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My topic: geometric effects in the spectrum

A well-known example of such an effect is provided by the Dirichlet
Laplacian in L2(Ω), where Ω ⊂ Rd , d = 2, 3, is a tubular region the
spectrum of which depends on the geometry of Ω, e.g., if such a tube
is bent, but asymptotically straight, we have σdisc(−∆Ω

D) ̸= ∅
There is a number of related results including other dimensions,
boundaries, and different geometric perturbations:

P.E., H. Kovǎŕık: Quantum Waveguides, Springer, Cham 2015

Analogous effects one can observe in case of singular Schrödinger
operators formally written as −∆− αδ(x − Γ) in L2(R2) with α > 0
and Γ being is a curve, a graph, a surface, etc.

If, for instance, Γ is a non-straight, piecewise C 1-smooth curve such
that |Γ(s)− Γ(s ′)| ≥ c |s − s ′| for some c ∈ (0, 1) and asymptotically
straight in a suitable sense, then σess(−∆Γ,α) = [−1

4α
2,∞) and the

operator has at least one eigenvalue below the threshold −1
4α

2.
P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A: Math. Gen. 34 (2001), 1439–1450.
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Soft quantum waveguides in two dimensions

The main question here is what happens if we replace the singular
interaction by a regular potential channel. We consider an infinite
planar curve Γ : R → R2 without self-intersections, parametrized
by its arc length s and suppose that

a Γ is C 2-smooth so γ(s) = (Γ̇2Γ̈1 − Γ̇1Γ̈2)(s) makes sense,
b γ is either of compact support, supp γ ⊂ [−s0, s0] for an s0 > 0,

or Γ is C 4-smooth and γ(s), γ̇(s), γ̈(s) tend to zero as |s| → ∞,
c |Γ(s)− Γ(s ′)| → ∞ holds as |s − s ′| → ∞.

Next we define the strip neighborhood of the curve,
Ωa := {x ∈ R2 : dist(x , Γ) < a}, in particular, Ωa

0 := R× (−a, a)
corresponds to a straight line Γ0, and assume that

d Ωa does not intersect itself, in particular, we have a∥γ∥∞ < 1;

points of Ωa can be uniquely expressed in parallel (Fermi) coordinates,

x(s, u) =
(
Γ1(s)− uΓ̇2(s), Γ2(s) + uΓ̇1(s)

)
.
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Soft quantum waveguides in two dimensions

This allows us to built a potential ‘ditch’ in Ωa considering

e a nonnegative potential, say, v ∈ L∞(R) with suppV ⊂ [−a, a]

(V ≥ 0 and ∥V ∥∞ <∞ is assumed for convenience only) and putting

HΓ,V = −∆− V (x) , V (x) = v(dist(x , Γ))

We also introduce the operator hV = −∂2x − V (x) on L2(R) which has in
accordance with (e) a nonempty and finite discrete spectrum such that

ϵ0 := inf σdisc(hV ) = inf σ(hV ) ∈
(
− ∥V ∥∞, 0

)
,

where ϵ0 is simple and associated with a positive ϕ0 ∈ H2(R).

Proposition

Under assumptions (a)–(e) we have σess(HΓ,V ) = [ϵ0,∞)
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Asymptotic results
Recall that −∆− αδ(x − Γ) is obtained as a norm-resolvent limit
of Schrödinger operators with scaled regular potentials, namely
Vε : Vε(u) =

1
εV

(
u
ε

)
; this follows from a general result obtained in

J. Behrndt, P. Exner, M. Holzmann, V. Lotoreichik: Approximation of Schrödinger operators with δ-interactions
supported on hypersurfaces, Math. Nachr. 290 (2017), 1215–1248.

Proposition

Let a C 2-smooth curve Γ : R → R2 satisfy assumption of the above
theorem; if supp γ is noncompact, assume in addition to (b) that
γ(s) = O(|s|−β) with some β > 5

4 as |s| → ∞. Then σdisc(HΓ,Vε) ̸= ∅
holds for all ε small enough.

Similarly, for a flat-bottom waveguide, va(u) = V0χ[−a,a](u), we have

Proposition

Suppose that Γ is not straight and assumptions (a)–(d) are satisfied, then
the operator HΓ,Va referring to the flat-bottom potential has nonempty
discrete spectrum for all V0 large enough.
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Birman-Schwinger analysis
However, one would like to know whether the curvature can induce
the existence of discrete spectrum also beyond the asymptotic regime.

There are two main ways how to do that: (a) to use Birman-Schwinger
principle, or (b) variationally, by constructing suitable trial functions.

The first way relies on the operator in L2(R2) defined for z ∈ C \ R+ by

KΓ,V (z) := V 1/2(−∆− z)−1V 1/2;

the discrete spectrum of HΓ,V can be found using the following claim:

Proposition

z ∈ σdisc(HΓ,V ) holds if and only if 1 ∈ σdisc(KΓ,V (z)). The function
κ 7→ KΓ,V (−κ2) is continuous and decreasing in (0,∞), tending to zero
in the norm topology, that is, ∥KΓ,V (−κ2)∥ → 0 holds as κ→ ∞

This works well in the singular potential case where the ‘sandwiching’
of the free resolvent is replaced by taking its trace at the points of Γ.
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Recall the BS proof scheme in the singular case

in the straight case σ(Rκ
α,Γ0

) = [0, α2κ ] is checked directly

since κ 7→ 1
2π K0(κ|x − x ′|) is decreasing, the perturbation is

sign-definite; it is not difficult to check that supσ(Rκ
α,Γ) >

α
2κ

from the asymptotic straightness, the perturbation is compact
so that the ‘added’ spectrum consists of eigenvalues at most

the spectrum depends continuously on κ and shrinks to zero
as κ→ ∞, hence there is a crossing to the right of 1

2α
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Existence of bound states
Since v is compactly supported we can use Fermi coordinates to
‘straighten’ the strip and consider again the bending as a perturbation
on Ωa

0, however, its sign-definiteness is now an assumption; this yields
the following sufficient condition for the discrete spectrum existence:

Theorem

Let assumptions (a)–(e) be valid and set

Cκ
Γ,V (s, u; s

′, u′)

=
1

2π
ϕ0(u)V (u)

[
(1 + uγ(s))K0(κ|x(s, u)− x(s ′, u′)|) (1 + u′γ(s ′))

−K0(κ|x0(s, u)− x0(s
′, u′)|)

]
V (u′)ϕ0(u

′)

for all (s, u), (s ′, u′) ∈ Ωa
0, then we have σdisc(HΓ,V ) ̸= ∅ provided

∫

R2

dsds ′
∫ a

−a

∫ a

−a
dudu′ Cκ0Γ,V (s, u; s ′, u′) > 0

holds for κ0 =
√−ϵ0.

