Resonance effects in transport through leaky graphs

Pavel Exner

in collaboration with *Takashi Ichinose*, *Sylwia Kondej*, *Kateřina Němcová* and *Kazushi Yoshitomi*

exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

What is known about scattering and resonances in "quantum wire" systems?

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha,\Gamma} = -\Delta \alpha\delta(x-\Gamma)$

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha,\Gamma}=-\Delta-\alpha\delta(x-\Gamma)$
- Geometrically induced spectral properties

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha,\Gamma}=-\Delta-\alpha\delta(x-\Gamma)$
- Geometrically induced spectral properties
- How to find spectrum numerically: an approximation by point interaction Hamiltonians

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha,\Gamma} = -\Delta \alpha\delta(x-\Gamma)$
- Geometrically induced spectral properties
- How to find spectrum numerically: an approximation by point interaction Hamiltonians
- A solvable resonance model: interaction supported by a line and a family of points

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha,\Gamma} = -\Delta \alpha\delta(x-\Gamma)$
- Geometrically induced spectral properties
- How to find spectrum numerically: an approximation by point interaction Hamiltonians
- A solvable resonance model: interaction supported by a line and a family of points
- Extension to higher dimension plane and points

- What is known about scattering and resonances in "quantum wire" systems?
- A model of "leaky" quantum wires and graphs, $H_{\alpha,\Gamma}=-\Delta-\alpha\delta(x-\Gamma)$
- Geometrically induced spectral properties
- How to find spectrum numerically: an approximation by point interaction Hamiltonians
- A solvable resonance model: interaction supported by a line and a family of points
- Extension to higher dimension plane and points
- Open questions

Usual graph resonance models

Generally known: resonances in "ideal" graphs, e.g.

Hamiltonian in such models is a Schrödinger operator on graph, with appropriate boundary conditions at the vertices

Usual graph resonance models

Generally known: resonances in "ideal" graphs, e.g.

Hamiltonian in such models is a Schrödinger operator on graph, with appropriate boundary conditions at the vertices Search for spectral and scattering properties is thus an *ODE problem*. Resonances typically appear if there are finite edges, which have discrete spectra when disconnected, embedded into the outer-leads continuum Studied by many authors, for reviews see, for instance Kostrykin-Schrader, 1999; Kuchment, 2004, etc.

Less well known: A finite-width wire itself may produce resonances. Take a smoothly bent hard-wall wire Σ of width d, use natural curvilinear coordinates s, u

Rewrite the Hamiltonian $H = -\Delta_D^{\Sigma}$ in the curvilinear coordinates and expand it w.r.t. the transverse basis:

$$H_{jk} = -\partial_s \left[\delta_{jk} + \mathcal{O}(d) \right] \partial_s + \left(\kappa_1^2 j^2 - \frac{1}{4} \gamma(s)^2 \right) \delta_{jk} + \mathcal{O}(d),$$

where $\kappa_1 := \pi/d$ and γ is the curvature of $\operatorname{bd} \Sigma$.

Less well known: A finite-width wire itself may produce resonances. Take a smoothly bent hard-wall wire Σ of width d, use natural curvilinear coordinates s, u

Rewrite the Hamiltonian $H = -\Delta_D^{\Sigma}$ in the curvilinear coordinates and expand it w.r.t. the transverse basis:

$$H_{jk} = -\partial_s \left[\delta_{jk} + \mathcal{O}(d) \right] \partial_s + \left(\kappa_1^2 j^2 - \frac{1}{4} \gamma(s)^2 \right) \delta_{jk} + \mathcal{O}(d),$$

where $\kappa_1 := \pi/d$ and γ is the curvature of $\operatorname{bd} \Sigma$.

Thus in leading order, transverse modes are decoupled:

The mode-coupling perturbation turns the embedded ev's into resonances, exponentially narrow w.r.t. *d*:

Theorem [Nedelec, 1997; Duclos-E.-Meller, 1998]:

Suppose that Σ is not straight and does not intersect itself. Let the curvature satisfy $|\gamma(s)| \leq c \langle s \rangle^{-1-\varepsilon}$ and extend analytically to a "waisted sector"

 $\{z \in \mathbb{C} : |\arg(\pm z)| < \alpha_0, |\operatorname{Im} z| < \eta_0\}$ for positive α_0, η_0 with the same decay property. Then

$$0 \le -\operatorname{Im} \epsilon_{j,n}(d) \le c_{j,n} e^{-2\pi\eta\sqrt{2j-1}/d}$$

holds for all $\eta < \eta_0$ and d small enough.

The mode-coupling perturbation turns the embedded ev's into resonances, exponentially narrow w.r.t. *d*:

Theorem [Nedelec, 1997; Duclos-E.-Meller, 1998]:

Suppose that Σ is not straight and does not intersect itself. Let the curvature satisfy $|\gamma(s)| \leq c \langle s \rangle^{-1-\varepsilon}$ and extend analytically to a "waisted sector"

 $\{z \in \mathbb{C} : |\arg(\pm z)| < \alpha_0, |\operatorname{Im} z| < \eta_0\}$ for positive α_0, η_0 with the same decay property. Then

$$0 \le -\operatorname{Im} \epsilon_{j,n}(d) \le c_{j,n} e^{-2\pi\eta\sqrt{2j-1}/d}$$

holds for all $\eta < \eta_0$ and d small enough.

Remark: The non-existence of embedded ev's which survive curvature-induced perturbation is an open question

Drawbacks of these models

Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description

However, the answer is known so far only for Neumann-type situations [Rubinstein-Schatzman, 2001; Kuchment-Zeng, 2001; E.-Post, 2003], the Dirichlet case needed here is open (and difficult)

Drawbacks of these models

Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description

However, the answer is known so far only for Neumann-type situations [Rubinstein-Schatzman, 2001; Kuchment-Zeng, 2001; E.-Post, 2003], the Dirichlet case needed here is open (and difficult)

Quantum tunneling is neglected: recall that a true quantum-wire boundary is a finite potential jump

Leaky quantum graphs

We consider "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$H_{\alpha,\Gamma} = -\Delta - \alpha\delta(x - \Gamma), \quad \alpha > 0,$$

in $L^2(\mathbb{R}^2)$, where Γ is the graph in question.

Leaky quantum graphs

We consider "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$H_{\alpha,\Gamma} = -\Delta - \alpha\delta(x - \Gamma), \quad \alpha > 0,$$

in $L^2(\mathbb{R}^2)$, where Γ is the graph in question.

