
Approximation of nontrivial
quantum graphs by Schrödinger
operators on Neumann networks

Pavel Exner

in collaboration with Olaf Post

Doppler Institute

for Mathematical Physics and Applied Mathematics

Prague

The conference Mathematical aspects of transport in mesoscopic systems; Dublin Institute for Advanced Studies, December 5, 2008 – p. 1/50



Talk overview

A motivation: quantum graphs and their
vertex couplings

The conference Mathematical aspects of transport in mesoscopic systems; Dublin Institute for Advanced Studies, December 5, 2008 – p. 2/50



Talk overview

A motivation: quantum graphs and their
vertex couplings

A review of manifold approximations

The conference Mathematical aspects of transport in mesoscopic systems; Dublin Institute for Advanced Studies, December 5, 2008 – p. 2/50



Talk overview

A motivation: quantum graphs and their
vertex couplings

A review of manifold approximations

How to approximate a δ coupling on a graph

The conference Mathematical aspects of transport in mesoscopic systems; Dublin Institute for Advanced Studies, December 5, 2008 – p. 2/50



Talk overview

A motivation: quantum graphs and their
vertex couplings

A review of manifold approximations

How to approximate a δ coupling on a graph

Lifting to manifolds: Schrödinger operator
approximation of δ couplings

The conference Mathematical aspects of transport in mesoscopic systems; Dublin Institute for Advanced Studies, December 5, 2008 – p. 2/50



Talk overview

A motivation: quantum graphs and their
vertex couplings

A review of manifold approximations

How to approximate a δ coupling on a graph

Lifting to manifolds: Schrödinger operator
approximation of δ couplings

More general couplings: CS-type approximations
of δ′s boundary conditions

The conference Mathematical aspects of transport in mesoscopic systems; Dublin Institute for Advanced Studies, December 5, 2008 – p. 2/50



Talk overview

A motivation: quantum graphs and their
vertex couplings

A review of manifold approximations

How to approximate a δ coupling on a graph

Lifting to manifolds: Schrödinger operator
approximation of δ couplings

More general couplings: CS-type approximations
of δ′s boundary conditions

Lifting such approximation to manifolds

The conference Mathematical aspects of transport in mesoscopic systems; Dublin Institute for Advanced Studies, December 5, 2008 – p. 2/50



Talk overview

A motivation: quantum graphs and their
vertex couplings

A review of manifold approximations

How to approximate a δ coupling on a graph

Lifting to manifolds: Schrödinger operator
approximation of δ couplings

More general couplings: CS-type approximations
of δ′s boundary conditions

Lifting such approximation to manifolds

If I have time: more general coupling and a conjecture

The conference Mathematical aspects of transport in mesoscopic systems; Dublin Institute for Advanced Studies, December 5, 2008 – p. 2/50



Talk overview

A motivation: quantum graphs and their
vertex couplings

A review of manifold approximations

How to approximate a δ coupling on a graph

Lifting to manifolds: Schrödinger operator
approximation of δ couplings

More general couplings: CS-type approximations
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If I have time: more general coupling and a conjecture
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Quantum graph concept

The idea of investigating quantum particles confined to a
graph was first suggested by L. Pauling and worked out by
Ruedenberg and Scherr in 1953 in a model of aromatic
hydrocarbons
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Quantum graph concept

The idea of investigating quantum particles confined to a
graph was first suggested by L. Pauling and worked out by
Ruedenberg and Scherr in 1953 in a model of aromatic
hydrocarbons

The concept extends, however, to graphs of arbitrary shape
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on graph edges,
boundary conditions at vertices

and what is important, it became practically important after
experimentalists learned in the last two decades to fabricate
tiny graph-like structure for which this is a good model
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Whan can they describe?

Most often one deals with semiconductor graphs
produced by combination of ion litography and chemical
itching. In a similar way metallic graphs are prepared
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Whan can they describe?

Most often one deals with semiconductor graphs
produced by combination of ion litography and chemical
itching. In a similar way metallic graphs are prepared

Recently carbon nanotubes became a building material,
after branchings were fabricated several years ago: see
[Papadopoulos et al.’00], [Andriotis et al.’01], etc.

Moreover – from the stationary point of view at least –
a quantum graph is also equivalent to a microwave
network built of optical cables – see [Hul et al.’04]

There are structures described by generalized graphs
consisting of components of different dimensions

Now when the microstructures reach molecular size
quantum graphs “return” in a sense to their origin!
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More opening remarks

The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation at the vertices
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More opening remarks

The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation at the vertices

Mathematically speaking, the (metric) quantum graphs
are an ODE problem which makes them simple

Most often one considers Schrödinger operators on
graphs, which will be the case in this talk

Graphs can support also Dirac operators, see
[Bulla-Trenckler’90], [Bolte-Harrison’03], and also
recent applications to graphene and its derivates

The graph literature is extensive; a good up-to-date
reference are proceedings of the last-year semester
AGA Programme at INI Cambridge

The conference Mathematical aspects of transport in mesoscopic systems; Dublin Institute for Advanced Studies, December 5, 2008 – p. 5/50
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The most simple example is a
star graph with the state Hilbert
space H =

⊕n
j=1 L

2(R+) and
the particle Hamiltonian acting
on H as ψj 7→ −ψ′′

j
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The most simple example is a
star graph with the state Hilbert
space H =

⊕n
j=1 L

2(R+) and
the particle Hamiltonian acting
on H as ψj 7→ −ψ′′

j

Since it is second-order, the boundary condition involve
Ψ(0) := {ψj(0)} and Ψ′(0) := {ψ′

j(0)} being of the form

AΨ(0) +BΨ′(0) = 0 ;

by [Kostrykin-Schrader’99] the n× n matrices A,B give rise
to a self-adjoint operator if they satisfy the conditions

rank (A,B) = n

AB∗ is self-adjoint
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Unique form of boundary conditions
The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer’00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n×n matrices U such that

A = U − I , B = i(U + I)
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Unique form of boundary conditions
The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer’00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n×n matrices U such that