P.E.: Spectral properties of soft quantum waveguides, J. Phys. A: Math. Theor. 53 (2020), 355302.
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Remarks

• In contrast to the above asymptotic results, the condition has a
quantitative character, however, the integral on the positivity of which
it relies may not not easy to evaluate generally.

• The sufficient condition for the discrete spectrum existence can be
extended to soft waveguides in three dimensions under the assumption
that profile potential V is rotationally symmetric w.r.t. the tube axis.

• If it is not the case, the result still holds if the channel profile is fixed in
a particular frame which is, modulo technicalities, the one which rotates
w.r.t. the Frenet frame of the generating curve Γ and the angular velocity
of this rotation coincides with the torsion of Γ.

P.E.: Soft quantum waveguides in three dimensions, J. Math. Phys. 63 (2022), 042103

• If this condition is not satisfied, the problems is open; recall that for
Dirichlet tubes twisting gives rise to an effective repulsive interaction.

T. Ekholm, H. Kovǎŕık, D. Krejčǐŕık: A Hardy inequality in twisted waveguides, Arch. Rat. Mech. Anal.
188 (2008), 245–264.
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Variational approach

An alternative to Birman-Schwinger is to apply variational estimates to
the original operator HΓ,V . The trouble is to find a suitable trial function
which – in contrast to Dirichlet tubes where this approach works well –
is that such a function is now supported in the whole plane/space.

The only prior result in the literature concerned a simple example of the
so-called bookcover-shaped potential ditch localized in the following Ωa:

 

Source: the cited paper

S. Kondej, D. Krejčǐŕık, J. Kř́ıž: Soft quantum waveguides with a explicit cut locus, J. Phys. A: Math. Theor. 54
(2021), 30LT01

The potential here is not assumed to be nonnegative and may be
arbitrarily shallow. Note also that the generating curve here is not C 2.

Our next aim is to show that using variational approach we can go far
beyond the bookcover example of [KKK’21]
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The existence: more complicated guides
We adopt the following assumptions:
(s1) Γ is C 1-smooth and piecewise C 3, non-straight but straight outside

a compact; its curved part consists of a finite number of segments
such that on each of them the monotonicity character of the signed
curvature κ(·) of Γ and its sign are preserved,

(s2) |Γ(s+)− Γ(s−)| → ∞ as s± → ±∞,
(s3) the strip Ωa := {x ∈ R2 : dist(x , Γ) < a} does not intersect itself.

a

a

Γ

Ωa
+

Ωa
−

Ωout
+

Ωout
−

s

1
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The potential, including a possible bias

We consider the channel profile operator of the form

h := − d2

dt2
+ v(t) + V0χ[a,∞)(t), V0 ≥ 0

and use (some of) the following assumptions:

(p1) v ∈ L2(R) and supp v ⊂ [−a, a],

(p2) sometimes we use mirror symmetry, v(t) = v(−t) for t ∈ [−a, a],

(p3) inf σ(h) is a negative (ground state) eigenvalue µ associated with
a real-valued eigenfunction ϕ0 normalized by ϕ0(−a) = 1, or

(p4) operator h has a zero-energy resonance, meaning that h ≥ 0 and
−(1− ε) d2

dt2 + v(t) + V0χ[a,∞)(t) has a negative eigenvalue for any
ε > 0. In that case, equation hϕ = 0 has a real-valued solution
ϕ0 ∈ H2

loc(R) not increasing at infinity; we set again ϕ0(−a) = 1.
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The soft waveguide Hamiltonian
As before, the object of our interest is the Schrödinger operator

HΓ,V = −∆+ V (x)

on L2(R2) with the potential defined using the locally orthogonal
coordinates (s, t) in the strip as

V (x) =





v(t) if x ∈ Ωa

V0 if x ∈ Ω+\ Ωa

0 otherwise

We drop the subscript of HΓ,V if it is clear from the context. We have:

Proposition

Under assumptions (s1)–(s3), (p1) and (p3), the operator is self-adjoint
with D(HΓ,V ) = H2(R2), and σess(HΓ,V ) = [µ,∞). If h ≥ 0, the same is
true with µ = 0.
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The unbiased case
The zero-energy resonance situation is easier:

Theorem

Assume (s1)–(s3), (p1) and (p4). If V0 = 0 and

[ϕ0(a)
2 − ϕ0(−a)2]

∫

R
κ(s)ds ≤ 0

holds, then HΓ,V has at least one negative eigenvalue.

Recall that κ ̸= 0. The condition is naturally satisfied if ϕ0(a) = ϕ0(−a),
in particular, under assumption (p2). The integral equals π − θ where θ is
the asymptote angle, hence if ϕ0(a) ̸= ϕ0(−a), at least one bound state
exists if θ = π or θ ∈ (0, π) and ϕ0 is larger at the ‘outer’ side of Ωa.

Theorem

Assume (s1)–(s3) and (p1)–(p3). Let further V0 = 0, then HΓ,V has at
least one eigenvalue below the continuum threshold µ.

P.E., S. Vugalter: Bound states in bent soft waveguides, J. Spect. Theory, to appear; arXiv:2304.14776
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A rough sketch of the proof
We seek a trial function ψ ∈ H1(R2) such that Q[ψ] < µ∥ψ∥2, where

Q[ψ] = ∥∇ψ∥2 +
∫

Ωa

v(t)|ψ(x(s, t))|2dsdt

Let us fix the geometry. We choose the origin O of the coordinates so that
the asymptotes are symmetric w.r.t. x axis at angles ±θ0, and s0 so that
Γ(±s) there have the same Euclidean distance from O.

We begin with trial function inside the strip choosing s0, such that the
points Γ(±s0) lay outside the curved part of Γ, and s∗ > s0, defining

χin(s) :=


1 if |s| < s0

ln s∗

|s|
(
ln s∗

s0

)−1
if s0 ≤ |s| ≤ s∗

0 if s0 ≤ |s| ≤ s∗

Recalling that ϕ0 satisfies hϕ0 = µϕ0, we put

ψ(s, t) = ϕ0(t)χin(s) + νg(s, t), |t| ≤ a,

where ν and a compactly supported function g will be chosen later.
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Sketch of the proof, continued
We denote by Qint[ψ] the contribution from the strip to the shifted
form, Q[ψ]− µ∥ψ∥2; using the parallel coordinates we can write it as

Qint[ψ] =

∫
|t|≤a

{(∂ψ
∂s

)2
(1− κ(s)t)−1 +

(∂ψ
∂t

)2
(1− κ(s)t)

+(v(t)− µ)|ψ|2(1− κ(s)t)
}
dsdt.