A proper definition of $H_{\alpha,\Gamma}$: it can be associated naturally with the quadratic form,

$$\psi \mapsto \|\nabla \psi\|_{L^2(\mathbb{R}^n)}^2 - \alpha \int_{\Gamma} |\psi(x)|^2 dx$$

which is closed and below bounded in $W^{2,1}(\mathbb{R}^n)$; the second term makes sense in view of Sobolev embedding. This definition also works for various "wilder" sets Γ

Leaky quantum-graph Hamiltonians

For Γ with locally finite number of smooth edges and *no* cusps we can use an alternative definition by boundary conditions: $H_{\alpha,\Gamma}$ acts as $-\Delta$ on functions from $W^{2,1}_{loc}(\mathbb{R}^2 \setminus \Gamma)$, which are continuous and exhibit a normal-derivative jump,

$$\left. \frac{\partial \psi}{\partial n}(x) \right|_{+} - \left. \frac{\partial \psi}{\partial n}(x) \right|_{-} = -\alpha \psi(x)$$

Leaky quantum-graph Hamiltonians

For Γ with locally finite number of smooth edges and *no* cusps we can use an alternative definition by boundary conditions: $H_{\alpha,\Gamma}$ acts as $-\Delta$ on functions from $W^{2,1}_{loc}(\mathbb{R}^2 \setminus \Gamma)$, which are continuous and exhibit a normal-derivative jump,

$$\left. \frac{\partial \psi}{\partial n}(x) \right|_{+} - \left. \frac{\partial \psi}{\partial n}(x) \right|_{-} = -\alpha \psi(x)$$

Remarks:

- for graphs in \mathbb{R}^3 we use generalized b.c. which define a two-dimensional point interaction in normal plane
- one can combine "edges" of different dimensions as long as $\operatorname{codim}\Gamma$ does not exceed three

Geometrically induced spectrum

(a) Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha,\Gamma}$. Consider a *piecewise* C^1 -smooth $\Gamma: \mathbb{R} \to \mathbb{R}^2$ parameterized by its arc length, and assume:

Geometrically induced spectrum

- (a) Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha,\Gamma}$. Consider a *piecewise* C^1 -smooth $\Gamma: \mathbb{R} \to \mathbb{R}^2$ parameterized by its arc length, and assume:
 - $|\Gamma(s) \Gamma(s')| \ge c|s s'|$ holds for some $c \in (0, 1)$
 - Γ is asymptotically straight: there are d>0, $\mu>\frac{1}{2}$ and $\omega\in(0,1)$ such that

$$1 - \frac{|\Gamma(s) - \Gamma(s')|}{|s - s'|} \le d \left[1 + |s + s'|^{2\mu} \right]^{-1/2}$$

in the sector $S_{\omega} := \{(s, s') : \omega < \frac{s}{s'} < \omega^{-1}\}$

• straight line is excluded, i.e. $|\Gamma(s) - \Gamma(s')| < |s - s'|$ holds for some $s, s' \in \mathbb{R}$

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{\rm ess}(H_{\alpha,\Gamma})=[-\frac{1}{4}\alpha^2,\infty)$ and $H_{\alpha,\Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4}\alpha^2$

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{\rm ess}(H_{\alpha,\Gamma})=[-\frac{1}{4}\alpha^2,\infty)$ and $H_{\alpha,\Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4}\alpha^2$

- The same for *curves in* \mathbb{R}^3 , under stronger regularity, with $-\frac{1}{4}\alpha^2$ is replaced by the corresponding 2D p.i. ev
- For curved surfaces $\Gamma \subset \mathbb{R}^3$ such a result is proved in the strong coupling asymptotic regime only
- Implications for graphs: let $\tilde{\Gamma} \supset \Gamma$ in the set sense, then $H_{\alpha,\tilde{\Gamma}} \leq H_{\alpha,\Gamma}$. If the essential spectrum threshold is the same for both graphs and Γ fits the above assumptions, we have $\sigma_{\rm disc}(H_{\alpha,\Gamma}) \neq \emptyset$ by minimax principle

More geometrically induced properties

(b) Perturbation theory for punctured manifolds:

let $\Gamma: \mathbb{R} \to \mathbb{R}^2$ be as above, C^2 -smooth, and let Γ_{ε} differ by ε -long hiatus around a fixed point $x_0 \in \Gamma$. Let φ_j be the ef of $H_{\alpha,\Gamma}$ corresponding to a simple ev $\lambda_j \equiv \lambda_j(0)$ of $H_{\alpha,\Gamma}$.

Theorem [E.-Yoshitomi, 2003]: The *j*-th ev of $H_{\alpha,\Gamma_{\varepsilon}}$ is

$$\lambda_i(\varepsilon) = \lambda_i(0) + \alpha |\varphi_i(x_0)|^2 \varepsilon + o(\varepsilon^{n-1})$$
 as $\varepsilon \to 0$

More geometrically induced properties

(b) Perturbation theory for punctured manifolds:

let $\Gamma: \mathbb{R} \to \mathbb{R}^2$ be as above, C^2 -smooth, and let Γ_{ε} differ by ε -long hiatus around a fixed point $x_0 \in \Gamma$. Let φ_j be the ef of $H_{\alpha,\Gamma}$ corresponding to a simple ev $\lambda_j \equiv \lambda_j(0)$ of $H_{\alpha,\Gamma}$.

Theorem [E.-Yoshitomi, 2003]: The j-th ev of $H_{\alpha,\Gamma_{\varepsilon}}$ is

$$\lambda_i(\varepsilon) = \lambda_i(0) + \alpha |\varphi_i(x_0)|^2 \varepsilon + o(\varepsilon^{n-1})$$
 as $\varepsilon \to 0$

Remarks: Similarly one can express perturbed degenerate ev's. Analogous results hold for ev's for punctured compact, (d-1)-dimensional, $C^{1+[d/2]}$ -smooth manifolds in \mathbb{R}^d . Formally a small hole acts as repulsive δ interaction with coupling α times (d-1)-Lebesgue measure of the hole

Strongly attractive curves

(c) Strong coupling asymptotics: let $\Gamma: \mathbb{R} \to \mathbb{R}^2$ be as above, now supposed to be C^4 -smooth

Theorem [E.-Yoshitomi, 2001]: The j-th ev of $H_{\alpha,\Gamma}$ is

$$\lambda_j(\alpha) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$
 as $\alpha \to \infty$,

where μ_j is the j-th ev of $S_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{d}s^2}-\frac{1}{4}\gamma(s)^2$ on $L^2((\mathbb{R})$ and γ is the curvature of Γ .

Strongly attractive curves

(c) Strong coupling asymptotics: let $\Gamma: \mathbb{R} \to \mathbb{R}^2$ be as above, now supposed to be C^4 -smooth

Theorem [E.-Yoshitomi, 2001]: The *j*-th ev of $H_{\alpha,\Gamma}$ is

$$\lambda_j(\alpha) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$
 as $\alpha \to \infty$,

where μ_j is the j-th ev of $S_{\Gamma}:=-\frac{\mathrm{d}}{\mathrm{d}s^2}-\frac{1}{4}\gamma(s)^2$ on $L^2((\mathbb{R})$ and γ is the curvature of Γ . The same holds if Γ is a loop; then we also have

$$\#\sigma_{\mathrm{disc}}(H_{\alpha,\Gamma}) = \frac{|\Gamma|\alpha}{2\pi} + \mathcal{O}(\ln \alpha) \quad \text{as} \quad \alpha \to \infty$$

• $H_{\alpha,\Gamma}$ with a *periodic* Γ has a band-type spectrum, but analogous asymptotics is valid for its *Floquet* components $H_{\alpha,\Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ

- $H_{\alpha,\Gamma}$ with a *periodic* Γ has a band-type spectrum, but analogous asymptotics is valid for its *Floquet* components $H_{\alpha,\Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by mg field, homogeneous, AB flux line, etc.

