Quantum waveguides: mathematical problems

Pavel Exner
in part in collaboration with Denis Borisov and Olaf Post

exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

Talk overview

My aim in this talk is to describe three mathematical problems related to quantum waveguides:

- Exponential splitting for distant perturbations physically "obvious", mathematically not at all

Talk overview

My aim in this talk is to describe three mathematical problems related to quantum waveguides:

- Exponential splitting for distant perturbations physically "obvious", mathematically not at all
- Squeezing limit of thin graph-like manifolds where the difficult part still lays ahead

Talk overview

My aim in this talk is to describe three mathematical problems related to quantum waveguides:

- Exponential splitting for distant perturbations physically "obvious", mathematically not at all
- Squeezing limit of thin graph-like manifolds where the difficult part still lays ahead
- An isoperimetric problem for point interactions or there are still open questions in Euclidean geometry, believe or not

The first problem: distant perturbations

Consider example of a hard-wall (Dirichlet) waveguide with two Neumann "windows":

The first problem: distant perturbations

Consider example of a hard-wall (Dirichlet) waveguide with two Neumann "windows":

Naturally this can be regarded as a double waveguide with two windows in the common boundary (its nontrivial part) We call the strip Π, its right and left half $\Pi^{ \pm}$, respectively. The Dirichlet part of the boundary is denoted $\Gamma_{l}(a)$, the Neumann one $\gamma_{l}(a)$. The Laplacian with the appropriate b.c. is a s-a operator denoted $H_{\ell}(a)$ which is the main object of our interest

Preliminaries: a single window

Recall a few facts - cf. [E.-Šeba-Tater-Vaněk'96] - about the spectrum of a waveguide with a single Neumann window of width a. Call this Hamiltonian $H(a)$. Without loss of generality we may suppose $d=\pi$

- $\sigma_{\text {ess }}\left(H(a)=[1, \infty)\right.$ and $\sigma_{\text {disc }}(H(a)) \neq \emptyset$ for any $a>0$

Preliminaries: a single window

Recall a few facts - cf. [E.-Šeba-Tater-Vaněk'96] - about the spectrum of a waveguide with a single Neumann window of width a. Call this Hamiltonian $H(a)$. Without loss of generality we may suppose $d=\pi$

- $\sigma_{\text {ess }}\left(H(a)=[1, \infty)\right.$ and $\sigma_{\text {disc }}(H(a)) \neq \emptyset$ for any $a>0$
- The simple ev's $\lambda_{1}(a)<\ldots<\lambda_{n}(a)<1$ corresponding to normalized ef's $\psi_{j} \in L^{2}(\Pi)$ are decreasing w.r.t. a

Preliminaries: a single window

Recall a few facts - cf. [E.-Šeba-Tater-Vaněk'96] - about the spectrum of a waveguide with a single Neumann window of width a. Call this Hamiltonian $H(a)$. Without loss of generality we may suppose $d=\pi$

- $\sigma_{\text {ess }}\left(H(a)=[1, \infty)\right.$ and $\sigma_{\text {disc }}(H(a)) \neq \emptyset$ for any $a>0$
- The simple ev's $\lambda_{1}(a)<\ldots<\lambda_{n}(a)<1$ corresponding to normalized ef's $\psi_{j} \in L^{2}(\Pi)$ are decreasing w.r.t. a
- There are critical values $0=a_{0}<a_{1}<a_{2}<\ldots$ for which the system has threshold-resonance solutions ψ^{n}

Preliminaries: a single window

Recall a few facts - cf. [E.-Šeba-Tater-Vaněk'96] - about the spectrum of a waveguide with a single Neumann window of width a. Call this Hamiltonian $H(a)$. Without loss of generality we may suppose $d=\pi$

