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Usual graph resonance models

Generally known: resonances in “ideal” graphs, e.g.

&%
'$

qq q

q qhq B

Hamiltonian in such models is a Schrödinger operator on
graph, with appropriate boundary conditions at the vertices

Search for spectral and scattering properties is thus an
ODE problem. Resonances typically appear if there are
finite edges, which have discrete spectra when
disconnected, embedded into the outer-leads continuum
Studied by many authors, for reviews see, for instance
Kostrykin-Schrader, 1999; Kuchment, 2004, etc.
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Finite-width effects

Less well known: A finite-width wire itself may produce
resonances. Take a smoothly bent hard-wall wire Σ of
width d, use natural curvilinear coordinates s, u
Rewrite the Hamiltonian H = −∆Σ

D in the curvilinear
coordinates and expand it w.r.t. the transverse basis:

Hjk = −∂s
[

δjk +O(d)
]

∂s+

(

κ2
1j

2− 1

4
γ(s)2

)

δjk +O(d),

where κ1 := π/d and γ is the curvature of bd Σ.

Thus in leading order, transverse modes are decoupled:

qq qq qqκ2
1 4κ2

1 9κ2
1
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Finite-width effects

The mode-coupling perturbation turns the embedded ev’s
into resonances, exponentially narrow w.r.t. d:
Theorem [Nedelec, 1997; Duclos-E.-Meller, 1998]:
Suppose that Σ is not straight and does not intersect itself.
Let the curvature satisfy |γ(s)| ≤ c〈s〉−1−ε and extend
analytically to a “waisted sector”
{z ∈ C : |arg(±z)| < α0, |Im z| < η0} for positive α0, η0 with
the same decay property. Then

0 ≤ −Im εj,n(d) ≤ cj,ne
−2πη

√
2j−1/d

holds for all η < η0 and d small enough.

Remark: The non-existence of embedded ev’s which
survive curvature-induced perturbation is an open question
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Drawbacks of these models

Presence of ad hoc parameters in the b.c. describing
branchings. A natural remedy: use a zero-width limit in
a more realistic description
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However, the answer is known so far only for
Neumann-type situations [Rubinstein-Schatzman,
2001; Kuchment-Zeng, 2001; E.-Post, 2003], the
Dirichlet case needed here is open (and difficult)

Quantum tunneling is neglected: recall that a true
quantum-wire boundary is a finite potential jump

Resonances - from Physics to Mathematics and back, Dresden, January 30, 2004 – p.6/48



Drawbacks of these models

Presence of ad hoc parameters in the b.c. describing
branchings. A natural remedy: use a zero-width limit in
a more realistic description

@
@

@
@

�
�

�
�

@
@

�
�r−→

However, the answer is known so far only for
Neumann-type situations [Rubinstein-Schatzman,
2001; Kuchment-Zeng, 2001; E.-Post, 2003], the
Dirichlet case needed here is open (and difficult)

Quantum tunneling is neglected: recall that a true
quantum-wire boundary is a finite potential jump

Resonances - from Physics to Mathematics and back, Dresden, January 30, 2004 – p.6/48



Leaky quantum graphs

We consider “leaky” graphs with an attractive interaction
supported by graph edges. Formally we have

Hα,Γ = −∆− αδ(x− Γ) , α > 0 ,

in L2(R2), where Γ is the graph in question.

A proper definition of Hα,Γ: it can be associated naturally
with the quadratic form,

ψ 7→ ‖∇ψ‖2L2(Rn) − α
∫

Γ
|ψ(x)|2dx ,

which is closed and below bounded in W 2,1(Rn); the second
term makes sense in view of Sobolev embedding. This
definition also works for various “wilder” sets Γ
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Leaky quantum-graph Hamiltonians

For Γ with locally finite number of smooth edges and no
cusps we can use an alternative definition by boundary
conditions: Hα,Γ acts as −∆ on functions from W 2,1

loc (R2 \ Γ),
which are continuous and exhibit a normal-derivative jump,

∂ψ

∂n
(x)

∣

∣

∣

∣

+

− ∂ψ

∂n
(x)

∣

∣

∣

∣

−
= −αψ(x)

