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Geometrically induced bound states

This is a traditional topic, and some of the present made significant
contributions to it, so there is no need for an extensive introduction

As a warm-up, just a brief reminder: let −∆Ω
D be the Dirichlet Laplacian

in L2(Ω), where Ω ⊂ R2 is a strip of the width 2a built over an infinite
curve Γ without self-intersections

If Γ is straight line the spectrum is found by separation of variables,
σ(−∆Ω

D) =
[(

π
2a

)2
,∞
)
, and it is absolutely continuous

If, on the other hand, the curve Γ is not straight, but it is asymptotically
straight – expressed in terms of suitable technical assumptions – then
there are curvature-induced bound states, i.e. σdisc(−∆Ω

D) 6= ∅

There is a huge number of related results involving systems in other
dimensions and different geometric perturbations; for a survey and
bibliography we refer to

P.E., H. Kovǎŕık: Quantum Waveguides, Springer, Cham 2015

Pavel Exner: Spiral waveguides EIMI 2020 November 3, 2020 - 2 -



Spiral waveguides
The assumption of asymptotic straightness is often not satisfied. Here
we are going to discuss such a class waveguide systems, two-dimensional
spiral-shaped strips with Dirichlet boundaries.

Such waveguides appear often in physics. A few examples:
• guides for cold atoms with application to atomic gyroscopes

Jiang Xiao-Jun, Li Xiao-Lin, Xu Xin-Ping, Zhang Hai-Chao, Wang Yu-Zhu: Archimedean-spiral-based microchip ring
waveguide for cold atoms, Chinese Phys. Lett. 32 (2015), 020301.

Xiaojun Jiang, Xiaolin Li, Haichao Zhang, Yuzhu Wang: Smooth Archimedean-spiral ring waveguide for cold atomic
gyroscope, Chinese Opt. Lett. 14 (2016), 070201.

• electromagnetic or optical systems
N. Bamiedakis, J. Beals, R.V. Penty, I.H. White, J.V. DeGroot, T.V. Clapp: Cost-effective multimode polymer
waveguides for high-speed on-board optical interconnects, IEEE J. Quant. Electronics 45 (2009), 415–424.

Zhitian Chen et al.: Spiral Bragg grating waveguides for TM mode Silicon photonics, Optics Express 23 (2015),
25295–25307.

• with applications such as nanoparticle detection or spectrometry
Shui-Jing Tang et al.: On-chip spiral waveguides for ultrasensitive and rapid detection of nanoscale objects, Advanced
Materials 30 (2018), 1800262.

B. Redding, Seng Fatt Liew, Y. Bromberg, Raktim Sarma, Hui Cao: Evanescently coupled multimode spiral
spectrometer, Optica 3 (2016), 956–962.

Tong Chen, Hansuek Lee, K.J. Vahala: Design and characterization of whispering-gallery spiral waveguides, Optics
Express 22 (2014), 5196–5208.

• spiral shapes appear also in acoustic waveguides
S. Periyannan, P. Rajagopal, K. Balasubramaniam: Multiple temperature sensors embedded in an ultrasonic “spiral-like”
waveguide, AIP Advances 7 (2017), 035201.
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A mathematical motivation

Spirals involved in physical experiments are finite, of course, but we
are going to discuss spiral regions of infinite length.

This is not only the usual theoretical license, but our aim is also to show
that that many spectral properties of such systems have a truly global
character.

Consider a quantum particle in the plane divided by Dirichlet conditions
at concentric circles of radii rn = 2πan, n = 1, 2, . . . , into the family of
annular domains with impenetrable boundaries. The spectrum of this
system covers the halfline

(
(2a)−1,∞

)
being there dense pure point. In

addition, there is a discrete spectrum below (2a)−1 which is infinite and
accumulates at (2a)−1.

We will see that the spectral character changes profoundly if the Dirichlet
boundary is instead imposed on an Archimedean spiral of the slope a,
despite the fact that if we observe the two boundaries far from the center
they look very similar.
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Case study: Archimedean waveguide

Let Γa be the Archimedean spiral in the plane with the slope a > 0,
expressed in terms of the polar coordinates, Γa = {r = aθ : θ ≥ 0},
and denote by Ca its complement, Ca := R2 \ Γa which is an open set.

Source: Wikipedia

The object of our interest is the operator

Ha = −∆CaD ,

the Dirichlet Laplacian in L2(Ca). Since scaling transformations change Γa

into Archimedean spiral again, with a different slope, the above introduced
Ha is unitarily equivalent to

(
a′

a

)2
Ha′ for any a′ > 0. One could, e.g.,

consider a = 1
2 ; the general case is restored easily multiplying the length

scale quantities by 2a, energy by (2a)−2, etc.
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Polar coordinates

Our Hilbert space is L2((0,∞)× [0, 2π); rdrdθ) with Dirichlet condition at
{(θ + 2πn, θ) : n ∈ N0}. This can be equivalently written as L2(Ωa; rdrdθ)
where Ωa is the skewed strip Ωa := {(r , θ) : r ∈ (rmin(θ), aθ), θ > 0} and
rmin(θ) := max{0, a(θ − 2π)}.

