dx}^{k},$$

where *m* is  $\delta$  measure on  $\Gamma$ , we pass to a 1D integral operator problem,  $\alpha R_{m,m}^k \psi = \psi$ 

• discretization of the latter which amounts to a point-interaction approximations to  $H_{\alpha,\Gamma}$ 



### **2D point interactions**

Such an interaction at the point a with the "coupling constant"  $\alpha$  is defined by b.c. which change *locally* the domain of  $-\Delta$ : the functions behave as

$$\psi(x) = -\frac{1}{2\pi} \log |x - a| L_0(\psi, a) + L_1(\psi, a) + \mathcal{O}(|x - a|),$$

where the generalized b.v.  $L_0(\psi, a)$  and  $L_1(\psi, a)$  satisfy

 $L_1(\psi, a) + 2\pi \alpha L_0(\psi, a) = 0, \quad \alpha \in \mathbb{R}$ 



## **2D point interactions**

Such an interaction at the point *a* with the "coupling constant"  $\alpha$  is defined by b.c. which change *locally* the domain of  $-\Delta$ : the functions behave as

$$\psi(x) = -\frac{1}{2\pi} \log |x - a| L_0(\psi, a) + L_1(\psi, a) + \mathcal{O}(|x - a|),$$

where the generalized b.v.  $L_0(\psi, a)$  and  $L_1(\psi, a)$  satisfy

$$L_1(\psi, a) + 2\pi \alpha L_0(\psi, a) = 0, \quad \alpha \in \mathbb{R}$$

For our purpose, the coupling should depend on the set Y approximating  $\Gamma$ . To see how compare a line  $\Gamma$  with the solvable *straight-polymer* model [AGHH]  $\alpha_n$ 



# **2D point-interaction approximation**

Spectral threshold convergence requires  $\alpha_n = \alpha n$  which means that individual point interactions get *weaker*. Hence we approximate  $H_{\alpha,\Gamma}$  by point-interaction Hamiltonians  $H_{\alpha_n,Y_n}$  with  $\alpha_n = \alpha |Y_n|$ , where  $|Y_n| := \sharp Y_n$ .



# **2D** point-interaction approximation

Spectral threshold convergence requires  $\alpha_n = \alpha n$  which means that individual point interactions get *weaker*. Hence we approximate  $H_{\alpha,\Gamma}$  by point-interaction Hamiltonians  $H_{\alpha_n,Y_n}$  with  $\alpha_n = \alpha |Y_n|$ , where  $|Y_n| := \sharp Y_n$ .

**Theorem [E.-Němcová, 2003]:** Let a family  $\{Y_n\}$  of finite sets  $Y_n \subset \Gamma \subset \mathbb{R}^2$  be such that

$$\frac{1}{|Y_n|} \sum_{y \in Y_n} f(y) \to \int_{\Gamma} f \, \mathrm{d}m$$

holds for any bounded continuous function  $f: \Gamma \to \mathbb{C}$ , together with technical conditions, then  $H_{\alpha_n, Y_n} \to H_{\alpha, \Gamma}$ in the strong resolvent sense as  $n \to \infty$ .



A more general result is valid: Γ need not be a graph and the coupling may be non-constant; also a magnetic field can be added [Ožanová'06] (=Němcová)



- ▲ more general result is valid: Γ need not be a graph and the coupling may be non-constant; also a magnetic field can be added [Ožanová'06] (=Němcová)
- The result applies to finite graphs, however, an infinite Γ can be approximated in strong resolvent sense by a family of cut-off graphs



- A more general result is valid: Γ need not be a graph and the coupling may be non-constant; also a magnetic field can be added [Ožanová'06] (=Němcová)
- The result applies to finite graphs, however, an infinite Γ can be approximated in strong resolvent sense by a family of cut-off graphs
- The idea is due to [Brasche-Figari-Teta'98], who analyzed point-interaction approximations of measure perturbations with  $\operatorname{codim} \Gamma = 1$  in  $\mathbb{R}^3$ . There are differences, however, for instance in the 2D case we can approximate *attractive* interactions only



- A more general result is valid: Γ need not be a graph and the coupling may be non-constant; also a magnetic field can be added [Ožanová'06] (=Němcová)
- The result applies to finite graphs, however, an infinite Γ can be approximated in strong resolvent sense by a family of cut-off graphs
- The idea is due to [Brasche-Figari-Teta'98], who analyzed point-interaction approximations of measure perturbations with  $\operatorname{codim} \Gamma = 1$  in  $\mathbb{R}^3$ . There are differences, however, for instance in the 2D case we can approximate *attractive* interactions only
- A uniform resolvent convergence can be achieved in this scheme if the term  $-\varepsilon^2 \Delta^2$  is added to the Hamiltonian [Brasche-Ožanová'07]



### **Scheme of the proof**

Resolvent of  $H_{\alpha_n,Y_n}$  is given *Krein's formula*. Given  $k^2 \in \rho(H_{\alpha_n,Y_n})$  define  $|Y_n| \times |Y_n|$  matrix by

$$\Lambda_{\alpha_n,Y_n}(k^2;x,y) = \frac{1}{2\pi} \left[ 2\pi |Y_n| \alpha + \ln\left(\frac{ik}{2}\right) + \gamma_E \right] \delta_{xy}$$
$$-G_k(x-y) \left(1 - \delta_{xy}\right)$$

for  $x, y \in Y_n$ , where  $\gamma_E$  is *Euler' constant*.



#### **Scheme of the proof**

Resolvent of  $H_{\alpha_n,Y_n}$  is given *Krein's formula*. Given  $k^2 \in \rho(H_{\alpha_n,Y_n})$  define  $|Y_n| \times |Y_n|$  matrix by

$$\Lambda_{\alpha_n,Y_n}(k^2;x,y) = \frac{1}{2\pi} \left[ 2\pi |Y_n| \alpha + \ln\left(\frac{ik}{2}\right) + \gamma_E \right] \delta_{xy}$$
$$-G_k(x-y) \left(1 - \delta_{xy}\right)$$

for  $x, y \in Y_n$ , where  $\gamma_E$  is *Euler' constant*. Then

$$(H_{\alpha_n,Y_n} - k^2)^{-1}(x,y) = G_k(x-y) + \sum_{x',y'\in Y_n} \left[\Lambda_{\alpha_n,Y_n}(k^2)\right]^{-1}(x',y')G_k(x-x')G_k(y-y')$$



## **Scheme of the proof**

Resolvent of  $H_{\alpha,\Gamma}$  is given by the *generalized BS formula* given above; one has to check directly that the difference of the two vanishes as  $n \to \infty$ 


# **Scheme of the proof**

Resolvent of  $H_{\alpha,\Gamma}$  is given by the *generalized BS formula* given above; one has to check directly that the difference of the two vanishes as  $n \to \infty$ 

Remarks:

- Spectral condition in the *n*-th approximation, i.e.  $\det \Lambda_{\alpha_n, Y_n}(k^2) = 0$ , is a discretization of the integral equation coming from the generalized BS principle
- A solution to  $\Lambda_{\alpha_n, Y_n}(k^2)\eta = 0$  determines the approximating of by  $\psi(x) = \sum_{y_j \in Y_n} \eta_j G_k(x y_j)$
- A match with solvable models illustrates the convergence and shows that it is not fast, slower than n<sup>-1</sup> in the eigenvalues. This comes from singular "spikes" in the approximating functions

Let  $\Gamma$  be a graph with *semi-infinite "leads*", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Not much.

• *First question:* What is the "free" operator?  $-\Delta$  is not a good candidate, rather  $H_{\alpha,\Gamma}$  for a straight line  $\Gamma$ . Recall that we are particularly interested in energy interval  $(-\frac{1}{4}\alpha^2, 0)$ , i.e. 1D transport of states laterally bound to  $\Gamma$ 



Let  $\Gamma$  be a graph with *semi-infinite "leads*", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Not much.

- *First question:* What is the "free" operator?  $-\Delta$  is not a good candidate, rather  $H_{\alpha,\Gamma}$  for a straight line  $\Gamma$ . Recall that we are particularly interested in energy interval  $(-\frac{1}{4}\alpha^2, 0)$ , i.e. 1D transport of states laterally bound to  $\Gamma$
- Existence proof for the wave operators is known only for locally deformed line [E.-Kondej'05]



Let  $\Gamma$  be a graph with *semi-infinite "leads*", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Not much.

- *First question:* What is the "free" operator?  $-\Delta$  is not a good candidate, rather  $H_{\alpha,\Gamma}$  for a straight line  $\Gamma$ . Recall that we are particularly interested in energy interval  $(-\frac{1}{4}\alpha^2, 0)$ , i.e. 1D transport of states laterally bound to  $\Gamma$
- Existence proof for the wave operators is known only for locally deformed line [E.-Kondej'05]
- Conjecture: For *strong coupling*,  $\alpha \to \infty$ , the scattering is described in leading order by  $S_{\Gamma} := -\frac{d^2}{ds^2} \frac{1}{4}\gamma(s)^2$



Let  $\Gamma$  be a graph with *semi-infinite "leads*", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Not much.