- $\sigma_{\text {ess }}\left(H(a)=[1, \infty)\right.$ and $\sigma_{\text {disc }}(H(a)) \neq \emptyset$ for any $a>0$
- The simple ev's $\lambda_{1}(a)<\ldots<\lambda_{n}(a)<1$ corresponding to normalized ef's $\psi_{j} \in L^{2}(\Pi)$ are decreasing w.r.t. a
- There are critical values $0=a_{0}<a_{1}<a_{2}<\ldots$ for which the system has threshold-resonance solutions ψ^{n}
- In the limit $x_{1} \rightarrow \infty$ we have

$$
\begin{aligned}
\psi^{n}(x) & =\sqrt{\frac{2}{\pi}} \sin \left(x_{2}\right)+\beta_{n} \mathrm{e}^{-\sqrt{3} x_{1}} \sin \left(2 x_{2}\right)+\mathcal{O}\left(\mathrm{e}^{-\sqrt{8} x_{1}}\right) \\
\psi_{j}(x) & =\alpha_{j}(a) \mathrm{e}^{-\sqrt{1-\lambda_{j}(a)} x_{1}} \sin \left(x_{2}\right)+\mathcal{O}\left(\mathrm{e}^{-\sqrt{4-\lambda_{j}(a)} x_{1}}\right)
\end{aligned}
$$

The non-critical case

Theorem [Borisov-E.'04]: Let $a \in\left(a_{n-1}, a_{n}\right)$ for some $n \in \mathbb{N}$. Then the operator $H_{l}(a)$ with $d=\pi$ has for any l large enough exactly $2 n$ eigenvalues $\lambda_{j}^{ \pm}(l, a), j=1, \ldots, n$, situated in the interval $\left(\frac{1}{4}, 1\right)$. Each of them is simple and has the asymptotic expansions

$$
\lambda_{j}^{ \pm}(l, a)=\lambda_{j}(a) \mp \mu_{j}(a) \mathrm{e}^{-2 l \sqrt{1-\lambda_{j}(a)}}+\mathcal{O}\left(\mathrm{e}^{-\left(4 \sqrt{1-\lambda_{j}(a)}-\sigma\right) l}\right),
$$

as $l \rightarrow \infty$ for $j=1, \ldots, n$ with any fixed $\sigma>0$. The coefficient μ_{j} is given by
$\mu_{j}(a)=\alpha_{j}(a)^{2} \pi \sqrt{1-\lambda_{j}(a)}=\frac{1}{\pi \sqrt{1-\lambda_{j}(a)}}\left(\int_{\gamma(a)} \psi_{j}(x) \mathrm{e}^{\sqrt{1-\lambda_{j}(a)} x_{1}} \mathrm{~d} x_{1}\right)^{2}$,
where $\gamma(a)$ denotes the two windows.

The non-critical case, continued

Theorem, continued: The eigenfunctions $\psi_{j}^{ \pm}(x)$ associated with eigenvalues $\lambda_{j}^{ \pm}(l, a), j=1, \ldots, n$, are even for $\lambda_{j}^{+}(l, a)$ and odd for $\lambda_{j}^{-}(l, a)$. Furthermore, in the halfstrips spaces $W^{2,1}\left(\Pi^{ \pm}\right)$they can be approximated for $\ell \rightarrow \infty$ by

$$
\begin{aligned}
\psi_{j}^{+}(x) & =\psi_{j}\left(x_{1} \mp l, x_{2}\right)+\mathcal{O}\left(\mathrm{e}^{-\left(2 \sqrt{1-\lambda_{j}(a)}-\sigma\right) l}\right) \\
\psi_{j}^{-}(x) & = \pm \psi_{j}\left(x_{1} \mp l, x_{2}\right)+\mathcal{O}\left(\mathrm{e}^{-\left(2 \sqrt{1-\lambda_{j}(a)}-\sigma\right) l}\right) .
\end{aligned}
$$

The non-critical case, continued

Theorem, continued: The eigenfunctions $\psi_{j}^{ \pm}(x)$ associated with eigenvalues $\lambda_{j}^{ \pm}(l, a), j=1, \ldots, n$, are even for $\lambda_{j}^{+}(l, a)$ and odd for $\lambda_{j}^{-}(l, a)$. Furthermore, in the halfstrips spaces $W^{2,1}\left(\Pi^{ \pm}\right)$they can be approximated for $\ell \rightarrow \infty$ by

$$
\begin{aligned}
& \psi_{j}^{+}(x)=\psi_{j}\left(x_{1} \mp l, x_{2}\right)+\mathcal{O}\left(\mathrm{e}^{-\left(2 \sqrt{1-\lambda_{j}(a)}-\sigma\right) l}\right) \\
& \psi_{j}^{-}(x)= \pm \psi_{j}\left(x_{1} \mp l, x_{2}\right)+\mathcal{O}\left(\mathrm{e}^{-\left(2 \sqrt{1-\lambda_{j}(a)}-\sigma\right) l}\right) .
\end{aligned}
$$

Remark: The case of a general strip width d is obtained easily by scaling, cf. [Borisov-E.'04]; the same applies to the critical case below.