- $H_{\alpha,\Gamma}$ with a *periodic* Γ has a band-type spectrum, but analogous asymptotics is valid for its *Floquet* components $H_{\alpha,\Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by mg field, homogeneous, AB flux line, etc.
- Higher dimensions: the results extend to loops, infinite and periodic curves in \mathbb{R}^3

- $H_{\alpha,\Gamma}$ with a *periodic* Γ has a band-type spectrum, but analogous asymptotics is valid for its *Floquet* components $H_{\alpha,\Gamma}(\theta)$, with the comparison operator $S_{\Gamma}(\theta)$ satisfying the appropriate b.c. over the period cell. It is important that the error term is uniform w.r.t. θ
- Similar result holds for planar loops threaded by mg field, homogeneous, AB flux line, etc.
- Higher dimensions: the results extend to loops, infinite and periodic curves in \mathbb{R}^3
- and to curved surfaces in \mathbb{R}^3 ; then the comparison operator is $-\Delta_{\mathrm{LB}} + K M^2$, where K, M, respectively, are the corresponding Gauss and mean curvatures

How to find the spectrum?

The above general results do not tell us how to find the spectrum for a particular Γ . There are various possibilities:

• Direct solution of the PDE problem $H_{\alpha,\Gamma}\psi=\lambda\psi$ is feasible in a few simple examples only

How to find the spectrum?

The above general results do not tell us how to find the spectrum for a particular Γ . There are various possibilities:

- Direct solution of the PDE problem $H_{\alpha,\Gamma}\psi=\lambda\psi$ is feasible in a few simple examples only
- Using trace maps of $R^k \equiv (-\Delta k^2)^{-1}$ and the generalized BS principle

$$R^{k} := R_{0}^{k} + \alpha R_{dx,m}^{k} [I - \alpha R_{m,m}^{k}]^{-1} R_{m,dx}^{k},$$

where m is δ measure on Γ , we pass to a 1D integral operator problem, $\alpha R_{m,m}^k \psi = \psi$

How to find the spectrum?

The above general results do not tell us how to find the spectrum for a particular Γ . There are various possibilities:

- Direct solution of the PDE problem $H_{\alpha,\Gamma}\psi=\lambda\psi$ is feasible in a few simple examples only
- Using trace maps of $R^k \equiv (-\Delta k^2)^{-1}$ and the generalized BS principle

$$R^{k} := R_{0}^{k} + \alpha R_{dx,m}^{k} [I - \alpha R_{m,m}^{k}]^{-1} R_{m,dx}^{k},$$

where m is δ measure on Γ , we pass to a 1D integral operator problem, $\alpha R_{m,m}^k \psi = \psi$

• discretization of the latter which amounts to a point-interaction approximations to $H_{\alpha,\Gamma}$

2D point interactions

Such an interaction at the point a with the "coupling constant" α is defined by b.c. which change *locally* the domain of $-\Delta$: the functions behave as

$$\psi(x) = -\frac{1}{2\pi} \log|x - a| L_0(\psi, a) + L_1(\psi, a) + \mathcal{O}(|x - a|),$$

where the generalized b.v. $L_0(\psi, a)$ and $L_1(\psi, a)$ satisfy

$$L_1(\psi, a) + 2\pi\alpha L_0(\psi, a) = 0, \quad \alpha \in \mathbb{R}$$

2D point interactions

Such an interaction at the point a with the "coupling constant" α is defined by b.c. which change *locally* the domain of $-\Delta$: the functions behave as

$$\psi(x) = -\frac{1}{2\pi} \log|x - a| L_0(\psi, a) + L_1(\psi, a) + \mathcal{O}(|x - a|),$$

where the generalized b.v. $L_0(\psi, a)$ and $L_1(\psi, a)$ satisfy

$$L_1(\psi, a) + 2\pi\alpha L_0(\psi, a) = 0, \quad \alpha \in \mathbb{R}$$

For our purpose, the coupling should depend on the set Y approximating Γ . To see how compare a line Γ with the solvable *straight-polymer* model [AGHH]

2D point-interaction approximation

Spectral threshold convergence requires $\alpha_n = \alpha n$ which means that individual point interactions get *weaker*. Hence we approximate $H_{\alpha,\Gamma}$ by point-interaction Hamiltonians H_{α_n,Y_n} with $\alpha_n = \alpha |Y_n|$, where $|Y_n| := \sharp Y_n$.

2D point-interaction approximation

Spectral threshold convergence requires $\alpha_n = \alpha n$ which means that individual point interactions get *weaker*. Hence we approximate $H_{\alpha,\Gamma}$ by point-interaction Hamiltonians H_{α_n,Y_n} with $\alpha_n = \alpha |Y_n|$, where $|Y_n| := \sharp Y_n$.

Theorem [E.-Němcová, 2003]: Let a family $\{Y_n\}$ of finite sets $Y_n \subset \Gamma \subset \mathbb{R}^2$ be such that

$$\frac{1}{|Y_n|} \sum_{y \in Y_n} f(y) \to \int_{\Gamma} f \, \mathrm{d}m$$

holds for any bounded continuous function $f:\Gamma\to\mathbb{C}$, together with technical conditions, then $H_{\alpha_n,Y_n}\to H_{\alpha,\Gamma}$ in the strong resolvent sense as $n\to\infty$.

Comments on the approximation

• A more general result is valid: Γ need not be a graph and the coupling may be non-constant

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant
- The result applies to finite graphs, however, an infinite Γ can be approximated in strong resolvent sense by a family of cut-off graphs

Comments on the approximation

- A more general result is valid: Γ need not be a graph and the coupling may be non-constant
- The result applies to finite graphs, however, an infinite Γ can be approximated in strong resolvent sense by a family of cut-off graphs
- **●** The idea is due to Brasche, Figari and Teta, 1998, who analyzed point-interaction approximations of measure perturbations with $\operatorname{codim} \Gamma = 1$ in \mathbb{R}^3 . There are differences, however, for instance in the 2D case we can approximate *attractive* interactions only

Resolvent of H_{α_n,Y_n} is given *Krein's formula*. Given $k^2 \in \rho(H_{\alpha_n,Y_n})$ define $|Y_n| \times |Y_n|$ matrix by

$$\Lambda_{\alpha_n, Y_n}(k^2; x, y) = \frac{1}{2\pi} \left[2\pi |Y_n| \alpha + \ln\left(\frac{ik}{2}\right) + \gamma_E \right] \delta_{xy}$$
$$-G_k(x - y) \left(1 - \delta_{xy}\right)$$

for $x, y \in Y_n$, where γ_E is *Euler' constant*.