- *First question:* What is the "free" operator?  $-\Delta$  is not a good candidate, rather  $H_{\alpha,\Gamma}$  for a straight line  $\Gamma$ . Recall that we are particularly interested in energy interval  $(-\frac{1}{4}\alpha^2, 0)$ , i.e. 1D transport of states laterally bound to  $\Gamma$
- Existence proof for the wave operators is known only for locally deformed line [E.-Kondej'05]
- Conjecture: For *strong coupling*,  $\alpha \to \infty$ , the scattering is described in leading order by  $S_{\Gamma} := -\frac{d^2}{ds^2} \frac{1}{4}\gamma(s)^2$
- On the other hand, in general, the global geometry of Γ is expected to determine the S-matrix

## **Something more on resonances**

Consider infinite curves  $\Gamma$ , straight outside a compact, and ask for examples of resonances. Recall the  $L^2$ -approach: in 1D potential scattering one explores *spectral properties* of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum – for a recent proof see [Hagedorn-Meller'00]. Try the same here:



## **Something more on resonances**

Consider infinite curves  $\Gamma$ , straight outside a compact, and ask for examples of resonances. Recall the  $L^2$ -approach: in 1D potential scattering one explores *spectral properties* of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum – for a recent proof see [Hagedorn-Meller'00]. Try the same here:

- Broken line: absence of "intrinsic" resonances due lack of higher transverse thresholds
- Z-shaped  $\Gamma$ : if a single bend has a significant reflection, a double band should exhibit resonances
- Bottleneck curve: a good candidate to demonstrate tunneling resonances



### **Broken line**





Summer School Lectures: Les Diablerets, June 6-10, 2011 – p. 37/9

### **Broken line**





Summer School Lectures; Les Diablerets, June 6-10, 2011 – p. 37/9

**Z** shape with  $\theta = \frac{\pi}{2}$ 





Summer School Lectures: Les Diablerets, June 6-10, 2011 – p. 38/9

**Z** shape with  $\theta = \frac{\pi}{2}$ 





Summer School Lectures: Les Diablerets, June 6-10, 2011 – p. 38/9

#### **Z** shape with $\theta = 0.32\pi$





Summer School Lectures: Les Diablerets, June 6-10, 2011 – p. 39/9

#### **Z** shape with $\theta = 0.32\pi$





Summer School Lectures; Les Diablerets, June 6-10, 2011 – p. 39/9

### A bottleneck curve

Consider a straight line deformation which shaped as an open loop with a bottleneck the width *a* of which we will vary





### A bottleneck curve

Consider a straight line deformation which shaped as an open loop with a bottleneck the width *a* of which we will vary



If  $\Gamma$  is a straight line, the transverse eigenfunction is  $e^{-\alpha|y|/2}$ , hence the distance at which tunneling becomes significant is  $\approx 4\alpha^{-1}$ . In the example, we choose  $\alpha = 1$ 



### **Bottleneck with** a = 5.2





Summer School Lectures: Les Diablerets, June 6-10, 2011 – p. 41/9

### **Bottleneck with** a = 2.9





### **Bottleneck with** a = 1.9





## A caricature but solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight *leaky wire* and a family of *leaky dots*.



## A caricature but solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight *leaky wire* and a family of *leaky dots*. Formal Hamiltonian

$$-\Delta - \alpha \delta(x - \Sigma) + \sum_{i=1}^{n} \tilde{\beta}_i \delta(x - y^{(i)})$$

in  $L^2(\mathbb{R}^2)$  with  $\alpha > 0$ . The 2D point interactions at  $\Pi = \{y^{(i)}\}$  with couplings  $\beta = \{\beta_1, \dots, \beta_n\}$  are properly introduced through b.c. mentioned above, giving Hamiltonian  $H_{\alpha,\beta}$ 



## A caricature but solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight *leaky wire* and a family of *leaky dots*. Formal Hamiltonian

$$-\Delta - \alpha \delta(x - \Sigma) + \sum_{i=1}^{n} \tilde{\beta}_i \delta(x - y^{(i)})$$

in  $L^2(\mathbb{R}^2)$  with  $\alpha > 0$ . The 2D point interactions at  $\Pi = \{y^{(i)}\}$  with couplings  $\beta = \{\beta_1, \dots, \beta_n\}$  are properly introduced through b.c. mentioned above, giving Hamiltonian  $H_{\alpha,\beta}$ 

*Resolvent by Krein-type formula:* given  $z \in \mathbb{C} \setminus [0, \infty)$  we start from the free resolvent  $R(z) := (-\Delta - z)^{-1}$ , also interpreted as unitary  $\mathbf{R}(z)$  acting from  $L^2$  to  $W^{2,2}$ . Then



• we introduce auxiliary Hilbert spaces,  $\mathcal{H}_0 := L^2(\mathbb{R})$  and  $\mathcal{H}_1 := \mathbb{C}^n$ , and trace maps  $\tau_j : W^{2,2}(\mathbb{R}^2) \to \mathcal{H}_j$  defined by  $\tau_0 f := f \upharpoonright_{\Sigma}$  and  $\tau_1 f := f \upharpoonright_{\Pi}$ ,



- we introduce auxiliary Hilbert spaces,  $\mathcal{H}_0 := L^2(\mathbb{R})$  and  $\mathcal{H}_1 := \mathbb{C}^n$ , and trace maps  $\tau_j : W^{2,2}(\mathbb{R}^2) \to \mathcal{H}_j$  defined by  $\tau_0 f := f \upharpoonright_{\Sigma}$  and  $\tau_1 f := f \upharpoonright_{\Pi}$ ,
- then we define canonical embeddings of  $\mathbf{R}(z)$  to  $\mathcal{H}_i$  by  $\mathbf{R}_{i,L}(z) := \tau_i R(z) : L^2 \to \mathcal{H}_i, \mathbf{R}_{L,i}(z) := [\mathbf{R}_{i,L}(z)]^*$ , and  $\mathbf{R}_{j,i}(z) := \tau_j \mathbf{R}_{L,i}(z) : \mathcal{H}_i \to \mathcal{H}_j$ , and



- we introduce auxiliary Hilbert spaces,  $\mathcal{H}_0 := L^2(\mathbb{R})$  and  $\mathcal{H}_1 := \mathbb{C}^n$ , and trace maps  $\tau_j : W^{2,2}(\mathbb{R}^2) \to \mathcal{H}_j$  defined by  $\tau_0 f := f \upharpoonright_{\Sigma}$  and  $\tau_1 f := f \upharpoonright_{\Pi}$ ,
- then we define canonical embeddings of  $\mathbf{R}(z)$  to  $\mathcal{H}_i$  by  $\mathbf{R}_{i,L}(z) := \tau_i R(z) : L^2 \to \mathcal{H}_i, \mathbf{R}_{L,i}(z) := [\mathbf{R}_{i,L}(z)]^*$ , and  $\mathbf{R}_{j,i}(z) := \tau_j \mathbf{R}_{L,i}(z) : \mathcal{H}_i \to \mathcal{H}_j$ , and
- operator-valued matrix  $\Gamma(z) : \mathcal{H}_0 \oplus \mathcal{H}_1 \to \mathcal{H}_0 \oplus \mathcal{H}_1$  by

$$\Gamma_{ij}(z)g := -\mathbf{R}_{i,j}(z)g \quad \text{for} \quad i \neq j \quad \text{and} \quad g \in \mathcal{H}_j,$$
  

$$\Gamma_{00}(z)f := \left[\alpha^{-1} - \mathbf{R}_{0,0}(z)\right]f \quad \text{if} \quad f \in \mathcal{H}_0,$$
  

$$\Gamma_{11}(z)\varphi := \left(s_\beta(z)\delta_{kl} - G_z(y^{(k)}, y^{(l)})(1 - \delta_{kl})\right)\varphi,$$

with  $s_{\beta}(z) := \beta + s(z) := \beta + \frac{1}{2\pi} (\ln \frac{\sqrt{z}}{2i} - \psi(1))$ 



To invert it we define the "reduced determinant"

 $D(z) := \Gamma_{11}(z) - \Gamma_{10}(z)\Gamma_{00}(z)^{-1}\Gamma_{01}(z) : \mathcal{H}_1 \to \mathcal{H}_1,$ 



To invert it we define the "reduced determinant"

 $D(z) := \Gamma_{11}(z) - \Gamma_{10}(z)\Gamma_{00}(z)^{-1}\Gamma_{01}(z) : \mathcal{H}_1 \to \mathcal{H}_1,$ 

then an easy algebra yields expressions for "blocks" of  $[\Gamma(z)]^{-1}$  in the form

$$\begin{aligned} [\Gamma(z)]_{11}^{-1} &= D(z)^{-1}, \\ [\Gamma(z)]_{00}^{-1} &= \Gamma_{00}(z)^{-1} + \Gamma_{00}(z)^{-1}\Gamma_{01}(z)D(z)^{-1}\Gamma_{10}(z)\Gamma_{00}(z)^{-1}, \\ [\Gamma(z)]_{01}^{-1} &= -\Gamma_{00}(z)^{-1}\Gamma_{01}(z)D(z)^{-1}, \\ [\Gamma(z)]_{10}^{-1} &= -D(z)^{-1}\Gamma_{10}(z)\Gamma_{00}(z)^{-1}; \end{aligned}$$

thus to determine singularities of  $[\Gamma(z)]^{-1}$  one has to find the null space of D(z)



With this notation we can state the sought formula:

**Theorem [E-Kondej'04]:** For  $z \in \rho(H_{\alpha,\beta})$  with Im z > 0 the resolvent  $R_{\alpha,\beta}(z) := (H_{\alpha,\beta} - z)^{-1}$  equals

$$R_{\alpha,\beta}(z) = R(z) + \sum_{i,j=0}^{1} \mathbf{R}_{L,i}(z) [\Gamma(z)]_{ij}^{-1} \mathbf{R}_{j,L}(z)$$



With this notation we can state the sought formula:

