Resonance effects in transport through leaky graphs

Pavel Exner

in collaboration with Takashi Ichinose, Sylwia Kondej,
Kateřina Němcová and Kazushi Yoshitomi
exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties
- How to find spectrum numerically: an approximation by point interaction Hamiltonians

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties
- How to find spectrum numerically: an approximation by point interaction Hamiltonians
- A solvable resonance model: interaction supported by a line and a family of points

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties
- How to find spectrum numerically: an approximation by point interaction Hamiltonians
- A solvable resonance model: interaction supported by a line and a family of points
- Extension to higher dimension - plane and points

Talk overview

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced spectral properties
- How to find spectrum numerically: an approximation by point interaction Hamiltonians
- A solvable resonance model: interaction supported by a line and a family of points
- Extension to higher dimension - plane and points
- Open questions

Usual graph resonance models

Generally known: resonances in "ideal" graphs, e.g.

Hamiltonian in such models is a Schrödinger operator on graph, with appropriate boundary conditions at the vertices

Usual graph resonance models

Generally known: resonances in "ideal" graphs, e.g.

Hamiltonian in such models is a Schrödinger operator on graph, with appropriate boundary conditions at the vertices Search for spectral and scattering properties is thus an ODE problem. Resonances typically appear if there are finite edges, which have discrete spectra when disconnected, embedded into the outer-leads continuum Studied by many authors, for reviews see, for instance Kostrykin-Schrader, 1999; Kuchment, 2004, etc.

Finite-width effects

Less well known: A finite-width wire itself may produce resonances. Take a smoothly bent hard-wall wire Σ of width d, use natural curvilinear coordinates s, u
Rewrite the Hamiltonian $H=-\Delta_{D}^{\Sigma}$ in the curvilinear coordinates and expand it w.r.t. the transverse basis:

$$
H_{j k}=-\partial_{s}\left[\delta_{j k}+\mathcal{O}(d)\right] \partial_{s}+\left(\kappa_{1}^{2} j^{2}-\frac{1}{4} \gamma(s)^{2}\right) \delta_{j k}+\mathcal{O}(d),
$$

where $\kappa_{1}:=\pi / d$ and γ is the curvature of $\operatorname{bd} \Sigma$.

Finite-width effects

Less well known: A finite-width wire itself may produce resonances. Take a smoothly bent hard-wall wire Σ of width d, use natural curvilinear coordinates s, u
Rewrite the Hamiltonian $H=-\Delta_{D}^{\Sigma}$ in the curvilinear coordinates and expand it w.r.t. the transverse basis:

$$
H_{j k}=-\partial_{s}\left[\delta_{j k}+\mathcal{O}(d)\right] \partial_{s}+\left(\kappa_{1}^{2} j^{2}-\frac{1}{4} \gamma(s)^{2}\right) \delta_{j k}+\mathcal{O}(d)
$$

where $\kappa_{1}:=\pi / d$ and γ is the curvature of $\operatorname{bd} \Sigma$.
Thus in leading order, transverse modes are decoupled:

Finite-width effects

The mode-coupling perturbation turns the embedded ev's into resonances, exponentially narrow w.r.t. d : Theorem [Nedelec, 1997; Duclos-E.-Meller, 1998]: Suppose that Σ is not straight and does not intersect itself. Let the curvature satisfy $|\gamma(s)| \leq c\langle s\rangle^{-1-\varepsilon}$ and extend analytically to a "waisted sector"
$\left\{z \in \mathbb{C}:|\arg (\pm z)|<\alpha_{0},|\operatorname{Im} z|<\eta_{0}\right\}$ for positive α_{0}, η_{0} with the same decay property. Then

$$
0 \leq-\operatorname{Im} \epsilon_{j, n}(d) \leq c_{j, n} \mathrm{e}^{-2 \pi \eta \sqrt{2 j-1} / d}
$$

holds for all $\eta<\eta_{0}$ and d small enough.

Finite-width effects

The mode-coupling perturbation turns the embedded ev's into resonances, exponentially narrow w.r.t. d :
Theorem [Nedelec, 1997; Duclos-E.-Meller, 1998]:
Suppose that Σ is not straight and does not intersect itself. Let the curvature satisfy $|\gamma(s)| \leq c\langle s\rangle^{-1-\varepsilon}$ and extend analytically to a "waisted sector"
$\left\{z \in \mathbb{C}:|\arg (\pm z)|<\alpha_{0},|\operatorname{Im} z|<\eta_{0}\right\}$ for positive α_{0}, η_{0} with the same decay property. Then

$$
0 \leq-\operatorname{Im} \epsilon_{j, n}(d) \leq c_{j, n} \mathrm{e}^{-2 \pi \eta \sqrt{2 j-1} / d}
$$

holds for all $\eta<\eta_{0}$ and d small enough.
Remark: The non-existence of embedded ev's which survive curvature-induced perturbation is an open question

Drawbacks of these models

- Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description

However, the answer is known so far only for Neumann-type situations [Rubinstein-Schatzman, 2001; Kuchment-Zeng, 2001; E.-Post, 2003], the Dirichlet case needed here is open (and difficult)

Drawbacks of these models

- Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description

However, the answer is known so far only for Neumann-type situations [Rubinstein-Schatzman, 2001; Kuchment-Zeng, 2001; E.-Post, 2003], the Dirichlet case needed here is open (and difficult)

- Quantum tunneling is neglected: recall that a true quantum-wire boundary is a finite potential jump

Leaky quantum graphs

We consider "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$, where Γ is the graph in question.

Leaky quantum graphs

We consider "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$, where Γ is the graph in question.
A proper definition of $H_{\alpha, \Gamma}$: it can be associated naturally with the quadratic form,

$$
\psi \mapsto\|\nabla \psi\|_{L^{2}\left(\mathbb{R}^{n}\right)}^{2}-\alpha \int_{\Gamma}|\psi(x)|^{2} \mathrm{~d} x
$$

which is closed and below bounded in $W^{2,1}\left(\mathbb{R}^{n}\right)$; the second term makes sense in view of Sobolev embedding. This definition also works for various "wilder" sets Γ

Leaky quantum-graph Hamiltonians

For Γ with locally finite number of smooth edges and no cusps we can use an alternative definition by boundary conditions: $H_{\alpha, \Gamma}$ acts as $-\Delta$ on functions from $W_{\text {loc }}^{2,1}\left(\mathbb{R}^{2} \backslash \Gamma\right)$, which are continuous and exhibit a normal-derivative jump,

$$
\left.\frac{\partial \psi}{\partial n}(x)\right|_{+}-\left.\frac{\partial \psi}{\partial n}(x)\right|_{-}=-\alpha \psi(x)
$$

Leaky quantum-graph Hamiltonians

For Γ with locally finite number of smooth edges and no cusps we can use an alternative definition by boundary conditions: $H_{\alpha, \Gamma}$ acts as $-\Delta$ on functions from $W_{\text {loc }}^{2,1}\left(\mathbb{R}^{2} \backslash \Gamma\right)$, which are continuous and exhibit a normal-derivative jump,

$$
\left.\frac{\partial \psi}{\partial n}(x)\right|_{+}-\left.\frac{\partial \psi}{\partial n}(x)\right|_{-}=-\alpha \psi(x)
$$