A = U − I , B = i(U + I)

One can derive them modifying the argument used in
[Fülöp-Tsutsui’00] for generalized point interactions, n = 2

Self-adjointness requires vanishing of the boundary form,
n∑

j=1

(ψ̄jψ
′
j − ψ̄′

jψj)(0) = 0 ,

which occurs iff the norms ‖Ψ(0) ± iℓΨ′(0)‖Cn with a fixed
ℓ 6= 0 coincide, so the vectors must be related by an n× n
unitary matrix; this gives (U − I)Ψ(0) + iℓ(U + I)Ψ′(0) = 0
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Remarks

The length parameter is not important because matrices
corresponding to two different values are related by

U ′ =
(ℓ+ ℓ′)U + ℓ− ℓ′

(ℓ− ℓ′)U + ℓ+ ℓ′

The choice ℓ = 1 just fixes the length scale
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Remarks

The length parameter is not important because matrices
corresponding to two different values are related by

U ′ =
(ℓ+ ℓ′)U + ℓ− ℓ′

(ℓ− ℓ′)U + ℓ+ ℓ′

The choice ℓ = 1 just fixes the length scale

The parametrization leads to simple expressions of the
quantities such as on-shell scattering matrix for a star
graph of n halflines with such a coupling which equals

SU (k) =
(k − 1)I + (k + 1)U

(k + 1)I + (k − 1)U

Hence the matrix U describing the coupling can be
reconstructed if we know S(k) at a single value of k
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Examples of vertex coupling

Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n∑

j=1

ψ′

j(0) = αψ(0)

with “coupling strength” α ∈ R; α = ∞ gives U = −I
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Examples of vertex coupling

Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n∑

j=1

ψ′

j(0) = αψ(0)

with “coupling strength” α ∈ R; α = ∞ gives U = −I

α = 0 corresponds to the “free motion”, the so-called
free boundary conditions (better name than Kirchhoff)

Similarly, U = I − 2
n−iβJ describes the δ′s coupling

ψ′

j(0) = ψ′

k(0) =: ψ′(0) , j, k = 1, . . . , n ,
n∑

j=1

ψj(0) = βψ′(0)

with β ∈ R; for β = ∞ we get Neumann decoupling
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Why are vertices interesting?

Apart of a general interest, there are specific reasons
related to various use of such models, for instance

A nontrivial vertex coupling can lead to number
theoretic properties of graph spectrum [E’96]
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nanostructures is controlled typically by external
fields, vertex coupling can serve the same purpose
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Why are vertices interesting?

Apart of a general interest, there are specific reasons
related to various use of such models, for instance

A nontrivial vertex coupling can lead to number
theoretic properties of graph spectrum [E’96]

On more practical side, the conductivity of graph
nanostructures is controlled typically by external
fields, vertex coupling can serve the same purpose

In particular, the generalized point interaction
has been proposed as a way to realize a qubit
[Cheon-Tsutsui-Fülöp’04]; vertices with n > 2 can
similarly model qudits
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A straightforward approximation idea
Take a more realistic situation with no ambiguity, such
as branching tubes and analyze the squeezing limit :
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Unfortunately, it is not so simple as it looks because
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Unfortunately, it is not so simple as it looks because

after a long effort the Neumann-like case was solved
[Freidlin-Wentzell’93], [Freidlin’96], [Saito’01],
[Kuchment-Zeng’01], [Rubinstein-Schatzmann’01],
[E.-Post’05, 07], [Post’06] giving free b.c. only

there is a recent progress in Dirichlet case [Post’05],
[Molchanov-Vainberg’07], [E.-Cacciapuoti’07],
[Grieser’07], but a lot of work remains to be done
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First, more on the Dirichlet case
Here one expects generically that the limit with the
energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases
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First, more on the Dirichlet case
Here one expects generically that the limit with the
energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases
if the squeezed vertex regions are more narrow than
the “tubes” one gets Dirichlet decoupling [Post’05]
on the other hand, if you blow up the spectrum for a
fixed point separated from thresholds, i.e.

r r r��
�� r

0 λ1 λ λ2

one gets a nontrivial limit with b.c. fixed by scattering
on the “fat star” [Molchanov-Vainberg’07]
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First, more on the Dirichlet case
Here one expects generically that the limit with the
energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases
if the squeezed vertex regions are more narrow than
the “tubes” one gets Dirichlet decoupling [Post’05]
on the other hand, if you blow up the spectrum for a
fixed point separated from thresholds, i.e.

r r r��
�� r

0 λ1 λ λ2

one gets a nontrivial limit with b.c. fixed by scattering
on the “fat star” [Molchanov-Vainberg’07]
resonances on or around thresholds can produce a
nontrivial coupling [Grieser’08], [E.-Cacciapuoti’07]
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The Neumann case survey
Let first M0 be a finite connected graph with vertices vk,
k ∈ K and edges ej ≃ Ij := [0, ℓj ], j ∈ J ; the corresponding
state Hilbert space is thus L2(M0) :=

⊕
j∈J L

2(Ij).

The form u 7→ ‖u′‖2
M0

:=
∑

j∈J ‖u′‖2
Ij

with u ∈ H1(M0) is
associated with the operator which acts as −∆M0

u = −u′′j
and satisfies the free b.c.
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The Neumann case survey
Let first M0 be a finite connected graph with vertices vk,
k ∈ K and edges ej ≃ Ij := [0, ℓj ], j ∈ J ; the corresponding
state Hilbert space is thus L2(M0) :=

⊕
j∈J L

2(Ij).

The form u 7→ ‖u′‖2
M0

:=
∑

j∈J ‖u′‖2
Ij

with u ∈ H1(M0) is
associated with the operator which acts as −∆M0

u = −u′′j
and satisfies the free b.c.
Consider next a Riemannian manifold X of dimension d ≥ 2
and the corresponding space L2(X) w.r.t. volume dX equal
to (det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2
X =

∫

X
|du|2dX , |du|2 =

∑

i,j

gij∂iu ∂ju

The closure of this form is associated with the self-adjoint
Neumann Laplacian ∆X on the X
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Relating the two together

We associate with the graph M0 a family of manifolds Mε

M0 Mε

ej

vk

Uε,j

Vε,k

which are all constructed from X by taking a suitable
ε-dependent family of metrics; notice we work here with
the intrinsic geometrical properties only.