Remarks:

for graphs in R
3 we use generalized b.c. which define a

two-dimensional point interaction in normal plane

one can combine “edges” of different dimensions as
long as codim Γ does not exceed three
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Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated
eigenvalues of Hα,Γ. Consider a piecewise C1-smooth
Γ : R→ R

2 parameterized by its arc length, and assume:

|Γ(s)− Γ(s′)| ≥ c|s− s′| holds for some c ∈ (0, 1)

Γ is asymptotically straight: there are d > 0, µ > 1
2

and ω ∈ (0, 1) such that

1− |Γ(s)− Γ(s′)|
|s− s′| ≤ d

[

1 + |s+ s′|2µ
]−1/2

in the sector Sω :=
{

(s, s′) : ω < s
s′ < ω−1

}

straight line is excluded, i.e. |Γ(s)− Γ(s′)| < |s− s′|
holds for some s, s′ ∈ R
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Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions,
σess(Hα,Γ) = [−1

4α
2,∞) and Hα,Γ has at least one eigenvalue

below the threshold −1
4α

2

The same for curves in R
3, under stronger regularity,

with −1
4α

2 is replaced by the corresponding 2D p.i. ev

For curved surfaces Γ ⊂ R
3 such a result is proved in

the strong coupling asymptotic regime only

Implications for graphs: let Γ̃ ⊃ Γ in the set sense, then
Hα,Γ̃ ≤ Hα,Γ. If the essential spectrum threshold is the
same for both graphs and Γ fits the above assumptions,
we have σdisc(Hα,Γ) 6= ∅ by minimax principle
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More geometrically induced properties

(b) Perturbation theory for punctured manifolds:
let Γ : R→ R

2 be as above, C2-smooth, and let Γε differ by
ε-long hiatus around a fixed point x0 ∈ Γ. Let ϕj be the ef of
Hα,Γ corresponding to a simple ev λj ≡ λj(0) of Hα,Γ.

Theorem [E.-Yoshitomi, 2003]: The j-th ev of Hα,Γε
is

λj(ε) = λj(0) + α|ϕj(x0)|2ε+ o(εn−1) as ε→ 0

Remarks: Similarly one can express perturbed degenerate
ev’s. Analogous results hold for ev’s for punctured compact,
(d−1)-dimensional, C1+[d/2]-smooth manifolds in R

d.
Formally a small hole acts as repulsive δ interaction with
coupling α times (d−1)-Lebesgue measure of the hole
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Strongly attractive curves

(c) Strong coupling asymptotics: let Γ : R→ R
2 be as

above, now supposed to be C4-smooth

Theorem [E.-Yoshitomi, 2001]: The j-th ev of Hα,Γ is

λj(α) = −1

4
α2 + µj +O(α−1 lnα) as α→∞ ,

where µj is the j-th ev of SΓ := − d
ds2 − 1

4γ(s)
2 on L2((R)

and γ is the curvature of Γ.

The same holds if Γ is a loop;
then we also have

#σdisc(Hα,Γ) =
|Γ|α
2π

+O(lnα) as α→∞
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Further extensions

Hα,Γ with a periodic Γ has a band-type spectrum, but
analogous asymptotics is valid for its Floquet
components Hα,Γ(θ), with the comparison operator
SΓ(θ) satisfying the appropriate b.c. over the period cell.
It is important that the error term is uniform w.r.t. θ

Similar result holds for planar loops threaded by mg
field, homogeneous, AB flux line, etc.
Higher dimensions: the results extend to loops, infinite
and periodic curves in R

3

and to curved surfaces in R
3; then the comparison

operator is −∆LB +K −M2, where K,M , respectively,
are the corresponding Gauss and mean curvatures
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How to find the spectrum?