Remarks:

- for graphs in \mathbb{R}^{3} we use generalized b.c. which define a two-dimensional point interaction in normal plane
- one can combine "edges" of different dimensions as long as codim Γ does not exceed three

Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha, \Gamma}$. Consider a piecewise C^{1}-smooth $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ parameterized by its arc length, and assume:

Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha, \Gamma}$. Consider a piecewise C^{1}-smooth $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ parameterized by its arc length, and assume:

- $\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right| \geq c\left|s-s^{\prime}\right|$ holds for some $c \in(0,1)$
- Γ is asymptotically straight: there are $d>0, \mu>\frac{1}{2}$ and $\omega \in(0,1)$ such that

$$
1-\frac{\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|}{\left|s-s^{\prime}\right|} \leq d\left[1+\left|s+s^{\prime}\right|^{2 \mu}\right]^{-1 / 2}
$$

in the sector $S_{\omega}:=\left\{\left(s, s^{\prime}\right): \omega<\frac{s}{s^{\prime}}<\omega^{-1}\right\}$

- straight line is excluded, i.e. $\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|<\left|s-s^{\prime}\right|$ holds for some $s, s^{\prime} \in \mathbb{R}$

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$ and $H_{\alpha, \Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4} \alpha^{2}$

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$ and $H_{\alpha, \Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4} \alpha^{2}$

- The same for curves in \mathbb{R}^{3}, under stronger regularity, with $-\frac{1}{4} \alpha^{2}$ is replaced by the corresponding 2D p.i. ev
- For curved surfaces $\Gamma \subset \mathbb{R}^{3}$ such a result is proved in the strong coupling asymptotic regime only
- Implications for graphs: let $\tilde{\Gamma} \supset \Gamma$ in the set sense, then $H_{\alpha, \tilde{\Gamma}} \leq H_{\alpha, \Gamma}$. If the essential spectrum threshold is the same for both graphs and Γ fits the above assumptions, we have $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right) \neq \emptyset$ by minimax principle

More geometrically induced properties

(b) Perturbation theory for punctured manifolds:
let $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be as above, C^{2}-smooth, and let Γ_{ε} differ by ε-long hiatus around a fixed point $x_{0} \in \Gamma$. Let φ_{j} be the ef of $H_{\alpha, \Gamma}$ corresponding to a simple ev $\lambda_{j} \equiv \lambda_{j}(0)$ of $H_{\alpha, \Gamma}$.
Theorem [E.-Yoshitomi, 2003]: The j-th ev of $H_{\alpha, \Gamma_{\varepsilon}}$ is

$$
\lambda_{j}(\varepsilon)=\lambda_{j}(0)+\alpha\left|\varphi_{j}\left(x_{0}\right)\right|^{2} \varepsilon+o\left(\varepsilon^{n-1}\right) \quad \text { as } \quad \varepsilon \rightarrow 0
$$

More geometrically induced properties

(b) Perturbation theory for punctured manifolds:
let $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be as above, C^{2}-smooth, and let Γ_{ε} differ by ε-long hiatus around a fixed point $x_{0} \in \Gamma$. Let φ_{j} be the ef of $H_{\alpha, \Gamma}$ corresponding to a simple ev $\lambda_{j} \equiv \lambda_{j}(0)$ of $H_{\alpha, \Gamma}$.
Theorem [E.-Yoshitomi, 2003]: The j-th ev of $H_{\alpha, \Gamma_{\varepsilon}}$ is

$$
\lambda_{j}(\varepsilon)=\lambda_{j}(0)+\alpha\left|\varphi_{j}\left(x_{0}\right)\right|^{2} \varepsilon+o\left(\varepsilon^{n-1}\right) \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Remarks: Similarly one can express perturbed degenerate ev's. Analogous results hold for ev's for punctured compact, ($d-1$)-dimensional, $C^{1+[d / 2]}$-smooth manifolds in \mathbb{R}^{d}. Formally a small hole acts as repulsive δ interaction with coupling α times $(d-1)$-Lebesgue measure of the hole

Strongly attractive curves

(c) Strong coupling asymptotics: let $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be as above, now supposed to be C^{4}-smooth
Theorem [E.-Yoshitomi, 2001]: The j-th ev of $H_{\alpha, \Gamma}$ is

$$
\lambda_{j}(\alpha)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty,
$$

where μ_{j} is the j-th ev of $S_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{d} s^{2}}-\frac{1}{4} \gamma(s)^{2}$ on $L^{2}((\mathbb{R})$ and γ is the curvature of Γ.

Strongly attractive curves

(c) Strong coupling asymptotics: let $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ be as above, now supposed to be C^{4}-smooth
Theorem [E.-Yoshitomi, 2001]: The j-th ev of $H_{\alpha, \Gamma}$ is

$$
\lambda_{j}(\alpha)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty
$$

where μ_{j} is the j-th ev of $S_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{d} s^{2}}-\frac{1}{4} \gamma(s)^{2}$ on $L^{2}((\mathbb{R})$ and γ is the curvature of Γ. The same holds if Γ is a loop; then we also have

$$
\# \sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)=\frac{|\Gamma| \alpha}{2 \pi}+\mathcal{O}(\ln \alpha) \quad \text { as } \quad \alpha \rightarrow \infty
$$

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by $m g$ field, homogeneous, AB flux line, etc.

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by $m g$ field, homogeneous, AB flux line, etc.
- Higher dimensions: the results extend to loops, infinite and periodic curves in \mathbb{R}^{3}

Further extensions

- $H_{\alpha, \Gamma}$ with a periodic Γ has a band-type spectrum, but analogous asymptotics is valid for its Floquet components $H_{\alpha, \Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by $m g$ field, homogeneous, AB flux line, etc.
- Higher dimensions: the results extend to loops, infinite and periodic curves in \mathbb{R}^{3}
- and to curved surfaces in \mathbb{R}^{3}; then the comparison operator is $-\Delta_{\mathrm{LB}}+K-M^{2}$, where K, M, respectively, are the corresponding Gauss and mean curvatures

How to find the spectrum?

The above general results do not tell us how to find the spectrum for a particular Γ. There are various possibilities:

- Direct solution of the PDE problem $H_{\alpha, \Gamma} \psi=\lambda \psi$ is feasible in a few simple examples only

How to find the spectrum?

The above general results do not tell us how to find the spectrum for a particular Γ. There are various possibilities:

- Direct solution of the PDE problem $H_{\alpha, \Gamma} \psi=\lambda \psi$ is feasible in a few simple examples only
- Using trace maps of $R^{k} \equiv\left(-\Delta-k^{2}\right)^{-1}$ and the generalized BS principle

$$
R^{k}:=R_{0}^{k}+\alpha R_{\mathrm{d} x, m}^{k}\left[I-\alpha R_{m, m}^{k}\right]^{-1} R_{m, \mathrm{~d} x}^{k},
$$

where m is δ measure on Γ, we pass to a 1D integral operator problem, $\alpha R_{m, m}^{k} \psi=\psi$

How to find the spectrum?