The analysis requires dissection ofMε into a union of
compact edge and vertex components Uε,j and Vε,k

with appropriate scaling properties, namely
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Eigenvalue convergence

for edge regions we assume that Uε,j is diffeomorphic to
Ij × F where F is a compact and connected manifold
(with or without a boundary) of dimension m := d− 1

for vertex regions we assume that the manifold Vε,k is
diffeomorphic to an ε-independent manifold Vk
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Eigenvalue convergence

for edge regions we assume that Uε,j is diffeomorphic to
Ij × F where F is a compact and connected manifold
(with or without a boundary) of dimension m := d− 1

for vertex regions we assume that the manifold Vε,k is
diffeomorphic to an ε-independent manifold Vk

In this setting one can prove the following result.

Theorem [KZ’01, EP’05]: Under the stated assumptions
λk(Mε) → λk(M0) as ε→ 0 (giving thus free b.c.!)
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Improving the convergence
The b.c. are not the only problem. The ev convergence for
finite graphs is rather weak. Fortunately, one can do better.

Theorem [Post’06]: Let Mε be graphlike manifolds
associated with a metric graph M0, not necessarily finite.
Under some natural uniformity conditions, ∆Mε

→ ∆M0
as

ε→ 0+ in the norm-resolvent sense (with suitable
identification), in particular, the σdisc and σess converge
uniformly in an bounded interval, and ef’s converge as well.
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Improving the convergence
The b.c. are not the only problem. The ev convergence for
finite graphs is rather weak. Fortunately, one can do better.

Theorem [Post’06]: Let Mε be graphlike manifolds
associated with a metric graph M0, not necessarily finite.
Under some natural uniformity conditions, ∆Mε

→ ∆M0
as

ε→ 0+ in the norm-resolvent sense (with suitable
identification), in particular, the σdisc and σess converge
uniformly in an bounded interval, and ef’s converge as well.

The natural uniformity conditions mean (i) existence of
nontrivial bounds on vertex degrees and volumes, edge
lengths, and the second Neumann eigenvalues at vertices,
(ii) appropriate scaling (analogous to the described above)
of the metrics at the edges and vertices.

Proof is based on an abstract convergence result.
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More results, and what next

For graphs with semi-infinite “outer” edges one often
studies resonances. What happens with them if the graph
is replaced by a family of “fat” graphs?

Using exterior complex scaling in the “longitudinal” variable
one can prove a convergence result for resonances as
ε→ 0 [E.-Post’07]. The same is true for embedded
eigenvalues of the graph Laplacian which may remain
embedded or become resonances for ε > 0
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More results, and what next

For graphs with semi-infinite “outer” edges one often
studies resonances. What happens with them if the graph
is replaced by a family of “fat” graphs?

Using exterior complex scaling in the “longitudinal” variable
one can prove a convergence result for resonances as
ε→ 0 [E.-Post’07]. The same is true for embedded
eigenvalues of the graph Laplacian which may remain
embedded or become resonances for ε > 0

Hence we have a number of convergence results, however,
the limiting operator corresponds always to free b.c. only

Can one do better?
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As a hint, an approximation on graphs

The way out: replace the Laplacian by suitable Schrödinger
operators. Look first at the problem on the graph alone
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Consider once more star graph
with H =

⊕n
j=1 L

2(R+) and
Schrödinger operator acting on
H as ψj 7→ −ψ′′

j + Vjψj
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Consider once more star graph
with H =

⊕n
j=1 L

2(R+) and
Schrödinger operator acting on
H as ψj 7→ −ψ′′

j + Vjψj

We make the following assumptions:

Vj ∈ L1
loc(R+) , j = 1, . . . , n

δ coupling with a parameter α in the vertex

Then the operator, denoted as Hα(V ), is self-adjoint
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x
ε

)
, j = 1, . . . , n
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x
ε

)
, j = 1, . . . , n

Theorem [E’96]: Suppose that Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the parameter
α :=

∑n
j=1

∫ ∞
0 Wj(x) dx
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Potential approximation of δ coupling

Suppose that the potential has a shrinking component,

Wε,j :=
1

ε
Wj

(x
ε

)
, j = 1, . . . , n

Theorem [E’96]: Suppose that Vj ∈ L1
loc(R+) are below

bounded and Wj ∈ L1(R+) for j = 1, . . . , n . Then

H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the parameter
α :=

∑n
j=1

∫ ∞
0 Wj(x) dx

Proof: Analogous to that for δ interaction on the line. �
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Formulation: the graph model
For simplicity we consider star graphs, extension to more
general cases is straightforward. Let G = Iv have one
vertex v and deg v adjacent edges of lengths ℓe ∈ (0,∞].
The corresponding Hilbert space is L2(G) :=

⊕
e∈E L2(I)e,

the decoupled Sobolev space of order k is defined as

H
k
max(G) :=

⊕

e∈E

H
k(Ie)

together with its natural norm.
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Formulation: the graph model
For simplicity we consider star graphs, extension to more
general cases is straightforward. Let G = Iv have one
vertex v and deg v adjacent edges of lengths ℓe ∈ (0,∞].
The corresponding Hilbert space is L2(G) :=

⊕
e∈E L2(I)e,

the decoupled Sobolev space of order k is defined as

H
k
max(G) :=

⊕

e∈E

H
k(Ie)

together with its natural norm.
Let p = {pe}e be a vector of pe > 0 for e ∈ E. The Sobolev
space associated to p is

H
1
p(G) := { f ∈ H

1
max(G) | f ∈ Cp },

where f := {fe(0)}e, in particular, if p = (1, . . . , 1) we arrive
at the continuous Sobolev space H

1(G) := H
1
p(G).
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Operators on the graph
We introduce first the (weighted) free Hamiltonian ∆G

defined via the quadratic form d = dG given by

d(f) := ‖f ′‖2
G =

∑

e

‖f ′e‖
2
Ie

and domd := H
1
p(G)

for a fixed p (we drop the index p); form is a closed as
related to the Sobolev norm ‖f‖2

H1(G) = ‖f ′‖2
G + ‖f‖2

G.
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Operators on the graph
We introduce first the (weighted) free Hamiltonian ∆G

defined via the quadratic form d = dG given by

d(f) := ‖f ′‖2
G =

∑

e

‖f ′e‖
2
Ie

and domd := H
1
p(G)

for a fixed p (we drop the index p); form is a closed as
related to the Sobolev norm ‖f‖2

H1(G) = ‖f ′‖2
G + ‖f‖2

G.