The above general results do not tell us how to find the
spectrum for a particular Γ. There are various possibilities:

Direct solution of the PDE problem Hα,Γψ = λψ is
feasible in a few simple examples only

Using trace maps of Rk ≡ (−∆− k2)−1 and the
generalized BS principle

Rk := Rk0 + αRkdx,m[I − αRkm,m]−1Rkm,dx ,

where m is δ measure on Γ, we pass to a 1D integral
operator problem, αRkm,mψ = ψ

discretization of the latter which amounts to a
point-interaction approximations to Hα,Γ
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2D point interactions

Such an interaction at the point a with the “coupling
constant” α is defined by b.c. which change locally the
domain of −∆: the functions behave as

ψ(x) = − 1

2π
log |x− a|L0(ψ, a) + L1(ψ, a) +O(|x− a|) ,

where the generalized b.v. L0(ψ, a) and L1(ψ, a) satisfy

L1(ψ, a) + 2παL0(ψ, a) = 0 , α ∈ R

For our purpose, the coupling should depend on the set Y
approximating Γ. To see how compare a line Γ with the
solvable straight-polymer model [AGHH]

← r r r r r r r rαn

`/n
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2D point-interaction approximation

Spectral threshold convergence requires αn = αn which
means that individual point interactions get weaker . Hence
we approximate Hα,Γ by point-interaction Hamiltonians
Hαn,Yn

with αn = α|Yn|, where |Yn| := ]Yn.

Theorem [E.-Němcová, 2003]: Let a family {Yn} of finite
sets Yn ⊂ Γ ⊂ R

2 be such that

1

|Yn|
∑

y∈Yn

f(y) →
∫

Γ
f dm

holds for any bounded continuous function f : Γ→ C,
together with technical conditions, then Hαn,Yn

→ Hα,Γ

in the strong resolvent sense as n→∞.

Resonances - from Physics to Mathematics and back, Dresden, January 30, 2004 – p.16/48



2D point-interaction approximation

Spectral threshold convergence requires αn = αn which
means that individual point interactions get weaker . Hence
we approximate Hα,Γ by point-interaction Hamiltonians
Hαn,Yn

with αn = α|Yn|, where |Yn| := ]Yn.
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Comments on the approximation

A more general result is valid: Γ need not be a graph
and the coupling may be non-constant

The result applies to finite graphs, however, an infinite Γ
can be approximated in strong resolvent sense by a
family of cut-off graphs

The idea is due to Brasche, Figari and Teta, 1998, who
analyzed point-interaction approximations of measure
perturbations with codim Γ = 1 in R

3. There are
differences, however, for instance in the 2D case we
can approximate attractive interactions only
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Scheme of the proof

Resolvent of Hαn,Yn
is given Krein’s formula. Given

k2 ∈ ρ(Hαn,Yn
) define |Yn| × |Yn| matrix by

Λαn,Yn
(k2;x, y) =

1

2π

[

2π|Yn|α + ln

(

ik

2

)

+ γE

]

δxy

−Gk(x−y) (1−δxy)

for x, y ∈ Yn, where γE is Euler’ constant.

Then

(Hαn,Yn
− k2)−1(x, y) = Gk(x−y)

+
∑

x′,y′∈Yn

[

Λαn,Yn
(k2)

]−1
(x′, y′)Gk(x−x′)Gk(y−y′)
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Scheme of the proof

Resolvent of Hα,Γ is given by the generalized BS formula
given above; one has to check directly that the difference of
the two vanishes as n→∞ �

Remarks:

Spectral condition in the n-th approximation, i.e.
det Λαn,Yn

(k2) = 0, is a discretization of the integral
equation coming from the generalized BS principle
A solution to Λαn,Yn

(k2)η = 0 determines the
approximating ef by ψ(x) =

∑

yj∈Yn
ηjGk(x− yj)

A match with solvable models illustrates the
convergence and shows that it is not fast, slower
than n−1 in the eigenvalues. This comes from singular
“spikes” in the approximating functions
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An interlude: scattering on leaky graphs

Let Γ be a graph with semi-infinite “leads”, e.g. an
infinite asymptotically straight curve. What we know
about scattering in such systems? Almost nothing!