**Theorem [E-Kondej'04]:** For  $z \in \rho(H_{\alpha,\beta})$  with Im z > 0 the resolvent  $R_{\alpha,\beta}(z) := (H_{\alpha,\beta} - z)^{-1}$  equals

$$R_{\alpha,\beta}(z) = R(z) + \sum_{i,j=0}^{1} \mathbf{R}_{L,i}(z) [\Gamma(z)]_{ij}^{-1} \mathbf{R}_{j,L}(z)$$

*Remark:* One can also compare resolvent of  $H_{\alpha,\beta}$  to that of  $H_{\alpha} \equiv H_{\alpha,\Sigma}$  using trace maps of the latter,

 $R_{\alpha,\beta}(z) = R_{\alpha}(z) + \mathbf{R}_{\alpha;L1}(z)D(z)^{-1}\mathbf{R}_{\alpha;1L}(z)$ 



It is easy to check that

$$\sigma_{\rm ess}(H_{\alpha,\beta}) = \sigma_{\rm ac}(H_{\alpha,\beta}) = \left[-\frac{1}{4}\alpha^2,\infty\right)$$



It is easy to check that

$$\sigma_{\rm ess}(H_{\alpha,\beta}) = \sigma_{\rm ac}(H_{\alpha,\beta}) = \left[-\frac{1}{4}\alpha^2,\infty\right)$$

 $\sigma_{disc}$  given by generalized Birman-Schwinger principle:

$$\dim \ker \Gamma(z) = \dim \ker R_{\alpha,\beta}(z),$$
$$H_{\alpha,\beta}\varphi_z = z\varphi_z \iff \varphi_z = \sum_{i=0}^{1} \mathbf{R}_{L,i}(z)\eta_{i,z},$$

where  $(\eta_{0,z}, \eta_{1,z}) \in \ker \Gamma(z)$ . Moreover, it is clear that  $0 \in \sigma_{\text{disc}}(\Gamma(z)) \Leftrightarrow 0 \in \sigma_{\text{disc}}(D(z))$ ; this reduces the task of finding the spectrum to an algebraic problem



**Theorem [E-Kondej'04]:** (a) Let n = 1 and denote dist  $(\sigma, \Pi) =: a$ , then  $H_{\alpha,\beta}$  has one isolated eigenvalue  $-\kappa_a^2$ . The function  $a \mapsto -\kappa_a^2$  is increasing in  $(0, \infty)$ ,

$$\lim_{a \to \infty} (-\kappa_a^2) = \min\left\{\epsilon_\beta, \, -\frac{1}{4}\alpha^2\right\}$$

where  $\epsilon_{\beta} := -4e^{2(-2\pi\beta+\psi(1))}$ , while  $\lim_{a\to 0}(-\kappa_a^2)$  is finite.



**Theorem [E-Kondej'04]:** (a) Let n = 1 and denote dist  $(\sigma, \Pi) =: a$ , then  $H_{\alpha,\beta}$  has one isolated eigenvalue  $-\kappa_a^2$ . The function  $a \mapsto -\kappa_a^2$  is increasing in  $(0, \infty)$ ,

$$\lim_{a \to \infty} (-\kappa_a^2) = \min\left\{\epsilon_\beta, \, -\frac{1}{4}\alpha^2\right\}$$

where  $\epsilon_{\beta} := -4e^{2(-2\pi\beta+\psi(1))}$ , while  $\lim_{a\to 0}(-\kappa_a^2)$  is finite. (b) For any  $\alpha > 0$ ,  $\beta \in \mathbb{R}^n$ , and  $n \in \mathbb{N}_+$  the operator  $H_{\alpha,\beta}$  has N isolated eigenvalues,  $1 \le N \le n$ . If all the point interactions are strong enough, we have N = n



**Theorem [E-Kondej'04]:** (a) Let n = 1 and denote dist  $(\sigma, \Pi) =: a$ , then  $H_{\alpha,\beta}$  has one isolated eigenvalue  $-\kappa_a^2$ . The function  $a \mapsto -\kappa_a^2$  is increasing in  $(0, \infty)$ ,

$$\lim_{a \to \infty} (-\kappa_a^2) = \min\left\{\epsilon_\beta, \, -\frac{1}{4}\alpha^2\right\}.$$

where  $\epsilon_{\beta} := -4e^{2(-2\pi\beta+\psi(1))}$ , while  $\lim_{a\to 0}(-\kappa_a^2)$  is finite. (b) For any  $\alpha > 0$ ,  $\beta \in \mathbb{R}^n$ , and  $n \in \mathbb{N}_+$  the operator  $H_{\alpha,\beta}$  has N isolated eigenvalues,  $1 \le N \le n$ . If all the point interactions are strong enough, we have N = n

*Remark:* Embedded eigenvalues due to mirror symmetry w.r.t.  $\Sigma$  possible if  $n \ge 2$ 



#### **Resonance for** n = 1

Assume the point interaction eigenvalue becomes embedded as  $a \to \infty$ , i.e. that  $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$ 



### **Resonance for** n = 1

Assume the point interaction eigenvalue becomes embedded as  $a \to \infty$ , i.e. that  $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$ 

*Observation:* Birman-Schwinger works in the complex domain too; it is enough to look for analytical continuation of  $D(\cdot)$ , which acts for  $z \in \mathbb{C} \setminus [-\frac{1}{4}\alpha^2, \infty)$  as a multiplication by

$$d_a(z) := s_\beta(z) - \varphi_a(z) = s_\beta(z) - \int_0^\infty \frac{\mu(z,t)}{t - z - \frac{1}{4}\alpha^2} \, \mathrm{d}t \,,$$
$$\mu(z,t) := \frac{i\alpha}{16\pi} \, \frac{(\alpha - 2i(z-t)^{1/2}) \,\mathrm{e}^{2ia(z-t)^{1/2}}}{t^{1/2}(z-t)^{1/2}}$$

Thus we have a situation reminiscent of Friedrichs model, just the functions involved are more complicated



## **Analytic continuation**

Take a region  $\Omega_{-}$  of the other sheet with  $(-\frac{1}{4}\alpha^2, 0)$  as a part of its boundary. Put  $\mu^0(\lambda, t) := \lim_{\varepsilon \to 0} \mu(\lambda + i\varepsilon, t)$ , define

$$I(\lambda) := \mathcal{P} \int_0^\infty \frac{\mu^0(\lambda, t)}{t - \lambda - \frac{1}{4}\alpha^2} \, \mathrm{d}t \,,$$

and furthermore, 
$$g_{\alpha,a}(z) := \frac{i\alpha}{4} \frac{e^{-\alpha a}}{(z+\frac{1}{4}\alpha^2)^{1/2}}$$
.


### **Analytic continuation**

Take a region  $\Omega_{-}$  of the other sheet with  $(-\frac{1}{4}\alpha^2, 0)$  as a part of its boundary. Put  $\mu^0(\lambda, t) := \lim_{\varepsilon \to 0} \mu(\lambda + i\varepsilon, t)$ , define

$$I(\lambda) := \mathcal{P} \int_0^\infty \frac{\mu^0(\lambda, t)}{t - \lambda - \frac{1}{4}\alpha^2} \, \mathrm{d}t \,,$$

and furthermore,  $g_{\alpha,a}(z) := \frac{i\alpha}{4} \frac{e^{-\alpha a}}{(z+\frac{1}{4}\alpha^2)^{1/2}}$ . Lemma:  $z \mapsto \varphi_a(z)$  is continued analytically to  $\Omega_-$  as

$$\varphi_a^0(\lambda) = I(\lambda) + g_{\alpha,a}(\lambda) \quad \text{for} \quad \lambda \in \left(-\frac{1}{4}\alpha^2, 0\right),$$
  
$$\varphi_a^-(z) = -\int_0^\infty \frac{\mu(z,t)}{t-z - \frac{1}{4}\alpha^2} \, \mathrm{d}t - 2g_{\alpha,a}(z), \ z \in \Omega_-$$



### **Analytic continuation**

Proof: By a direct computation one checks

$$\lim_{\varepsilon \to 0^+} \varphi_a^{\pm}(\lambda \pm i\varepsilon) = \varphi_a^0(\lambda) , \qquad -\frac{1}{4}\alpha^2 < \lambda < 0 ,$$

so the claim follows from edge-of-the-wedge theorem.  $\hfill\square$ 



### **Analytic continuation**

Proof: By a direct computation one checks

$$\lim_{\varepsilon \to 0^+} \varphi_a^{\pm}(\lambda \pm i\varepsilon) = \varphi_a^0(\lambda) , \qquad -\frac{1}{4}\alpha^2 < \lambda < 0 ,$$

so the claim follows from edge-of-the-wedge theorem.  $\Box$ The continuation of  $d_a$  is thus the function  $\eta_a : M \mapsto \mathbb{C}$ , where  $M = \{z : \operatorname{Im} z > 0\} \cup (-\frac{1}{4}\alpha^2, 0) \cup \Omega_-$ , acting as

$$\eta_a(z) = s_\beta(z) - \varphi_a^{l(z)}(z) \,,$$

and our problem reduces to solution if the implicit function problem  $\eta_a(z) = 0$ .