The Dirichlet condition is imposed at the boundary points of Ωa with
r > 0. As for r = 0 we note that the boundary of Ca is not convex there
and the spiral end represents an angle 2π, hence the operator domain is

D(Ha) = H2(Ωa) ∩H1
0(Ωa)⊕ C(ψsing),

where

ψsing(r , θ) = χ(r) r1/2 sin
1

2
θ

and χ is a smooth function with compact support not vanishing at r = 0.

V.A. Kondratev: Boundary-value problems for elliptic equations in domains with conical or angular points, Trans.
Moscow Math. Soc. 16 (1967), 227–313.
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Equivalent formulations
As usual we pass to the unitarily equivalent operator H̃a on L2(Ωa) by
U : L2(Ωa; rdrdθ)→ L2(Ωa), (Uψ)(r , θ) = r1/2ψ(r , θ), which acts as

H̃af = −∂
2f

∂r2
− 1

r2

∂2f

∂θ2
− 1

4r2
.

Note that this differential expression is independent of the parameter a,
the difference is in the curve at which Dirichlet condition is imposed.

We can also write the quadratic form associated with Ha which is

qa : qa[ψ]=

∫ ∞
0

∫ aθ

rmin(θ)

[
r
∣∣∣∂ψ
∂r

∣∣∣2 +
1

r

∣∣∣∂ψ
∂θ

∣∣∣2]drdθ
=

∫ ∞
0

∫ (r+2πa)/a

r/a

[
r
∣∣∣∂ψ
∂r

∣∣∣2 +
1

r

∣∣∣∂ψ
∂θ

∣∣∣2]dθdr
defined for all ψ ∈ H1(Ωa) satisfying Dirichlet condition at points of ∂Ωa

with r > 0 and such that limr→0+
ψ(r ,θ)

sin
1
2θ

exists being independent of θ.
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Essential spectrum threshold

Proposition

We have inf σess(H̃a) ≥ (2a)−2.

Proof sketch: We put a = 1
2 and employ Neumann bracketing dividing the

skewed strip into

ΩN :=
{

(r , θ) : r ∈ (max{0, 1
2θ − π},

1
2θ), 0 ≤ θ < θN

}
and its infinite complement ΩN

c imposing Neumann condition at
θ = θN > 2π which allows to us to estimate our operator from below.

The first component in H̃N ⊕ H̃N
c does not contribute to σess(H̃a);

estimating the quadratic form associated with H̃N
c we get

H̃N
c ≥ −

∂2

∂r2
− 3

16r2
.

However, the ‘vertical’ width of Ωc
0 is π and r > 1

2θN − π where θN can

be chosen arbitrarily large, hence inf σess(H̃) = inf σess(H̃
N
c ) ≥ 1. �
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Discrete spectrum?
The question about the existence of discrete spectrum below (2a)−2 is
equivalent to the positivity violation of the shifted quadratic form,

ψ 7→ qa[ψ]− 1

(2a)2
‖ψ‖2.

Since ψ(r , r/a) = ψ(r , (r + 2πa)/a) = 0, we find easily

qa[ψ]− 1

(2a)2
‖ψ‖2 ≥ p(0,∞)[ψ],

where

p(α,β)[ψ] :=

∫ β

α
dθ

∫ aθ

rmin(θ)

[
r
∣∣∣∂ψ(r , θ)

∂r

∣∣∣2 +
( 1

4r
− r

4a2

)
|ψ(r , θ)|2

]
dr

Using the Dirichlet conditions in the ‘vertical’ direction we can check that

p(α,β)[ψ] ≥ 0 for any 2π ≤ α < β ≤ ∞,
and similarly, p(α,β)[ψ] ≥ 0 for β ≤ π. Consequently, the only negative
contribution can come from the interval (π, 2π), in particular, that there
can be at most a finite number of bound states. Later we will present a
convincing numerical evidence that the discrete spectrum is in fact empty.
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Another parametrization
From what we know about curved Dirichlet waveguides this conclusion
may seem surprising. To understand the reason, we look at the problem
from a different point of view introducing locally orthogonal coordinates,
sometimes called Fermi or parallel.