It is quadratic in ν, we can choose g so that linear term is nonzero.
Denoting for brevity (keeping the bias V0 for further purposes)

ϕ± = ϕ0(±a), ξ+ = −
√

|µ|+ V0, ξ− =
√
|µ|,

we can estimate the internal contribution as follows,

Qint[ψ] ≤−1

2
δν +

[
ξ+ϕ

2
+ − ξ−

]
∥χin∥2 −

[
ξ+ϕ

2
+ + ξ−

]
a

∫

R
κ(s) ds

+
1

2
(ϕ2+ − 1)

∫

R
κ(s) ds + τ−1

0 ∥ϕ0 ↾[−a,a] ∥2∥χ′
in∥2.

where τ: = 1− a∥κ∥∞ and the last term on the right-hand side can be
made arbitrarily small choosing s∗ ≫ s0.
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The zero-energy resonance case

If V0 = µ = 0 we have ξ± = 0 and since (ϕ2+ − 1)
∫
R κ(s) ds ≤ 0 holds

by assumption, the above estimate simply becomes Qint[ψ] ≤ −1
4δν.

To conclude the proof we have thus to choose the outer part of trial
function so that its contribution can be made smaller than any fixed
positive number.

If V0 = µ = 0, we have ϕ0(t) = const for |t| ≥ a, and to get an H1 trial
function, we have to multiply this constant (possibly different in Ω±) by
a suitable mollifier χout of which we require

in R2 \ Ωa the function depends on ρ = dist(x ,O) only,

continuity at the boundary of Ωa: at points x(s,±a) the relation
χout(x) = χin(s) holds.

With a bit of computing one can check that the goal is achieved for
s∗ ≫ s0; this concludes the proof of the first theorem.
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The case µ < 0

The proof of the second theorem is much more complicated. In view of
the symmetry and absence of the bias, we have ϕ+ = 1 and ξ+ = −ξ−.
Keeping thus ψ(s, t) = ϕ0(t)χin(s) + νg(s, t) for the interior part, we have

Qint[ψ] ≤ −1

4
δν − 2|µ|1/2∥χin∥2.

To construct the outer part, we adopt first an additional assumption,

(s4) the curved part of Γ is piecewise C∞-smooth consisting of a finite array of
circular arcs; at its endpoints it is C 1-smoothly connected to the halflines,

in other words, the signed curvature κ(·) of such a Γ is a step function.

In Ωout we now define a function with the appropriate exponential decay,

ϕ(x) := exp{−ξ(dist(x , Γ)− a)}, x ∈ R2 \ Ωa,

where ξ := ξ− = −ξ+ = |µ|1/2; the sought trial function will be then of the form
ψout = ϕχout with the mollifier χout to be specified below.
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The external mollifier
To construct it, we consider several regions in the plane:

the disc B 1
2
r0
(O) containing the curved part of Γ

the doubled disc Br0(O) such that χout(x) = 1 on Br0(O) \ Ωa

disjoint conical sectors K± of angle 2θ0 in R2 \ Br0(O) centered
around the asymptotes of Γ; within them one can use the parallel
coordinates and define χout(s, t) = χin(s)

In the remaining part of the plane we choose χout as a function of the
distance ρ from the origin O only, and such that χout is continuous in
Ωout; it is clear that the radial decay of such an external mollifier is
determined by the function χin(s)
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The regions used in the proof

Γ

2∆θ0

B 1
2
r0
(O)

Br0(O)

ŝ

K+

O

−ŝ

K−

1
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The external mollifier
To construct it, we consider several regions in the plane:

the disc B 1
2
r0
(O) containing the curved part of Γ

the doubled disc Br0(O) such that χout(x) = 1 on Br0(O) \ Ωa

disjoint conical sectors K± of angle 2θ0 in R2 \ Br0(O) centered
around the asymptotes of Γ; within them one can use the parallel
coordinates and define χout(s, t) = χin(s)

In the remaining part of the plane we choose χout as a function of the
distance ρ from the origin O only, and such that χout is continuous in
Ωout; it is clear that the radial decay of such an external mollifier is
determined by the function χin(s)

As usual one has first to check that the mollifier effect in the kinetic part
of the quadratic form can be made small. With the above choice we have∫

Ωout

|∇ψout(x)|2dx ≤
∫

Ωout

|∇ϕ(x)|2χ2
out(x) dx +O(r−1

0 ) as r0 → ∞;

choosing r0 large enough, the error term can be made 1
8δν with the δν we

used in estimating the interior part.
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Proof sketch, continued
With this choice it is easy to check that

∫

Ωout∩{K+∪K−}
|ϕ(x)χout(x)|2 dx ≤ |µ|−1/2∥χin∥2L2((−∞,−ŝ]∪[ŝ,∞))

and it remains to estimate the integral over Ωout \ {K+ ∪ K−} which
can only increase if we remove χout, hence we have to check that

∫

Ωout\{K+∪K−}
|ϕ(x)|2 dx ≤ 2ŝ |µ|−1/2 +

1

16
|µ|−1δν,

where we have used the fact that ∥χin∥2L2((−ŝ,ŝ)) = 2ŝ.

Now we employ the additional assumption (s4). The function
dx : R → R+ defined by dx(s) := dist(x , Γ(s)) is C 1 smooth for any
x ∈ R2 and piecewise monotonous because on each arc it can have at
most one extremum. Since dx(s) → ∞ holds as s → ±∞, the function
has a global minimum, and it may also have a finite number of local
extrema which come in pairs, a minimum adjacent to a maximum.
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Proof sketch, continued

Let s0x be the coordinate of the global minimum and s ix refer to all the
extrema; the index sets M↑

x and M↓
x refer to maxima and minima,

respectively. Then for all x ∈ Ωout we obviously have

exp{−2ξ(dx (s
0
x )− a)} ≤ −

∑
s ix∈M

↑
x

exp{−2ξ(dx (s
i
x )− a)}+

∑
s ix∈M

↓
x

exp{−2ξ(dx (s
i
x )− a)}

We will combine this inequality with some simple geometrical facts:

2a

Γj

ω3j

ω1j

ω2j

Ωa
j

1

Proposition

Let Γj be one the arcs of Γ and ω1j , ω2j , ω3j and Ωa
j as in the figure

(i) If x ∈ ω1j ∪ ω2j , then dx (·) has a minimum in the interior of Γj .

(ii) If x ∈ ω3j , then dx (·) has a maximum in the interior of Γj .