The above general results do not tell us how to find the spectrum for a particular Γ. There are various possibilities:

- Direct solution of the PDE problem $H_{\alpha, \Gamma} \psi=\lambda \psi$ is feasible in a few simple examples only
- Using trace maps of $R^{k} \equiv\left(-\Delta-k^{2}\right)^{-1}$ and the generalized BS principle

$$
R^{k}:=R_{0}^{k}+\alpha R_{\mathrm{d} x, m}^{k}\left[I-\alpha R_{m, m}^{k}\right]^{-1} R_{m, \mathrm{~d} x}^{k},
$$

where m is δ measure on Γ, we pass to a 1D integral operator problem, $\alpha R_{m, m}^{k} \psi=\psi$

- discretization of the latter which amounts to a point-interaction approximations to $H_{\alpha, \Gamma}$

2D point interactions

Such an interaction at the point a with the "coupling constant" α is defined by b.c. which change locally the domain of $-\Delta$: the functions behave as

$$
\psi(x)=-\frac{1}{2 \pi} \log |x-a| L_{0}(\psi, a)+L_{1}(\psi, a)+\mathcal{O}(|x-a|)
$$

where the generalized b.v. $L_{0}(\psi, a)$ and $L_{1}(\psi, a)$ satisfy

$$
L_{1}(\psi, a)+2 \pi \alpha L_{0}(\psi, a)=0, \quad \alpha \in \mathbb{R}
$$

2D point interactions

Such an interaction at the point a with the "coupling constant" α is defined by b.c. which change locally the domain of $-\Delta$: the functions behave as

$$
\psi(x)=-\frac{1}{2 \pi} \log |x-a| L_{0}(\psi, a)+L_{1}(\psi, a)+\mathcal{O}(|x-a|),
$$

where the generalized b.v. $L_{0}(\psi, a)$ and $L_{1}(\psi, a)$ satisfy

$$
L_{1}(\psi, a)+2 \pi \alpha L_{0}(\psi, a)=0, \quad \alpha \in \mathbb{R}
$$

For our purpose, the coupling should depend on the set Y approximating Γ. To see how compare a line Γ with the solvable straight-polymer model [AGHH]

2D point-interaction approximation

Spectral threshold convergence requires $\alpha_{n}=\alpha n$ which means that individual point interactions get weaker. Hence we approximate $H_{\alpha, \Gamma}$ by point-interaction Hamiltonians $H_{\alpha_{n}, Y_{n}}$ with $\alpha_{n}=\alpha\left|Y_{n}\right|$, where $\left|Y_{n}\right|:=\sharp Y_{n}$.

2D point-interaction approximation

Spectral threshold convergence requires $\alpha_{n}=\alpha n$ which means that individual point interactions get weaker. Hence we approximate $H_{\alpha, \Gamma}$ by point-interaction Hamiltonians $H_{\alpha_{n}, Y_{n}}$ with $\alpha_{n}=\alpha\left|Y_{n}\right|$, where $\left|Y_{n}\right|:=\sharp Y_{n}$.

Theorem [E.-Němcová, 2003]: Let a family $\left\{Y_{n}\right\}$ of finite sets $Y_{n} \subset \Gamma \subset \mathbb{R}^{2}$ be such that

$$
\frac{1}{\left|Y_{n}\right|} \sum_{y \in Y_{n}} f(y) \rightarrow \int_{\Gamma} f \mathrm{~d} m
$$

holds for any bounded continuous function $f: \Gamma \rightarrow \mathbb{C}$, together with technical conditions, then $H_{\alpha_{n}, Y_{n}} \rightarrow H_{\alpha, \Gamma}$ in the strong resolvent sense as $n \rightarrow \infty$.

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant
- The result applies to finite graphs, however, an infinite Γ can be approximated in strong resolvent sense by a family of cut-off graphs

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant
- The result applies to finite graphs, however, an infinite Γ can be approximated in strong resolvent sense by a family of cut-off graphs
- The idea is due to Brasche, Figari and Teta, 1998, who analyzed point-interaction approximations of measure perturbations with codim $\Gamma=1$ in \mathbb{R}^{3}. There are differences, however, for instance in the 2D case we can approximate attractive interactions only

Scheme of the proof

Resolvent of $H_{\alpha_{n}, Y_{n}}$ is given Krein's formula. Given $k^{2} \in \rho\left(H_{\alpha_{n}, Y_{n}}\right)$ define $\left|Y_{n}\right| \times\left|Y_{n}\right|$ matrix by

$$
\begin{aligned}
\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2} ; x, y\right)= & \frac{1}{2 \pi}\left[2 \pi\left|Y_{n}\right| \alpha+\ln \left(\frac{i k}{2}\right)+\gamma_{E}\right] \delta_{x y} \\
& -G_{k}(x-y)\left(1-\delta_{x y}\right)
\end{aligned}
$$

for $x, y \in Y_{n}$, where γ_{E} is Euler' constant.

Scheme of the proof

Resolvent of $H_{\alpha_{n}, Y_{n}}$ is given Krein's formula. Given $k^{2} \in \rho\left(H_{\alpha_{n}, Y_{n}}\right)$ define $\left|Y_{n}\right| \times\left|Y_{n}\right|$ matrix by

$$
\begin{aligned}
\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2} ; x, y\right)= & \frac{1}{2 \pi}\left[2 \pi\left|Y_{n}\right| \alpha+\ln \left(\frac{i k}{2}\right)+\gamma_{E}\right] \delta_{x y} \\
& -G_{k}(x-y)\left(1-\delta_{x y}\right)
\end{aligned}
$$

for $x, y \in Y_{n}$, where γ_{E} is Euler' constant. Then

$$
\begin{aligned}
& \left(H_{\alpha_{n}, Y_{n}}-k^{2}\right)^{-1}(x, y)=G_{k}(x-y) \\
& \quad+\sum_{x^{\prime}, y^{\prime} \in Y_{n}}\left[\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2}\right)\right]^{-1}\left(x^{\prime}, y^{\prime}\right) G_{k}\left(x-x^{\prime}\right) G_{k}\left(y-y^{\prime}\right)
\end{aligned}
$$

Scheme of the proof

Resolvent of $H_{\alpha, \Gamma}$ is given by the generalized $B S$ formula given above; one has to check directly that the difference of the two vanishes as $n \rightarrow \infty \square$

Scheme of the proof

Resolvent of $H_{\alpha, \Gamma}$ is given by the generalized $B S$ formula given above; one has to check directly that the difference of the two vanishes as $n \rightarrow \infty \square$

Remarks:

- Spectral condition in the n-th approximation, i.e. $\operatorname{det} \Lambda_{\alpha_{n}, Y_{n}}\left(k^{2}\right)=0$, is a discretization of the integral equation coming from the generalized BS principle
- A solution to $\Lambda_{\alpha_{n}, Y_{n}}\left(k^{2}\right) \eta=0$ determines the approximating ef by $\psi(x)=\sum_{y_{j} \in Y_{n}} \eta_{j} G_{k}\left(x-y_{j}\right)$
- A match with solvable models illustrates the convergence and shows that it is not fast, slower than n^{-1} in the eigenvalues. This comes from singular "spikes" in the approximating functions

An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite "leads", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Almost nothing!