First question: What is the “free” operator? −∆ is not a
good candidate, rather Hα,Γ for a straight line Γ. Recall
that we are particularly interested in energy interval
(−1

4α
2, 0), i.e. 1D transport of states laterally bound to Γ

Existence proof for the wave operators is absent

Conjecture: For strong coupling, α→∞, the scattering
is described in leading order by SΓ := − d2

ds2 − 1
4γ(s)

2

On the other hand, in general, the global geometry of Γ
is expected to determine the S-matrix
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Finally, the resonances

Consider infinite curves Γ, straight outside a compact, and
ask for examples of resonances. Recall the L2-approach: in
1D potential scattering one explores spectral properties of
the problem cut to a finite length L. It is time-honored trick
that scattering resonances are manifested as avoided
crossings in L dependence of the spectrum – for a recent
proof see Hagedorn-Meller, 2000. Try the same here:

Broken line: absence of “intrinsic” resonances due lack
of higher transverse thresholds

Z-shaped Γ: if a single bend has a significant reflection,
a double band should exhibit resonances

Bottleneck curve: a good candidate to demonstrate
tunneling resonances
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Broken line

α = 1
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Z shape with θ =
π
2

α = 5
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Z shape with θ = 0.32π
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A bottleneck curve

Consider a straight line defor-
mation which shaped as an
open loop with a bottleneck the
width a of which we will vary

←→ a

← → ← →L L

If Γ is a straight line, the transverse eigenfunction is
e−α|y|/2, hence the distance at which tunneling becomes
significant is ≈ 4α−1. In the example, we choose α = 1
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Bottleneck with a = 5.2
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Bottleneck with a = 2.9
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Bottleneck with a = 1.9
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Line and points – a solvable model

Let us pass to a simple model in which existence of
resonances can be proved: a straight leaky wire and a
family of leaky dots.
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Line and points – a solvable model

Let us pass to a simple model in which existence of
resonances can be proved: a straight leaky wire and a
family of leaky dots. Formal Hamiltonian

−∆− αδ(x− Σ) +
n

∑

i=1

β̃iδ(x− y(i))

in L2(R2) with α > 0. The 2D point interactions at Π = {y(i)}
with couplings β = {β1, . . . , βn} are properly introduced
through b.c. mentioned above, giving Hamiltonian Hα,β
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Line and points – a solvable model

Let us pass to a simple model in which existence of
resonances can be proved: a straight leaky wire and a
family of leaky dots. Formal Hamiltonian

−∆− αδ(x− Σ) +
n

∑

i=1

β̃iδ(x− y(i))

in L2(R) with α > 0. The 2D point interactions at Π = {y(i)}
with couplings β = {β1, . . . , βn} are properly introduced
through b.c. mentioned above, giving Hamiltonian Hα,β

Resolvent by Krein-type formula: given z ∈ C \ [0,∞) we
start from the free resolvent R(z) := (−∆− z)−1, also
interpreted as unitary R(z) acting from L2 to W 2,2. Then
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Resolvent by Krein-type formula
we introduce auxiliary Hilbert spaces, H0 := L2(R) and
H1 := C

n, and trace maps τj : W 2,2(R2)→ Hj defined
by τ0f := f �Σ and τ1f := f �Π,

then we define canonical embeddings of R(z) to Hi by
Ri,L(z) := τiR(z) : L2 → Hi, RL,i(z) := [Ri,L(z)]∗, and
Rj,i(z) := τjRL,i(z) : Hi → Hj, and

operator-valued matrix Γ(z) : H0 ⊕H1 → H0 ⊕H1 by

Γij(z)g := −Ri,j(z)g for i 6= j and g ∈ Hj ,
Γ00(z)f :=

[

α−1 −R0,0(z)
]

f if f ∈ H0 ,

Γ11(z)ϕ :=
(

sβ(z)δkl −Gz(y(k), y(l))(1−δkl)
)

ϕ ,

with sβ(z) := β + s(z) := β + 1
2π (ln

√
z

2i − ψ(1))
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Resolvent by Krein-type formula

To invert it we define the “reduced determinant”

D(z) := Γ11(z)− Γ10(z)Γ00(z)
−1Γ01(z) : H1 → H1 ,
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Resolvent by Krein-type formula

To invert it we define the “reduced determinant”

D(z) := Γ11(z)− Γ10(z)Γ00(z)
−1Γ01(z) : H1 → H1 ,

then an easy algebra yields expressions for “blocks” of
[Γ(z)]−1 in the form

[Γ(z)]−1
11 = D(z)−1 ,

[Γ(z)]−1
00 = Γ10(z)