#### **Resonance for** n = 1

**Theorem [E-Kondej'04]:** Assume  $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$ . For any *a* large enough the equation  $\eta_a(z) = 0$  has a unique solution  $z(a) = \mu(b) + i\nu(b) \in \Omega_-$ , i.e.  $\nu(a) < 0$ , with the following asymptotic behaviour as  $a \to \infty$ ,

$$\mu(a) = \epsilon_{\beta} + \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}}), \quad \nu(a) = \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}})$$



#### **Resonance for** n = 1

**Theorem [E-Kondej'04]:** Assume  $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$ . For any *a* large enough the equation  $\eta_a(z) = 0$  has a unique solution  $z(a) = \mu(b) + i\nu(b) \in \Omega_-$ , i.e.  $\nu(a) < 0$ , with the following asymptotic behaviour as  $a \to \infty$ ,

$$\mu(a) = \epsilon_{\beta} + \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}}), \quad \nu(a) = \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}})$$

*Remark:* We have  $|\varphi_a^-(z)| \to 0$  uniformly in *a* and  $|s_\beta(z)| \to \infty$  as Im  $z \to -\infty$ . Hence the imaginary part z(a) is bounded as a function of *a*, in particular, *the resonance pole survives* as  $a \to 0$ .



The same as scattering problem for  $(H_{\alpha,\beta}, H_{\alpha})$ 





The same as scattering problem for  $(H_{\alpha,\beta}, H_{\alpha})$ 



Existence and completeness by Birman-Kuroda theorem; we seek on-shell S-matrix in  $(-\frac{1}{4}\alpha^2, 0)$ . By Krein formula, resolvent for Im z > 0 expresses as

$$R_{\alpha,\beta}(z) = R_{\alpha}(z) + \eta_a(z)^{-1}(\cdot, v_z)v_z,$$

where  $v_z := R_{\alpha;L,1}(z)$ 



Apply this operator to vector

$$\omega_{\lambda,\varepsilon}(x) := \mathrm{e}^{i(\lambda + \alpha^2/4)^{1/2}x_1 - \varepsilon^2 x_1^2} \,\mathrm{e}^{-\alpha|x_2|/2}$$

and take limit  $\varepsilon \to 0+$  in the sense of distributions; then a straightforward calculation give generalized eigenfunction of  $H_{\alpha,\beta}$ . In particular, we have



Apply this operator to vector

$$\omega_{\lambda,\varepsilon}(x) := \mathrm{e}^{i(\lambda + \alpha^2/4)^{1/2}x_1 - \varepsilon^2 x_1^2} \,\mathrm{e}^{-\alpha|x_2|/2}$$

and take limit  $\varepsilon \to 0+$  in the sense of distributions; then a straightforward calculation give generalized eigenfunction of  $H_{\alpha,\beta}$ . In particular, we have

**Proposition**: For any  $\lambda \in (-\frac{1}{4}\alpha^2, 0)$  the reflection and transmission amplitudes are

$$\mathcal{R}(\lambda) = \mathcal{T}(\lambda) - 1 = \frac{i}{4} \alpha \eta_a(\lambda)^{-1} \frac{\mathrm{e}^{-\alpha a}}{(\lambda + \frac{1}{4}\alpha^2)^{1/2}};$$

they have the same pole in the analytical continuation to  $\Omega_{-}$  as the continued resolvent







Let  $\sigma_{\text{disc}}(H_{0,\beta_0}) \cap \left(-\frac{1}{4}\alpha^2, 0\right) \neq \emptyset$ , so that Hamiltonian  $H_{0,\beta_0}$ has two eigenvalues, the larger of which,  $\epsilon_2$ , exceeds  $-\frac{1}{4}\alpha^2$ . Then  $H_{\alpha,\beta_0}$  has the same eigenvalue  $\epsilon_2$  embedded in the negative part of continuous spectrum





Let  $\sigma_{\text{disc}}(H_{0,\beta_0}) \cap \left(-\frac{1}{4}\alpha^2, 0\right) \neq \emptyset$ , so that Hamiltonian  $H_{0,\beta_0}$ has two eigenvalues, the larger of which,  $\epsilon_2$ , exceeds  $-\frac{1}{4}\alpha^2$ . Then  $H_{\alpha,\beta_0}$  has the same eigenvalue  $\epsilon_2$  embedded in the negative part of continuous spectrum

One has now to continue analytically the  $2 \times 2$  matrix function  $D(\cdot)$ . Put  $\kappa_2 := \sqrt{-\epsilon_2}$  and  $\check{s}_\beta(\kappa) := s_\beta(-\kappa^2)$ 



**Proposition**: Assume  $\epsilon_2 \in (-\frac{1}{4}\alpha^2, 0)$  and denote  $\tilde{g}(\lambda) := -ig_{\alpha,a}(\lambda)$ . Then for all *b* small enough the continued function has a unique zero  $z_2(b) = \mu_2(b) + i\nu_2(b) \in \Omega_-$  with the asymptotic expansion

$$\mu_2(b) = \epsilon_2 + \frac{\kappa_2 b}{\breve{s}'_{\beta}(\kappa_2) + K'_0(2a\kappa_2)} + \mathcal{O}(b^2),$$
  

$$\nu_2(b) = -\frac{\kappa_2 \tilde{g}(\epsilon_2) b^2}{2(\breve{s}'_{\beta}(\kappa_2) + K'_0(2a\kappa_2))|\breve{s}'_{\beta}(\kappa_2) - \varphi_a^0(\epsilon_2)|} + \mathcal{O}(b^3)$$



### **Unstable state decay,** n = 1

Complementary point of view: investigate decay of unstable state associated with the resonance; assume again n = 1. We found that if the "unperturbed" ev  $\epsilon_{\beta}$  of  $H_{\beta}$  is embedded in  $(-\frac{1}{4}\alpha^2, 0)$  and a is large, the corresponding resonance has a long halflife. In analogy with *Friedrichs model* [Demuth, 1976] one conjectures that in weak coupling case, the resonance state would be similar up to normalization to the eigenvector  $\xi_0 := K_0(\sqrt{-\epsilon_{\beta}} \cdot)$  of  $H_{\beta}$ , with the decay law being dominated by the exponential term



### **Unstable state decay,** n = 1

Complementary point of view: investigate decay of unstable state associated with the resonance; assume again n = 1. We found that if the "unperturbed" ev  $\epsilon_{\beta}$  of  $H_{\beta}$  is embedded in  $(-\frac{1}{4}\alpha^2, 0)$  and a is large, the corresponding resonance has a long halflife. In analogy with *Friedrichs model* [Demuth, 1976] one conjectures that in weak coupling case, the resonance state would be similar up to normalization to the eigenvector  $\xi_0 := K_0(\sqrt{-\epsilon_{\beta}} \cdot)$  of  $H_{\beta}$ , with the decay law being dominated by the exponential term

At the same time,  $H_{\alpha,\beta}$  has always an isolated ev with ef which is *not* orthogonal to  $\xi_0$  for any *a* (recall that both functions are positive). Consequently, the decay law  $|(\xi_0, U(t)\xi_0)|^2 ||\xi_0||^{-2}$  has always a nonzero limit as  $t \to \infty$ 



A strong coupling turns leaky wires into essentially one-dimensional objects as far as the discrete spectrum is concerned



- A strong coupling turns leaky wires into essentially one-dimensional objects as far as the discrete spectrum is concerned
- The analogous problem for scattering remains open



- A strong coupling turns leaky wires into essentially one-dimensional objects as far as the discrete spectrum is concerned
- The analogous problem for scattering remains open
- Approximation by point interaction arrays is an efficient method to determine spectra of leaky graphs



- A strong coupling turns leaky wires into essentially one-dimensional objects as far as the discrete spectrum is concerned
- The analogous problem for scattering remains open
- Approximation by point interaction arrays is an efficient method to determine spectra of leaky graphs
- *Rigorous results* on spectra and scattering are available so far in simple situations only, and a number of problems remains open



### **Some literature to Lecture V**

- [BO07] J.F. Brasche, K. Ožanová: Convergence of Schrödinger operators, SIAM J. Math. Anal. 39 (2007), 281-297.
- **(EK02)** P.E., S. Kondej: Curvature-induced bound states for a  $\delta$  interaction supported by a curve in  $\mathbb{R}^3$ , *Ann. H. Poincaré* **3** (2002), 967-981.
- [EK04] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, J. Phys. A37 (2004), 8255-8277.
- [EK05] P.E., S. Kondej: Scattering by local deformations of a straight leaky wire, J. Phys. A38 (2005), 4865-4874.
- [EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, J. Phys. A36 (2003), 10173-10193.
- **(EY01)** P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong  $\delta$ -interaction on a periodic curve, *Ann. H. Poincaré* **2** (2001), 1139-1158.
- [EY02a,b] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358; Persistent currents for 2D Schrödinger operator with a strong ..., J. Phys. A35 (2002), 3479-3487.
- [E08] P.E.: Leaky quantum graphs: a review, AMS "Proceedings of Symposia in Pure Mathematics" Series, vol. 77, Providence, R.I., 2008; pp. 523-564.



## Lecture VI

### Generalized graphs – or what happens if a quantum particle has to change its dimension



Motivation – a nontrivial configuration space



- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions



- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy



- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers



- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems



- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems
- A heuristic way to choose the coupling



- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems
- A heuristic way to choose the coupling
- An illustration on microwave experiments



- Motivation a nontrivial configuration space
- Coupling by means of s-a extensions
- A model: point-contact spectroscopy
- A model: single-mode geometric scatterers
- Large gaps in periodic systems
- A heuristic way to choose the coupling
- An illustration on microwave experiments
- And something else: spin conductance oscillations



In both classical and QM there are systems with constraints for which the configuration space is a nontrivivial subset of  $\mathbb{R}^n$ . Sometimes it happens that one can idealize as a *union* of components of lower dimension



In both classical and QM there are systems with constraints for which the configuration space is a nontrivivial subset of  $\mathbb{R}^n$ . Sometimes it happens that one can idealize as a *union* of components of lower dimension





In CM it is not a big problem: few examples, and moreover, the motion is "local" so we can "magnify" the junction region and study trajectories there



In CM it is not a big problem: few examples, and moreover, the motion is "local" so we can "magnify" the junction region and study trajectories there

In contrast, QM offers interesting examples, e.g.