Resolvent of H_{α_n,Y_n} is given *Krein's formula*. Given $k^2 \in \rho(H_{\alpha_n,Y_n})$ define $|Y_n| \times |Y_n|$ matrix by

$$\Lambda_{\alpha_n, Y_n}(k^2; x, y) = \frac{1}{2\pi} \left[2\pi |Y_n| \alpha + \ln\left(\frac{ik}{2}\right) + \gamma_E \right] \delta_{xy}$$
$$-G_k(x - y) \left(1 - \delta_{xy}\right)$$

for $x, y \in Y_n$, where γ_E is *Euler' constant*. Then

$$(H_{\alpha_n, Y_n} - k^2)^{-1}(x, y) = G_k(x - y)$$

$$+ \sum_{x', y' \in Y_n} \left[\Lambda_{\alpha_n, Y_n}(k^2) \right]^{-1} (x', y') G_k(x - x') G_k(y - y')$$

Resolvent of $H_{\alpha,\Gamma}$ is given by the *generalized BS formula* given above; one has to check directly that the difference of the two vanishes as $n \to \infty$

Resolvent of $H_{\alpha,\Gamma}$ is given by the *generalized BS formula* given above; one has to check directly that the difference of the two vanishes as $n \to \infty$

Remarks:

- Spectral condition in the n-th approximation, i.e. $\det \Lambda_{\alpha_n,Y_n}(k^2)=0$, is a discretization of the integral equation coming from the generalized BS principle
- A solution to $\Lambda_{\alpha_n,Y_n}(k^2)\eta=0$ determines the approximating ef by $\psi(x)=\sum_{y_i\in Y_n}\eta_jG_k(x-y_j)$
- A match with solvable models illustrates the convergence and shows that it is not fast, slower than n^{-1} in the eigenvalues. This comes from singular "spikes" in the approximating functions

Let Γ be a graph with *semi-infinite "leads"*, e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Almost nothing!

● First question: What is the "free" operator? $-\Delta$ is not a good candidate, rather $H_{\alpha,\Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $(-\frac{1}{4}\alpha^2,0)$, i.e. 1D transport of states laterally bound to Γ

Let Γ be a graph with *semi-infinite "leads"*, e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Almost nothing!

- **Print First question:** What is the "free" operator? $-\Delta$ is not a good candidate, rather $H_{\alpha,\Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $(-\frac{1}{4}\alpha^2,0)$, i.e. 1D transport of states laterally bound to Γ
- Existence proof for the wave operators is absent

Let Γ be a graph with *semi-infinite "leads"*, e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Almost nothing!

- **Print First question:** What is the "free" operator? $-\Delta$ is not a good candidate, rather $H_{\alpha,\Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $(-\frac{1}{4}\alpha^2,0)$, i.e. 1D transport of states laterally bound to Γ
- Existence proof for the wave operators is absent
- Conjecture: For *strong coupling*, $\alpha \to \infty$, the scattering is described in leading order by $S_{\Gamma} := -\frac{\mathrm{d}^2}{\mathrm{d}s^2} \frac{1}{4}\gamma(s)^2$

Let Γ be a graph with *semi-infinite "leads"*, e.g. an infinite asymptotically straight curve. What we know about scattering in such systems? Almost nothing!

- **Print First question:** What is the "free" operator? $-\Delta$ is not a good candidate, rather $H_{\alpha,\Gamma}$ for a straight line Γ. Recall that we are particularly interested in energy interval $(-\frac{1}{4}\alpha^2,0)$, i.e. 1D transport of states laterally bound to Γ
- Existence proof for the wave operators is absent
- Conjecture: For *strong coupling*, $\alpha \to \infty$, the scattering is described in leading order by $S_{\Gamma} := -\frac{\mathrm{d}^2}{\mathrm{d}s^2} \frac{1}{4}\gamma(s)^2$
- On the other hand, in general, the global geometry of Γ is expected to determine the S-matrix

Finally, the resonances

Consider infinite curves Γ , straight outside a compact, and ask for examples of resonances. Recall the L^2 -approach: in 1D potential scattering one explores *spectral properties* of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum – for a recent proof see Hagedorn-Meller, 2000. Try the same here:

Finally, the resonances

Consider infinite curves Γ , straight outside a compact, and ask for examples of resonances. Recall the L^2 -approach: in 1D potential scattering one explores *spectral properties* of the problem cut to a finite length L. It is time-honored trick that scattering resonances are manifested as avoided crossings in L dependence of the spectrum – for a recent proof see Hagedorn-Meller, 2000. Try the same here:

- Broken line: absence of "intrinsic" resonances due lack of higher transverse thresholds
- Bottleneck curve: a good candidate to demonstrate tunneling resonances

Broken line

Broken line

Z shape with $\theta = \frac{\pi}{2}$

$$L_c = 10$$

$$\alpha = 5$$

Z shape with $\theta = \frac{\pi}{2}$

Z shape with $\theta = 0.32\pi$

$$\underline{\sum} L_c = 10$$

$$\alpha = 5$$

Z shape with $\theta = 0.32\pi$

A bottleneck curve

Consider a straight line deformation which shaped as an open loop with a bottleneck the width a of which we will vary

A bottleneck curve

Consider a straight line deformation which shaped as an open loop with a bottleneck the width a of which we will vary

If Γ is a straight line, the transverse eigenfunction is $\mathrm{e}^{-\alpha|y|/2}$, hence the distance at which tunneling becomes significant is $\approx 4\alpha^{-1}$. In the example, we choose $\alpha=1$

Bottleneck with a = 5.2

Bottleneck with a=2.9

Bottleneck with a = 1.9

Line and points – a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight *leaky wire* and a family of *leaky dots*.

Line and points – a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight *leaky wire* and a family of *leaky dots*. Formal Hamiltonian

$$-\Delta - \alpha \delta(x - \Sigma) + \sum_{i=1}^{n} \tilde{\beta}_{i} \delta(x - y^{(i)})$$

in $L^2(\mathbb{R}^2)$ with $\alpha > 0$. The 2D point interactions at $\Pi = \{y^{(i)}\}$ with couplings $\beta = \{\beta_1, \dots, \beta_n\}$ are properly introduced through b.c. mentioned above, giving Hamiltonian $H_{\alpha,\beta}$

Line and points – a solvable model

Let us pass to a simple model in which existence of resonances can be proved: a straight *leaky wire* and a family of *leaky dots*. Formal Hamiltonian

$$-\Delta - \alpha \delta(x - \Sigma) + \sum_{i=1}^{n} \tilde{\beta}_{i} \delta(x - y^{(i)})$$

in $L^2(\mathbb{R})$ with $\alpha > 0$. The 2D point interactions at $\Pi = \{y^{(i)}\}$ with couplings $\beta = \{\beta_1, \dots, \beta_n\}$ are properly introduced through b.c. mentioned above, giving Hamiltonian $H_{\alpha, \beta}$