- First question: What is the "free" operator? $-\Delta$ is not a good candidate, rather $H_{\alpha, \Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $\left(-\frac{1}{4} \alpha^{2}, 0\right)$, i.e. 1D transport of states laterally bound to Γ

An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite "leads", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Almost nothing!

- First question: What is the "free" operator? - Δ is not a good candidate, rather $H_{\alpha, \Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $\left(-\frac{1}{4} \alpha^{2}, 0\right)$, i.e. 1D transport of states laterally bound to Γ
- Existence proof for the wave operators is absent

An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite "leads", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Almost nothing!

- First question: What is the "free" operator? - Δ is not a good candidate, rather $H_{\alpha, \Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $\left(-\frac{1}{4} \alpha^{2}, 0\right)$, i.e. 1D transport of states laterally bound to Γ
- Existence proof for the wave operators is absent
- Conjecture: For strong coupling, $\alpha \rightarrow \infty$, the scattering is described in leading order by $S_{\Gamma}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}}-\frac{1}{4} \gamma(s)^{2}$

An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite "leads", e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Almost nothing!

- First question: What is the "free" operator? - Δ is not a good candidate, rather $H_{\alpha, \Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $\left(-\frac{1}{4} \alpha^{2}, 0\right)$, i.e. 1D transport of states laterally bound to Γ
- Existence proof for the wave operators is absent
- Conjecture: For strong coupling, $\alpha \rightarrow \infty$, the scattering is described in leading order by $S_{\Gamma}:=-\frac{\mathrm{d}^{2}}{\mathrm{~d} s^{2}}-\frac{1}{4} \gamma(s)^{2}$
- On the other hand, in general, the global geometry of Γ is expected to determine the S-matrix

Finally, the resonances

Consider infinite curves Γ, straight outside a compact, and ask for examples of resonances. Recall the L^{2}-approach: in 1D potential scattering one explores spectral properties of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum - for a recent proof see Hagedorn-Meller, 2000. Try the same here:

Finally, the resonances

Consider infinite curves Γ, straight outside a compact, and ask for examples of resonances. Recall the L^{2}-approach: in 1D potential scattering one explores spectral properties of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum - for a recent proof see Hagedorn-Meller, 2000. Try the same here:

- Broken line: absence of "intrinsic" resonances due lack of higher transverse thresholds
- Z-shaped Γ : if a single bend has a significant reflection, a double band should exhibit resonances
- Bottleneck curve: a good candidate to demonstrate tunneling resonances

Broken line

\square
$\alpha=1$

Broken line

\mathbf{Z} shape with $\theta=\frac{\pi}{2}$

$$
\begin{aligned}
& \square L_{c}=10 \\
& \alpha=5
\end{aligned}
$$

\mathbf{Z} shape with $\theta=\frac{\pi}{2}$

$$
\begin{array}{ll}
L_{c}=10 \\
\alpha=5 \\
\hline=5
\end{array}
$$

\mathbf{Z} shape with $\theta=0.32 \pi$

$$
\begin{aligned}
& \angle L_{c}=10 \\
& \alpha=5
\end{aligned}
$$

\mathbf{Z} shape with $\theta=0.32 \pi$

A bottleneck curve

Consider a straight line deformation which shaped as an open loop with a bottleneck the width a of which we will vary

A bottleneck curve

Consider a straight line deformation which shaped as an open loop with a bottleneck the width a of which we will vary

If Γ is a straight line, the transverse eigenfunction is $\mathrm{e}^{-\alpha|y| / 2}$, hence the distance at which tunneling becomes significant is $\approx 4 \alpha^{-1}$. In the example, we choose $\alpha=1$

Bottleneck with $a=5.2$

Bottleneck with $a=2.9$

Bottleneck with $a=1.9$

Line and points - a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight leaky wire and a family of leaky dots.

Line and points - a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight leaky wire and a family of leaky dots. Formal Hamiltonian

$$
-\Delta-\alpha \delta(x-\Sigma)+\sum_{i=1}^{n} \tilde{\beta}_{i} \delta\left(x-y^{(i)}\right)
$$

in $L^{2}\left(\mathbb{R}^{2}\right)$ with $\alpha>0$. The 2D point interactions at $\Pi=\left\{y^{(i)}\right\}$ with couplings $\beta=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ are properly introduced through b.c. mentioned above, giving Hamiltonian $H_{\alpha, \beta}$

Line and points - a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight leaky wire and a family of leaky dots. Formal Hamiltonian

$$
-\Delta-\alpha \delta(x-\Sigma)+\sum_{i=1}^{n} \tilde{\beta}_{i} \delta\left(x-y^{(i)}\right)
$$

in $L^{2}(\mathbb{R})$ with $\alpha>0$. The 2D point interactions at $\Pi=\left\{y^{(i)}\right\}$ with couplings $\beta=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ are properly introduced through b.c. mentioned above, giving Hamiltonian $H_{\alpha, \beta}$ Resolvent by Krein-type formula: given $z \in \mathbb{C} \backslash[0, \infty)$ we start from the free resolvent $R(z):=(-\Delta-z)^{-1}$, also interpreted as unitary $\mathbf{R}(z)$ acting from L^{2} to $W^{2,2}$. Then

Resolvent by Krein-type formula

- we introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,

Resolvent by Krein-type formula

- we introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,
- then we define canonical embeddings of $\mathbf{R}(z)$ to \mathcal{H}_{i} by $\mathbf{R}_{i, L}(z):=\tau_{i} R(z): L^{2} \rightarrow \mathcal{H}_{i}, \mathbf{R}_{L, i}(z):=\left[\mathbf{R}_{i, L}(z)\right]^{*}$, and $\mathbf{R}_{j, i}(z):=\tau_{j} \mathbf{R}_{L, i}(z): \mathcal{H}_{i} \rightarrow \mathcal{H}_{j}$, and

Resolvent by Krein-type formula

- we introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,
- then we define canonical embeddings of $\mathbf{R}(z)$ to \mathcal{H}_{i} by $\mathbf{R}_{i, L}(z):=\tau_{i} R(z): L^{2} \rightarrow \mathcal{H}_{i}, \mathbf{R}_{L, i}(z):=\left[\mathbf{R}_{i, L}(z)\right]^{*}$, and $\mathbf{R}_{j, i}(z):=\tau_{j} \mathbf{R}_{L, i}(z): \mathcal{H}_{i} \rightarrow \mathcal{H}_{j}$, and
- operator-valued matrix $\Gamma(z): \mathcal{H}_{0} \oplus \mathcal{H}_{1} \rightarrow \mathcal{H}_{0} \oplus \mathcal{H}_{1}$ by

$$
\begin{aligned}
\Gamma_{i j}(z) g & :=-\mathbf{R}_{i, j}(z) g \text { for } i \neq j \text { and } g \in \mathcal{H}_{j}, \\
\Gamma_{00}(z) f & :=\left[\alpha^{-1}-\mathbf{R}_{0,0}(z)\right] f \text { if } f \in \mathcal{H}_{0}, \\
\Gamma_{11}(z) \varphi & :=\left(s_{\beta}(z) \delta_{k l}-G_{z}\left(y^{(k)}, y^{(l)}\right)\left(1-\delta_{k l}\right)\right) \varphi,
\end{aligned}
$$

with $s_{\beta}(z):=\beta+s(z):=\beta+\frac{1}{2 \pi}\left(\ln \frac{\sqrt{z}}{2 i}-\psi(1)\right)$