The critical case

Theorem [Borisov-E.'04]: Let $a=a_{n}$ for some $n \in \mathbb{N}$. Then the operator $H_{l}(a)$ with $d=\pi$ has for $2 n+1$ ev's in $\left(\frac{1}{4}, 1\right)$ for l large enough. The first $2 n$ of them together with the associated eigenfunctions behave as above, while the last one, $\lambda_{n+1}^{+}\left(l, a_{n}\right)$, has the asymptotics

$$
\lambda_{n+1}^{+}\left(l, a_{n}\right)=1-\mu \mathrm{e}^{-4 \sqrt{3} l}+\mathcal{O}\left(\mathrm{e}^{-2(\sqrt{8}+\sqrt{3}) l}\right),
$$

where

$$
\mu=3 \beta_{n}^{4} \pi^{2}=\frac{16}{3 \pi^{2}}\left(\int_{\gamma\left(a_{n}\right)} \psi^{n}(x) \mathrm{e}^{\sqrt{3} x_{1}} \mathrm{~d} x_{1}\right)^{4} .
$$

The critical case, continued

Theorem, continued: The associated eigenfunction ψ_{n+1}^{+}is even w.r.t. x_{1} and for any fixed R it can be approximated in the rectangles $\left\{x:\left|x_{1} \mp l\right|<R\right\} \cap \Pi$ for large values of l as

$$
\psi_{n+1}^{+}(x)=\psi^{n}\left(x_{1} \mp l, x_{2}\right)+\mathcal{O}\left(\mathrm{e}^{-2 \sqrt{3} l}\right)
$$

in the $W^{2,1}$-norm. Moreover, it behaves asymptotically for $x_{1} \rightarrow \pm \infty$ as

$$
\begin{aligned}
\psi_{n+1}^{+}(x) & =\sqrt{\frac{2}{\pi}} \mathrm{e}^{-\varkappa\left|x_{1}\right|} \sin \left(x_{2}\right)+\mathcal{O}\left(\mathrm{e}^{-\sqrt{3}\left|x_{1}\right|}\right) \\
\varkappa & :=\sqrt{1-\lambda_{n+1}}=\sqrt{\mu} \mathrm{e}^{-2 \sqrt{3} l}+\mathcal{O}\left(\mathrm{e}^{-2 \sqrt{8} l}\right) .
\end{aligned}
$$

Scheme of the proof

- By the mirror symmetry the problem is reduced to a halfstrip with one window and a Dirichlet or Neumann cut at the distance l

Scheme of the proof

- By the mirror symmetry the problem is reduced to a halfstrip with one window and a Dirichlet or Neumann cut at the distance l
- Using DN bracketing and techniques of [EŠTV'96] one shows that each single-window ev is squeezed between a pair of two-window problem corresponding respectively to a symmetric and antisymmetric ef, which depend continuously and monotonously on l, and converge to each other as $l \rightarrow \infty$

Scheme of the proof

- By the mirror symmetry the problem is reduced to a halfstrip with one window and a Dirichlet or Neumann cut at the distance l
- Using DN bracketing and techniques of [EŠTV'96] one shows that each single-window ev is squeezed between a pair of two-window problem corresponding respectively to a symmetric and antisymmetric ef, which depend continuously and monotonously on l, and converge to each other as $l \rightarrow \infty$
- Next one has to analyze the resolvent of $H_{l}(a)$, i.e. to solve the equation $-(\Delta+\lambda) u=f$ with the appropriate b.c. for both the unperturbed (one-window) and perturbed (two-windows) problem; it is sufficient to do that, say, for a compactly supported $f \in L^{2}(\Pi)$

Scheme of the proof, continued

- In the unperturbed case we first solve (v) pure Dirichlet problem in the halfstrip, then we inspect how the solution changes (w) in a fixed rectangle Π_{b} when the b.c. change to Neumann in the window. Interpolating between v and w we rewrite the problem equivalently as $\left(I+T_{\infty}(\lambda)\right) g=f$, where $T_{\infty}(\lambda)$ is a Fredholm operator on $L^{2}\left(\Pi_{b}\right)$ expressed in terms of v, w