(iii) x ̸∈ ω̄1j ∪ ω̄2j ∪ ω̄3j ∪ Ω̄a
j , then dx (·) has no extremum on Γj .

(iv) dx (·) has no more than one critical point in the interior of Γj .

(v) If x ∈ ωkj for any of k = 1, 2, 3, then the one-sided derivative
d ′
x (s) ̸= 0 at the endpoints of Γj .
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Proof sketch, continued
Within the regions introduced the minimal and maximal distances are
easily expressed,

dx (s
i
x ) = dist(x , Γj ) if s ix ∈ Γj ∩M↓

x ,

dx (s
i
x ) = |κj |−1 + dist(x ,Oj ) if s ix ∈ Γj ∩M↑

x .

Thus allows us to replace the right-hand side terms in the above estimate
almost everywhere by

−
∑
j

exp{−2ξ(|κj |−1 + dist(x ,Oj )− a)}ι3j (x) and
∑
j

exp{−2ξ(dist(x , Γj )− a)}ι1,2j (x),

respectively, where ι1,2j and ι3j are the appropriate characteristic functions,

hence
∫
Ωout\{K+∪K−} exp{−2ξ(dx(s

0
x )− a)} dx is bound from above by

∑
j

∫
(ω1j∪ω2j )∩{Ωout\{K+∪K−}}

exp{−2ξ(dist(x , Γj )− a)}dx

−
∑
j

∫
ω3j∩{Ωout\{K+∪K−}}

exp{−2ξ(|κj |−1 + dist(x ,Oj )− a)} dx ,

where the sums include the straight segments with |s| > ŝ. There is a
double counting here as x may belong to different ωkj ; this does not matter
as long as we consider the contributions referring of a given Γj together.
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Proof sketch, continued

To simplify the estimate, we note that the last bound can only increase
if we replace the integration domains by (ω1j ∪ ω2j) \ {K+ ∪ K−} and
ω3j \ {K+ ∪ K−}, respectively. This follows from the fact that any fixed j
the three regions are in Ωout, i.e. ωkj0 ∩ Ωa

j0
= ∅ holds for k = 1, 2, 3.

As mentioned, the summation includes the straight parts of Γ; without
going into details, one can check that their contribution is estimated by
a multiple of e−ξ sin 2∆θ0·ρ(ŝ) becoming thus negligible for large r0.

To get rid of the conical sectors, we note that that the positive part
of the estimate cannot decrease if we enlarge the integration domain
replacing (ω1j ∪ ω2j) \ {K+ ∪ K−} by ω1j ∪ ω2j .

We can also replace ω3j \ {K+ ∪ K−} by ω3j . This enlarges the negative
part, however, regions ω3j exist only for the curved segments of Γ and
those are by assumption inside B 1

2
r0
(O), while the regions K± are by

construction outside Br0(O), which implies that such an error is
O(e−3ξr0/2) and can be again neglected.
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Conclusion of the proof

The estimate now contains only integrals over sectors ωkj which are easy
to evaluate explicitly; this proves the theorem under assumption (p3).

To complete the proof we use the following approximation result:

Theorem (Sabitov-Slovesnov (2010))

Let Γ be a C 3-smooth curve consisting of a finite number of segments such that
on each of them the monotonicity character of the signed curvature κ(·) of Γ and
its sign are preserved. Then Γ can be approximated by a C 1-smooth function Γ̂ of
the same length, the curvature of which is piecewise constant having jumps at the
points s1 < s2 < · · · < sN , in the sense that the estimates

∥Γ(m) − Γ̂(m)∥∞ ≤ C max
1≤k≤N−1

(sk+1 − sk)
3−m, m = 0, 1, 2,

hold with some C > 0 for the function Γ and its two first derivatives.

It is straightforward to check that all the used estimates persist when we
approximate our curve by a family of arc arrays, Γn → Γ.
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Convexity and potential bias

Theorem

Assume V0 ≥ 0 together with (s1)–(s3) and (p1). If one of the regions Ω±
is convex and (p3) holds, then HΓ,V has at least one discrete eigenvalue.
If V0 > 0 and Ω+ is convex, the operator HΓ,V has at least one discrete
eigenvalue provided that (p4) holds.

Note that these claims do not need mirror symmetry of the potential v .

The construction of the trial function proceed as in the previous case but
we have to distinguish the two sides, Ω±, with different ξ±; this requires
the indicated stronger geometric restrictions.

In the zero-energy resonance situation the quadratic form is estimated by

QV0 [ψ] = −1

8
δν −

∫

R
κ(s) ds + o(ψ),

where the error term can be made arbitrarily small by choosing large
enough parameters r0 and s∗; it obviously works in the convex case only
when the integral is positive.
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Many questions remain open

Another weak-coupling problem concerns the effect of a slight bend
for a soft guide of a constant profile. One conjectures that in analogy
to the Dirichlet tubes and leaky curves the leading term would be
proportional to the fourth power of the bending angle.

Back to non-asymptotic problems, one may ask what happens in 3D
waveguides when the profile does not have rotational symmetry and
Tang condition is violated. It is known that in Dirichlet waveguides
with torsion gives rise to an effective with repulsive interaction but
for leaky and soft guides the problem may be more complicated.

T. Ekholm, H. Kovǎŕık, D. Krejčǐŕık: A Hardy inequality in twisted waveguides, Arch. Rat. Mech. Anal.
188 (2008), 245–264.

Potential channels of a more complicated geometry, in first place
branched ones built over a metric graph. Of course, to have the
problem well defined one must specify the potential in the vicinity
of the graph vertices because the spectrum would depend on it.
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More problems

Another question concerns scattering in a bent or locally perturbed
potential channel including possible resonance effects in narrow and
sufficiently deep channels.

Another extension to three dimensions concerns potential layers, that
is potentials of a fixed transverse profile built over an infinite surface
Σ in R3. One can again establish the discrete spectrum existence for
potential layers with the profile deep enough, while in the regime
different from the asymptotic one, the question is open.

For layers the spectrum may depend on the global geometry of the
interaction support. An example of a conical potential layer was
found, and recently the conclusion have been extended to layers
with asymptotically cylindrical ends.

S. Egger, J. Kerner, K. Pankrashkin: Discrete spectrum of Schrödinger operators with potentials concentrated
near conical surfaces, Lett. Math. Phys. 110 (2020), 945–968.

D. Krejčǐŕık, J. Kř́ıž: Bound states in soft quantum layers, arXiv:2205.04919

and the list may continue, ad libitum
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Closing the book

So far we have assumed that asymptote angle is nonzero; let us now
look what happens if this angle tends to zero.