- point-contact spectroscopy,
- STEM-type devices,
- compositions of *nanotubes* with *fulleren* molecules,

etc. Similarly one can consider some *electromagnetic systems* such as flat microwave resonators with attached antennas; we will comment on that later in the lecture



# **Coupling by means of s-a extensions**

Among other things we owe to J. von Neumann the theory of self-adjoint extensions of symmetric operators is not the least. Let us apply it to our problem.



# **Coupling by means of s-a extensions**

Among other things we owe to J. von Neumann the theory of self-adjoint extensions of symmetric operators is not the least. Let us apply it to our problem.

*The idea:* Quantum dynamics on  $M_1 \cup M_2$  coupled by a point contact  $x_0 \in M_1 \cap M_2$ . Take Hamiltonians  $H_j$  on the *isolated* manifold  $M_j$  and restrict them to functions vanishing in the vicinity of  $x_0$ 



# **Coupling by means of s-a extensions**

Among other things we owe to J. von Neumann the theory of self-adjoint extensions of symmetric operators is not the least. Let us apply it to our problem.

*The idea:* Quantum dynamics on  $M_1 \cup M_2$  coupled by a point contact  $x_0 \in M_1 \cap M_2$ . Take Hamiltonians  $H_j$  on the *isolated* manifold  $M_j$  and restrict them to functions vanishing in the vicinity of  $x_0$ 

The operator  $H_0 := H_{1,0} \oplus H_{2,0}$  is symmetric, in general not s-a. We seek admissible Hamiltonians of the coupled system among *its self-adjoint extensions* 


# **Coupling by means of s-a extensions**

*Limitations:* In nonrelativistic QM considered here, where  $H_j$  is a second-order operator the method works for  $\dim M_j \leq 3$  (more generally, codimension of the contact should not exceed *three*), since otherwise the restriction is *e.s.a.* [similarly for Dirac operators we require the codimension to be at most *one*]



# **Coupling by means of s-a extensions**

*Limitations:* In nonrelativistic QM considered here, where  $H_j$  is a *second-order operator* the method works for  $\dim M_j \leq 3$  (more generally, codimension of the contact should not exceed *three*), since otherwise the restriction is *e.s.a.* [similarly for Dirac operators we require the codimension to be at most *one*]

*Non-uniqueness:* Apart of the trivial case, there are many s-a extensions. A junction where *n* configuration-space components meet contributes typically by *n* to deficiency indices of  $H_0$ , and thus adds  $n^2$  parameters to the resulting Hamiltonian class; recall a similar situation in *Lecture I* 



# **Coupling by means of s-a extensions**

*Limitations:* In nonrelativistic QM considered here, where  $H_j$  is a *second-order operator* the method works for  $\dim M_j \leq 3$  (more generally, codimension of the contact should not exceed *three*), since otherwise the restriction is *e.s.a.* [similarly for Dirac operators we require the codimension to be at most *one*]

*Non-uniqueness:* Apart of the trivial case, there are many s-a extensions. A junction where *n* configuration-space components meet contributes typically by *n* to deficiency indices of  $H_0$ , and thus adds  $n^2$  parameters to the resulting Hamiltonian class; recall a similar situation in *Lecture I* 

*Physical meaning:* The construction guarantees that the *probability current is conserved* at the junction



## **Different dimensions**

In distinction to quantum graphs "1 + 1" situation, we will be mostly concerned with cases "2+1" and "2+2", i.e. manifolds of these dimensions coupled through *point contacts*. Other combinations are similar

We use "rational" units, in particular, the Hamiltonian acts at each configuration component as  $-\Delta$  (or Laplace-Beltrami operator if  $M_j$  has a nontrivial metric)



## **Different dimensions**

In distinction to quantum graphs "1 + 1" situation, we will be mostly concerned with cases "2+1" and "2+2", i.e. manifolds of these dimensions coupled through *point contacts*. Other combinations are similar

We use "rational" units, in particular, the Hamiltonian acts at each configuration component as  $-\Delta$  (or Laplace-Beltrami operator if  $M_j$  has a nontrivial metric)

An archetypal example,  $\mathcal{H} = L^2(\mathbb{R}_-) \oplus L^2(\mathbb{R}^2)$ , so the wavefunctions are pairs  $\varphi := \begin{pmatrix} \varphi_1 \\ \Phi_2 \end{pmatrix}$  of square integrable functions





## A model: point-contact spectroscopy

Restricting  $\left(-\frac{d^2}{dx^2}\right)_D \oplus -\Delta$  to functions vanishing in the vicinity of the junction gives symmetric operator with deficiency indices (2, 2).



## A model: point-contact spectroscopy

Restricting  $\left(-\frac{d^2}{dx^2}\right)_D \oplus -\Delta$  to functions vanishing in the vicinity of the junction gives symmetric operator with deficiency indices (2, 2).

von Neumann theory gives a general prescription to construct the s-a extensions, however, it is practical to characterize the by means of *boundary conditions*. We need *generalized boundary values* 

$$L_0(\Phi) := \lim_{r \to 0} \frac{\Phi(\vec{x})}{\ln r}, \ L_1(\Phi) := \lim_{r \to 0} \left[ \Phi(\vec{x}) - L_0(\Phi) \ln r \right]$$

(in view of the 2D character, in three dimensions  $L_0$  would be the coefficient at the pole singularity)



Typical b.c. determining a s-a extension

$$\varphi_1'(0-) = A\varphi_1(0-) + BL_0(\Phi_2),$$
  

$$L_1(\Phi_2) = C\varphi_1(0-) + DL_0(\Phi_2),$$



Typical b.c. determining a s-a extension

$$\varphi_1'(0-) = A\varphi_1(0-) + BL_0(\Phi_2), L_1(\Phi_2) = C\varphi_1(0-) + DL_0(\Phi_2),$$

#### where

$$A, D \in \mathbb{R}$$
 and  $B = 2\pi \overline{C}$ 



Typical b.c. determining a s-a extension

$$\varphi_1'(0-) = A\varphi_1(0-) + BL_0(\Phi_2), L_1(\Phi_2) = C\varphi_1(0-) + DL_0(\Phi_2),$$

where

 $A, D \in \mathbb{R}$  and  $B = 2\pi \overline{C}$ 

The easiest way to see that is to compute the boundary form to  $H_0^*$ , recall that the latter is given by the same differential expression.

Notice that only the s-wave part of  $\Phi$  in the plane,  $\Phi_2(r,\varphi) = (2\pi)^{-1/2}\varphi_2(r)$  can be coupled nontrivially to the halfline



An integration by parts gives

$$(\varphi, H_0^*\psi) - (H_0^*\varphi, \psi) = \bar{\varphi}_1'(0)\psi_1(0) - \bar{\varphi}_1(0)\psi_1'(0) + \lim_{\varepsilon \to 0+} \varepsilon \left(\bar{\varphi}_2(\varepsilon)\psi_1'(\varepsilon) - \bar{\varphi}_2'(\varepsilon)\psi_2(\varepsilon)\right),$$



An integration by parts gives

$$(\varphi, H_0^*\psi) - (H_0^*\varphi, \psi) = \bar{\varphi}_1'(0)\psi_1(0) - \bar{\varphi}_1(0)\psi_1'(0) + \lim_{\varepsilon \to 0+} \varepsilon \left(\bar{\varphi}_2(\varepsilon)\psi_1'(\varepsilon) - \bar{\varphi}_2'(\varepsilon)\psi_2(\varepsilon)\right),$$

and using the asymptotic behaviour

$$\varphi_2(\varepsilon) = \sqrt{2\pi} \left[ L_0(\Phi_2) \ln \varepsilon + L_1(\Phi_2) + \mathcal{O}(\varepsilon) \right],$$



An integration by parts gives

$$(\varphi, H_0^*\psi) - (H_0^*\varphi, \psi) = \bar{\varphi}_1'(0)\psi_1(0) - \bar{\varphi}_1(0)\psi_1'(0) + \lim_{\varepsilon \to 0+} \varepsilon \left(\bar{\varphi}_2(\varepsilon)\psi_1'(\varepsilon) - \bar{\varphi}_2'(\varepsilon)\psi_2(\varepsilon)\right),$$

and using the asymptotic behaviour

$$\varphi_2(\varepsilon) = \sqrt{2\pi} \left[ L_0(\Phi_2) \ln \varepsilon + L_1(\Phi_2) + \mathcal{O}(\varepsilon) \right],$$

we can express the above limit term as

$$2\pi \left[ L_1(\Phi_2) L_0(\Psi_2) - L_0(\Phi_2) L_1(\Psi_2) \right] \,,$$

so the form vanishes under the stated boundary conditions



Using the b.c. we match plane wave solution  $e^{ikx} + r(k)e^{-ikx}$ on the halfline with  $t(k)(\pi kr/2)^{1/2}H_0^{(1)}(kr)$  in the plane obtaining

$$r(k) = -\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k) = \frac{2iCk}{\mathcal{D}_{+}}$$