The Hamiltonian with δ-coupling of strength q is defined via
the quadratic form h = h(G,q) given by

h(f) := ‖f ′‖2
G + q(v)|f(v)|2 and domh := H

1
p(G)

Using standard Sobolev arguments one can show that the
δ-coupling is a “small” perturbation of the free operator by
estimating the difference h(f) − d(f) in various ways
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Manifold model of the “fat” graph

Given ε ∈ (0, ε0] we associate a d-dimensional manifold Xε

to the graph G as before: to the edge e ∈ E and the vertex v
we ascribe the Riemannian manifolds

Xε,e := Ie × εYe and Xε,v := εXv,

respectively, where εYe is a manifold Ye equipped with
metric hε,e := ε2he and εXε,v carries the metric gε,v = ε2gv .
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Manifold model of the “fat” graph

Given ε ∈ (0, ε0] we associate a d-dimensional manifold Xε

to the graph G as before: to the edge e ∈ E and the vertex v
we ascribe the Riemannian manifolds

Xε,e := Ie × εYe and Xε,v := εXv,

respectively, where εYe is a manifold Ye equipped with
metric hε,e := ε2he and εXε,v carries the metric gε,v = ε2gv .

As before, we use the ε-independent coordinates
(s, y) ∈ Xe = Ie × Ye and x ∈ Xv, so the radius-type
parameter ε only enters via the Riemannian metric
Note that this includes the case of the ε-neighbourhood of
an embedded graph G ⊂ R

d, but only up to a longitudinal
error of order of ε. This can be dealt with again using an
ε-dependence of the metric in the longitudinal direction
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The function spaces

The Hilbert space of the manifold model is

L2(Xε) =
⊕

e

(L2(Ie) ⊗ L2(εYe)) ⊕ L2(εXv)

with the norm given by

‖u‖2
Xε

=
∑

e∈E

εd−1

∫

Xe

|u|2 dye ds+ εd
∫

Xv

|u|2 dxv

where dxe = dye ds and dxv denote the Riemannian
volume measures associated to the (unscaled) manifolds
Xe = Ie × Ye and Xv, respectively
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The function spaces

The Hilbert space of the manifold model is

L2(Xε) =
⊕

e

(L2(Ie) ⊗ L2(εYe)) ⊕ L2(εXv)

with the norm given by

‖u‖2
Xε

=
∑

e∈E

εd−1

∫

Xe

|u|2 dye ds+ εd
∫

Xv

|u|2 dxv

where dxe = dye ds and dxv denote the Riemannian
volume measures associated to the (unscaled) manifolds
Xe = Ie × Ye and Xv, respectively

Let further H
1(Xε) be the Sobolev space of order one, the

completion of the space of smooth functions with compact
support under the norm ‖u‖2

H1(Xε)
= ‖du‖2

Xε
+ ‖u‖2

Xε
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The operators
The Laplacian ∆Xε

on Xε is given via its quadratic form

dε(u) := ‖du‖2

Xε

=
∑

e∈E

εd−1

∫

Xe

(
|u′(s, y)|2+

1

ε2
|dYe

u|2he

)
dye ds+εd−2

∫

Xv

|du|2gv

dxv

where u′ is the longitudinal derivative, u′ = ∂su, and du is
the exterior derivative of u. Again, dε is closed by definition
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The operators
The Laplacian ∆Xε

on Xε is given via its quadratic form

dε(u) := ‖du‖2

Xε

=
∑

e∈E

εd−1

∫

Xe

(
|u′(s, y)|2+

1

ε2
|dYe

u|2he

)
dye ds+εd−2

∫

Xv

|du|2gv

dxv

where u′ is the longitudinal derivative, u′ = ∂su, and du is
the exterior derivative of u. Again, dε is closed by definition

Adding a potential, we define the Hamiltonian Hε as the
operator associated with the form hε = h(Xε,Qε) given by

hε = ‖du‖2
Xε

+ 〈u,Qεu〉Xε

where Qε is supported only in the vertex region Xv. Inspired
by the graph approximation, we choose

Qε(x) =
1

ε
Q(x)

where Q = Q1 is a fixed bounded and measurable function
on Xv
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Relative boundedness
We can prove the relative (form-)boundedness of Hε with
respect to the free operator ∆Xε

Lemma: To a given η ∈ (0, 1) there exists εη > 0 such that
the form hε is relatively form-bounded with respect to the
free form dε, i.e. , there is C̃η > 0 such that

|hε(u) − dε(u)| ≤ η dε(u) + C̃η‖u‖
2
Xε

whenever 0 < ε ≤ εη with explicit constants εη and C̃η
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Relative boundedness
We can prove the relative (form-)boundedness of Hε with
respect to the free operator ∆Xε

Lemma: To a given η ∈ (0, 1) there exists εη > 0 such that
the form hε is relatively form-bounded with respect to the
free form dε, i.e. , there is C̃η > 0 such that

|hε(u) − dε(u)| ≤ η dε(u) + C̃η‖u‖
2
Xε

whenever 0 < ε ≤ εη with explicit constants εη and C̃η

I will present here neither the proof nor the constants –
cf. [E-Post’08] – what is important that they we can fully
control them in term of the parameters of the model,
‖Q‖∞, minimum edge length ℓ− := mine∈E ℓe, the second
eigenvalue λ2(v) of the Neumann Laplacian on Xv , and
the ratio cvol(v) := volXv/vol∂Xv
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Identification maps