Resolvent by Krein-type formula

To invert it we define the "reduced determinant"

$$
D(z):=\Gamma_{11}(z)-\Gamma_{10}(z) \Gamma_{00}(z)^{-1} \Gamma_{01}(z): \mathcal{H}_{1} \rightarrow \mathcal{H}_{1},
$$

Resolvent by Krein-type formula

To invert it we define the "reduced determinant"

$$
D(z):=\Gamma_{11}(z)-\Gamma_{10}(z) \Gamma_{00}(z)^{-1} \Gamma_{01}(z): \mathcal{H}_{1} \rightarrow \mathcal{H}_{1},
$$

then an easy algebra yields expressions for "blocks" of $[\Gamma(z)]^{-1}$ in the form

$$
\begin{aligned}
& {[\Gamma(z)]_{11}^{-1}=D(z)^{-1},} \\
& {[\Gamma(z)]_{00}^{-1}=\Gamma_{10}(z)^{-1} \Gamma_{11}(z) D(z)^{-1} \Gamma_{10}(z) \Gamma_{00}(z)^{-1},} \\
& {[\Gamma(z)]_{01}^{-1}=-\Gamma_{00}(z)^{-1} \Gamma_{01}(z) D(z)^{-1},} \\
& {[\Gamma(z)]_{10}^{-1}=-D(z)^{-1} \Gamma_{10}(z) \Gamma_{00}(z)^{-1} ;}
\end{aligned}
$$

thus to determine singularities of $[\Gamma(z)]^{-1}$ one has to find the null space of $D(z)$

Resolvent by Krein-type formula

With this notation we can state the sought formula:
Theorem [E.-Kondej, 2003]: For $z \in \rho\left(H_{\alpha, \beta}\right)$ with $\operatorname{Im} z>0$ the resolvent $R_{\alpha, \beta}(z):=\left(H_{\alpha, \beta}-z\right)^{-1}$ equals

$$
R_{\alpha, \beta}(z)=R(z)+\sum_{i, j=0}^{1} \mathbf{R}_{L, i}(z)[\Gamma(z)]_{i j}^{-1} \mathbf{R}_{j, L}(z)
$$

Resolvent by Krein-type formula

With this notation we can state the sought formula:
Theorem [E.-Kondej, 2003]: For $z \in \rho\left(H_{\alpha, \beta}\right)$ with $\operatorname{Im} z>0$ the resolvent $R_{\alpha, \beta}(z):=\left(H_{\alpha, \beta}-z\right)^{-1}$ equals

$$
R_{\alpha, \beta}(z)=R(z)+\sum_{i, j=0}^{1} \mathbf{R}_{L, i}(z)[\Gamma(z)]_{i j}^{-1} \mathbf{R}_{j, L}(z)
$$

Remark: One can also compare resolvent of $H_{\alpha, \beta}$ to that of $H_{\alpha} \equiv H_{\alpha, \Sigma}$ using trace maps of the latter,

$$
R_{\alpha, \beta}(z)=R_{\alpha}(z)+\mathbf{R}_{\alpha ; L 1}(z) D(z)^{-1} \mathbf{R}_{\alpha ; 1 L}(z)
$$

Spectral properties of $H_{\alpha, \beta}$

It is easy to check that

$$
\sigma_{\mathrm{ess}}\left(H_{\alpha, \beta}\right)=\sigma_{\mathrm{ac}}\left(H_{\alpha, \beta}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)
$$

Spectral properties of $H_{\alpha, \beta}$

It is easy to check that

$$
\sigma_{\mathrm{ess}}\left(H_{\alpha, \beta}\right)=\sigma_{\mathrm{ac}}\left(H_{\alpha, \beta}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)
$$

$\sigma_{\text {disc }}$ given by generalized Birman-Schwinger principle:

$$
\begin{gathered}
\operatorname{dim} \operatorname{ker} \Gamma(z)=\operatorname{dim} \operatorname{ker} R_{\alpha, \beta}(z), \\
H_{\alpha, \beta} \phi_{z}=z \phi_{z} \Leftrightarrow \phi_{z}=\sum_{i=0}^{1} \mathbf{R}_{L, i}(z) \eta_{i, z},
\end{gathered}
$$

where $\left(\eta_{0, z}, \eta_{1, z}\right) \in \operatorname{ker} \Gamma(z)$. Moreover, it is clear that $0 \in \sigma_{\text {disc }}(\Gamma(z)) \Leftrightarrow 0 \in \sigma_{\text {disc }}(D(z))$; this reduces the task of finding the spectrum to an algebraic problem

Spectral properties of $H_{\alpha, \beta}$

Theorem [E.-Kondej, 2003]: (a) Let $n=1$ and denote dist $(\sigma, \Pi)=: a$, then $H_{\alpha, \beta}$ has one isolated eigenvalue $-\kappa_{a}^{2}$. The function $a \mapsto-\kappa_{a}^{2}$ is increasing in $(0, \infty)$,

$$
\lim _{a \rightarrow \infty}\left(-\kappa_{a}^{2}\right)=\min \left\{\epsilon_{\beta},-\frac{1}{4} \alpha^{2}\right\},
$$

where $\epsilon_{\beta}:=-4 \mathrm{e}^{2(-2 \pi \beta+\psi(1))}$, while $\lim _{a \rightarrow 0}\left(-\kappa_{a}^{2}\right)$ is finite.

Spectral properties of $H_{\alpha, \beta}$

Theorem [E.-Kondej, 2003]: (a) Let $n=1$ and denote dist $(\sigma, \Pi)=: a$, then $H_{\alpha, \beta}$ has one isolated eigenvalue $-\kappa_{a}^{2}$. The function $a \mapsto-\kappa_{a}^{2}$ is increasing in $(0, \infty)$,

$$
\lim _{a \rightarrow \infty}\left(-\kappa_{a}^{2}\right)=\min \left\{\epsilon_{\beta},-\frac{1}{4} \alpha^{2}\right\},
$$

where $\epsilon_{\beta}:=-4 \mathrm{e}^{2(-2 \pi \beta+\psi(1))}$, while $\lim _{a \rightarrow 0}\left(-\kappa_{a}^{2}\right)$ is finite. (b) For any $\alpha>0, \beta \in \mathbb{R}^{n}$, and $n \in \mathbb{N}_{+}$the operator $H_{\alpha, \beta}$ has N isolated eigenvalues, $1 \leq N \leq n$. If all the point interactions are strong enough, we have $N=n$