The Cartesian coordinates of the spiral are x1 = aθ cos θ, x2 = aθ sin θ,
and we introduce the transverse coordinate u measuring the distance from
Γa along the inward pointing normal, writing the points of Ca as

x1(θ, u)= aθ cos θ − u√
1 + θ2

(
sin θ + θ cos θ

)
,

x2(θ, u)= aθ sin θ +
u√

1 + θ2

(
cos θ − θ sin θ

)
A natural counterpart to the variable u is the arc length of Γa given by

s(θ) = a

∫ θ

0

√
1 + ξ2 dξ = 1

2a
(
θ
√

1 + θ2 + ln(θ +
√

1 + θ2)
)

which for large values of θ behaves as

s(θ) = 1
2aθ

2 +O(ln θ).
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The curvature
Another quantity of interest is the curvature of the spiral given by

κ(θ) =
2 + θ2

a(1 + θ2)3/2
=

1

aθ
+O(θ−2) as θ →∞

which means that

κ(s) =
1√
2as

+O(s−1) as s →∞.

With an abuse of notation we will denote the points of Ca as x(s, u)
keeping in mind that the described parametrization cannot be used
globally, as it becomes non-unique for small θ when the normal to Γ fails
to cross the previous coil of the spiral; this obviously happens for θ < θ0

with some θ0 ∈ ( 3
2π, 2π).

Nevertheless, we can use it elucidate the properties of Ha that depend
on the behavior of Γa at large values of s using a ‘perpendicular’ DN
bracketing with additional conditions imposed, say, at s = s(2π).
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Transverse width

We ask about d(s), the range of the variable u, that is, the transverse
width of Ca at a given s. The intersection of the normal to Γ with the
previous coil occurs at the angle θ−, for which we

aθ cos θ − u√
1 + θ2

(
sin θ + θ cos θ

)
= aθ− cos θ−,

aθ sin θ +
u√

1 + θ2

(
cos θ − θ sin θ

)
= aθ− sin θ−.

from which we get equations for u and θ−, namely

θ2
(
a2 − 2au√

1 + θ2

)
+ u2 = a2θ2

−

and
θ
(
1 + θ− sin(θ − θ−)

)
= θ− cos(θ − θ−).
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An estimate of the transverse width

Abusing again the notation we write d(θ) meaning d(s(θ)). The radial
dropped from the point x(θ, 0) towards the coordinate center crosses the
previous coil of Γa at x(θ′, 0) where θ′ = θ − 2π. The spiral slope at this
point, i.e. the angle β(θ′) between the tangent to Γa and the tangent the
the circle passing through this point is cosβ(θ′) = θ′√

1+θ′2
, and since the

radial distance between the two coils is 2πa, we get

d(θ) >
2πaθ′√
1 + θ′2

=
2πaθ√
1 + θ2

(
1 +O(θ−1)

)
.

To see that this bound to u = d(θ) is asymptotically exact, we put
θ− = θ′ + δ and solve the second equation using the implicit function
theorem; this shows that inequality in the last relation is in fact equality,
and

π2

d(θ)2
=

1

(2a)2

(
1 + (θ − 2π)−2

)
=

1

(2a)2

(
1 +

1

θ2
+O(θ−3)

)
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The straightened strip

The coordinates s, u allow us to pass from HD
a,nc and its Neumann

counterpart to a unitarily equivalent operator on L2(Σa,nc), where

Σa,nc =
{

(s, u) : s > s(2π), u ∈ (0, d(s))
}

is a semi-infinite strip with a varying, but asymptotically constant width,
which acts as

ĤD
a,ncψ = − ∂

∂s
(1− uκ(s))−2∂ψ

∂s
(s, u)− ∂2ψ

∂u2
(s, u) + V (s, u)ψ(s, u),

where

V (s, u) := − κ(s)2

4(1− uκ(s))2
− uκ̈(s)

2(1− uκ(s))3
− 5

4

u2κ̇(s)2

(1− uκ(s))4
,

with Dirichlet condition at the boundary of Ca,nc, which in ĤN
a,nc is

replaced by Neumann one at the cut, s = s(2π).
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The essential spectrum

Proposition

We have σess(Ha) = [(2a)−2,∞).

Proof sketch: We have to check the inclusion σess(Ha) ⊃ [(2a)−2,∞);
we do it first for ĤD

a,nc putting a = 1
2 and using Weyl’s criterion with

ψk,λ(s, u) := µ(λs) eiks sin
πu

d(s)
,

where k ∈ R and µ ∈ C∞0 (R) with suppµ ⊂ (1, 2). For small enough s
the support of ψk,λ lies in Σa,nc, and since d(s) = π

(
1− 1

8s +O(s−3/2)
)
,

we have
‖ψk,λ‖ = λ−1/2‖µ‖+O(1)

as λ→ 0; this has to be compared with
∥∥(ĤD

a,nc − 1− k2)ψk,λ

∥∥.
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Proof sketch, continued

The norm
∥∥(ĤD

a,nc − 1− k2)ψk,λ

∥∥ is a rather complicated expression,
however, it is sufficient to single out the terms which dominate in the
limit λ→ 0; a tedious but straightforward computation gives∥∥(ĤD

a,nc − 1− k2)ψk,λ

∥∥
‖ψk,λ‖

= O(λ) as λ→ 0.