Our operators acts in different spaces, namely

H := L2(G), H1 := H
1(G), H̃ := L2(Xε), H̃1 := H

1(Xε),

and we thus need first to define quasi-unitary operators to
relate the graph and manifold Hamiltonians
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Identification maps

Our operators acts in different spaces, namely

H := L2(G), H1 := H
1(G), H̃ := L2(Xε), H̃1 := H

1(Xε),

and we thus need first to define quasi-unitary operators to
relate the graph and manifold Hamiltonians

For further purpose we set

pe := (vold−1Ye)
1/2 and q(v) =

∫

Xv

Q dxv

Recall the graph approximation result and note that the
weights pe will allow us to treat situations when the tube
cross sections Ye are mutually different

The conference Mathematical aspects of transport in mesoscopic systems; Dublin Institute for Advanced Studies, December 5, 2008 – p. 26/50



Identification maps, continued

First we define the map J :H −→ H̃ by

Jf := ε−(d−1)/2
⊕

e∈E

(fe ⊗−1e) ⊕ 0,

where −1e is the normalized eigenfunction of Ye associated
to the lowest (zero) eigenvalue, i.e. −1e(y) = p−1

e .
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Identification maps, continued

First we define the map J :H −→ H̃ by

Jf := ε−(d−1)/2
⊕

e∈E

(fe ⊗−1e) ⊕ 0,

where −1e is the normalized eigenfunction of Ye associated
to the lowest (zero) eigenvalue, i.e. −1e(y) = p−1

e .

To relate the Sobolev spaces we need a similar map,
J1:H1 −→ H̃1, defined by

J1f := ε−(d−1)/2
(⊕

e∈E

(fe ⊗−1e) ⊕ f(v)1v

)
,

where 1v is the constant function on Xv with value 1. The
map is well defined; the function J1f matches at v along the
different components of the manifold, hence Jf ∈ H

1(Xε)
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Identification maps, continued
Let us next introduce the following averaging operators

−
∫

vu := −

∫

Xv

u dxv and −
∫

eu(s) := −

∫

Ye

u(s, ·) dye

The opposite direction, J ′: H̃ −→ H, is given by the adjoint,

(J ′u)e(s) = ε(d−1)/2〈−1e, ue(s, ·)〉Ye
= ε(d−1)/2pe−

∫
eu(s)
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Identification maps, continued
Let us next introduce the following averaging operators

−
∫

vu := −

∫

Xv

u dxv and −
∫

eu(s) := −

∫

Ye

u(s, ·) dye

The opposite direction, J ′: H̃ −→ H, is given by the adjoint,

(J ′u)e(s) = ε(d−1)/2〈−1e, ue(s, ·)〉Ye
= ε(d−1)/2pe−

∫
eu(s)

Furthermore, we define J ′1: H̃1 −→ H1 by

(J ′
e
1u)(s) := ε(d−1)/2

[
〈−1e, ue(s, ·)〉Ye

+ χe(s)pe

(
−
∫

vu− −
∫

eu(0)
)]
,

where χe is a smooth cut-off function such that χe(0) = 1

and χe(ℓe) = 0. By construction, J ′
e
1u ∈ H

1
p(G)
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δ-coupling results

Using properties of the above operators and an abstract
convergence result of [Post’06] one can demonstrate the
following claims

Theorem [E-Post’08]: We have

‖J(H − z)−1 − (Hε − z)−1J‖ = O(ε1/2),

‖J(H − z)−1J ′ − (Hε − z)−1‖ = O(ε1/2)

for z /∈ [λ0,∞). The error depends only on parameters listed
above. Moreover, ϕ(λ) = (λ− z)−1 can be replaced by any
measurable, bounded function converging to a constant as
λ→ ∞ and being continuous in a neighbourhood of σ(H).
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δ-coupling results

Using properties of the above operators and an abstract
convergence result of [Post’06] one can demonstrate the
following claims

Theorem [E-Post’08]: We have

‖J(H − z)−1 − (Hε − z)−1J‖ = O(ε1/2),

‖J(H − z)−1J ′ − (Hε − z)−1‖ = O(ε1/2)

for z /∈ [λ0,∞). The error depends only on parameters listed
above. Moreover, ϕ(λ) = (λ− z)−1 can be replaced by any
measurable, bounded function converging to a constant as
λ→ ∞ and being continuous in a neighbourhood of σ(H).

The map J ′ does not appear in the formulation of the
theorem but it is important in the proof
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δ-coupling results, continued

This result further implies

Corollary: The spectrum of Hε converges to the spectrum
of H uniformly on any finite energy interval. The same is
true for the essential spectrum.
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δ-coupling results, continued

This result further implies

Corollary: The spectrum of Hε converges to the spectrum
of H uniformly on any finite energy interval. The same is
true for the essential spectrum.

and

Corollary: For any λ ∈ σdisc(H) there exists a family {λε}ε

with λε ∈ σdisc(Hε) such that λε → λ as ε→ 0, and moreover,
the multiplicity is preserved. If λ is a simple eigenvalue with
normalized eigenfunction ϕ, then there exists a family of
simple normalized eigenfunctions {ϕε}ε of Hε such that

‖Jϕ− ϕε‖Xε
→ 0

as ε→ 0.
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More complicated graphs

So far we have talked for simplicity about the star-shaped
graphs only. The same technique of “cutting” the graph and
the corresponding manifold into edge and vertex regions
works also in the general case. As a result we get
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More complicated graphs

So far we have talked for simplicity about the star-shaped
graphs only. The same technique of “cutting” the graph and
the corresponding manifold into edge and vertex regions
works also in the general case. As a result we get

Theorem [E-Post’08]: Assume that G is a metric graph and
Xε the corresponding approximating manifold. If

inf
v∈V

λ2(v) > 0, sup
v∈V

volXv

vol∂Xv

< ∞, sup
v∈V

‖Q↾Xv

‖∞ < ∞, inf
e∈E

λ2(e) > 0, inf
e∈E

ℓe > 0,

then the corresponding Hamiltonians H = ∆G +
∑

v q(v)δv

and Hε = ∆Xε
+

∑
v ε

−1Qv are O(ε1/2)-close with the error
depending only on the above indicated global constants
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How about other couplings?