Using the b.c. we match plane wave solution  $e^{ikx} + r(k)e^{-ikx}$ on the halfline with  $t(k)(\pi kr/2)^{1/2}H_0^{(1)}(kr)$  in the plane obtaining

$$r(k) = -\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k) = \frac{2iCk}{\mathcal{D}_{+}}$$

with

$$\mathcal{D}_{\pm} := (A \pm ik) \left[ 1 + \frac{2i}{\pi} \left( \gamma_{\mathrm{E}} - D + \ln \frac{k}{2} \right) \right] + \frac{2i}{\pi} BC \,,$$

where  $\gamma_{\rm E}\approx 0.5772$  is Euler's constant



Using the b.c. we match plane wave solution  $e^{ikx} + r(k)e^{-ikx}$ on the halfline with  $t(k)(\pi kr/2)^{1/2}H_0^{(1)}(kr)$  in the plane obtaining

$$r(k) = -\frac{\mathcal{D}_{-}}{\mathcal{D}_{+}}, \quad t(k) = \frac{2iCk}{\mathcal{D}_{+}}$$

with

$$\mathcal{D}_{\pm} := (A \pm ik) \left[ 1 + \frac{2i}{\pi} \left( \gamma_{\mathrm{E}} - D + \ln \frac{k}{2} \right) \right] + \frac{2i}{\pi} BC \,,$$

where  $\gamma_{\rm E} \approx 0.5772$  is Euler's constant

*Remark:* More general coupling,  $\mathcal{A}\begin{pmatrix}\varphi_1\\L_0\end{pmatrix} + \mathcal{B}\begin{pmatrix}\varphi'_1\\L_1\end{pmatrix} = 0$ , gives rise to similar formulae (an invertible  $\mathcal{B}$  can be put to one)



Let us finish discussion of this *"point contact spectroscopy"* model by a few remarks:

Scattering is *nontrivial* if  $\mathcal{A} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$  is not diagonal. For any choice of s-a extension, the on-shell S-matrix is *unitary*, in particular, we have  $|r(k)|^2 + |t(k)|^2 = 1$ 



Let us finish discussion of this *"point contact spectroscopy"* model by a few remarks:

- Scattering is *nontrivial* if  $\mathcal{A} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$  is not diagonal. For any choice of s-a extension, the on-shell S-matrix is *unitary*, in particular, we have  $|r(k)|^2 + |t(k)|^2 = 1$
- Notice that reflection dominates at high energies, since  $|t(k)|^2 = \mathcal{O}((\ln k)^{-2})$  holds as  $k \to \infty$



Let us finish discussion of this *"point contact spectroscopy"* model by a few remarks:

- Scattering is *nontrivial* if  $\mathcal{A} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$  is not diagonal. For any choice of s-a extension, the on-shell S-matrix is *unitary*, in particular, we have  $|r(k)|^2 + |t(k)|^2 = 1$
- Notice that reflection dominates at high energies, since  $|t(k)|^2 = \mathcal{O}((\ln k)^{-2})$  holds as  $k \to \infty$
- For some A there are also bound states decaying exponentially away of the junction, at most two



Let us finish discussion of this *"point contact spectroscopy"* model by a few remarks:

- Scattering is *nontrivial* if  $\mathcal{A} = \begin{pmatrix} A & B \\ C & D \end{pmatrix}$  is not diagonal. For any choice of s-a extension, the on-shell S-matrix is *unitary*, in particular, we have  $|r(k)|^2 + |t(k)|^2 = 1$
- Notice that reflection dominates at high energies, since  $|t(k)|^2 = \mathcal{O}((\ln k)^{-2})$  holds as  $k \to \infty$
- For some A there are also bound states decaying exponentially away of the junction, at most two
- a similar analysis can be done also in a more general model where the electron is subject to *spin-orbit coupling* and *mg field*, cf. [E-Šeba'07, Carlone-E'11]



## **Single-mode geometric scatterers**

Consider a sphere with two leads attached



with the coupling at both vertices given by the same  ${\cal A}$ 



# **Single-mode geometric scatterers**

Consider a sphere with two leads attached



with the coupling at both vertices given by the same  ${\cal A}$ 

Three one-parameter families of  $\mathcal{A}$  were investigated [Kiselev'97; E-Tater-Vaněk'01; Brüning-Geyler-Margulis-Pyataev'02]; it appears that scattering properties *en gross* are not very sensitive to the coupling:

- there numerous resonances
- in the background reflection dominates as  $k \to \infty$



Let us describe the argument in more details: construction of generalized eigenfunctions means to couple plane-wave solution at leads with

 $u(x) = a_1 G(x, x_1; k) + a_2 G(x, x_2; k) ,$ 

where  $G(\cdot, \cdot; k)$  is Green's function of  $\Delta_{LB}$  on the sphere



Let us describe the argument in more details: construction of generalized eigenfunctions means to couple plane-wave solution at leads with

$$u(x) = a_1 G(x, x_1; k) + a_2 G(x, x_2; k) ,$$

where  $G(\cdot, \cdot; k)$  is Green's function of  $\Delta_{\text{LB}}$  on the sphere The latter has a logarithmic singularity so  $L_j(u)$  express in terms of  $g := G(x_1, x_2; k)$  and

$$\xi_j \equiv \xi(x_j;k) := \lim_{x \to x_j} \left[ G(x, x_j;k) + \frac{\ln|x - x_j|}{2\pi} \right]$$



Introduce 
$$Z_j := \frac{D_j}{2\pi} + \xi_j$$
 and  $\Delta := g^2 - Z_1 Z_2$ , and consider,  
e.g.,  $\mathcal{A}_j = \begin{pmatrix} (2a)^{-1} & (2\pi/a)^{1/2} \\ (2\pi a)^{-1/2} & -\ln a \end{pmatrix}$  with  $a > 0$ . Then the

solution of the matching condition is given by



Introduce 
$$Z_j := \frac{D_j}{2\pi} + \xi_j$$
 and  $\Delta := g^2 - Z_1 Z_2$ , and consider,  
e.g.,  $\mathcal{A}_j = \begin{pmatrix} (2a)^{-1} & (2\pi/a)^{1/2} \\ (2\pi a)^{-1/2} & -\ln a \end{pmatrix}$  with  $a > 0$ . Then the

solution of the matching condition is given by

$$r(k) = -\frac{\pi\Delta + Z_1 + Z_2 - \pi^{-1} + 2ika(Z_2 - Z_1) + 4\pi k^2 a^2 \Delta}{\pi\Delta + Z_1 + Z_2 - \pi^{-1} + 2ika(Z_1 + Z_2 + 2\pi\Delta) - 4\pi k^2 a^2 \Delta},$$
  
$$t(k) = -\frac{4ikag}{\pi\Delta + Z_1 + Z_2 - \pi^{-1} + 2ika(Z_1 + Z_2 + 2\pi\Delta) - 4\pi k^2 a^2 \Delta}.$$



#### **Geometric scatterers: needed quantities**

So far formulae are valid for any compact manifold *G*. To make use of them we need to know  $g, Z_1, Z_2, \Delta$ . The spectrum  $\{\lambda_n\}_{n=1}^{\infty}$  of  $\Delta_{\text{LB}}$  on *G* is purely discrete with eigenfunctions  $\{\varphi(x)_n\}_{n=1}^{\infty}$ . Then we find easily

$$g(k) = \sum_{n=1}^{\infty} \frac{\varphi_n(x_1)\overline{\varphi_n(x_2)}}{\lambda_n - k^2}$$



#### **Geometric scatterers: needed quantities**

So far formulae are valid for any compact manifold *G*. To make use of them we need to know  $g, Z_1, Z_2, \Delta$ . The spectrum  $\{\lambda_n\}_{n=1}^{\infty}$  of  $\Delta_{\text{LB}}$  on *G* is purely discrete with eigenfunctions  $\{\varphi(x)_n\}_{n=1}^{\infty}$ . Then we find easily

$$g(k) = \sum_{n=1}^{\infty} \frac{\varphi_n(x_1)\overline{\varphi_n(x_2)}}{\lambda_n - k^2}$$

and

$$\xi(x_j,k) = \sum_{n=1}^{\infty} \left( \frac{|\varphi_n(x_j)|^2}{\lambda_n - k^2} - \frac{1}{4\pi n} \right) + c(G),$$

where c(G) depends of the manifold only (changing it is equivalent to a coupling constant renormalization)



**Theorem [Kiselev'97, E-Tater-Vaněk'01]:** For any *l* large enough the interval (l(l-1), l(l+1)) contains a point  $\mu_l$  such that  $\Delta(\sqrt{\mu_l}) = 0$ . Let  $\varepsilon(\cdot)$  be a positive, strictly increasing function which tends to  $\infty$  and obeys the inequality  $|\varepsilon(x)| \leq x \ln x$  for x > 1. Furthermore, denote  $K_{\varepsilon} := \mathbb{R} \setminus \bigcup_{l=2}^{\infty} (\mu_l - \varepsilon(l)(\ln l)^{-2}, \mu_l + \varepsilon(l)(\ln l)^{-2}).$ 



**Theorem [Kiselev'97, E-Tater-Vaněk'01]:** For any *l* large enough the interval (l(l-1), l(l+1)) contains a point  $\mu_l$  such that  $\Delta(\sqrt{\mu_l}) = 0$ . Let  $\varepsilon(\cdot)$  be a positive, strictly increasing function which tends to  $\infty$  and obeys the inequality  $|\varepsilon(x)| \leq x \ln x$  for x > 1. Furthermore, denote  $K_{\varepsilon} := \mathbb{R} \setminus \bigcup_{l=2}^{\infty} (\mu_l - \varepsilon(l)(\ln l)^{-2}, \mu_l + \varepsilon(l)(\ln l)^{-2})$ . Then there is c > 0 such that the transmission probability satisfies