Resolvent by Krein-type formula: given $z \in \mathbb{C} \setminus [0, \infty)$ we start from the free resolvent $R(z) := (-\Delta - z)^{-1}$, also interpreted as unitary $\mathbf{R}(z)$ acting from L^2 to $W^{2,2}$. Then

we introduce auxiliary Hilbert spaces, $\mathcal{H}_0 := L^2(\mathbb{R})$ and $\mathcal{H}_1 := \mathbb{C}^n$, and trace maps $\tau_j : W^{2,2}(\mathbb{R}^2) \to \mathcal{H}_j$ defined by $\tau_0 f := f \upharpoonright_{\Sigma}$ and $\tau_1 f := f \upharpoonright_{\Pi}$,

- we introduce auxiliary Hilbert spaces, $\mathcal{H}_0 := L^2(\mathbb{R})$ and $\mathcal{H}_1 := \mathbb{C}^n$, and trace maps $\tau_j : W^{2,2}(\mathbb{R}^2) \to \mathcal{H}_j$ defined by $\tau_0 f := f \upharpoonright_{\Sigma}$ and $\tau_1 f := f \upharpoonright_{\Pi}$,
- then we define canonical embeddings of $\mathbf{R}(z)$ to \mathcal{H}_i by $\mathbf{R}_{i,L}(z) := \tau_i R(z) : L^2 \to \mathcal{H}_i$, $\mathbf{R}_{L,i}(z) := [\mathbf{R}_{i,L}(z)]^*$, and $\mathbf{R}_{j,i}(z) := \tau_j \mathbf{R}_{L,i}(z) : \mathcal{H}_i \to \mathcal{H}_j$, and

- we introduce auxiliary Hilbert spaces, $\mathcal{H}_0 := L^2(\mathbb{R})$ and $\mathcal{H}_1 := \mathbb{C}^n$, and trace maps $\tau_j : W^{2,2}(\mathbb{R}^2) \to \mathcal{H}_j$ defined by $\tau_0 f := f \upharpoonright_{\Sigma}$ and $\tau_1 f := f \upharpoonright_{\Pi}$,
- then we define canonical embeddings of $\mathbf{R}(z)$ to \mathcal{H}_i by $\mathbf{R}_{i,L}(z) := \tau_i R(z) : L^2 \to \mathcal{H}_i$, $\mathbf{R}_{L,i}(z) := [\mathbf{R}_{i,L}(z)]^*$, and $\mathbf{R}_{j,i}(z) := \tau_j \mathbf{R}_{L,i}(z) : \mathcal{H}_i \to \mathcal{H}_j$, and
- operator-valued matrix $\Gamma(z): \mathcal{H}_0 \oplus \mathcal{H}_1 \to \mathcal{H}_0 \oplus \mathcal{H}_1$ by

$$\Gamma_{ij}(z)g := -\mathbf{R}_{i,j}(z)g \text{ for } i \neq j \text{ and } g \in \mathcal{H}_j,$$

$$\Gamma_{00}(z)f := \left[\alpha^{-1} - \mathbf{R}_{0,0}(z)\right]f \text{ if } f \in \mathcal{H}_0,$$

$$\Gamma_{11}(z)\varphi := \left(s_{\beta}(z)\delta_{kl} - G_z(y^{(k)}, y^{(l)})(1 - \delta_{kl})\right)\varphi,$$

with
$$s_{\beta}(z) := \beta + s(z) := \beta + \frac{1}{2\pi} (\ln \frac{\sqrt{z}}{2i} - \psi(1))$$

To invert it we define the "reduced determinant"

$$D(z) := \Gamma_{11}(z) - \Gamma_{10}(z)\Gamma_{00}(z)^{-1}\Gamma_{01}(z) : \mathcal{H}_1 \to \mathcal{H}_1,$$

To invert it we define the "reduced determinant"

$$D(z) := \Gamma_{11}(z) - \Gamma_{10}(z)\Gamma_{00}(z)^{-1}\Gamma_{01}(z) : \mathcal{H}_1 \to \mathcal{H}_1,$$

then an easy algebra yields expressions for "blocks" of $[\Gamma(z)]^{-1}$ in the form

$$\begin{aligned} & [\Gamma(z)]_{11}^{-1} &= D(z)^{-1}, \\ & [\Gamma(z)]_{00}^{-1} &= \Gamma_{10}(z)^{-1}\Gamma_{11}(z)D(z)^{-1}\Gamma_{10}(z)\Gamma_{00}(z)^{-1}, \\ & [\Gamma(z)]_{01}^{-1} &= -\Gamma_{00}(z)^{-1}\Gamma_{01}(z)D(z)^{-1}, \\ & [\Gamma(z)]_{10}^{-1} &= -D(z)^{-1}\Gamma_{10}(z)\Gamma_{00}(z)^{-1}; \end{aligned}$$

thus to determine singularities of $[\Gamma(z)]^{-1}$ one has to find the null space of D(z)

With this notation we can state the sought formula:

Theorem [E.-Kondej, 2003]: For $z \in \rho(H_{\alpha,\beta})$ with Im z > 0 the resolvent $R_{\alpha,\beta}(z) := (H_{\alpha,\beta} - z)^{-1}$ equals

$$R_{\alpha,\beta}(z) = R(z) + \sum_{i,j=0}^{1} \mathbf{R}_{L,i}(z) [\Gamma(z)]_{ij}^{-1} \mathbf{R}_{j,L}(z)$$

Resolvent by Krein-type formula

With this notation we can state the sought formula:

Theorem [E.-Kondej, 2003]: For $z \in \rho(H_{\alpha,\beta})$ with $\operatorname{Im} z > 0$ the resolvent $R_{\alpha,\beta}(z) := (H_{\alpha,\beta} - z)^{-1}$ equals

$$R_{\alpha,\beta}(z) = R(z) + \sum_{i,j=0}^{1} \mathbf{R}_{L,i}(z) [\Gamma(z)]_{ij}^{-1} \mathbf{R}_{j,L}(z)$$

Remark: One can also compare resolvent of $H_{\alpha,\beta}$ to that of $H_{\alpha} \equiv H_{\alpha,\Sigma}$ using trace maps of the latter,

$$R_{\alpha,\beta}(z) = R_{\alpha}(z) + \mathbf{R}_{\alpha;L1}(z)D(z)^{-1}\mathbf{R}_{\alpha;1L}(z)$$

It is easy to check that

$$\sigma_{\rm ess}(H_{\alpha,\beta}) = \sigma_{\rm ac}(H_{\alpha,\beta}) = [-\frac{1}{4}\alpha^2, \infty)$$

It is easy to check that

$$\sigma_{\rm ess}(H_{\alpha,\beta}) = \sigma_{\rm ac}(H_{\alpha,\beta}) = [-\frac{1}{4}\alpha^2, \infty)$$

 $\sigma_{\rm disc}$ given by generalized Birman-Schwinger principle:

$$\dim \ker \Gamma(z) = \dim \ker R_{\alpha,\beta}(z),$$

$$H_{\alpha,\beta}\phi_z = z\phi_z \iff \phi_z = \sum_{i=0}^{1} \mathbf{R}_{L,i}(z)\eta_{i,z},$$

where $(\eta_{0,z},\eta_{1,z}) \in \ker \Gamma(z)$. Moreover, it is clear that $0 \in \sigma_{\mathrm{disc}}(\Gamma(z)) \Leftrightarrow 0 \in \sigma_{\mathrm{disc}}(D(z))$; this reduces the task of finding the spectrum to an algebraic problem

Theorem [E.-Kondej, 2003]: (a) Let n=1 and denote $\operatorname{dist}(\sigma,\Pi)=:a$, then $H_{\alpha,\beta}$ has one isolated eigenvalue $-\kappa_a^2$. The function $a\mapsto -\kappa_a^2$ is increasing in $(0,\infty)$,

$$\lim_{a \to \infty} (-\kappa_a^2) = \min \left\{ \epsilon_\beta, \, -\frac{1}{4}\alpha^2 \right\},\,$$

where $\epsilon_{\beta}:=-4\mathrm{e}^{2(-2\pi\beta+\psi(1))}$, while $\lim_{a\to 0}(-\kappa_a^2)$ is finite.