The above scheme does not work for other couplings than
δ; recall that the latter is the only coupling with functions
continuous at the vertex

To illustrate what one can do in the other case we choose
the δ′s-coupling as a generic example
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How about other couplings?

The above scheme does not work for other couplings than
δ; recall that the latter is the only coupling with functions
continuous at the vertex

To illustrate what one can do in the other case we choose
the δ′s-coupling as a generic example

The strategy we will employ is the same as above:

first we work out an approximation on the graph itself

then we “lift” it to an appropriate family of manifolds

The conference Mathematical aspects of transport in mesoscopic systems; Dublin Institute for Advanced Studies, December 5, 2008 – p. 32/50



A δ′s star graph

Let G = Iv0
be a star graph with the vertex v0 and n = deg v,

e = 1, . . . , n. For simplicity, we leave out weights and
assume that all lengths are finite and equal , ℓe = 1.
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A δ′s star graph

Let G = Iv0
be a star graph with the vertex v0 and n = deg v,

e = 1, . . . , n. For simplicity, we leave out weights and
assume that all lengths are finite and equal , ℓe = 1.

The operator Hβ, formally written as Hβ = ∆G + βδ′v0
, acts

as (Hβf)e = −f ′′e on each edge for f in the domain

domHβ :=
{
f ∈ H

2
max(G)

∣∣∣ ∀e1, e2: f ′e1
(0) = f ′e2

(0) =: f ′(0),

∑

e

fe(0) = βf ′(0),∀e: f ′e(ℓe) = 0
}

For the sake of definiteness we imposed here Neumann
conditions at the free ends of the edges
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A δ′s star graph, continued
The corresponding quadratic form is given as

hβ(f) =
∑

e

‖f ′e‖
2 +

1

β

∣∣∣
∑

e

fe(0)
∣∣∣
2
, domhβ = H

1
max(G)

if β 6= 0 and

hβ(f) =
∑

e

‖f ′e‖
2, domhβ = { f ∈ H

1
max(G) |

∑

e

fe(0) = 0 }

if β = 0
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A δ′s star graph, continued
The corresponding quadratic form is given as

hβ(f) =
∑

e

‖f ′e‖
2 +

1

β

∣∣∣
∑

e

fe(0)
∣∣∣
2
, domhβ = H

1
max(G)

if β 6= 0 and

hβ(f) =
∑

e

‖f ′e‖
2, domhβ = { f ∈ H

1
max(G) |

∑

e

fe(0) = 0 }

if β = 0. The (negative) spectrum of Hβ is easily found:

Proposition: If β ≥ 0 then Hβ ≥ 0. On the other hand, if
β < 0 then Hβ has exactly one negative eigenvalue λ = −κ2

where κ is the solution of the equation

coshκ+
βκ

deg v
sinhκ = 0
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Inspiration: the CS approximation
Our first task is thus to find an approximation scheme
for the δ′s-coupling on the star graph
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Inspiration: the CS approximation
Our first task is thus to find an approximation scheme
for the δ′s-coupling on the star graph

Inspiration: Recall that δ′ on the line can be approximated
by δ’s scaled in a nonlinear way [Cheon-Shigehara’98]
Moreover, the convergence is norm resolvent and gives
rise to approximations by regular potentials
[Albeverio-Nizhnik’00], [E.-Neidhardt-Zagrebnov’01]
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Inspiration: the CS approximation
Our first task is thus to find an approximation scheme
for the δ′s-coupling on the star graph

Inspiration: Recall that δ′ on the line can be approximated
by δ’s scaled in a nonlinear way [Cheon-Shigehara’98]
Moreover, the convergence is norm resolvent and gives
rise to approximations by regular potentials
[Albeverio-Nizhnik’00], [E.-Neidhardt-Zagrebnov’01]

This suggests the following scheme:

�
�

�

HHHH

�
�

�
��

@
@

@ q
�

�
�

HHHH

�
�

�
��

@
@

@ r−→
a→ 0

βa

b(a)

c(a)

HβHb,c
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A δ′s approximation on a star graph
Core of the approximation lies in a suitable, a-dependent
choice of the parameters of these δ-couplings: we put

Hβ,a := ∆G + b(a)δv0
+

∑

e

c(a)δve
, b(a) = −

β

a2
, c(a) = −

1

a

which corresponds to the quadratic form

hβ,a(f) :=
∑

e

‖f ′e‖
2−

β

a2
|f(0)|2−

1

a

∑

e

|fe(a)|
2, domha = H

1(G)
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A δ′s approximation on a star graph
Core of the approximation lies in a suitable, a-dependent
choice of the parameters of these δ-couplings: we put

Hβ,a := ∆G + b(a)δv0
+

∑

e

c(a)δve
, b(a) = −

β

a2
, c(a) = −

1

a

which corresponds to the quadratic form

hβ,a(f) :=
∑

e

‖f ′e‖
2−

β

a2
|f(0)|2−

1

a

∑

e

|fe(a)|
2, domha = H

1(G)

Theorem [Cheon-E’04]: We have

‖(Hβ,a − z)−1 − (Hβ − z)−1‖ = O(a)

as a→ 0 for z /∈ R, where ‖·‖ is the operator norm on L2(G)

Proof by a direct computation, highly non-generic limit
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Scheme of the lifting