Scheme of the proof, continued

- In the unperturbed case we first solve (v) pure Dirichlet problem in the halfstrip, then we inspect how the solution changes (w) in a fixed rectangle Π_{b} when the b.c. change to Neumann in the window. Interpolating between v and w we rewrite the problem equivalently as $\left(I+T_{\infty}(\lambda)\right) g=f$, where $T_{\infty}(\lambda)$ is a Fredholm operator on $L^{2}\left(\Pi_{b}\right)$ expressed in terms of v, w
- The perturbed case is reformulated similarly into a Fredholm problem with an operator $T_{l}(\lambda)$ which is checked to be a compact perturbation of $T_{\infty}(\lambda)$

Scheme of the proof, continued

- In the unperturbed case we first solve (v) pure Dirichlet problem in the halfstrip, then we inspect how the solution changes (w) in a fixed rectangle Π_{b} when the b.c. change to Neumann in the window. Interpolating between v and w we rewrite the problem equivalently as $\left(I+T_{\infty}(\lambda)\right) g=f$, where $T_{\infty}(\lambda)$ is a Fredholm operator on $L^{2}\left(\Pi_{b}\right)$ expressed in terms of v, w
- The perturbed case is reformulated similarly into a Fredholm problem with an operator $T_{l}(\lambda)$ which is checked to be a compact perturbation of $T_{\infty}(\lambda)$
- Resolvents of these operators have meromorphic structure which is analyzed in a standard way - see, e.g., the book [Sanchez-Palencia'80]

Scheme of the proof, continued

- In the unperturbed case we first solve (v) pure Dirichlet problem in the halfstrip, then we inspect how the solution changes (w) in a fixed rectangle Π_{b} when the b.c. change to Neumann in the window. Interpolating between v and w we rewrite the problem equivalently as $\left(I+T_{\infty}(\lambda)\right) g=f$, where $T_{\infty}(\lambda)$ is a Fredholm operator on $L^{2}\left(\Pi_{b}\right)$ expressed in terms of v, w
- The perturbed case is reformulated similarly into a Fredholm problem with an operator $T_{l}(\lambda)$ which is checked to be a compact perturbation of $T_{\infty}(\lambda)$
- Resolvents of these operators have meromorphic structure which is analyzed in a standard way - see, e.g., the book [Sanchez-Palencia'80]
- the threshold-resonance situation is treated similarly, just the estimates are more complicated \square

Lessons from this example

- The asymptotics is similar to what the usual Schrödinger operator analogy suggests but not the same as the critical case shows

Lessons from this example

- The asymptotics is similar to what the usual Schrödinger operator analogy suggests but not the same as the critical case shows
- the result is rather complete including coefficient values due to explicit construction which yield the singularities

Lessons from this example

- The asymptotics is similar to what the usual Schrödinger operator analogy suggests but not the same as the critical case shows
- the result is rather complete including coefficient values due to explicit construction which yield the singularities
- similar construction is likely to work for other QWG with distant perturbations such as bends, bulges, etc.

Lessons from this example

- The asymptotics is similar to what the usual Schrödinger operator analogy suggests but not the same as the critical case shows
- the result is rather complete including coefficient values due to explicit construction which yield the singularities
- similar construction is likely to work for other QWG with distant perturbations such as bends, bulges, etc.
- At the same time the explicit construction is not simple and has to be done separately in each particular case. Thus the following question arises:
Can one formulate a general result using a quantity which would replace the standard Agmon metric in the present situation?