Without loss of generality we may assume that the curved part of Γ is in
the left halfplane, while Γ± :=

{(
x1,±(ρ+ x1 tan(

1
2β)

)
: x1 ≥ 0

}
with a

positive ρ and β ∈ [0, 12π) are its straight parts are, symmetric with
respect to the x axis.

In addition to hv = − d2

dx2
− v(x) we need also the double-well operator

hv ,ρ = − d2

dx2
− v(ρ+ x)− v(−ρ− x)

It is easy to see that its spectral threshold ϵv ,ρ is monotonously increasing
and converges to the spectral threshold ϵv of hv as ρ→ ∞.

We know already that σess(HΓ,µ) = [ϵv ,∞) holds for any β > 0 and it is
easy to see that σess(HΓ,V ) = [ϵv ,ρ,∞) if β = 0. It shows that the discrete
spectrum of HΓ,V must fill the gap between ϵv ,ρ and ϵv as β → 0.
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Spectral accumulation

We are therefore interested how the spectrum behaves in the limit β → 0:

Theorem

Under the stated assumptions, there is a Cν > 0 for any ν ∈ (ϵv ,ρ, ϵv )
such that dimEHΓ,V

(ϵv ,ρ, ν) ≥ Cνβ
−1 holds for the corresponding spectral

projection of HΓ,V provided that β is small enough.

P.E., D. Spitzkopf: Tunneling in soft waveguides: closing a book, J. Phys. A: Math. Theor. 57 (2024), 125301

Proof is variational using trial functions of the form

ϕ(x , y) :=
[
χΣr (x , y)φρβ

(u(x , y) + ρβ) + χΣw (x , y)φρβ
(0)

]
f (s(x , y)), y ≥ 0,

x

y

ρ ρβ

2a

Ωa

Σr

Σw

Γ

1

where φρβ is the double-well ground-state
eigenfunction, u(x , y) is the distance from
the curve, s(x , y) is the arc length coordinate
on Γ, and the function f ∈ C 2(R) satisfies
f (s1) = f (s2) = 0
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Spectral accumulation
Denoting L = s2 − s1 and ρβ = ρ sec β2 we obtain by straigthforward
computation the value of the shifted quadratic form of HΓ,V ,

q[ϕ]−ν∥ϕ∥2 = ∥f ′∥2
[
∥φρβ∥2 + |φρβ (0)|2L tan β

2

]

+∥f ∥2
[(
ϵv ,ρβ − ν

)
∥φρβ∥2 − ν|φρβ (0)|2L tan β

2

)]

which is negative provided

∥f ′∥2
∥f ∥2 <

ν − ϵv ,ρβ + νη2ρβL tan
β
2

1 + η2ρβL tan
β
2

, ηρβ :=
|φρβ (0)|
∥φρβ∥

.

However, the left-hand side refers to Dirichlet Laplacian on an interval
of length L, hence the maximum number nν of mutually orthogonal trial
functions making q[·]− ν∥ · ∥2 negative comes from the requirement that(
πnν
L

)2
is smaller that the right-hand side; changing L as β decreases in

such a way that Lβ = const, we get the result. □
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Parallel asymptotes, weak coupling
Next we ask whether σdisc(HΓ,V ) ̸= ∅. The answer is negative if the
channel-profile potential is weak:

Theorem

Under the stated assumptions, σdisc(HΓ,λV ) is empty for all λ small enough

To see that we use bracketting and add Neumman condition at the y axis
splitting the curved and asymptote part of the channel,

HΓ,λV ≥ Hc
Γ,λV ⊕ Ha

Γ,λV .

Using separation of variables in the right halfplane, we find that

inf σ(HΓ,λV ) = inf σ(Ha
Γ,λV ) = λ2∥vρ∥21 +O(λ3) as λ→ 0,

where vρ(x) := v(ρ+ x) + v(−ρ− x). On the other hand, completing the
curved part by it mirror image in the right halfplane, we get

ϵ0(λ) = −
(
CV + o(1)

)
exp

(
− 2π

λ∥V a∥1

)
as λ→ 0
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Parallel asymptotes, strong coupling
There are various way to make the channel deep, e.g., by replacing
the potential V by V + λχΩa where Ωa is the potential support:

Theorem

Under the stated assumption, σdisc(HΓ,V+λχΩa ) ̸= ∅ for all λ large enough.

The claim follows from two observations: (i) the ‘shifted’ operator family
{HΓ,V+λχΩa + λI : λ ≥ 0} converges in the generalized strong resolvent
sense to −∆Ωa

D − V , and (ii) the well-known result about the existence of
curvature-induced bound states in Dirichlet waveguides [EK’15, Thm. 1.1]
can be extended to Dirichlet channels of a non-flat bottom.

There are other ways the guide strongly attractive, for instance

Proposition

Let Γ ∈ C 4(R) and consider potentials vg(λ)(x) := g(λ)v(λx). There is a

function g0 satisfying limλ→∞
g0(λ)
λ = ∞ as λ→ ∞ such that

σdisc(HΓ,Vg(λ)
) is nonempty for any g ≥ g0 and all λ large enough.
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An example: critical strength
Consider an U-shaped channel with a polynomial profile given by

vα(x) := min
{( |x | − ρ

a

)α
− 1, 0

}

which tends to a rectangular well as α→ ∞.

We can compute the critical potential strength needed to have at least one
bound state, expressed through the dimensionless quantity −

√
|λ|A, where

A := 1
π

∫ a
−a

√
vα(x)dx , as a function of the ratio a/ρ
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a/ρ
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An example: ground-state eigenfunction

Using finite-element method, one can also find the eigenfunctions.
As an example we plot the ground state for ρ = 0.25, a = 0.1,
λ = −225 and α = 2.

P.E., D. Spitzkopf: Tunneling in soft waveguides: closing a book, J. Phys. A: Math. Theor. 57 (2024), 125301
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Another model: quantum dot arrays

Given a ρ > 0 and a nonzero real-valued function V ∈ L2(0, ρ) we
define radial potential supported in Bρ(y) centered at y ∈ Rν , ν = 2, 3.

We consider a family of points, Y = {yi} ⊂ Rν , such that the balls Bρ(yi )
do not overlap, dist(yi , yj) ≥ 2ρ if i ̸= j , and denote Vi : x 7→ V (x − yi ).
The object of our interest is the Schrödinger operator

HλV ,Y = −∆− λ
∑

i

Vi (x)

To visualise better the geometry of the system we suppose that the points
of Y are distributed over a curve Γ ⊂ Rν

If Y consists of a single point, we use the abbreviated symbol HλV . It
is straightforward to check that σess(HλV ) = [0,∞) and the discrete
spectrum, written as an ascending sequence {ϵn}, is at most finite.