 $|t(k)|^2 \le c\varepsilon(l)^{-2}$ 

in the *background*, i.e. for  $k^2 \in K_{\varepsilon} \cap (l(l-1), l(l+1))$  and any l large enough. On the other hand, there are *resonance peaks* localized outside  $K_{\varepsilon}$  with the property

$$|t(\sqrt{\mu_l})|^2 = 1 + \mathcal{O}\left((\ln l)^{-1}\right) \quad \text{as} \quad l \to \infty$$



The high-energy behavior shares features with strongly singular interaction such as  $\delta'$ , for which  $|t(k)|^2 = O(k^{-2})$ . *We conjecture* that *coarse-grained* transmission through our "bubble" has the same decay as  $k \to \infty$ 



The high-energy behavior shares features with strongly singular interaction such as  $\delta'$ , for which  $|t(k)|^2 = O(k^{-2})$ . *We conjecture* that *coarse-grained* transmission through our "bubble" has the same decay as  $k \to \infty$ 





While the above general features are expected to be the same if the angular distance of junctions is less than  $\pi$ , the detailed transmission plot changes [Brüning et al'02]:



While the above general features are expected to be the same if the angular distance of junctions is less than  $\pi$ , the detailed transmission plot changes [Brüning et al'02]:



Figure 2. The transmission coefficient as a function of  $k\lambda$  at  $a = 10\lambda$ ;  $(a)r = \pi a$ ;  $(b)r = 0.98\pi a$ ;  $(c)r = 0.96\pi a$ .



# **Arrays of geometric scatterers**

In a similar way one can construct *general scattering theory* on such "hedgehog" manifolds composed of compact scatterers, connecting edges and external leads [Brüning-Geyler'03]



# **Arrays of geometric scatterers**

In a similar way one can construct *general scattering theory* on such "hedgehog" manifolds composed of compact scatterers, connecting edges and external leads [Brüning-Geyler'03]

Furthermore, infinite periodic systems can be treated by Floquet-Bloch decomposition




### **Sphere array spectrum**

A band spectrum example from [E-Tater-Vaněk'01]: radius R = 1, segment length  $\ell = 1, 0.01$  and coupling  $\rho$ 



#### **Sphere array spectrum**

A band spectrum example from [E-Tater-Vaněk'01]: radius R = 1, segment length  $\ell = 1, 0.01$  and coupling  $\rho$ 



FIG. 8. Band spectrum of an infinite "bubble" array. The spheres are of unit radius, the spacing is t = 1 (upper figure) and t = 0.01 (lower figure),  $\rho$  is the contact radius,



# How do gaps behave as $k \to \infty$ ?

Question: Are the scattering properties of such junctions reflected in *gap behaviour* of periodic families of geometric scatterers *at high energies?* And if we ask so, why it should be interesting?



# How do gaps behave as $k \to \infty$ ?

Question: Are the scattering properties of such junctions reflected in *gap behaviour* of periodic families of geometric scatterers *at high energies*? And if we ask so, why it should be interesting?

Recall properties of *singular Wannier-Stark* systems:





# How do gaps behave as $k \to \infty$ ?

Question: Are the scattering properties of such junctions reflected in *gap behaviour* of periodic families of geometric scatterers *at high energies*? And if we ask so, why it should be interesting?

Recall properties of *singular Wannier-Stark* systems:



Spectrum of such systems is *purely discrete* which is proved for "most" values of the parameters [Asch-Duclos-E'98] and conjectured for *all* values. The reason behind are *large gaps* of  $\delta'$  Kronig-Penney systems



Consider periodic combinations of spheres and segments and adopt the following assumptions:

periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")



Consider periodic combinations of spheres and segments and adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals  $\pi$  or  $\pi/2$



Consider *periodic combinations* of spheres and segments and adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals  $\pi$  or  $\pi/2$
- sphere-segment coupling  $\mathcal{A} = \begin{pmatrix} 0 & 2\pi\alpha^{-1} \\ \bar{\alpha}^{-1} & 0 \end{pmatrix}$



Consider periodic combinations of spheres and segments and adopt the following assumptions:

- periodicity in one or two directions (one can speak about "bead arrays" and "bead carpets")
- angular distance between contacts equals  $\pi$  or  $\pi/2$
- sphere-segment coupling  $\mathcal{A} = \begin{pmatrix} 0 & 2\pi\alpha^{-1} \\ \bar{\alpha}^{-1} & 0 \end{pmatrix}$

we allow also tight coupling when the spheres touch

 $\mathbb{S}_{n+1}^2$ 

### **Tightly coupled spheres**





### **Tightly coupled spheres**



The tight-coupling boundary conditions will be

$$L_1(\Phi_1) = AL_0(\Phi_1) + CL_0(\Phi_2),$$
  

$$L_1(\Phi_2) = \bar{C}L_0(\Phi_1) + DL_0(\Phi_2)$$

with  $A, D \in \mathbb{R}, C \in \mathbb{C}$ . For simplicity we put A = D = 0

# Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum  $\theta$ . Denote by  $B_n$ ,  $G_n$  the widths of the *n*th band and gap, respectively; then we have



# Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum  $\theta$ . Denote by  $B_n$ ,  $G_n$  the widths of the *n*th band and gap, respectively; then we have

**Theorem** [Brüning-E-Geyler'03]: There is a c > 0 s.t.

$$\frac{B_n}{G_n} \le c \, n^{-\varepsilon}$$

holds as  $n \to \infty$  for *loosely connected* systems, where  $\epsilon = \frac{1}{2}$  for arrays and  $\epsilon = \frac{1}{4}$  for carpets. For *tightly coupled* systems to any  $\epsilon \in (0, 1)$  there is a  $\tilde{c} > 0$  such that the inequality  $B_n/G_n \leq \tilde{c} (\ln n)^{-\epsilon}$  holds as  $n \to \infty$ 



# Large gaps in periodic manifolds

We analyze how spectra of the fibre operators depend on quasimomentum  $\theta$ . Denote by  $B_n$ ,  $G_n$  the widths of the *n*th band and gap, respectively; then we have

**Theorem** [Brüning-E-Geyler'03]: There is a c > 0 s.t.

$$\frac{B_n}{G_n} \le c \, n^{-\epsilon}$$

holds as  $n \to \infty$  for *loosely connected* systems, where  $\epsilon = \frac{1}{2}$  for arrays and  $\epsilon = \frac{1}{4}$  for carpets. For *tightly coupled* systems to any  $\epsilon \in (0, 1)$  there is a  $\tilde{c} > 0$  such that the inequality  $B_n/G_n \leq \tilde{c} (\ln n)^{-\epsilon}$  holds as  $n \to \infty$ 

**Conjecture**: Similar results hold for other couplings and angular distances of the junctions. The problem is just technical; the dispersion curves are less regular in general



# A heuristic way to choose the coupling

Let us return to the *plane+halfline* model and compare *low-energy scattering* to situation when the halfline is replaced by *tube of radius a* (we disregard effect of the sharp edge at interface of the two parts)



# A heuristic way to choose the coupling

Let us return to the *plane+halfline* model and compare *low-energy scattering* to situation when the halfline is replaced by *tube of radius a* (we disregard effect of the sharp edge at interface of the two parts)





### **Plane plus tube scattering**

Rotational symmetry allows us again to treat each partial wave separately. Given orbital quantum number  $\ell$  one has to match smoothly the corresponding solutions

$$\psi(x) := \begin{cases} e^{ikx} + r_a^{(\ell)}(t)e^{-ikx} & \dots & x \le 0\\ \sqrt{\frac{\pi kr}{2}} t_a^{(\ell)}(k)H_\ell^{(1)}(kr) & \dots & r \ge a \end{cases}$$



### **Plane plus tube scattering**

Rotational symmetry allows us again to treat each partial wave separately. Given orbital quantum number  $\ell$  one has to match smoothly the corresponding solutions

$$\psi(x) := \begin{cases} e^{ikx} + r_a^{(\ell)}(t)e^{-ikx} & \dots & x \le 0\\ \sqrt{\frac{\pi kr}{2}} t_a^{(\ell)}(k)H_\ell^{(1)}(kr) & \dots & r \ge a \end{cases}$$

This yields

$$r_a^{(\ell)}(k) = -\frac{\mathcal{D}_-^a}{\mathcal{D}_+^a}, \quad t_a^{(\ell)}(k) = 4i\sqrt{\frac{2ka}{\pi}} \left(\mathcal{D}_+^a\right)^{-1}$$

with

$$\mathcal{D}^{a}_{\pm} := (1 \pm 2ika)H^{(1)}_{\ell}(ka) + 2ka\left(H^{(1)}_{\ell}\right)'(ka)$$



# **Plane plus point: low energy behavior**

Wronskian relation  $W(J_{\nu}(z), Y_{\nu}(z)) = 2/\pi z$  implies scattering unitarity, in particular, it shows that

$$|r_a^{(\ell)}(k)|^2 + |t_a^{(\ell)}(k)|^2 = 1$$



# **Plane plus point: low energy behavior**

Wronskian relation  $W(J_{\nu}(z), Y_{\nu}(z)) = 2/\pi z$  implies scattering unitarity, in particular, it shows that

$$|r_a^{(\ell)}(k)|^2 + |t_a^{(\ell)}(k)|^2 = 1$$

Using asymptotic properties of Bessel functions with for small values of the argument we get

$$|t_a^{(\ell)}(k)|^2 \approx \frac{4\pi}{((\ell-1)!)^2} \left(\frac{ka}{2}\right)^{2\ell-1}$$

for  $\ell \neq 0$ , so the *transmission probability vanishes fast* as  $k \rightarrow 0$  for higher partial waves