Hence 1 + k2 ∈ σ(ĤD
a,nc) for any k ∈ R, and the same holds for ĤN

a,nc

because the supports of the functions ψk,λ are separated from the
boundary of Σa,nc at s = s(2π).

Furthermore, by the unitary equivalence their preimages in the original
coordinates constitute a Weyl sequence of the operator Ha, the ‘full’ one
as the cut as s = s(2π) is again irrelevant from the viewpoint of the
essential spectrum. Finally, one can choose as sequence {λn}∞n=1 in such a
way that the supports of different ψk,λn do nor overlap; then ψk,λn → 0
weakly as n→∞ which means that 1 + k2 ∈ σess(Ha). �
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Absolute continuity
As usual in waveguides, we exclude from the consideration the family
of transverse thresholds at which the spectral multiplicity changes,
that is, T =

{(
n
2a

)2
: n = 1, 2, . . .

}
.

Proposition

Let I be an open interval, I ⊂ [(2a)−2,∞) \ T , then the spectrum of Ha

in I is purely absolutely continuous.

Proof sketch: In the spirit of Mourre’s method, we have to find a suitable
conjugate operator A to H̃a on Ωa. We choose

A = − i

2

(
r
∂

∂r
+

∂

∂r
r
)

with the domain consisting of functions from H1(Ωa) satisfying Dirichlet
condition at the boundary of Ωa except its part corresponding to r = 0.
This is the generator of the group {eitA : t ∈ R} of dilations of the skew
strip Ωa in the direction parallel to the line r = aθ.
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Proof sketch, continued

It is obvious that the scaling eitA preserves the domain of H̃a referring
to that of D(Ha), and from the self-similarity it follows that the map
t 7→ eitA(H̃a − i)−1e−itA has the needed regularity. The commutator
[H̃a, iA] is easily evaluated,

[H̃a, iA]f = −2
∂2f

∂r2
− 2

r2

∂2f

∂θ2
− 1

2r2
f .

The corresponding quadratic form can be estimated similarly to p(α,β)

above; this shows that the contribution of the of the last two terms in
nonnegative and

EH̃a
(I )[H̃a, iA]EH̃a

(I ) ≥ −2
∂2

∂r2
EH̃a

(I ) ≥ 1

8
EH̃a

(I ).

Since this bound contains no compact part, there are no embedded
eigenvalues and the spectrum of Ha in I is purely absolutely continuous. �

Pavel Exner: Spiral waveguides EIMI 2020 November 3, 2020 - 18 -



Why a rich σdisc(Ha) is absent?
As I said, one might expect a rich discrete spectrum below (2a)−2

because the effective potential V (s, u) is attractive and long-range.
It is not the case, and the reason is that d(s) equals (2a)−2 only
asymptotically. In the sense of quadratic forms we have

ĤD
a,nc ≥ −

∂

∂s
(1− uκ(s))−2 ∂

∂s
+ W (s, u),

where W (s, u) :=
(

π
d(s)

)2
+ V (s, u). Taking the implicit-function theorem

evaluation of d(s) further, in terms of the angular variable θ we get( π

d(s)

)2
=

1

4a2
+

1

4a2θ2
+

π

2a2θ3
+

π2

a2θ4
+
π(4π2 − 1)

4a2θ5
+O(θ−6).

One the other hand, V (θ, u) can be expressed from V (s, u) with the help
of κ̇(s) = a−1(1 + θ2)−1/2κ̇(θ) and κ̈(s) = a−2(1 + θ2)−1κ̈(θ) in the form

V (s, u) = − 1

4a2θ2
− u

2a2θ3
− a2 + 3u2

4a2θ4
+

u(7a2 + 4u2)

4a5θ5
+O(θ−6).
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Why a rich σdisc(Ha) is absent?

Thus the contributions of the strip width and the effective potential
are competing: from the above expansions we get

W (s, u) =
1

4a2
+
πa− u

2a3θ3
+

a2(4π2 − 1)− 3u2

4a4θ4
+O(θ−5).

Apart from the constant corresponding the continuum threshold, the
leading terms have canceled mutually, and the transverse mean of the
following one vanishes, modulo a small correction coming from the
difference between d(θ) and 2πa.