Spectral properties of $H_{\alpha, \beta}$

Theorem [E.-Kondej, 2003]: (a) Let $n=1$ and denote dist $(\sigma, \Pi)=: a$, then $H_{\alpha, \beta}$ has one isolated eigenvalue $-\kappa_{a}^{2}$. The function $a \mapsto-\kappa_{a}^{2}$ is increasing in $(0, \infty)$,

$$
\lim _{a \rightarrow \infty}\left(-\kappa_{a}^{2}\right)=\min \left\{\epsilon_{\beta},-\frac{1}{4} \alpha^{2}\right\},
$$

where $\epsilon_{\beta}:=-4 \mathrm{e}^{2(-2 \pi \beta+\psi(1))}$, while $\lim _{a \rightarrow 0}\left(-\kappa_{a}^{2}\right)$ is finite. (b) For any $\alpha>0, \beta \in \mathbb{R}^{n}$, and $n \in \mathbb{N}_{+}$the operator $H_{\alpha, \beta}$ has N isolated eigenvalues, $1 \leq N \leq n$. If all the point interactions are strong enough, we have $N=n$

Remark: Embedded eigenvalues due to mirror symmetry w.r.t. Σ possible if $n \geq 2$

Resonance for $n=1$

Assume the point interaction eigenvalue becomes embedded as $a \rightarrow \infty$, i.e. that $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$

Resonance for $n=1$

Assume the point interaction eigenvalue becomes embedded as $a \rightarrow \infty$, i.e. that $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$
Observation: Birman-Schwinger works in the complex domain too (recall P. Hislops's talk for regular potentials).
Thus it is enough to look for analytical continuation of $D(\cdot)$, which acts for $z \in \mathbb{C} \backslash\left[-\frac{1}{4} \alpha^{2}, \infty\right)$ as a multiplication by

$$
\begin{aligned}
& d_{a}(z):=s_{\beta}(z)-\phi_{a}(z)=s_{\beta}(z)-\int_{0}^{\infty} \frac{\mu(z, t)}{t-z-\frac{1}{4} \alpha^{2}} \mathrm{~d} t \\
& \mu(z, t):=\frac{i \alpha}{16 \pi} \frac{\left(\alpha-2 i(z-t)^{1 / 2}\right) \mathrm{e}^{2 i a(z-t)^{1 / 2}}}{t^{1 / 2}(z-t)^{1 / 2}}
\end{aligned}
$$

Thus we have a situation reminiscent of Friedrichs model, just the functions involved are more complicated

Analytic continuation

Take a region Ω_{-}of the other sheet with $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ as a part of its boundary. Put $\mu^{0}(\lambda, t):=\lim _{\varepsilon \rightarrow 0} \mu(\lambda+i \varepsilon, t)$, define

$$
I(\lambda):=\mathcal{P} \int_{0}^{\infty} \frac{\mu^{0}(\lambda, t)}{t-\lambda-\frac{1}{4} \alpha^{2}} \mathrm{~d} t,
$$

and furthermore, $g_{\alpha, a}(z):=\frac{i \alpha}{4} \frac{\mathrm{e}^{-\alpha a}}{\left(z+\frac{1}{4} \alpha^{2}\right)^{1 / 2}}$.

Analytic continuation

Take a region Ω_{-}of the other sheet with $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ as a part of its boundary. Put $\mu^{0}(\lambda, t):=\lim _{\varepsilon \rightarrow 0} \mu(\lambda+i \varepsilon, t)$, define

$$
I(\lambda):=\mathcal{P} \int_{0}^{\infty} \frac{\mu^{0}(\lambda, t)}{t-\lambda-\frac{1}{4} \alpha^{2}} \mathrm{~d} t,
$$

and furthermore, $g_{\alpha, a}(z):=\frac{i \alpha}{4} \frac{\mathrm{e}^{-\alpha a}}{\left(z+\frac{1}{4} \alpha^{2}\right)^{1 / 2}}$.
Lemma: $z \mapsto \phi_{a}(z)$ is continued analytically to Ω_{-}as

$$
\begin{aligned}
\phi_{a}^{0}(\lambda) & =I(\lambda)+g_{\alpha, a}(\lambda) \text { for } \lambda \in\left(-\frac{1}{4} \alpha^{2}, 0\right) \\
\phi_{a}^{-}(z) & =-\int_{0}^{\infty} \frac{\mu(z, t)}{t-z-\frac{1}{4} \alpha^{2}} \mathrm{~d} t-2 g_{\alpha, a}(z), z \in \Omega_{-}
\end{aligned}
$$

Analytic continuation

Proof: By a direct computation one checks

$$
\lim _{\varepsilon \rightarrow 0^{+}} \phi_{a}^{ \pm}(\lambda \pm i \varepsilon)=\phi_{a}^{0}(\lambda), \quad-\frac{1}{4} \alpha^{2}<\lambda<0,
$$

so the claim follows from edge-of-the-wedge theorem. \square

Analytic continuation

Proof: By a direct computation one checks

$$
\lim _{\varepsilon \rightarrow 0^{+}} \phi_{a}^{ \pm}(\lambda \pm i \varepsilon)=\phi_{a}^{0}(\lambda), \quad-\frac{1}{4} \alpha^{2}<\lambda<0,
$$

so the claim follows from edge-of-the-wedge theorem. \square
The continuation of d_{a} is thus the function $\eta_{a}: M \mapsto \mathbb{C}$, where $M=\{z: \operatorname{Im} z>0\} \cup\left(-\frac{1}{4} \alpha^{2}, 0\right) \cup \Omega_{-}$, acting as

$$
\eta_{a}(z)=s_{\beta}(z)-\phi_{a}^{l(z)}(z),
$$

and our problem reduces to solution if the implicit function problem $\eta_{a}(z)=0$.

Resonance for $n=1$

Theorem [E.-Kondej, 2003]: Assume $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$. For any a large enough the equation $\eta_{a}(z)=0$ has a unique solution $z(a)=\mu(b)+i \nu(b) \in \Omega_{-}$, i.e. $\nu(a)<0$, with the following asymptotic behaviour as $a \rightarrow \infty$,

$$
\mu(a)=\epsilon_{\beta}+\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right), \quad \nu(a)=\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right)
$$

Resonance for $n=1$

Theorem [E.-Kondej, 2003]: Assume $\epsilon_{\beta}>-\frac{1}{4} \alpha^{2}$. For any a large enough the equation $\eta_{a}(z)=0$ has a unique solution $z(a)=\mu(b)+i \nu(b) \in \Omega_{-}$, i.e. $\nu(a)<0$, with the following asymptotic behaviour as $a \rightarrow \infty$,

$$
\mu(a)=\epsilon_{\beta}+\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right), \quad \nu(a)=\mathcal{O}\left(\mathrm{e}^{-a \sqrt{-\epsilon_{\beta}}}\right)
$$

Remark: We have $\left|\phi_{a}^{-}(z)\right| \rightarrow 0$ uniformly in a and $\left|s_{\beta}(z)\right| \rightarrow \infty$ as $\operatorname{Im} z \rightarrow-\infty$. Hence the imaginary part $z(a)$ is bounded as a function of a, in particular, the resonance pole survives as $a \rightarrow 0$.