The second problem: quantum graphs

Theoretically, QM on (metric) graphs is a natural concept:

> Hamiltonian: $-\frac{\partial^{2}}{\partial x_{j}^{2}}+v\left(x_{j}\right)$ on graph edges, boundary conditions at vertices
the question whether it has a practical significance

The second problem: quantum graphs

Theoretically, QM on (metric) graphs is a natural concept:

> Hamiltonian: $-\frac{\partial^{2}}{\partial x_{j}^{2}}+v\left(x_{j}\right)$ on graph edges, boundary conditions at vertices
the question whether it has a practical significance It appears that it does. First used by Ruedenberg and Scherr in 1953 as a model of aromatic hydrocarbons, the idea became really important 10-15 years ago with the progress of techniques allowing fabrication of quantum graphs of semiconductor quantum wires
Recently carbon nanotubes became a building material, after branchings were fabricated, and also microwave network of optical cables were studied - see [Hul et al.'04]

Remarks on quantum graphs

- The vertex coupling is chosen to make the Hamiltonian self-adjoint, or in physical terms, to ensure probability current conservation. This is achieved using s-a extensions as I will recall below

Remarks on quantum graphs

- The vertex coupling is chosen to make the Hamiltonian self-adjoint, or in physical terms, to ensure probability current conservation. This is achieved using s-a extensions as I will recall below
- Here we consider Schrödinger operators on graphs, most often free, $v_{j}=0$. Naturally one can external electric and magnetic fields, spin, etc.

Remarks on quantum graphs

- The vertex coupling is chosen to make the Hamiltonian self-adjoint, or in physical terms, to ensure probability current conservation. This is achieved using s-a extensions as I will recall below
- Here we consider Schrödinger operators on graphs, most often free, $v_{j}=0$. Naturally one can external electric and magnetic fields, spin, etc.
- Graphs can support also Dirac operators, see [Bulla-Trenckler'90], although this remains so far a theoretical possibility only.

Remarks on quantum graphs

- The vertex coupling is chosen to make the Hamiltonian self-adjoint, or in physical terms, to ensure probability current conservation. This is achieved using s-a extensions as I will recall below
- Here we consider Schrödinger operators on graphs, most often free, $v_{j}=0$. Naturally one can external electric and magnetic fields, spin, etc.
- Graphs can support also Dirac operators, see [Bulla-Trenckler'90], although this remains so far a theoretical possibility only.
- The graph literature is extensive; let us refer just to a review [Kuchment'04] and other references in the recent topical issue of "Waves in Random Media"

Vertex coupling

Consider a star graph with the state Hilbert space $\mathcal{H}=$ $\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and an operator acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}$

Vertex coupling

Consider a star graph with the state Hilbert space $\mathcal{H}=$ $\bigoplus_{j=1}^{n} L^{2}\left(\mathbb{R}_{+}\right)$and an operator acting on \mathcal{H} as $\psi_{j} \mapsto-\psi_{j}^{\prime \prime}$

If we take functions from $\bigoplus_{j=1}^{n} W^{2,2}\left(\mathbb{R}_{+}\right)$satisfying $\psi_{j}(0)=\psi_{j}^{\prime}(0)=0, j=1, \ldots, n$, as the domain, we get a symmetric operator with deficiency indices (n, n). Admissible Hamiltonian has to be chosen among its $s-a$ extensions being characterized by n^{2} real parameters
Since the operator is second-order, all such extensions are characterized by boundary condition which couple $\Psi(0):=\left\{\psi_{j}(0)\right\}$ and $\Psi^{\prime}(0):=\left\{\psi_{j}^{\prime}(0)\right\}$

Vertex coupling parametrization

Universal b.c. were proposed in [Kostrykin-Schrader'99]. They are given by a pair of $n \times n$ matrices A, B such that

- $\operatorname{rank}(A, B)=n$
- $A B^{*}$ is self-adjoint

The boundary values have to satisfy the conditions

$$
A \Psi(0)+B \Psi^{\prime}(0)=0
$$

Vertex coupling parametrization

Universal b.c. were proposed in [Kostrykin-Schrader'99]. They are given by a pair of $n \times n$ matrices A, B such that

- $\operatorname{rank}(A, B)=n$
- $A B^{*}$ is self-adjoint

The boundary values have to satisfy the conditions

$$
A \Psi(0)+B \Psi^{\prime}(0)=0
$$

Moreover, the obvious non-uniqueness of such a parametrization can be removed:
Proposition [Harmer'00]: Vertex couplings are uniquely characterized by unitary $n \times n$ matrices U such that

$$
A=U-I, \quad B=i(U+I)
$$

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,

$$
\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)
$$

with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,

$$
\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)
$$

with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$

- $\alpha=0$ corresponds to the "free motion", the so-called Kirchhoff boundary conditions (not a well chosen name)