In two dimensions it is nonempty provided
∫ ρ
0 V (r) rdr > 0, for ν = 3

the existence of bound states requires a critical interaction strength.
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A straight array
Consider first the geometrically trivial case where the set Y = Y0 is
invariant w.r.t. discrete translations, i.e. the Γ = Γ0 is a straight line:

Proposition

σ(HV ,Y0) ⊃ [0,∞). If
∫ ρ
0 V (r) rνdr > 0, we have inf σ(HV ,Y0) < 0, and

the spectrum may or may not have gaps. Their number is finite and does
not exceed #σdisc(HV ). This bound is saturated for the spacing a large
enough if ν = 2, in the case ν = 3 there may be one gap less which
happens if the potential is weak, i.e. for HλV ,Y0 with λ sufficiently small.

For positive energies it is easy to construct a Weyl sequence

In the negative part by Floquet decomposition we consider a single
potential well in a slab Sa of width a using two-sided estimates by the
symmetric/antisymmetric solutions

Negative spectrum existence is proved using a a suitable trial function

Note that inf σ(HV ,Y0) < 0 even if a single well in 3D is subcritical
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The essential spectrum

Suppose now that Γ : R → Rν is a unit-speed curve, |Γ̇| = 1, i.e., the
curve is parametrized by its arc length, and the points of the array YΓ

are distributed equidistantly with respect to this variable with a spacing
satisfying again a ≥ 2ρ, as required by the potential wells disjointness.

In addition, the potential components of the operator HV ,Y must not
overlap: we assume that |Γ(s + a)− Γ(s)| ≥ 2ρ holds for any s ∈ R.

Using Neumann bracketing, it is not difficult to prove the following claim:

Proposition

Let Γ be straight outside a compact set and let |Γ(s)− Γ(−s)| → ∞ hold
as |s| → ∞, then inf σess(HV ,Y ) is the same as in the case of a straight
array of the same spacing.
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Birman-Schwinger principle again
Suppose now that the array potentials are purely attractive, V ≥ 0.
The symmetry of the potentials V allows us to use Birman-Schwinger
principle more effectively inspectig the spectrum of the operator

KV ,Y (z) := V
1/2
Y (−∆− z)−1V

1/2
Y , VY :=

∑

i

Vi .

Note that since the supports of the Vi ’s are disjoint, we can write KV ,Y in

the ‘matrix’ form with the ‘entries’ K
(i ,j)
V ,Y (−κ2) := V

1/2
i (−∆+ κ2)−1V

1/2
j .

The crucial part of the argument is the following equivalence:

Proposition

z ∈ σdisc(HV ,Y ) holds if and only if 1 ∈ σdisc(KV ,Y (z)) and the
dimensions of the corresponding eigenspaces coincide. The operator
KV ,Y (−κ2) is bounded for any κ > 0 and the function κ 7→ KV ,Y (−κ2)
is continuously decreasing in (0,∞) with limκ→∞ ∥KV ,Y (−κ2)∥ = 0.
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Curvature-induced bound states

Theorem

Suppose that Γ ̸= Γ0 satisfy the stated assumptions and V ≥ 0, then
inf σ(HV ,Y ) < ϵ0 := inf σess(HV ,Y ), and consequently, σdisc(HV ,Y ) ̸= ∅.

P.E.: Geometry effects in quantum dot families, Pure Appl. Funct. Anal., to appear; arXiv:2305.12748

Sketch of the proof: We have to show that there is a κ >
√−ϵ0 such that

KV ,Y (−κ2) has eigenvalue one. Due to the mentioned monotonicity of the
BS operator with respect to κ, it is sufficient to check that

supσ(KV ,Y (−κ2)) > ϵess(κ) := supσess(KV ,Y (−κ2)
holds for any κ > 0. To this aim, we construct a trial function ψ such that

(ϕ,KV ,Y (−κ20)ϕ)− ∥ϕ∥2 > 0

where the first expression can be rewritten explicitly as
∑

i,j∈Z

∫

Bρ(yi )×Bρ(yj )

ϕ(x)V
1/2
i (x)(−∆+ κ20)

−1(x , x ′)V
1/2
j (x ′)ϕ(x ′)dx dx ′.
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Trial function

Denote by ϕ0 the generalized eigenfunction of KV ,Y (−κ20) referring
to inf σ(HV ,Y0); as the product of the corresponding gef of HV ,Y0

and V
1/2
Y , it is periodic and we regard it as real-valued and positive.

The restrictions ϕ0,i = ϕ0 ↾ Bρ(yi ) are copies of the same function
properly shifted, ϕ0,i (ξ) = ϕ0(ξ + yi ) for ξ ∈ Bρ(0). The symmetries
of ϕ0 imply, in particular, that ϕ0,i (−ξ) = ϕ0,i (ξ) holds for ξ ∈ Bρ(0).

For a given Y the functions ϕY0 as an ‘array of beads’: its values in
Bρ(yi ) would coincide with ϕ0,i the axis of which is aligned with the
tangent to Γ at the point yi . To make such a function an L2 element,
we need a suitable family of mollifiers; we choose it in the form

hn(x) =
1

2n + 1
χMn(x), n ∈ N.

where Mn := {x : dist(x , Γ ↾ [−(2n + 1)a/2, (2n + 1)a/2]) ≤ ρ} is a
2ρ-wide closed tubular neighborhood of the (2n + 1)a-long arc of Γ.
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The inequality to be checked
The influence of such a cut-off can be made arbitrarily small:

Lemma

(hnϕ
Y
0 ,KV ,Y (−κ20)hnϕY0 )− ∥hnϕY0 ∥2 = O(n−1) as n → ∞.

Consequently, it is sufficient to check that

lim
n→∞

(hnϕ
Y
0 ,KV ,Y (−κ20)hnϕY0 )− (hnϕ0KV ,Y0(−κ20)]hnϕ0) > 0,

or – with an abuse of notation neglecting the rotation of ϕ0,i – that

(ϕ0, [K
(i ,j)
V ,Y (−κ2)− K

(i ,j)
V ,Y0

(−κ2)]ϕ0) ≥ 0

holds any κ > 0 and all i , j ∈ Z being positive for some of them.

If Y ̸= Y0, however, there is a pair of indices for which this is not the case,
|yi − yj | < |i − j |a, in fact, infinitely many such pairs. The monotonicity of
the resolvent kernel is not sufficient, though, because bending of the chain
may cause some distances between points of potential supports outside the
ball centers to increase.