Scattering for $n=1$

The same as scattering problem for $\left(H_{\alpha, \beta}, H_{\alpha}\right)$

$$
\beta \bullet
$$

Scattering for $n=1$

The same as scattering problem for $\left(H_{\alpha, \beta}, H_{\alpha}\right)$

Existence and completeness by Birman-Kuroda theorem; we seek on-shell S-matrix in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$. By Krein formula, resolvent for $\operatorname{Im} z>0$ expresses as

$$
R_{\alpha, \beta}(z)=R_{\alpha}(z)+\eta_{a}(z)^{-1}\left(\cdot, v_{z}\right) v_{z},
$$

where $v_{z}:=R_{\alpha ; L, 1}(z)$

Scattering for $n=1$

Apply this operator to vector

$$
\omega_{\lambda+i \varepsilon}(x):=\mathrm{e}^{i\left(\lambda+i \varepsilon+\alpha^{2} / 4\right)^{1 / 2} x_{1}} \mathrm{e}^{-\alpha\left|x_{2}\right| / 2}
$$

and take limit $\varepsilon \rightarrow 0+$ in the sense of distributions; then a straightforward calculation give generalized eigenfunction of $H_{\alpha, \beta}$. In particular, we have

Scattering for $n=1$

Apply this operator to vector

$$
\omega_{\lambda+i \varepsilon}(x):=\mathrm{e}^{i\left(\lambda+i \varepsilon+\alpha^{2} / 4\right)^{1 / 2} x_{1}} \mathrm{e}^{-\alpha\left|x_{2}\right| / 2}
$$

and take limit $\varepsilon \rightarrow 0+$ in the sense of distributions; then a straightforward calculation give generalized eigenfunction of $H_{\alpha, \beta}$. In particular, we have
Proposition: For any $\lambda \in\left(-\frac{1}{4} \alpha^{2}, 0\right)$ the reflection and transmission amplitudes are

$$
\mathcal{R}(\lambda)=\mathcal{T}(\lambda)-1=\frac{i}{4} \alpha \eta_{a}(\lambda)^{-1} \frac{\mathrm{e}^{-\alpha a}}{\left(\lambda+\frac{1}{4} \alpha^{2}\right)^{1 / 2}} ;
$$

they have the same pole in the analytical continuation to Ω_{-}as the continued resolvent

Resonances from perturbed symmetry

Take the simplest situation, $n=2$

a	β_{0}^{\bullet}	
a	a	
	$\bullet \beta_{0}+b$	

Resonances from perturbed symmetry

Take the simplest situation, $n=2$

$$
\beta_{0}{ }^{\bullet}
$$

a

Let $\sigma_{\text {disc }}\left(H_{0, \beta_{0}}\right) \cap\left(-\frac{1}{4} \alpha^{2}, 0\right) \neq \emptyset$, so that Hamiltonian $H_{0, \beta_{0}}$ has two eigenvalues, the larger of which, ϵ_{2}, exceeds $-\frac{1}{4} \alpha^{2}$. Then $H_{\alpha, \beta_{0}}$ has the same eigenvalue ϵ_{2} embedded in the negative part of continuous spectrum

Resonances from perturbed symmetry

Take the simplest situation, $n=2$

$$
\beta_{0}{ }^{\bullet}
$$

a
α

$$
\begin{aligned}
& a \\
& \\
& \text { - } \beta_{0}+b
\end{aligned}
$$

Let $\sigma_{\text {disc }}\left(H_{0, \beta_{0}}\right) \cap\left(-\frac{1}{4} \alpha^{2}, 0\right) \neq \emptyset$, so that Hamiltonian $H_{0, \beta_{0}}$ has two eigenvalues, the larger of which, ϵ_{2}, exceeds $-\frac{1}{4} \alpha^{2}$. Then $H_{\alpha, \beta_{0}}$ has the same eigenvalue ϵ_{2} embedded in the negative part of continuous spectrum
One has now to continue analytically the 2×2 matrix function $D(\cdot)$. Put $\kappa_{2}:=\sqrt{-\epsilon_{2}}$ and $\breve{s}_{\beta}(\kappa):=s_{\beta}\left(-\kappa^{2}\right)$

Resonances from perturbed symmetry

Proposition: Assume $\epsilon_{2} \in\left(-\frac{1}{4} \alpha^{2}, 0\right)$ and denote $\tilde{g}(\lambda):=-i g_{\alpha, a}(\lambda)$. Then for all b small enough the continued function has a unique zero $z_{2}(b)=\mu_{2}(b)+i \nu_{2}(b) \in \Omega_{-}$with the asymptotic expansion

$$
\begin{aligned}
\mu_{2}(b) & =\epsilon_{2}+\frac{\kappa_{2} b}{\breve{s}_{\beta}^{\prime}\left(\kappa_{2}\right)+K_{0}^{\prime}\left(2 a \kappa_{2}\right)}+\mathcal{O}\left(b^{2}\right), \\
\nu_{2}(b) & =-\frac{\kappa_{2} \tilde{g}\left(\epsilon_{2}\right) b^{2}}{2\left(\breve{s}_{\beta}^{\prime}\left(\kappa_{2}\right)+K_{0}^{\prime}\left(2 a \kappa_{2}\right)\right)\left|\breve{s}_{\beta}^{\prime}\left(\kappa_{2}\right)-\phi_{a}^{0}\left(\epsilon_{2}\right)\right|}+\mathcal{O}\left(b^{3}\right)
\end{aligned}
$$

Unstable state decay, $n=1$

Complementary point of view: investigate decay of unstable state associated with the resonance; assume again $n=1$. We found that if the "unperturbed" ev ϵ_{β} of H_{β} is embedded in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ and a is large, the corresponding resonance has a long halflife. In analogy with Friedrichs model [Demuth, 1976] one conjectures that in weak coupling case, the resonance state would be similar up to normalization to the eigenvector $\xi_{0}:=K_{0}\left(\sqrt{-\epsilon_{\beta}} \cdot\right)$ of H_{β}, with the decay law being dominated by the exponential term

Unstable state decay, $n=1$

Complementary point of view: investigate decay of unstable state associated with the resonance; assume again $n=1$. We found that if the "unperturbed" ev ϵ_{β} of H_{β} is embedded in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ and a is large, the corresponding resonance has a long halflife. In analogy with Friedrichs model [Demuth, 1976] one conjectures that in weak coupling case, the resonance state would be similar up to normalization to the eigenvector $\xi_{0}:=K_{0}\left(\sqrt{-\epsilon_{\beta}} \cdot\right)$ of H_{β}, with the decay law being dominated by the exponential term
At the same time, $H_{\alpha, \beta}$ has always an isolated ev with ef which is not orthogonal to ξ_{0} for any a (recall that both functions are positive). Consequently, the decay law $\left|\left(\xi_{0}, U(t) \xi_{0}\right)\right|^{2}\left\|\xi_{0}\right\|^{-2}$ has always a nonzero limit as $t \rightarrow \infty$