XεG

aε = εα

v0 veea e1
ε

εα

ε ε

Xε,ve
Xε,eε

Xε,e1

Xε,v0
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Lower spectral edge

Proposition: If β < 0, the spectrum of Hβ,a is uniformly
bounded from below as a→ 0: there is C > 0 such that

inf σ(Hβ,a) ≥ −C as a→ 0

If β ≥ 0, on the other hand, then the spectrum of Hβ,a is
asymptotically unbounded from below,

inf σ(Hβ,a) → −∞ as a→ 0
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Lower spectral edge

Proposition: If β < 0, the spectrum of Hβ,a is uniformly
bounded from below as a→ 0: there is C > 0 such that

inf σ(Hβ,a) ≥ −C as a→ 0

If β ≥ 0, on the other hand, then the spectrum of Hβ,a is
asymptotically unbounded from below,

inf σ(Hβ,a) → −∞ as a→ 0

Proposition: If β ≥ 0, the spectrum of Hβ
ε is asymptotically

unbounded from below,

inf σ(Hβ
ε ) → −∞ as ε→ 0
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The δ′s approximation result

Using the same technique as in the δ case, one can prove

Theorem [E-Post’08]: Assume that 0 < α < 1/13, then

‖(Hβ
ε − i)−1J − J(Hβ − i)−1‖ → 0

as the radius parameter ε→ 0
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The δ′s approximation result

Using the same technique as in the δ case, one can prove

Theorem [E-Post’08]: Assume that 0 < α < 1/13, then

‖(Hβ
ε − i)−1J − J(Hβ − i)−1‖ → 0

as the radius parameter ε→ 0

Remarks: (i) The value 1
13 is by all accounts not optimal

(ii) The asymptotic lower unboundedness of Hβ
ε and Hβ,ε for

β ≥ 0 is not a contradiction to the fact that the limit operator
Hβ is non-negative. Note that the spectral convergence
holds only for compact intervals I ⊂ R, which means that
the negative spectral branches of Hβ

ε all have to tend to −∞
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Beyondδ′s: a permutation symmetry
For a coupling with permutation symmetry the U ’s were
combinations of I and J in the examples. In general, such
interactions form a two-parameter family described by
U = uI + vJ s.t. |u| = 1 and |u+ nv| = 1 giving the b.c.

(u− 1)(ψj(0) − ψk(0)) + i(u− 1)(ψ′

j(0) − ψ′

k(0)) = 0

(u− 1 + nv)
n∑

k=1

ψk(0) + i(u− 1 + nv)
n∑

k=1

ψ′

k(0) = 0
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Beyondδ′s: a permutation symmetry
For a coupling with permutation symmetry the U ’s were
combinations of I and J in the examples. In general, such
interactions form a two-parameter family described by
U = uI + vJ s.t. |u| = 1 and |u+ nv| = 1 giving the b.c.

(u− 1)(ψj(0) − ψk(0)) + i(u− 1)(ψ′

j(0) − ψ′

k(0)) = 0

(u− 1 + nv)
n∑

k=1

ψk(0) + i(u− 1 + nv)
n∑

k=1

ψ′

k(0) = 0

The graph-approximation scheme used for δ′s generalizes to
this case – cf. [E-Turek’06] – one has to employ

b(a) :=
in

a2

(
u − 1 + nv

u + 1 + nv
+

u − 1

u + 1

)−1

, c(a) := −
1

a
− i

u − 1

u + 1
;

generically, and other choices of b(a), c(a) for exceptions
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Nonsymmetric singular couplings

One naturally asks whether the CS-type method – adding
properly scaled δ’s on the edges – can work also without
the permutation symmetry, and which subset of the
n2-parameter family it can cover. In general we have the
following claim:
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Nonsymmetric singular couplings

One naturally asks whether the CS-type method – adding
properly scaled δ’s on the edges – can work also without
the permutation symmetry, and which subset of the
n2-parameter family it can cover. In general we have the
following claim:

Proposition [E.-Turek’07]: Let Γ be an n-edged star graph
and Γ(d) obtained by adding a finite number of δ’s at each
edge, uniformly in d, at the distances O(d) as d→ 0+.
Suppose that the approximations gives KS conditions with
some A, B as d→ 0. The family which can be obtained in
this way depends on 2n parameters if n > 2, and on three
parameters for n = 2.
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Number of CS parameters
Let us sketch the proof: one employs Taylor expansion
to express boundary values of a δ through those of the
neighbouring one. Using it recursively, we write ψ(0),
Ψ′(0+) through ψj(dj), ψ

′
j(dj+) where dj means distance

of the last δ on j-th halfline
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Number of CS parameters
Let us sketch the proof: one employs Taylor expansion
to express boundary values of a δ through those of the
neighbouring one. Using it recursively, we write ψ(0),
Ψ′(0+) through ψj(dj), ψ

′
j(dj+) where dj means distance

of the last δ on j-th halfline
Using the δ coupling in the centre of Γ we get

cjψj(0) − ckψk(0) + tjψ
′

j(0+) − tkψ
′

k(0+) = 0 , 1 ≤ j, h ≤ n ,
n∑

j=1

γjψj(0) +
n∑

j=1

τjψ
′

j(0+) = 0 ,

which be written as AΨ(0) +BΨ′(0) = 0 with coefficients
dependent on 2n parameters.
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Number of CS parameters
Let us sketch the proof: one employs Taylor expansion
to express boundary values of a δ through those of the
neighbouring one. Using it recursively, we write ψ(0),
Ψ′(0+) through ψj(dj), ψ

′
j(dj+) where dj means distance

of the last δ on j-th halfline
Using the δ coupling in the centre of Γ we get

cjψj(0) − ckψk(0) + tjψ
′

j(0+) − tkψ
′

k(0+) = 0 , 1 ≤ j, h ≤ n ,
n∑

j=1

γjψj(0) +
n∑

j=1

τjψ
′

j(0+) = 0 ,

which be written as AΨ(0) +BΨ′(0) = 0 with coefficients
dependent on 2n parameters.
In the particular case n = 2 the number of independent
parameters is three, see also [Shigehara et al.’99]
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A concrete approximation

The next question is whether a 2n-parameter approximation
can be indeed constructed. Let us investigate a possible
way in the arrangement with two δ’s at each halfline of Γ
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CS-type approximation of star graphs

Theorem [E.-Turek’07]: Choose the above quantities as

u(d) =
ω

d4
, vj(d) = −

1

d3
+
αj

d2
, wj(d) = −

1

d
+ βj .