Theorem [E.-Kondej, 2003]: (a) Let n=1 and denote $\operatorname{dist}(\sigma,\Pi)=:a$, then $H_{\alpha,\beta}$ has one isolated eigenvalue $-\kappa_a^2$. The function $a\mapsto -\kappa_a^2$ is increasing in $(0,\infty)$,

$$\lim_{a \to \infty} (-\kappa_a^2) = \min \left\{ \epsilon_\beta, \, -\frac{1}{4}\alpha^2 \right\},\,$$

where $\epsilon_{\beta}:=-4\mathrm{e}^{2(-2\pi\beta+\psi(1))}$, while $\lim_{a\to 0}(-\kappa_a^2)$ is finite. (b) For any $\alpha>0,\ \beta\in\mathbb{R}^n$, and $n\in\mathbb{N}_+$ the operator $H_{\alpha,\beta}$ has N isolated eigenvalues, $1\leq N\leq n$. If all the point interactions are strong enough, we have N=n

Theorem [E.-Kondej, 2003]: (a) Let n=1 and denote $\operatorname{dist}(\sigma,\Pi)=:a$, then $H_{\alpha,\beta}$ has one isolated eigenvalue $-\kappa_a^2$. The function $a\mapsto -\kappa_a^2$ is increasing in $(0,\infty)$,

$$\lim_{a \to \infty} (-\kappa_a^2) = \min \left\{ \epsilon_\beta, \, -\frac{1}{4}\alpha^2 \right\},\,$$

where $\epsilon_{\beta}:=-4\mathrm{e}^{2(-2\pi\beta+\psi(1))}$, while $\lim_{a\to 0}(-\kappa_a^2)$ is finite. (b) For any $\alpha>0,\ \beta\in\mathbb{R}^n$, and $n\in\mathbb{N}_+$ the operator $H_{\alpha,\beta}$ has N isolated eigenvalues, $1\leq N\leq n$. If all the point interactions are strong enough, we have N=n

Remark: Embedded eigenvalues due to mirror symmetry w.r.t. Σ possible if $n \ge 2$

Resonance for n=1

Assume the point interaction eigenvalue *becomes* embedded as $a \to \infty$, i.e. that $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$

Resonance for n=1

Assume the point interaction eigenvalue *becomes* embedded as $a \to \infty$, i.e. that $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$

Observation: Birman-Schwinger works in the complex domain too *(recall P. Hislops's talk for regular potentials)*. Thus it is enough to look for analytical continuation of $D(\cdot)$, which acts for $z \in \mathbb{C} \setminus [-\frac{1}{4}\alpha^2, \infty)$ as a multiplication by

$$d_a(z) := s_{\beta}(z) - \phi_a(z) = s_{\beta}(z) - \int_0^{\infty} \frac{\mu(z, t)}{t - z - \frac{1}{4}\alpha^2} dt,$$
$$\mu(z, t) := \frac{i\alpha}{16\pi} \frac{(\alpha - 2i(z - t)^{1/2}) e^{2ia(z - t)^{1/2}}}{t^{1/2}(z - t)^{1/2}}$$

Thus we have a situation reminiscent of Friedrichs model, just the functions involved are more complicated

Take a region Ω_- of the other sheet with $(-\frac{1}{4}\alpha^2,0)$ as a part of its boundary. Put $\mu^0(\lambda,t):=\lim_{\varepsilon\to 0}\mu(\lambda+i\varepsilon,t)$, define

$$I(\lambda) := \mathcal{P} \int_0^\infty \frac{\mu^0(\lambda, t)}{t - \lambda - \frac{1}{4}\alpha^2} dt,$$

and furthermore, $g_{\alpha,a}(z):=rac{ilpha}{4}\,rac{{
m e}^{-lpha a}}{(z+rac{1}{4}lpha^2)^{1/2}}$.

Take a region Ω_- of the other sheet with $(-\frac{1}{4}\alpha^2, 0)$ as a part of its boundary. Put $\mu^0(\lambda, t) := \lim_{\varepsilon \to 0} \mu(\lambda + i\varepsilon, t)$, define

$$I(\lambda) := \mathcal{P} \int_0^\infty \frac{\mu^0(\lambda, t)}{t - \lambda - \frac{1}{4}\alpha^2} dt,$$

and furthermore, $g_{\alpha,a}(z):=rac{ilpha}{4}\,rac{{
m e}^{-lpha a}}{(z+rac{1}{4}lpha^2)^{1/2}}$.

Lemma: $z \mapsto \phi_a(z)$ is continued analytically to Ω_- as

$$\phi_a^0(\lambda) = I(\lambda) + g_{\alpha,a}(\lambda) \quad \text{for} \quad \lambda \in \left(-\frac{1}{4}\alpha^2, 0\right),$$

$$\phi_a^-(z) = -\int_0^\infty \frac{\mu(z,t)}{t-z-\frac{1}{4}\alpha^2} dt - 2g_{\alpha,a}(z), \ z \in \Omega_-$$

Proof: By a direct computation one checks

$$\lim_{\varepsilon \to 0^+} \phi_a^{\pm}(\lambda \pm i\varepsilon) = \phi_a^0(\lambda), \qquad -\frac{1}{4}\alpha^2 < \lambda < 0,$$

so the claim follows from edge-of-the-wedge theorem. \Box

Proof: By a direct computation one checks

$$\lim_{\varepsilon \to 0^+} \phi_a^{\pm}(\lambda \pm i\varepsilon) = \phi_a^0(\lambda), \qquad -\frac{1}{4}\alpha^2 < \lambda < 0,$$

so the claim follows from edge-of-the-wedge theorem. \Box

The continuation of d_a is thus the function $\eta_a: M \mapsto \mathbb{C}$, where $M = \{z : \operatorname{Im} z > 0\} \cup (-\frac{1}{4}\alpha^2, 0) \cup \Omega_-$, acting as

$$\eta_a(z) = s_{\beta}(z) - \phi_a^{l(z)}(z),$$

and our problem reduces to solution if the implicit function problem $\eta_a(z) = 0$.