−1Γ11(z)D(z)−1Γ10(z)Γ00(z)
−1 ,

[Γ(z)]−1
01 = −Γ00(z)

−1Γ01(z)D(z)−1 ,

[Γ(z)]−1
10 = −D(z)−1Γ10(z)Γ00(z)

−1 ;

thus to determine singularities of [Γ(z)]−1 one has to find
the null space of D(z)
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Resolvent by Krein-type formula

With this notation we can state the sought formula:

Theorem [E.-Kondej, 2003]: For z ∈ ρ(Hα,β) with Im z > 0

the resolvent Rα,β(z) := (Hα,β − z)−1 equals

Rα,β(z) = R(z) +
1

∑

i,j=0

RL,i(z)[Γ(z)]−1
ij Rj,L(z)

Remark: One can also compare resolvent of Hα,β to that of
Hα ≡ Hα,Σ using trace maps of the latter,

Rα,β(z) = Rα(z) + Rα;L1(z)D(z)−1
Rα;1L(z)
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Spectral properties of Hα,β

It is easy to check that

σess(Hα,β) = σac(Hα,β) = [−1

4
α2,∞)

σdisc given by generalized Birman-Schwinger principle:

dim ker Γ(z) = dim kerRα,β(z) ,

Hα,βφz = zφz ⇔ φz =
1

∑

i=0

RL,i(z)ηi,z ,

where (η0,z, η1,z) ∈ ker Γ(z). Moreover, it is clear that
0 ∈ σdisc(Γ(z))⇔ 0 ∈ σdisc(D(z)); this reduces the task
of finding the spectrum to an algebraic problem
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Spectral properties of Hα,β

Theorem [E.-Kondej, 2003]: (a) Let n = 1 and denote
dist (σ,Π) =: a, then Hα,β has one isolated eigenvalue
−κ2

a. The function a 7→ −κ2
a is increasing in (0,∞),

lim
a→∞

(−κ2
a) = min

{

εβ, −
1

4
α2

}

,

where εβ := −4e2(−2πβ+ψ(1)), while lima→0(−κ2
a) is finite.
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Spectral properties of Hα,β

Theorem [E.-Kondej, 2003]: (a) Let n = 1 and denote
dist (σ,Π) =: a, then Hα,β has one isolated eigenvalue
−κ2

a. The function a 7→ −κ2
a is increasing in (0,∞),

lim
a→∞

(−κ2
a) = min

{

εβ, −
1

4
α2

}

,

where εβ := −4e2(−2πβ+ψ(1)), while lima→0(−κ2
a) is finite.

(b) For any α > 0, β ∈ R
n, and n ∈ N+ the operator Hα,β

has N isolated eigenvalues, 1 ≤ N ≤ n. If all the point
interactions are strong enough, we have N = n
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Spectral properties of Hα,β

Theorem [E.-Kondej, 2003]: (a) Let n = 1 and denote
dist (σ,Π) =: a, then Hα,β has one isolated eigenvalue
−κ2

a. The function a 7→ −κ2
a is increasing in (0,∞),

lim
a→∞

(−κ2
a) = min

{

εβ, −
1

4
α2

}

,

where εβ := −4e2(−2πβ+ψ(1)), while lima→0(−κ2
a) is finite.

(b) For any α > 0, β ∈ R
n, and n ∈ N+ the operator Hα,β

has N isolated eigenvalues, 1 ≤ N ≤ n. If all the point
interactions are strong enough, we have N = n

Remark: Embedded eigenvalues due to mirror symmetry
w.r.t. Σ possible if n ≥ 2
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Resonance for n = 1

Assume the point interaction eigenvalue becomes
embedded as a→∞, i.e. that εβ > −1

4α
2

Observation: Birman-Schwinger works in the complex
domain too (recall P. Hislops’s talk for regular potentials).
Thus it is enough to look for analytical continuation of D(·),
which acts for z ∈ C \ [−1