These heuristic considerations correspond well to the observation made
above about the sign of the contribution to the form pa from the region
with θ > 2π, and next bring a numerical evidence that the discrete
spectrum is in fact empty.
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A variation: spiral waveguide with a cavity
Let us ‘erase’ a part of the Dirichlet boundary, that is, we impose the
condition on the ‘cut’ Archimedean spiral Γa,β for some β > 0, where
Γa,β = {r = aθ : θ ≥ β}. The particle thus ‘lives’ in Ca,β := R2 \ Γa,β

and its Hamiltonian, modulo unimportant physical constants, is

Ha,β = −∆
Ca,β
D ,

the Dirichlet Laplacian in L2(Ca,β). Obviously, we have

σess(Ha,β) = [(2a)−2,∞).

By bracketing, the discrete spectrum is nonempty for β large enough:

Proposition

There is a critical β1 = 2j0,1 ≈ 4.805 ≈ 1.531π such that σdisc(Ha,β) 6= ∅
holds for all β > β1. Furthermore, let B = {βj}∞j=1 be the sequence

B =
{

2j0,1, 2j1,1, 2j1,1, 2j2,1, 2j2,1, 2j0,2, 2j1,2, 2j1,2, . . .
}

composed of zeros
of Bessel functions Jn, n = 0, 1, . . . , then for any β > βj the operator Ha,β

has at least j eigenvalues, the multiplicity taken into account.
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Numerical results
To analyze the problem numerically we use FEM techniques on finite
spiral regions with θ large enough to ensure numerical stability, checked
with the help of bracketing.

There is more than one way to address our problem numerically. One can
apply the FEM technique to the Laplacian in the spiral region directly,
alternatively one can analyze operator H̃a in the (truncated) skewed strip;
comparison of the results provides another reliability check.

0 2 c

r

D/N

D

D

P
P

Ds

Figure: A truncated skewed strip for the spiral region with a cavity. For 0 < θ < β
the Dirichlet condition is replaced by the periodic one.
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Eigenvalues

0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

E
n

Figure: Eigenvalues of H1/2,β as functions of β.

As expected, they are monotonously decreasing functions. We also can
identify the critical angle at which the first eigenvalue appears to be
β1 ≈ 1.43 ≈ 0.455π, a much smaller value than the above sufficient
condition; what is more important, it provides the indication that the
discrete spectrum of the ‘full’ Archimedean spiral region is void.
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Eigenfunctions

Figure: The first nine eigenfunctions of H1/2,21/2 shown through their horizontal
levels. The corresponding energies are 0.1280, 0.2969, 0.3456, 0.5312, 05811,
0.6825, 0.8266, 0.8852, and 0.9768, respectively.

The results agree with the Courant nodal domain theorem; the nodal
lines are situated in the cavity only which, as well the finiteness of the
spectrum, corresponds nicely to the observation that the part of Ca,β
referring to the angles θ > max{2π, β1} is a classically forbidden zone.
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A variation: multi-arm Archimedean waveguide
Let Γm

a be the union of m Archimedean spirals with slope a > 0 and
an angular shift, Γm

a = {r = a
(
θ − 2πj

m

)
: θ ≥ 2πj

m , j = 0, . . . ,m − 1}. As
before we consider its complement Cma := R2 \ Γm

a and the operator

Ha = −∆
Cma
D .

The analysis is similar, but there is a difference coming from regularity of
the boundary. For m = 2 the set C2

a consists of two connected components
and has a smooth boundary, for m ≥ 3 it consists of m connected
components separated by the branches of Γm

a , each of them them has an
angle at the origin of coordinates which is 2π

m , that is, convex; this means
that for m ≥ 2 the singular component is missing.

It is sufficient to consider one connected component of Cma only, i.e. the
operator H̃m

a referring to the skewed strip

Ωm
a :=

{
(r , θ) : r ∈ (rmmin(θ), aθ), θ > 0

}
,

where rmmin(θ) := max
{

0, a
(
θ − 2π

m

)}
with D(Hm

a ) = H2(Ωm
a ) ∩H1

0(Ωm
a ).
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Spectrum of multi-arm spiral region

Proposition

σ(Hm
a ) =

[(
m
2a

)2
,∞
)

for any natural m ≥ 2. The spectrum is absolutely

continuous outside Tm =
{(

mn
2a

)2
: n = 1, 2, . . .

}
and its multiplicity is

divisible by m.

Proof sketch: The multiplicity claim is obvious. The above arguments
used to determine the essential spectrum and to prove its absolute
continuity outside the thresholds modify easily.