P.E.: Soft quantum waveguides Institut Mittag Leffler June 13, 2024 - 43 -



Convexity enters the game
Denoting the resolvent kernel by Giκ, we can rewrite the expression as∫

Bρ(0)

∫
Bρ(0)

ϕ0(ξ)V
1/2(ξ)

[
Giκ(yi − yj + ξ − ξ′)− Giκ(y

(0)
i − y

(0)
j + ξ − ξ′)

]
×V 1/2(ξ′)ϕ0(ξ′)dξ dξ′

=
1

2

∫
Bρ(0)

∫
Bρ(0)

ϕ0(ξ)V
1/2(ξ)

[
Giκ(yi − yj + ξ − ξ′)− Giκ(y

(0)
i − y

(0)
j + ξ − ξ′)

+Giκ(yi − yj − ξ + ξ′)− Giκ(y
(0)
i − y

(0)
j − ξ + ξ′)

]
V 1/2(ξ′)ϕ0(ξ′)dξ dξ,

where we used the symmetry, ϕ0(ξ)V
1/2(ξ) = ϕ0(−ξ)V 1/2(−ξ).

The integration over ξ can be split by orientation with respect to yi − yj ,

specifically, we have
∫
Bρ(0)

dξ =
∫ ρ
−ρ dξ⊥

∫√
ρ2−s2⊥

−
√

ρ2−s2⊥

dξ||.

Now not only the function Giκ(·) is convex, but the same is true for
Giκ(|yi − yj |+ ·)− Giκ(|y (0)

i − y
(0)
j |+ ·) as long as |yi − yj | < |y (0)

i − y
(0)
j |,

hence Jensen’s inequality yields

Giκ(|yi − yj |)− Giκ(|y (0)i − y
(0)
j |) > 0.
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Proof conclusion and comments
In combination with the positivity of ϕ0V

1/2 this proves that the
right-hand side is positive whenever |yi − yj | < |i − j |a; this in turn
concludes the proof.

Note the role of the symmetry of V . Without is, the deformation of Γ
had to be strong enough to diminish all the distances between the points
of the pairs of balls; this is true, e.g., if |yi − yi+1| < a− 2ρ holds for
neighboring balls, which is clearly far from optimal.

One the other hand, shrinking the potential wells using an appropriate
nonlinear scaling one can approximate point interactions, which requires
neither symmetry of V not it positivity.

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics, 2nd edition, Amer.
Math. Soc., Providence, R.I., 2005.

For the limiting operator the analogous result is known: an infinite ‘locally
equidistant’ array of point interactions in dimension ν = 2, 3 which not
straight, but is asymptotically straight has a nonempty discrete spectrum.

P.E.: Bound states of infinite curved polymer chains, Lett. Math. Phys. 57 (2001), 87–96.

This suggests that our result is likely to hold under weaker assumptions.
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Finite soft guides: an optimization

The question we have in mind concerns the spectral optimization in
analogy with what is known in Dirichlet and δ potential cases

P.E., E.M. Harrell, M. Loss: Optimal eigenvalues for some Laplacians and Schrödinger operators depending on curvature,
in Mathematical Results in Quantum Mechanics, Birkhäuser, Basel 1999; pp. 47–53.

P.E., E.M. Harrell, M. Loss: Inequalities for means of chords, with application to isoperimetric problems, Lett. Math.
Phys. 75 (2006), 225–233; addendum 77 (2006), 219.

Let Γ be a C 2-smooth loop without self-intersections of a fixed length L.
For small enough positive d± the map [0, L)× J ∋ (s, u) 7→ Γ(s) + uν(s),
where J = [−d−, d+] and ν = (−Γ̇2, Γ̇1) is the normal to Γ, is bijective.

We consider operators Hγ,µ corresponding the measure-type interaction

µ(M) :=

∫ L

0

∫ d+

−d−
χM

(
Γ(s) + uν(s)

)
(1 + uγ(s))dµ⊥(t)ds,

where the positive transverse measure µ⊥ can describe both a regular
attractive potential channel we are discussing here, µ⊥(u) = V (u)du,
as well as a δ potential, and more.
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Ground state optimization
We define HΓ,µ as the self-adjoint operator associated with the form

hΓ,µ[ψ] := ∥∇ψ∥2 −
∫

R2

|ψ|2dµ, dom hΓ,µ = H1(R2).

It is not difficult to check that the essential spectrum of HΓ,µ is [0,∞)
and σdisc(HΓ,µ) ̸= ∅. Let C be a circle of radius L

2π . By µ◦ we denote the
corresponding measure generated by µ⊥ and giving rise to operator HΓ,µ◦ .

Theorem

The lowest eigenvalues λ1(µ) and λ1(µ◦), respectively, of HΓ,µ and of
HΓ,µ◦ satisfy the inequality

λ1(µ) ≤ λ1(µ◦).

We conjecture that the inequality is strict unless Γ and C are congruent.

Note also that this provides an alternative proof of the leaky loop result.

P.E.: Soft quantum waveguides Institut Mittag Leffler June 13, 2024 - 47 -



Ground state optimization
The claim follows by a simple variational argument: the appropriate
trial function is obtained using the lowest eigenfunction of HΓ,µ◦ and
‘transplanting’ it to the parallel coordinates.

More specifically, we take trial functions ψ the values which, inside and
outside the loop, are of the form u(dist(x , Γ)) where u is a C∞

0 function.
Using appropriate changes of the variables, we check that the inequality
hΓ,µ[ψ] ≤ hC,µ[ψ] holds for any such u; comparing then the Rayleigh
quotients we arrive at the result. It has a slight generalization:

Theorem

Let χ, respectively χ◦, be the indicator function of the open set inside the
loop strip. The lowest spectral points λβ1 (µ) and λ

β
1 (µ◦) of HΓ,µ + βχ and

HΓ,µ◦ + βχ◦, respectively, satisfy then the inequality

λβ1 (µ) ≤ λβ1 (µ◦).

In particular, σdisc(HΓ,µ◦ + βχ◦) ̸= ∅ implies σdisc(HΓ,µ + βχ) ̸= ∅.
P.E., V. Lotoreichik: Optimization of the lowest eigenvalue of a soft quantum ring, Lett. Math. Phys. 111 (2021), 28
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Another optimization result
One can also optimize with respect to the channel profile:

Theorem

Put α := µ⊥(J ) and consider Schrödinger operators HΓt ,α, where Γt is
‘parallel’ to Γ at the distance t, then the lowest eigenvalues λ1(µ) and
λ1(αΓt) of HΓ,µ and of HΓt ,α, respectively, satisfy the inequality

λ1(µ) ≥ min
u∈J

λ1(αΓt).