Resonance for n=1

Theorem [E.-Kondej, 2003]: Assume $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$. For any a large enough the equation $\eta_a(z) = 0$ has a unique solution $z(a) = \mu(b) + i\nu(b) \in \Omega_-$, i.e. $\nu(a) < 0$, with the following asymptotic behaviour as $a \to \infty$,

$$\mu(a) = \epsilon_{\beta} + \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}}), \quad \nu(a) = \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}})$$

Resonance for n=1

Theorem [E.-Kondej, 2003]: Assume $\epsilon_{\beta} > -\frac{1}{4}\alpha^2$. For any a large enough the equation $\eta_a(z) = 0$ has a unique solution $z(a) = \mu(b) + i\nu(b) \in \Omega_-$, i.e. $\nu(a) < 0$, with the following asymptotic behaviour as $a \to \infty$,

$$\mu(a) = \epsilon_{\beta} + \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}}), \quad \nu(a) = \mathcal{O}(e^{-a\sqrt{-\epsilon_{\beta}}})$$

Remark: We have $|\phi_a^-(z)| \to 0$ uniformly in a and $|s_\beta(z)| \to \infty$ as ${\rm Im}\, z \to -\infty$. Hence the imaginary part z(a) is bounded as a function of a, in particular, the resonance pole survives as $a \to 0$.

The same as scattering problem for $(H_{\alpha,\beta}, H_{\alpha})$

The same as scattering problem for $(H_{\alpha,\beta}, H_{\alpha})$

Existence and completeness by Birman-Kuroda theorem; we seek on-shell S-matrix in $(-\frac{1}{4}\alpha^2, 0)$. By Krein formula, resolvent for Im z>0 expresses as

$$R_{\alpha,\beta}(z) = R_{\alpha}(z) + \eta_a(z)^{-1}(\cdot, v_z)v_z,$$

where $v_z := R_{\alpha;L,1}(z)$

Apply this operator to vector

$$\omega_{\lambda+i\varepsilon}(x) := e^{i(\lambda+i\varepsilon+\alpha^2/4)^{1/2}x_1} e^{-\alpha|x_2|/2}$$

and take limit $\varepsilon \to 0+$ in the sense of distributions; then a straightforward calculation give generalized eigenfunction of $H_{\alpha,\beta}$. In particular, we have

Apply this operator to vector

$$\omega_{\lambda+i\varepsilon}(x) := e^{i(\lambda+i\varepsilon+\alpha^2/4)^{1/2}x_1} e^{-\alpha|x_2|/2}$$

and take limit $\varepsilon \to 0+$ in the sense of distributions; then a straightforward calculation give generalized eigenfunction of $H_{\alpha,\beta}$. In particular, we have

Proposition: For any $\lambda \in (-\frac{1}{4}\alpha^2, 0)$ the reflection and transmission amplitudes are

$$\mathcal{R}(\lambda) = \mathcal{T}(\lambda) - 1 = \frac{i}{4} \alpha \eta_a(\lambda)^{-1} \frac{e^{-\alpha a}}{(\lambda + \frac{1}{4}\alpha^2)^{1/2}};$$

they have the same pole in the analytical continuation to Ω_- as the continued resolvent

Take the simplest situation, n=2

Take the simplest situation, n = 2

Let $\sigma_{\mathrm{disc}}(H_{0,\beta_0}) \cap \left(-\frac{1}{4}\alpha^2,0\right) \neq \emptyset$, so that Hamiltonian H_{0,β_0} has two eigenvalues, the larger of which, ϵ_2 , exceeds $-\frac{1}{4}\alpha^2$. Then H_{α,β_0} has the same eigenvalue ϵ_2 embedded in the negative part of continuous spectrum

Take the simplest situation, n=2

Let $\sigma_{\mathrm{disc}}(H_{0,\beta_0}) \cap \left(-\frac{1}{4}\alpha^2,0\right) \neq \emptyset$, so that Hamiltonian H_{0,β_0} has two eigenvalues, the larger of which, ϵ_2 , exceeds $-\frac{1}{4}\alpha^2$. Then H_{α,β_0} has the same eigenvalue ϵ_2 embedded in the negative part of continuous spectrum

One has now to continue analytically the 2×2 matrix function $D(\cdot)$. Put $\kappa_2 := \sqrt{-\epsilon_2}$ and $\check{s}_{\beta}(\kappa) := s_{\beta}(-\kappa^2)$

Proposition: Assume $\epsilon_2 \in (-\frac{1}{4}\alpha^2, 0)$ and denote $\tilde{g}(\lambda) := -ig_{\alpha,a}(\lambda)$. Then for all b small enough the continued function has a unique zero $z_2(b) = \mu_2(b) + i\nu_2(b) \in \Omega_-$ with the asymptotic expansion

$$\mu_{2}(b) = \epsilon_{2} + \frac{\kappa_{2}b}{\breve{s}'_{\beta}(\kappa_{2}) + K'_{0}(2a\kappa_{2})} + \mathcal{O}(b^{2}),$$

$$\nu_{2}(b) = -\frac{\kappa_{2}\tilde{g}(\epsilon_{2})b^{2}}{2(\breve{s}'_{\beta}(\kappa_{2}) + K'_{0}(2a\kappa_{2}))|\breve{s}'_{\beta}(\kappa_{2}) - \phi_{a}^{0}(\epsilon_{2})|} + \mathcal{O}(b^{3})$$

Unstable state decay, n=1

Complementary point of view: investigate decay of unstable state associated with the resonance; assume again n=1. We found that if the "unperturbed" ev ϵ_{β} of H_{β} is embedded in $(-\frac{1}{4}\alpha^2,0)$ and a is large, the corresponding resonance has a long halflife. In analogy with *Friedrichs model* [Demuth, 1976] one conjectures that in weak coupling case, the resonance state would be similar up to normalization to the eigenvector $\xi_0 := K_0(\sqrt{-\epsilon_{\beta}} \cdot)$ of H_{β} , with the decay law being dominated by the exponential term

Unstable state decay, n=1

Complementary point of view: investigate decay of unstable state associated with the resonance; assume again n=1. We found that if the "unperturbed" ev ϵ_{β} of H_{β} is embedded in $(-\frac{1}{4}\alpha^2,0)$ and a is large, the corresponding resonance has a long halflife. In analogy with *Friedrichs model* [Demuth, 1976] one conjectures that in weak coupling case, the resonance state would be similar up to normalization to the eigenvector $\xi_0 := K_0(\sqrt{-\epsilon_{\beta}} \cdot)$ of H_{β} , with the decay law being dominated by the exponential term

At the same time, $H_{\alpha,\beta}$ has always an isolated ev with ef which is *not* orthogonal to ξ_0 for any a (recall that both functions are positive). Consequently, the decay law $|(\xi_0, U(t)\xi_0)|^2 \|\xi_0\|^{-2}$ has always a nonzero limit as $t\to\infty$

In a similar way one can treat a 3D model with interaction supported by a *plane* and a family of *points*, formally

$$-\Delta - \alpha \delta(x - \Sigma) + \sum_{i=1}^{n} \tilde{\beta}_{i} \delta(x - y^{(i)})$$

in $L^2(\mathbb{R}^3)$ with $\alpha > 0$. The point interactions at $\Pi = \{y^{(i)}\}$ with couplings $\beta = \{\beta_1, \dots, \beta_n\}$ are properly introduced through appropriate b.c., giving Hamiltonian $H_{\alpha,\beta}$