Furthermore, the discrete spectrum is void. Indeed, since the domain is
now ‘pure Sobolev’, the bottom part, r = 0, of the skewed strip supports
Dirichlet condition. This means that

pm(α,β)[ψ] ≥ 0 now for any 0 ≤ α < β ≤ ∞

so that qma [ψ]−
(

m
2a

)2
‖ψ‖2 ≥ pm(0,∞)[ψ] ≥ 0 for any ψ ∈ dom[qma ]. �
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Eigenfuctions

Figure: The jth eigenfunction, j = 1, 2, 4, 6, of H6
3,2π, the corresponding energies

are 0.1296, 0.3282, 0.5871, and 0.6783, respectively.

Here we plot result for a six-arm spiral region with the central cavity. As
expected, with the growing m the eigenfunctions – with the possible
exception of states close to the threshold – become similar to those of the
Dirichlet Laplacian in a disc; it is instructive to compare the nodal lines to
those of the single arm region shown above.

Pavel Exner: Spiral waveguides EIMI 2020 November 3, 2020 - 27 -



General spirals

There are many spirals beyond the Archimedean case, for instance

logarithmic Fermat Poinsot Atzema Fibonacci Theodorus

Source: Wikipedia

A spiral curve Γ can be described in polar coordinates as the family of
points (r(θ), θ), where r(·) is a given increasing function. We assume
that r(·) is a C 2-smooth function excluding thus well-known curves such
as Fibonacci spiral, spiral of Theodorus, etc.

Unless specified otherwise, the spirals considered are semi-infinite
r : R+ → R+. In some cases we also consider ‘fully’ infinite spirals
for which r : R→ R+.
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General spirals
The monotonicity of r means that Γ does not intersect itself, in other
words, the width function a : a(θ) = 1

2π

(
r(θ)− r(θ − 2π)

)
is positive

for any θ ≥ 2π, or for all θ ∈ R in the fully infinite case (the ‘inward’
coil width is 2πa(θ); we make this choice with
the correspondence to the Archimedean case in mind).

As before we denote C := R2 \ Γ and ask about spectral properties of

Hr = −∆CD,

the Dirichlet Laplacian in L2(C). Another modification concerns
multiarm-arm spirals: given 0 = θ0 < θ1 < · · · < θm−1 < 2π and
increasing functions rj : [θj ,∞)→ R+, j = 0, 1, . . . ,m − 1, satisfying

aj(θ) :=
1

2π

(
rj(θ)− rj+1(θ)

)
> 0,

for all relevant values of θ. Note that a two-arm spiral can also be
alternatively described by means of a function r : R→ R such that
±r(θ) > 0 for ±θ > 0 interpreting negative radii as describing vectors
rotated by π.
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Types of general spirals

Asymptotic properties of the width function are decisive. We call a
spiral-shaped region C simple if the function a(·) is monotonous (or
monotonous on both the halflines R±). A simple C is called expanding
and shrinking if a is respectively increasing and decreasing for θ ≥ 0;
these qualifications are labeled as strict if limθ→∞ a(θ) =∞ and
limθ→∞ a(θ) = 0, respectively.

A spiral-shaped region is called asymptotically Archimedean if there is an
a0 ∈ R such that limθ→∞ a(θ) = a0, for multi-arm spirals this means finite
limits of all the aj .

A region C is obviously unbounded iff limθ→∞ r(θ) =∞. If the limit is
finite, limθ→∞ r(θ) = R, the closure C is contained in the circle of radius
R, it may or may not be simply connected as the example of Simon’s jelly
roll, r(θ) = 3

4 + 1
2π arctan θ, shows (recall that the Neumann Laplacian in

this region has a continuous spectrum).
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Description of general spiral regions
The Hamiltonian domain is D(Hr ) = H2(Ωr ) ∩H1

0(Ωr )⊕ C(ψsing),
where the singular element may be absent in the multi-arm case. We
can again investigated Hr as an opeator on a skewed strip, now of a
generally nonconstant width. The quadratic form associated with Hr is

qr : qr [ψ]=

∫ ∞
0

∫ r(θ)

rmin(θ)

[
r
∣∣∣∂ψ
∂r

∣∣∣2 +
1

r

∣∣∣∂ψ
∂θ

∣∣∣2]drdθ
=

∫ ∞
0

∫ θ−1(r)+2π

θ−1(r)

[
r
∣∣∣∂ψ
∂r

∣∣∣2 +
1

r

∣∣∣∂ψ
∂θ

∣∣∣2]dθdr
where θ−1(·) is the pull-back of the function r(·); its domain consists
of function ψ ∈ H1(Ωr ) satisfying appropriate conditions at ∂Ωa.
Using function r and it derivatives, we also can express the arc length and
the curvature; they are

s(θ) =

∫ θ

0

√
ṙ(ξ)2 + r(ξ)2 dξ and κ(θ) =

r(θ)2 + 2ṙ(θ)2 − r(θ)r̈(θ)

(r(θ)2 + ṙ(θ)2)3/2
.
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Strictly expanding spiral regions
In contrast to the Archimedean case, it may not be possible to amend
the arclength with the orthogonal coordinate u to parametrize Cr by

x1(θ, u)= r(θ) cos θ − u√
ṙ(θ)2 + r(θ)2

(
ṙ(θ) sin θ + r(θ) cos θ

)
,

x2(θ, u) = r(θ) sin θ +
u√

ṙ(θ)2 + r(θ)2

(
ṙ(θ) cos θ − r(θ) sin θ

)
.