Examples of vertex coupling

- Denote by \mathcal{J} the $n \times n$ matrix whose all entries are equal to one; then $U=\frac{2}{n+i \alpha} \mathcal{J}-I$ corresponds to the standard δ coupling,
$\psi_{j}(0)=\psi_{k}(0)=: \psi(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}^{\prime}(0)=\alpha \psi(0)$
with "coupling strength" $\alpha \in \mathbb{R} ; \alpha=\infty$ gives $U=-I$
- $\alpha=0$ corresponds to the "free motion", the so-called Kirchhoff boundary conditions (not a well chosen name)
- Similarly, $U=I-\frac{2}{n-i \beta} \mathcal{J}$ describes the δ_{s}^{\prime} coupling $\psi_{j}^{\prime}(0)=\psi_{k}^{\prime}(0)=: \psi^{\prime}(0), j, k=1, \ldots, n, \quad \sum_{j=1}^{n} \psi_{j}(0)=\beta \psi^{\prime}(0)$ with $\beta \in \mathbb{R}$; for $\beta=\infty$ we get Neumann decoupling

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with $n=2$, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with $n=2$, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]
- More recently, the same system has been proposed as a way to realize a qubit, with obvious consequences [Tsutsui-Fülöp-Cheon, quant-ph/0404039]

Why are vertices interesting?

- While usually conductivity of graph structures is controlled by external fields, vertex coupling can serve the same purpose
- It is an interesting problem in itself, recall that for the generalized point interaction, i.e. graph with $n=2$, the spectrum has nontrivial topological structure [Tsutsui-Fülöp-Cheon'01]
- More recently, the same system has been proposed as a way to realize a qubit, with obvious consequences [Tsutsui-Fülöp-Cheon, quant-ph/0404039]
- Recall also that in a rectangular lattice with δ coupling of nonzero α spectrum depends on number theoretic properties of model geometric parameters [E.'95,'96a; E.-Gawlista'96]

It seems to be obvious what to do

Take a more realistic situation with no ambiguity, such as branching tubes and analyze the squeezing limit:

Unfortunately, this is not sufficient because

It seems to be obvious what to do

Take a more realistic situation with no ambiguity, such as branching tubes and analyze the squeezing limit:

Unfortunately, this is not sufficient because

- after a long effort the Neumann case was solved [Kuchment-Zeng'01, Rubinstein-Schatzmann'01, Saito'01] leading to Kirchhoff b.c. only
- the important Dirichlet case is open (and difficult)
- there are interesting situations - remember the branching nanotubes mentioned above, etc.

Preliminaries: weighted graphs

Let M_{0} be a finite connected graph with vertices $v_{k}, k \in K$ and edges $e_{j} \simeq I_{j}:=\left[0, \ell_{j}\right], j \in J$. We add smooth weights $p_{j}: I_{j} \rightarrow \mathbb{R}_{+}$so the state Hilbert space is

$$
L^{2}\left(M_{0}\right):=\bigoplus_{j \in J} L^{2}\left(I_{j}, p_{j}(x) \mathrm{d} x\right) ;
$$

in a similar way Sobolev spaces on M_{0} are introduced

Preliminaries: weighted graphs

Let M_{0} be a finite connected graph with vertices $v_{k}, k \in K$ and edges $e_{j} \simeq I_{j}:=\left[0, \ell_{j}\right], j \in J$. We add smooth weights $p_{j}: I_{j} \rightarrow \mathbb{R}_{+}$so the state Hilbert space is

$$
L^{2}\left(M_{0}\right):=\bigoplus_{j \in J} L^{2}\left(I_{j}, p_{j}(x) \mathrm{d} x\right) ;
$$

in a similar way Sobolev spaces on M_{0} are introduced
The form $u \mapsto\left\|u^{\prime}\right\|_{M_{0}}^{2}:=\sum_{j \in J}\left\|u^{\prime}\right\|_{I_{j}}^{2}$ with $u \in \mathcal{H}^{1}\left(M_{0}\right)$ is associated with the operator which acts as

$$
\Delta_{M_{0}} u=-\frac{1}{p_{j}(x)}\left(p_{j}(x) u_{j}^{\prime}\right)^{\prime}
$$

and satisfies (weighted) Kirchhoff b.c.,

$$
\sum_{j, e_{j} \text { meets } v_{k}} p_{j}\left(v_{k}\right) u_{j}^{\prime}\left(v_{k}\right)=0
$$