Extension: plane and points

In a similar way one can treat a 3D model with interaction supported by a plane and a family of points, formally

$$
-\Delta-\alpha \delta(x-\Sigma)+\sum_{i=1}^{n} \tilde{\beta}_{i} \delta\left(x-y^{(i)}\right)
$$

in $L^{2}\left(\mathbb{R}^{3}\right)$ with $\alpha>0$. The point interactions at $\Pi=\left\{y^{(i)}\right\}$ with couplings $\beta=\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ are properly introduced through appropriate b.c., giving Hamiltonian $H_{\alpha, \beta}$

Extension: plane and points

- The resolvent is given by a similar Krein-type formula using the resolvent of $-\Delta$ in $L^{2}\left(\mathbb{R}^{3}\right)$

Extension: plane and points

- The resolvent is given by a similar Krein-type formula using the resolvent of $-\Delta$ in $L^{2}\left(\mathbb{R}^{3}\right)$
- $\sigma_{\text {ess }}\left(H_{\alpha, \beta}\right)=\sigma_{\mathrm{ac}}\left(H_{\alpha, \beta}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$

Extension: plane and points

- The resolvent is given by a similar Krein-type formula using the resolvent of $-\Delta$ in $L^{2}\left(\mathbb{R}^{3}\right)$
- $\sigma_{\text {ess }}\left(H_{\alpha, \beta}\right)=\sigma_{\mathrm{ac}}\left(H_{\alpha, \beta}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$
- If $n=1$ there is one isolated $\mathrm{ev}-\kappa_{a}^{2}<-\frac{1}{4} \alpha^{2}$. If $\beta>0$ or $\tilde{\epsilon}_{\beta} \in\left[-\frac{1}{4} \alpha^{2}, \infty\right)$, where $\tilde{\epsilon}_{\beta}:=-(4 \pi \beta)^{2}$, then

$$
-\lim _{a \rightarrow \infty} \kappa_{a}^{2}=\tilde{\epsilon}_{\beta},
$$

otherwise we have

$$
-\lim _{a \rightarrow \infty} \kappa_{a}^{2}=-\frac{1}{4} \alpha^{2}
$$

Recall that $\sigma_{\text {disc }}\left(H_{0, \beta}\right)=\emptyset$ for $\beta>0$

Extension: plane and points

- In distinction to 2D situation we have $-\lim _{a \rightarrow 0} \kappa_{a}^{2}=-\infty$

Extension: plane and points

- In distinction to 2D situation we have $-\lim _{a \rightarrow 0} \kappa_{a}^{2}=-\infty$
- In general there are $1 \leq N \leq n$ ev's, in particular, exactly n if all the $-\beta_{i}$ are large enough

Extension: plane and points

- In distinction to 2D situation we have $-\lim _{a \rightarrow 0} \kappa_{a}^{2}=-\infty$
- In general there are $1 \leq N \leq n$ ev's, in particular, exactly n if all the $-\beta_{i}$ are large enough
- Let $n=1$ and $\tilde{\epsilon}_{\beta}>-\frac{1}{4} \alpha^{2}$. For large enough a the resolvent $R_{\alpha, \beta}$ has 2nd sheet pole $z(a)=\mu(a)+i \nu(a)$, $\nu(a)<0$, which for $a \rightarrow \infty$ behaves as

$$
\mu(a)=\tilde{\epsilon}_{\beta}+\mathcal{O}\left(\mathrm{e}^{-a \tilde{\varsigma}_{\beta}}\right), \nu(a)=\mathcal{O}\left(\mathrm{e}^{\left.-a{\tilde{\tilde{c}_{\beta}}}\right)}\right.
$$

Extension: plane and points

- In distinction to 2D situation we have $-\lim _{a \rightarrow 0} \kappa_{a}^{2}=-\infty$
- In general there are $1 \leq N \leq n$ ev's, in particular, exactly n if all the $-\beta_{i}$ are large enough
- Let $n=1$ and $\tilde{\epsilon}_{\beta}>-\frac{1}{4} \alpha^{2}$. For large enough a the resolvent $R_{\alpha, \beta}$ has 2nd sheet pole $z(a)=\mu(a)+i \nu(a)$, $\nu(a)<0$, which for $a \rightarrow \infty$ behaves as

$$
\mu(a)=\tilde{\epsilon}_{\beta}+\mathcal{O}\left(\mathrm{e}^{-a{\tilde{\tilde{\beta}_{\beta}}}^{\prime}}, \nu(a)=\mathcal{O}\left(\mathrm{e}^{\left.-a{\tilde{\tilde{c}_{\beta}}}\right)}\right.\right.
$$

- The resonance pole exists even if the distance is not large. In contrast to the two dimensional case, however, the imaginary part of the pole position $\nu(a)$ diverges to $-\infty$ in the limit $a \rightarrow 0$

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess
- Scattering on leaky curves: strong coupling asymptotics

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess
- Scattering on leaky curves: strong coupling asymptotics
- Resonances: existence, properties in less trivial models

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess
- Scattering on leaky curves: strong coupling asymptotics
- Resonances: existence, properties in less trivial models
- Periodic Γ, in one direction: absolute continuity (proved so far only at the bottom of the spectrum)

Open questions

- Strong coupling asymptotics of $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right)$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ, one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess
- Scattering on leaky curves: strong coupling asymptotics
- Resonances: existence, properties in less trivial models
- Periodic Г, in one direction: absolute continuity (proved so far only at the bottom of the spectrum)
- More questions: random leaky graphs, adding magnetic fields, justification of the L^{2} approach for leaky-graph resonances, etc.

The talk was based on

[EIO1] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A34 (2001), 1439-1450.
[EK02] P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by a curve in \mathbb{R}^{3}, Ann. H. Poincaré 3 (2002), 967-981.
[EK03a] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, J. Phys. A36 (2003), 443-457.
[EK03c] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, math-ph/0312055
[EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, J. Phys. A36 (2003), 10173-10193.
[EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ-interaction on a periodic curve, Ann. H. Poincaré 2 (2001), 1139-1158.
[EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358.
[EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong δ-interaction on a loop, J. Phys. A35 (2002), 3479-3487.
[EY03] P.E., K. Yoshitomi: Eigenvalue asymptotics for the Schrödinger operator with a δ-interaction on a punctured surface, Lett. Math. Phys. 65 (2003), 19-26.

The talk was based on

[EIO1] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A34 (2001), 1439-1450.
[EK02] P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by a curve in \mathbb{R}^{3}, Ann. H. Poincaré 3 (2002), 967-981.
[EK03a] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, J. Phys. A36 (2003), 443-457.
[EK03c] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, math-ph/0312055
[EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, J. Phys. A36 (2003), 10173-10193.
[EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ-interaction on a periodic curve, Ann. H. Poincaré 2 (2001), 1139-1158.
[EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358.
[EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong δ-interaction on a loop, J. Phys. A35 (2002), 3479-3487.
[EY03] P.E., K. Yoshitomi: Eigenvalue asymptotics for the Schrödinger operator with a δ-interaction on a punctured surface, Lett. Math. Phys. 65 (2003), 19-26.

for more information see http://www.ujf.cas.cz/~exner