4α
2,∞) as a multiplication by

da(z) := sβ(z)− φa(z) = sβ(z)−
∫ ∞

0

µ(z, t)

t− z − 1
4α

2
dt ,

µ(z, t) :=
iα

16π

(α− 2i(z−t)1/2) e2ia(z−t)1/2

t1/2(z−t)1/2

Thus we have a situation reminiscent of Friedrichs model,
just the functions involved are more complicated
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Analytic continuation

Take a region Ω− of the other sheet with (−1
4α

2, 0) as a part
of its boundary. Put µ0(λ, t) := limε→0 µ(λ+iε, t), define

I(λ) := P
∫ ∞

0

µ0(λ, t)

t− λ− 1
4α

2
dt ,

and furthermore, gα,a(z) := iα
4

e−αa

(z+ 1

4
α2)1/2

.

Lemma: z 7→ φa(z) is continued analytically to Ω− as

φ0
a(λ) = I(λ) + gα,a(λ) for λ ∈

(

−1

4
α2, 0

)

,

φ−a (z) = −
∫ ∞

0

µ(z, t)

t− z − 1
4α

2
dt− 2gα,a(z) , z ∈ Ω−
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Analytic continuation

Proof: By a direct computation one checks

lim
ε→0+

φ±a (λ± iε) = φ0
a(λ) , −1

4
α2 < λ < 0 ,

so the claim follows from edge-of-the-wedge theorem. �

The continuation of da is thus the function ηa : M 7→ C,
where M = {z : Im z > 0} ∪ (−1

4α
2, 0) ∪ Ω−, acting as

ηa(z) = sβ(z)− φl(z)a (z) ,

and our problem reduces to solution if the implicit function
problem ηa(z) = 0.
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Resonance for n = 1

Theorem [E.-Kondej, 2003]: Assume εβ > −1
4α

2. For any a
large enough the equation ηa(z) = 0 has a unique solution
z(a) = µ(b) + iν(b) ∈ Ω−, i.e. ν(a) < 0, with the following
asymptotic behaviour as a→∞,

µ(a) = εβ +O(e−a
√−εβ) , ν(a) = O(e−a

√−εβ)

Remark: We have |φ−a (z)| → 0 uniformly in a and
|sβ(z)| → ∞ as Im z → −∞. Hence the imaginary part z(a)
is bounded as a function of a, in particular, the resonance
pole survives as a→ 0.
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Scattering for n = 1

The same as scattering problem for (Hα,β , Hα)

r
↑

↓
a

α

β

Existence and completeness by Birman-Kuroda theorem;
we seek on-shell S-matrix in (−1

4α
2, 0). By Krein formula,

resolvent for Im z > 0 expresses as

Rα,β(z) = Rα(z) + ηa(z)
−1(·, vz)vz,

where vz := Rα;L,1(z)
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Scattering for n = 1

Apply this operator to vector

ωλ+iε(x) := ei(λ+iε+α2/4)1/2x1 e−α|x2|/2

and take limit ε→ 0+ in the sense of distributions; then a
straightforward calculation give generalized eigenfunction
of Hα,β. In particular, we have

Proposition: For any λ ∈ (−1
4α

2, 0) the reflection and
transmission amplitudes are

R(λ) = T (λ)− 1 =
i

4
αηa(λ)−1 e−αa

(λ+ 1
4α

2)1/2
;

they have the same pole in the analytical continuation
to Ω− as the continued resolvent
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Resonances from perturbed symmetry

Take the simplest situation, n = 2r
↑

↓
a

α

β0

r

↑

↓
a

β0 + b
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Resonances from perturbed symmetry

Take the simplest situation, n = 2r
↑

↓
a

α

β0

r

↑

↓
a

β0 + b

Let σdisc(H0,β0
) ∩

(

−1
4α

2, 0
)

6= ∅, so that Hamiltonian H0,β0

has two eigenvalues, the larger of which, ε2, exceeds −1
4α

2.
Then Hα,β0

has the same eigenvalue ε2 embedded in the
negative part of continuous spectrum
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Take the simplest situation, n = 2r
↑

↓
a

α

β0

r

↑

↓
a

β0 + b

Let σdisc(H0,β0
) ∩

(

−1
4α

2, 0
)