The reason is that for strictly expanding spirals the inward normal at a
point may not intersect the previous spiral coil; it is easy to check that
in the examples of a logarithmic spiral, r(θ) = a ekθ with a, k > 0, or
hyperbolic spiral, r(θ) = aθ−1.

Fortunately, some properties of Hr can be derived without the use of the
locally orthogonal system. Using suitable Weyl sequences one can prove
the following claim:

Proposition

σ(Hr ) = σess(Hr ) = [0,∞) holds if C is simple and strictly expanding.
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Strictly shrinking spiral regions

On the other hand, parallel coordinates can be used, possibly outside
a compact region, if C is generated by a shrinking or an asymptotically
Archimedean spirals.

We combine bracketing with the unitarily equivalent form of the operator
in parallel coordinates,

ĤD
nc ≥ −

∂

∂s
(1− uκ(s))−2 ∂

∂s
+

π2

d(s)2
+ V (s, u)

and similarly for ĤN
nc. Since d(s)→ 0 as s →∞ holds is a strictly

shrinking region, the sum of the two last term explodes in the limit,
and in the standard way we can check the following claim:

Proposition

If C is simple and strictly shrinking, the spectrum of Hr is purely discrete.
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Fermat spiral eigenfuctions

Figure: Eigenfunctions of the Fermat spiral region, b = 1, corresponding to the
eigenvalues, E7 = 19.5462, E15 = 28.3118, E27 = 38.8062, and E42 = 48.8367.

For Fermat spiral, r(θ)2 = b2θ, we have a(θ) = 1
2bθ
−1/2 +O(θ−3/2) so

the spectrum is discrete; note that apart from the central region the
eigenfunctions have a quasi-one-dimensional character.
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Fermat spiral region: number of eigenvalues
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Figure: The number of eigenvalues vs. energy compared to the asymptotics
taking into account the strip width only.

The dominant contribution comes from the transverse confinement
potential v(θ) =

(
π

d(θ)

)2
. For Fermat spiral region this leads to the

asymptotics N(E ) ≈ 1
64 b

4 E 2 as E →∞. Looking at the true number
of eigenvalues, we see a significant excess which is naturally attributed
to the geometry-related effects.
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Asymptically Archimedean regions
Between the above discussed extremes the situation is much more
interesting. Modifying the argument in the Archimedean case we get

Proposition

If the spiral Γ is asymptotically Archimedean with limθ→∞ a(θ) = a0,
we have σess(Hr ) = [(2a0)−2,∞). In the case of a multi-arm region
withlimθ→∞ aj(θ) = a0,j , the essential spectrum is [(2a)−2,∞), where
a := max0≤j≤m−1 a0,j .

The question about the discrete spectrum is more subtle and the type of
asymptotics is decisive. Let us consider the spiral

r(θ) = a0θ + b0 − ρ(θ),

where ρ(·) is a positive function such that, limθ→∞ ρ(θ) = 0; for the sake
of definiteness we restrict our attention to functions satisfying

ρ̇(θ) = − c

θγ
+O(θ−γ−1) as θ →∞ with 1 < γ < 3.
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Infinite discrete spectrum

Proposition

For the described r(·), #σdisc(Hr ) =∞ holds for any c > 0.

Proof sketch: By a variational argument using the function ψ0,λ from the
Archimedean case. After a straightforward computation we get for the
shifted quadratic form

p[ψ0,λ] < λ
4π

a0
‖µ̇‖2 −

(4π2c

a4
0

(a0

4

)γ/2
λ(γ−2)/2 +O

(
λ(γ′−2)/2

))
‖µ‖2,

where the right-hand side is negative for all λ small enough. Moreover,
since the support of µ is compact, one can choose a sequence {λn} such
that λn → 0 as n→∞ and the supports of ψ0,λn are mutually disjoint
which means that the discrete spectrum of Hr is infinite, accumulating at
the threshold (2a0)−2. �
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Fermat meets Archimedes

As an example, consider an interpolation between Fermat and
Archimedean spirals, in the simplest case described parametrically as

r(θ) = a

√
θ
(
θ + b2

a2

)
, a, b > 0,

with the asymptotic behavior

r(θ) = b
√
θ +

a2

2b
θ3/2 +O(θ5/2),

r(θ) = aθ +
b2

2a
+O(θ−1)

for θ → 0+ and θ →∞, respectively.