• The resolvent is given by a similar *Krein-type formula* using the resolvent of $-\Delta$ in $L^2(\mathbb{R}^3)$

- The resolvent is given by a similar *Krein-type formula* using the resolvent of $-\Delta$ in $L^2(\mathbb{R}^3)$

- The resolvent is given by a similar *Krein-type formula* using the resolvent of $-\Delta$ in $L^2(\mathbb{R}^3)$
- If n=1 there is one isolated ev $-\kappa_a^2<-\frac{1}{4}\alpha^2$. If $\beta>0$ or $\tilde{\epsilon}_{\beta}\in[-\frac{1}{4}\alpha^2,\infty)$, where $\tilde{\epsilon}_{\beta}:=-(4\pi\beta)^2$, then

$$-\lim_{a\to\infty}\kappa_a^2=\tilde{\epsilon}_\beta\,,$$

otherwise we have

$$-\lim_{a\to\infty}\kappa_a^2 = -\frac{1}{4}\alpha^2$$

Recall that $\sigma_{\text{disc}}(H_{0,\beta}) = \emptyset$ for $\beta > 0$

• In distinction to 2D situation we have $-\lim_{a\to 0} \kappa_a^2 = -\infty$

- In distinction to 2D situation we have $-\lim_{a\to 0} \kappa_a^2 = -\infty$
- In general there are $1 \le N \le n$ ev's, in particular, exactly n if all the $-\beta_i$ are large enough

- In distinction to 2D situation we have $-\lim_{a\to 0} \kappa_a^2 = -\infty$
- In general there are $1 \le N \le n$ ev's, in particular, exactly n if all the $-\beta_i$ are large enough
- Let n=1 and $\tilde{\epsilon}_{\beta}>-\frac{1}{4}\alpha^2$. For large enough a the resolvent $R_{\alpha,\beta}$ has 2nd sheet pole $z(a)=\mu(a)+i\nu(a)$, $\nu(a)<0$, which for $a\to\infty$ behaves as

$$\mu(a) = \tilde{\epsilon}_{\beta} + \mathcal{O}(e^{-a\tilde{\zeta}_{\beta}}), \ \nu(a) = \mathcal{O}(e^{-a\tilde{\zeta}_{\beta}})$$

- In distinction to 2D situation we have $-\lim_{a\to 0} \kappa_a^2 = -\infty$
- In general there are $1 \le N \le n$ ev's, in particular, exactly n if all the $-\beta_i$ are large enough
- Let n=1 and $\tilde{\epsilon}_{\beta}>-\frac{1}{4}\alpha^2$. For large enough a the resolvent $R_{\alpha,\beta}$ has 2nd sheet pole $z(a)=\mu(a)+i\nu(a)$, $\nu(a)<0$, which for $a\to\infty$ behaves as

$$\mu(a) = \tilde{\epsilon}_{\beta} + \mathcal{O}(e^{-a\tilde{\zeta}_{\beta}}), \ \nu(a) = \mathcal{O}(e^{-a\tilde{\zeta}_{\beta}})$$

● The resonance pole exists even if the distance is not large. In contrast to the two dimensional case, however, the imaginary part of the pole position $\nu(a)$ diverges to $-\infty$ in the limit $a \to 0$

• Strong coupling asymptotics of $\sigma_{\rm disc}(H_{\alpha,\Gamma})$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ , one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different

- Strong coupling asymptotics of $\sigma_{\rm disc}(H_{\alpha,\Gamma})$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ , one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess

- Strong coupling asymptotics of $\sigma_{\rm disc}(H_{\alpha,\Gamma})$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ , one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess
- Scattering on leaky curves: strong coupling asymptotics

- Strong coupling asymptotics of $\sigma_{\rm disc}(H_{\alpha,\Gamma})$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ , one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess
- Scattering on leaky curves: strong coupling asymptotics
- Resonances: existence, properties in less trivial models

- Strong coupling asymptotics of $\sigma_{\rm disc}(H_{\alpha,\Gamma})$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ , one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess
- Scattering on leaky curves: strong coupling asymptotics
- Resonances: existence, properties in less trivial models
- Periodic Γ , in one direction: absolute continuity (proved so far only at the bottom of the spectrum)

- Strong coupling asymptotics of $\sigma_{\rm disc}(H_{\alpha,\Gamma})$ is not known for curves with open ends (manifolds with boundaries). For smooth Γ , one conjectures similar asymptotics, where S_{Γ} has Dirichlet b.c. For non-smooth Γ the leading term is expected to be different
- Scattering on leaky graphs: existence and completess
- Scattering on leaky curves: strong coupling asymptotics
- Resonances: existence, properties in less trivial models
- Periodic Γ , in one direction: absolute continuity (proved so far only at the bottom of the spectrum)
- More questions: random leaky graphs, adding magnetic fields, justification of the L^2 approach for leaky-graph resonances, etc.

The talk was based on

- [EI01] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, *J. Phys.* **A34** (2001), 1439-1450.
- [EK02] P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by a curve in \mathbb{R}^3 , *Ann. H. Poincaré* **3** (2002), 967-981.
- [EK03a] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, *J. Phys.* **A36** (2003), 443-457.
- [EK03c] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, math-ph/0312055
- [EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, *J. Phys.* **A36** (2003), 10173-10193.
- [EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ -interaction on a periodic curve, *Ann. H. Poincaré* **2** (2001), 1139-1158.
- [EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ -interaction on a loop, *J. Geom. Phys.* **41** (2002), 344-358.
- [EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong δ -interaction on a loop, *J. Phys.* **A35** (2002), 3479-3487.
- [EY03] P.E., K. Yoshitomi: Eigenvalue asymptotics for the Schrödinger operator with a δ -interaction on a punctured surface, *Lett. Math. Phys.* **65** (2003), 19-26.

The talk was based on

- [EI01] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, *J. Phys.* **A34** (2001), 1439-1450.
- [EK02] P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by a curve in \mathbb{R}^3 , *Ann. H. Poincaré* **3** (2002), 967-981.
- [EK03a] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, *J. Phys.* **A36** (2003), 443-457.
- [EK03c] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, math-ph/0312055
- [EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, *J. Phys.* **A36** (2003), 10173-10193.
- [EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ -interaction on a periodic curve, *Ann. H. Poincaré* **2** (2001), 1139-1158.
- [EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ -interaction on a loop, *J. Geom. Phys.* **41** (2002), 344-358.
- [EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong δ -interaction on a loop, *J. Phys.* **A35** (2002), 3479-3487.
- [EY03] P.E., K. Yoshitomi: Eigenvalue asymptotics for the Schrödinger operator with a δ -interaction on a punctured surface, *Lett. Math. Phys.* **65** (2003), 19-26.

for more information see http://www.ujf.cas.cz/~exner