This is again easy to prove variationally; one has to check that the
function J ∋ t 7→ ∥ψ|Γt∥2 is continuous so that it attains its maximum
value at some t⋆ = t⋆(µ) ∈ J .

Depending on α, the position of t⋆ in
J may be at different; recall how the
eigenvalues HC,α, here with α = 5,
depend on the circle radius
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Optimization for finite dot arrays
Consider the 2D situation and fix the curve Γ as a circle of radius R
on which we place centers of the disks Bρ(yi ); without loss of generality
we place the circle center to the origin of the coordinates. The support
balls again do not overlap, ρ ≤ R sin π

N , where N := #Y .

It is again the maximum-symmetry configuration which maximizes the
principal eigenvalue of HV ,Y :

Theorem

Up to rotations, ϵ1(HV ,Y ) := inf σ(HV ,Y ) is uniquely maximized by the
configurations in which all the neighboring points of Y have the same
angular distance 2π

N .

Proof sketch: The negative spectrum of HV ,Y is now discrete and finite,
and ϵ1(HV ,Y ) is a simple eigenvalue. We denote by Ysym the symmetric
array. The real-valued eigenfunction ψsym associated with ϵ1(HV ,Ysym)
has the appropriate symmetry: in polar coordinates we can express it as
ψsym(r , φ) = ψsym(r , φ+ 2πn

N ) for any n ∈ Z.
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Optimization for finite dot arrays
We use BS principle again and denote by ϕsym the eigenfunction
corresponding to the largest eigenvalue of KV ,Ysym(ϵsym), where
ϵsym = inf σ(HV ,Ysym).

It has the same symmetry and may be again regarded as real-valued
and positive. In analogy with the previous proof we are looking for a
trial function ϕY such that

(ϕY ,KV ,Y (−κ20)ϕY )− ∥ϕY ∥2 > 0, κ0 =
√

−ϵsym.

As before ϕY will be an ‘array of beads’; we take ϕsym ↾ Bρ(y1) calling it
ϕsym,1 and use it to create ϕsym,j , j = 2, . . . ,N, by rotating this function

on the angle
∑j−1

i=1 θi around the origin. For Y = Y0 the left-hand side of
the inequality vanishes by construction, hence it is sufficient to prove that

(ϕY ,KV ,Y (−κ2)ϕY )− (ϕsym,KV ,Y0(−κ2)ϕsym) > 0

holds for any κ > 0, in particular, for κ = κ0, or explicitly
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Optimization for finite dot arrays
1

2π

N∑
i,j=1

{∫
Bρ(0)

∫
Bρ(0)

ϕsym(ξ)V 1/2(ξ)K0(κ|yi + ξ − yj − ξ′|)

×V 1/2(ξ′)ϕsym(ξ′)dξ dξ′

−
∫
Bρ(0)

∫
Bρ(0)

ϕsym(ξ)V 1/2(ξ)K0(κ|y (0)
i + ξ − y

(0)
j − ξ′|)

×V 1/2(ξ′)ϕsym(ξ′)dξ dξ′
}
> 0

We denote dij := |yi − yj | and d
(0)
ij := |y (0)

i − y
(0)
j | as indicated in the figure,

d12

d13

d14

d15

φsym,1

φsym,2

φsym,3

φsym,4

φsym,5

θ1

θ2θ3

θ4

θ5

1

and write the first part of the above expression as
∑N

i ,j=1 G̃iκ(dij).
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Convexity again

Using this notation, the sought inequality takes the form
N∑

i ,j=1

G̃iκ(dij) >
N∑

i ,j=1

G̃iκ(d
(0)
ij ),

and rearranging the summation order, we have to check that

F (dij) :=

[N/2]∑

m=1

∑

|i−j |=m

[
G̃iκ(dij)− G̃iκ

(
d
(0)
ij

)]
> 0

holds for every family {dij} which is not congruent with {d (0)
ij }.

The composed map dij 7→ K0(κ|yi + ξ − yj − ξ′|) is easily seen to be
convex for any ξ, ξ′ ∈ Bρ(0), and the property persists at integration
with a positive weight, hence by Jensen’s inequality

F (dij) ≥
[N/2]∑

m=1

νn

[
G̃iκ

( 1

νn

∑

|i−j |=m

dij

)
− G̃iκ

(
d
(0)
i ,i+m

)]
,

where νn = N except for N even and m = 1
2N, in which case νn = 1

2N.
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Proof conclusion

It remains to use the monotonicity of the resolvent kernel, and thus of
G̃iκ(·); since dij 7→ |yi + ξ − yj − ξ′| is increasing, it is only necessary to
check that

1

νn

∑

|i−j |=m

dij < d
(0)
i ,i+m

for any fixed i . Denoting βij =
∑j−1

k=i θk , we have dij = 2 sin 1
2βij and

d
(0)
i ,i+m = 2 sin πm

N , and since the sine function is strictly concave in (0, π),
Jensen’s inequality gives

1

νn

∑

|i−j |=m

2 sin
1

2
βij < 2 sin

( 1

νn

∑

|i−j |=m

1

2
βij

)
= 2 sin

πm

N
= d

(0)
i ,i+m

for those families {dij} of circle chords which are not congruent with

{d (0)
ij }; this concludes the proof.
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Remarks
By an easy modification with a planar circle, one can prove the
analogous claim for a quantum-dot ‘necklace’ in three dimensions

We conjecture that the claim extends to a wider class of functions:
if points of Y are on a loop Γ of a fixed length in Rν , ν = 2, 3,
equidistantly in arc length, and the balls Bρ(yi ) do not overlap,
ϵ1(HV ,Y ) = inf σ(HV ,Y ) is maximized, uniquely up to Euclidean
transformations, by a planar regular polygon of #Y vertices.

Optimizing a distribution on a sphere is much harder reminding
the Thomson problem. We conjecture that if balls Bρ(yi ) centered
at a sphere do not overlap, ϵ1(HV ,Y ) is maximized, uniquely up to
Euclidean transformations, by the following five configurations:

▶ three simplices, with N = 2 (a pair antipodal points), N = 3
(equilateral triangle), and N = 4 (tetrahedron),

▶ octahedron with N = 6,
▶ icosahedron with N = 12.

Note that both conjectures have proved point-interaction counterparts
P.E.: An optimization problem for finite point interaction families, J. Phys.: Math. Theor. 52 (2019), 405302

One can also consider the minimization problem in this context
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It remains to say

Thank you for your attention!
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