The Fermat spiral is conventionally considered as a two-arm one dividing
the plane into a pair of mutually homothetic regions, hence we interpolate
with the two-arm Archimedean spiral; the essential spectrum is [a−2,∞).
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Fermat meets Archimedes, continued

As for the discrete spectrum, taking the expansion of r(θ) two terms

further, we get b0 = b2

2a and

ρ(θ) =
b4

8a3θ
− 3b6

16a5θ2
+O(θ−3).

This means that the assumptions of the last proposition hold with with
c = b4

8a3 > 0 and γ = 2, and the the operator Hr has an infinite discrete
spectrum in (0, a−2) accumulating at the threshold.

One can also specify the accumulation rate: the one-dimensional effective
potential is in this case πb4

16a5 s
−1 +O(s−3/2), with the leading term of

Coulomb type, which shows that the number of eigenvalues below a−2− E
behaves as

Na−2−E (Hr ) =
πb4

32a5

1√
E

+ o(E−1/2) if E → 0+
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Remarks
Experimentalists often label their spirals as Archimedean, but in
fact they are not. The reason is that they are produced by coiling
fibers of a fixed cross section, hence their transverse width is constant
instead of changing with the angle as it would be the case for true
Archimedean spiral. Such waveguides behave asymptotically rather
as the current interpolation with b

a = (2π)−1/4 ≈ 0.632.

Some asymptotically Archimedean regions behave differently, for
instance, involute of a circle, r(θ) = a

√
1 + θ2, for which b0 = 0 and

ρ(θ) < 0; thus the polar width of the region is larger than that of its
Archimedean asymptote acting against the existence of bound states.

A similar conclusion holds for Atzema spiral, r(t) = a(t + t−1), where
t > t0 for a suitable t0 to avoid self-intersections. The parameter is
not the polar angle, but θ = t − π

2 +O(t−1), hence we have b0 = 0
and ρ(θ) < 0 again.

On the other hand, modifying the last example, r(θ) = a(θ − θ−1)
with θ > 1, we have b0 = 0 and γ = 2 so there is an infinite discrete
spectrum below (2a)−1 accumulating at the threshold.
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Eigenvalues
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Figure: The lowest eigenvalues of interpolating region as functions of b.

As expected the ground state is close to the continuum threshold for
(sufficiently) large values of b and the whole discrete spectrum disappears
in the limit b →∞, while for small b the region has a large bulge in the
center and the spectral bottom drops to appropriately low values. We also
see in the picture how the eigenvalues accumulate towards the continuum.
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An eigenfunction

Figure: The eigenfunction with E14 = 0.999952 corresponding to b = (2π)−1/4.

The difference from the two-arm Archimedean region is hardly perceptible
by a naked eye, however, the discrete spectrum is now not only non-void
but it is rich with the eigenfunctions the tails of which have a distinctively
quasi-one-dimensional character.
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Open questions

There are other spiral-shaped regions of interest. We discussed
situations in which C was simply connected. This is often not the
case in physical applications, sometimes the guide looks like a
two-arm Archimedean region – in the experimentalist reckoning
mentioned above – however, with an opening in the center where
the two ‘loose ends’ meet each other in an S-shape way.

A discrete spectrum can also be created by erasing a part of the
Dirichlet boundary away from the center. There is no doubt that a
large enough ‘window’ would give rise to bound states, the question
is how small it can be to have that effect.

Having in mind that (single-arm) spiral-shaped regions violate the
rotational symmetry, one is naturally interested whether the spectrum
is simple.

Another question concerns the spectral statistics for strictly shrinking
spirals, one would like to know whether they give rise to quantum
chaotic systems.
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More open questions

We mentioned that properties of Neumann Laplacian may be
completely different. On the other hand, one expects that a Robin
boundary (with a nonzero parameter) would behave similarly to the
Dirichlet one, with some natural differences: in the asymptotically
Archimedean case the essential spectrum threshold would be not
(2a)−1 but the principal eigenvalue of the Robin Laplacian on an
interval of length 2π, and in the case of an attractive boundary the
operator will no longer be positive.

In some physical applications a magnetic field is applied, hence it
would be useful to investigate spectral properties of the magnetic
Dirichlet Laplacian in spiral-shaped regions.

In real physical system the separation of the spiral coils is never
complete, which motivates one to look into the ‘leaky’ version of
the present problem, that is, singular Schrödinger operators of the
type −∆ + αδΓ.

P.E., M. Tater: Spectral properties of spiral-shaped quantum waveguides, J. Phys. A: Math. Theor., to appear;
arXiv: 2009.02730 [math-ph]
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It remains to say

Thank you for your attention!
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