Then the corresponding Hu,~v,~w(d) converges as d→ 0+

in the norm-resolvent sense to some Hω,~α,~β depending
explicitly on 2n parameters (notice that, say, α1 and β1

cannot be chosen independently here)
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CS-type approximation of star graphs

Theorem [E.-Turek’07]: Choose the above quantities as

u(d) =
ω

d4
, vj(d) = −

1

d3
+
αj

d2
, wj(d) = −

1

d
+ βj .

Then the corresponding Hu,~v,~w(d) converges as d→ 0+

in the norm-resolvent sense to some Hω,~α,~β depending
explicitly on 2n parameters (notice that, say, α1 and β1

cannot be chosen independently here)

Proof is rather tedious but straightforward; one has to
construct both resolvents and compare them. �

It is clear that to get a wider class of couplings one must
employ other objects as approximants
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More general approximations

A more general approximation is obtained if are allowed to
add not only vertices, but also edges which shrink to the
centre of the star graph Γ in the limit
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More general approximations

A more general approximation is obtained if are allowed to
add not only vertices, but also edges which shrink to the
centre of the star graph Γ in the limit

Proposition [E.-Turek’07]: Consider graphs Γ̃(d) obtained
from Γ by adding edges connection pairwise the halflines, a
finite of them independent of d. Suppose that Γ̃(d) supports
only δ couplings and δ interactions, their number again
independent of d, and that the distances between all their
sites are O(d) as d→ 0+. The family of conditions
AΨ(0) +BΨ′(0) = 0 which can be obtained in this way has
real-valued coefficients, A,B ∈ R

n,n, depending thus on at
most

(n+1
2

)
parameters.
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More general approximations

A more general approximation is obtained if are allowed to
add not only vertices, but also edges which shrink to the
centre of the star graph Γ in the limit

Proposition [E.-Turek’07]: Consider graphs Γ̃(d) obtained
from Γ by adding edges connection pairwise the halflines, a
finite of them independent of d. Suppose that Γ̃(d) supports
only δ couplings and δ interactions, their number again
independent of d, and that the distances between all their
sites are O(d) as d→ 0+. The family of conditions
AΨ(0) +BΨ′(0) = 0 which can be obtained in this way has
real-valued coefficients, A,B ∈ R

n,n, depending thus on at
most

(n+1
2

)
parameters.

Remark: The requirement A,B ∈ R
n,n means that the

corresponding coupling is time-reversal invariant
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An approximation arrangement
For simplicity, consider the generic case with B regular, so
that Ψ′(0) = −B−1AΨ(0), where −B−1A is symmetric. We
divide into diagonal and off-diagonal part

Ψ′(0) = (D + S)Ψ(0)
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An approximation arrangement
For simplicity, consider the generic case with B regular, so
that Ψ′(0) = −B−1AΨ(0), where −B−1A is symmetric. We
divide into diagonal and off-diagonal part

Ψ′(0) = (D + S)Ψ(0)

We devise the following scheme:

centre of Γ supports a δ coupling with parameter u(d)
at each halfline we place a δ at the distance d from the
centre; the parameter vj(d) will be related to Djj

the pairs of edges whose indices j, k correspond to
nonzero elements of S we join by an additional edge,
whose endpoints are the δ’s mentioned above, and in
the middle of this edge we place δ interaction with a
parameter w{j,k}(d) related to the value of Sjk
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The arrangement, visualization

It is not necessary but useful to visualize the graphs as
embedded in R

3. The connecting edges can be chosen
at that in such a way that they do not intersect
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embedded in R

3. The connecting edges can be chosen
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Choice of the parameters
As before we use the δ conditions and Taylor expansions to
write ψ′

j(d+) through ψj(d), k = 1, ..., n, and pass to d→ 0+
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Choice of the parameters
As before we use the δ conditions and Taylor expansions to
write ψ′

j(d+) through ψj(d), k = 1, ..., n, and pass to d→ 0+

Denote Nj := {k ∈ n̂ : Sjk 6= 0}; then one has to choose

vj(d) := Dj −
#Nj + 1

d
−

∑

k∈Nj

Sjk ,

and furthermore,

w{j,k}(d) := −
1

Sjk
·

1

d2
−

2

d
, u(d) :=

1

d3
−

n

d2
.
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Choice of the parameters
As before we use the δ conditions and Taylor expansions to
write ψ′

j(d+) through ψj(d), k = 1, ..., n, and pass to d→ 0+

Denote Nj := {k ∈ n̂ : Sjk 6= 0}; then one has to choose

vj(d) := Dj −
#Nj + 1

d
−

∑

k∈Nj

Sjk ,

and furthermore,

w{j,k}(d) := −
1

Sjk
·

1

d2
−

2

d
, u(d) :=

1

d3
−

n

d2
.

Conjecture: The described approximations converges
not only in terms of boundary conditions, but in the
norm-resolvent sense as well, and they can be lifted
to appropriate network manifolds
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Summary and outlook

We have shown that using families of Schrödinger
operators on networks with the “natural” scaling one
can approximate quantum-graph Hamiltonians with
δ-couplings at the vertices
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Using an elaborate and highly non-generic procedure
one can approximate δ′s-couplings as well
We have shown how more general coupling can be
approximated on graphs and conjectured that the
procedure can be lifted to manifolds
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Summary and outlook

We have shown that using families of Schrödinger
operators on networks with the “natural” scaling one
can approximate quantum-graph Hamiltonians with
δ-couplings at the vertices
Using an elaborate and highly non-generic procedure
one can approximate δ′s-couplings as well
We have shown how more general coupling can be
approximated on graphs and conjectured that the
procedure can be lifted to manifolds
One would like to know whether other approximations
are possible, for instance, based on geometric
properties of the approximating manifolds
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