### **Heuristic choice of coupling parameters**

The situation is different for  $\ell = 0$  where

$$H_0^{(1)}(z) = 1 + \frac{2i}{\pi} \left(\gamma + \ln \frac{ka}{2}\right) + \mathcal{O}(z^2 \ln z)$$



### Heuristic choice of coupling parameters

The situation is different for  $\ell = 0$  where

$$H_0^{(1)}(z) = 1 + \frac{2i}{\pi} \left(\gamma + \ln \frac{ka}{2}\right) + \mathcal{O}(z^2 \ln z)$$

Comparison shows that  $t_a^{(0)}(k)$  coincides, in the leading order as  $k \to 0$ , with the *plane+halfline* expression if

$$A := \frac{1}{2a}, \quad D := -\ln a, \quad B = 2\pi C = \sqrt{\frac{2\pi}{a}}$$



### Heuristic choice of coupling parameters

The situation is different for  $\ell = 0$  where

$$H_0^{(1)}(z) = 1 + \frac{2i}{\pi} \left(\gamma + \ln \frac{ka}{2}\right) + \mathcal{O}(z^2 \ln z)$$

Comparison shows that  $t_a^{(0)}(k)$  coincides, in the leading order as  $k \to 0$ , with the *plane+halfline* expression if

$$A := \frac{1}{2a}, \quad D := -\ln a, \quad B = 2\pi C = \sqrt{\frac{2\pi}{a}}$$

Notice that the "right" s-a extensions depend on a *single parameter*, namely radius of the "thin" component



#### **Illustration on** *microwave experiments*

Our models do not apply to QM only. Consider an *electromagnetic resonator*. If it is *very flat*, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation



#### **Illustration on** *microwave experiments*

Our models do not apply to QM only. Consider an *electromagnetic resonator*. If it is *very flat*, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation

Let a *rectangular resonator* be equipped with an *antenna* which serves a source. Such a system has many resonances; we ask about distribution of their spacings



#### **Illustration on** *microwave experiments*

Our models do not apply to QM only. Consider an *electromagnetic resonator*. If it is *very flat*, Maxwell equations simplify: TE modes effectively decouple from TM ones and one can describe them by Helmholz equation

Let a *rectangular resonator* be equipped with an *antenna* which serves a source. Such a system has many resonances; we ask about distribution of their spacings

The reflection amplitude for a compact manifold with one lead attached at  $x_0$  is found as above: we have

$$r(k) = -\frac{\pi Z(k)(1 - 2ika) - 1}{\pi Z(k)(1 + 2ika) - 1},$$

where  $Z(k) := \xi(\vec{x}_0; k) - \frac{\ln a}{2\pi}$ 



#### **Finding the resonances**

To evaluate regularized Green's function we use ev's and ef's of Dirichlet Laplacian in  $M = [0, c_1] \times [0, c_2]$ , namely

$$\varphi_{nm}(x,y) = \frac{2}{\sqrt{c_1 c_2}} \sin(n\frac{\pi}{c_1}x) \sin(m\frac{\pi}{c_2}y),$$

$$\lambda_{nm} = \frac{n^2 \pi^2}{c_1^2} + \frac{m^2 \pi^2}{c_2^2}$$



#### **Finding the resonances**

To evaluate regularized Green's function we use ev's and ef's of Dirichlet Laplacian in  $M = [0, c_1] \times [0, c_2]$ , namely

$$\varphi_{nm}(x,y) = \frac{2}{\sqrt{c_1 c_2}} \sin(n\frac{\pi}{c_1}x) \sin(m\frac{\pi}{c_2}y),$$
$$\lambda_{nm} = \frac{n^2 \pi^2}{c_1^2} + \frac{m^2 \pi^2}{c_2^2}$$

Resonances are given by complex zeros of the denominator of r(k), i.e. by solutions of the algebraic equation

$$\xi(\vec{x}_0, k) = \frac{\ln(a)}{2\pi} + \frac{1}{\pi(1 + ika)}$$



# **Comparison with experiment**

Compare now *experimental results* obtained at University of Marburg with the model for a = 1 mm, averaging over  $x_0$  and  $c_1, c_2 = 20 \sim 50 \text{ cm}$ 



# **Comparison with experiment**

Compare now *experimental results* obtained at University of Marburg with the model for a = 1 mm, averaging over  $x_0$  and  $c_1, c_2 = 20 \sim 50 \text{ cm}$ 



Important: An agreement is achieved with the *lower third* of measured frequencies – confirming thus validity of our approximation, since shorter wavelengths are comparable with the antenna radius a and  $ka \ll 1$  is no longer valid

# **Spin conductance oscillations**

Finally, manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem:

[Hu et al'01] measured conductance of polarized electrons through an InAs sample; the results *depended on length* L of the semiconductor "bar", in particular, that for some L *spin-flip processes dominated* 



# **Spin conductance oscillations**

Finally, manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem:

[Hu et al'01] measured conductance of polarized electrons through an InAs sample; the results *depended on length L* of the semiconductor "bar", in particular, that for some *L spin-flip processes dominated* 

*Physical mechanism* of the spin flip is the *spin-orbit interaction with impurity atoms.* It is complicated and no realistic transport theory of that type was constructed



# **Spin conductance oscillations**

Finally, manifolds we consider need not be separate spatial entities. Illustration: a spin conductance problem:

[Hu et al'01] measured conductance of polarized electrons through an InAs sample; the results *depended on length* L of the semiconductor "bar", in particular, that for some L *spin-flip processes dominated* 

*Physical mechanism* of the spin flip is the *spin-orbit interaction with impurity atoms.* It is complicated and no realistic transport theory of that type was constructed

We construct a *model* in which spin-flipping interaction has a *point character*. Semiconductor bar is described as *two strips coupled at the impurity sites* by the boundary condition described above



# **Spin-orbit coupled strips**



We assume that impurities are randomly distributed with the same coupling, A = D and  $C \in \mathbb{R}$ . Then we can instead study a pair of decoupled strips,

$$L_1(\Phi_1 \pm \Phi_2) = (A \pm C)L_0(\Phi_1 \pm \Phi_2),$$

which have naturally different localizations lengths

### **Compare with measured conductance**

Returning to original functions  $\Phi_j$ , *spin conductance oscillations* are expected. This is indeed what we see if the parameters assume realistic values:





# **Summarizing Lecture VI**

There are many physically interesting systems whose configuration space consists of components of different dimensions


- There are many physically interesting systems whose configuration space consists of components of different dimensions
- In QM there is an *efficient technique to model them* generalizing ideal quantum graphs of *Lectures I-III*



- There are many physically interesting systems whose configuration space consists of components of different dimensions
- In QM there is an *efficient technique to model them* generalizing ideal quantum graphs of *Lectures I-III*
- A typical feature of such systems is a suppression of transport at high energies



- There are many physically interesting systems whose configuration space consists of components of different dimensions
- In QM there is an *efficient technique to model them* generalizing ideal quantum graphs of *Lectures I-III*
- A typical feature of such systems is a suppression of transport at high energies
- This has consequences for spectral properties of periodic and WS-type systems



- There are many physically interesting systems whose configuration space consists of components of different dimensions
- In QM there is an *efficient technique to model them* generalizing ideal quantum graphs of *Lectures I-III*
- A typical feature of such systems is a suppression of transport at high energies
- This has consequences for spectral properties of periodic and WS-type systems
- Finally, concerning the *justification of coupling choice* a lot of work remains to be done; the situation is less understood than for quantum graphs of *Lectures I-III*



#### **Some literature to Lecture VI**

- [ADE98] J. Asch, P. Duclos, P.E.: Stability of driven systems with growing gaps. Quantum rings and Wannier ladders, J. Stat. Phys. 92 (1998), 1053-1069
- [BEG03] J.Brüning, P.E., V.A. Geyler: Large gaps in point-coupled periodic systems of manifolds, J. Phys. A36 (2003), 4875-4890
- [ETV01] P.E., M. Tater, D. Vaněk: A single-mode quantum transport in serial-structure geometric scatterers, J. Math. Phys. 42 (2001), 4050-4078
- [EŠ86] P.E., P. Šeba: Quantum motion on two planes connected at one point, Lett. Math. Phys. 12 (1986), 193-198
- [EŠ87] P.E., P. Šeba: Quantum motion on a halfline connected to a plane, J. Math. Phys. 28 (1987), 386-391
- [EŠ97] P.E., P. Šeba: Resonance statistics in a microwave cavity with a thin antenna, Phys. Lett. A228 (1997), 146-150
- [EŠ07] P.E., P. Šeba: A "hybrid plane" with spin-orbit interaction, Russ. J. Math. Phys.
  14 (2007), 401-405
- [ŠEPVS01] P. Šeba, P.E., K.N. Pichugin, A. Vyhnal, P. Středa: Two-component interference effect: model of a spin-polarized transport, *Phys. Rev. Lett.* 86 (2001), 1598-1601



### **Summarizing the course**

Quantum graphs and various generalizations of them offer a wide variety of solvable models



### **Summarizing the course**

- Quantum graphs and various generalizations of them offer a wide variety of solvable models
- They describe numerous systems of physical importance, both of quantum and classical nature



### **Summarizing the course**

- Quantum graphs and various generalizations of them offer a wide variety of solvable models
- They describe numerous systems of physical importance, both of quantum and classical nature
- The field offers many open questions, some of them difficult, presenting thus a challenge for ambitious young people



# Thank you for your attention!



Summer School Lectures: Les Diablerets, June 6-10, 2011 – p. 99/9