6= ∅, so that Hamiltonian H0,β0

has two eigenvalues, the larger of which, ε2, exceeds −1
4α

2.
Then Hα,β0

has the same eigenvalue ε2 embedded in the
negative part of continuous spectrum
One has now to continue analytically the 2× 2 matrix
function D(·). Put κ2 :=

√−ε2 and s̆β(κ) := sβ(−κ2)
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Resonances from perturbed symmetry

Proposition: Assume ε2 ∈ (−1
4α

2, 0) and denote
g̃(λ) := −igα,a(λ). Then for all b small enough the continued
function has a unique zero z2(b) = µ2(b) + iν2(b) ∈ Ω− with
the asymptotic expansion

µ2(b) = ε2 +
κ2b

s̆′β(κ2)+K ′
0(2aκ2)

+O(b2) ,

ν2(b) = − κ2g̃(ε2)b
2

2(s̆′β(κ2)+K ′
0(2aκ2))|s̆′β(κ2)−φ0

a(ε2)|
+O(b3)
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Unstable state decay, n = 1

Complementary point of view: investigate decay of unstable
state associated with the resonance; assume again n = 1.
We found that if the “unperturbed” ev εβ of Hβ is embedded
in (−1

4α
2, 0) and a is large, the corresponding resonance

has a long halflife. In analogy with Friedrichs model
[Demuth, 1976] one conjectures that in weak coupling case,
the resonance state would be similar up to normalization to
the eigenvector ξ0 := K0(

√−εβ ·) of Hβ, with the decay law
being dominated by the exponential term

At the same time, Hα,β has always an isolated ev with ef
which is not orthogonal to ξ0 for any a (recall that both
functions are positive). Consequently, the decay law
|(ξ0, U(t)ξ0)|2‖ξ0‖−2 has always a nonzero limit as t→∞
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Extension: plane and points

����
����Σ

rr r
r rr rΠ

In a similar way one can treat a 3D model with interaction
supported by a plane and a family of points, formally

−∆− αδ(x− Σ) +
n

∑

i=1

β̃iδ(x− y(i))

in L2(R3) with α > 0. The point interactions at Π = {y(i)}
with couplings β = {β1, . . . , βn} are properly introduced
through appropriate b.c., giving Hamiltonian Hα,β
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Extension: plane and points

The resolvent is given by a similar Krein-type formula
using the resolvent of −∆ in L2(R3)

σess(Hα,β) = σac(Hα,β) = [−1
4α

2,∞)

If n = 1 there is one isolated ev −κ2
a < −1

4α
2. If β > 0 or

ε̃β ∈ [−1
4α

2,∞), where ε̃β := −(4πβ)2, then

− lim
a→∞

κ2
a = ε̃β ,

otherwise we have

− lim
a→∞

κ2
a = −1

4
α2

Recall that σdisc(H0,β) = ∅ for β > 0
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Extension: plane and points

In distinction to 2D situation we have − lima→0 κ
2
a = −∞

In general there are 1 ≤ N ≤ n ev’s, in particular,
exactly n if all the −βi are large enough

Let n = 1 and ε̃β > −1
4α

2. For large enough a the
resolvent Rα,β has 2nd sheet pole z(a) = µ(a) + iν(a),
ν(a) < 0, which for a→∞ behaves as

µ(a) = ε̃β +O(e−aς̃β) , ν(a) = O(e−aς̃β)

The resonance pole exists even if the distance is not
large. In contrast to the two dimensional case, however,
the imaginary part of the pole position ν(a) diverges
to −∞ in the limit a→ 0
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Open questions

Strong coupling asymptotics of σdisc(Hα,Γ) is not known
for curves with open ends (manifolds with boundaries).
For smooth Γ, one conjectures similar asymptotics,
where SΓ has Dirichlet b.c. For non-smooth Γ the
leading term is expected to be different

Scattering on leaky graphs: existence and completess

Scattering on leaky curves: strong coupling asymptotics

Resonances: existence, properties in less trivial models

Periodic Γ, in one direction: absolute continuity (proved
so far only at the bottom of the spectrum)

More questions: random leaky graphs, adding magnetic
fields, justification of the L2 approach for leaky-graph
resonances, etc.
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for more information see http://www.ujf.cas.cz/ ẽxner
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