Preliminaries: Laplacian on manifolds

Consider a Riemannian manifold X of dimension $d \geq 2$ and the corresponding space $L^{2}(X)$ w.r.t. volume $\mathrm{d} X$ equal to $(\operatorname{det} g)^{1 / 2} \mathrm{~d} x$ in a fixed chart. For $u \in C_{\text {comp }}^{\infty}(X)$ we set

$$
q_{X}(u):=\|\mathrm{d} u\|_{X}^{2}=\int_{X}|\mathrm{~d} u|^{2} \mathrm{~d} X,|\mathrm{~d} u|^{2}=\sum_{i, j} g^{i j} \partial_{i} u \partial_{j} \bar{u}
$$

The closure of this form is associated with the s-a operator Δ_{X} which acts in fixed chart coordinates as

$$
\Delta_{X} u=-(\operatorname{det} g)^{-1 / 2} \sum_{i, j} \partial_{i}\left((\operatorname{det} g)^{1 / 2} g^{i j} \partial_{j} u\right)
$$

Preliminaries: Laplacian on manifolds

Consider a Riemannian manifold X of dimension $d \geq 2$ and the corresponding space $L^{2}(X)$ w.r.t. volume $\mathrm{d} X$ equal to $(\operatorname{det} g)^{1 / 2} \mathrm{~d} x$ in a fixed chart. For $u \in C_{\text {comp }}^{\infty}(X)$ we set

$$
q_{X}(u):=\|\mathrm{d} u\|_{X}^{2}=\int_{X}|\mathrm{~d} u|^{2} \mathrm{~d} X,|\mathrm{~d} u|^{2}=\sum_{i, j} g^{i j} \partial_{i} u \partial_{j} \bar{u}
$$

The closure of this form is associated with the s-a operator Δ_{X} which acts in fixed chart coordinates as

$$
\Delta_{X} u=-(\operatorname{det} g)^{-1 / 2} \sum_{i, j} \partial_{i}\left((\operatorname{det} g)^{1 / 2} g^{i j} \partial_{j} u\right)
$$

If X is compact with piecewise smooth boundary, one starts from the form defined on $C^{\infty}(X)$. This yields Δ_{X} as the Neumann Laplacian on X and allows us to treat "fat graphs" and "sleeves" on the same footing

Fat graphs and sleeves: manifolds

We associate with the graph M_{0} a family of manifolds M_{ε}

M_{0}

We suppose that M_{ε} is a union of compact edge and vertex components $U_{\varepsilon, j}$ and $V_{\varepsilon, k}$ such that their interiors are mutually disjoint for all possible $j \in J$ and $k \in K$

Manifold building blocks

Manifold building blocks

However, M_{ε} need not be embedded in some \mathbb{R}^{d}.
It is convenient to assume that $U_{\varepsilon, j}$ and $V_{\varepsilon, k}$ depend on ε only through their metric:

- for edge regions we assume that $U_{\varepsilon, j}$ is diffeomorphic to $I_{j} \times F$ where F is a compact and connected manifold (with or without a boundary) of dimension $m:=d-1$
- for vertex regions we assume that the manifold $V_{\varepsilon, k}$ is diffeomorphic to an ε-independent manifold V_{k}

Ruedenberg-Scherr argument

For simplicity assume that the radius of $U_{\varepsilon, j}$ does not change, i.e., let $p_{j}=1$
Suppose that $\phi=\phi_{\varepsilon}$ is an ef of Δ_{X} with the ev $\lambda=\lambda_{\varepsilon}$. By the Gauss-Green formula we have at the vertex $V_{\varepsilon, k}=V_{\varepsilon}$

$$
\lambda \int_{V_{\varepsilon}} \phi \bar{u} \mathrm{~d} V_{\varepsilon}=\int_{V_{\varepsilon}}\langle\mathrm{d} \phi, \mathrm{~d} u\rangle \mathrm{d} V_{\varepsilon}+\int_{\partial V_{\varepsilon}} \partial_{\mathrm{n}} \phi \bar{u} \mathrm{~d} \partial V_{\varepsilon}
$$

for all $u \in \mathcal{H}^{1}\left(M_{\varepsilon}\right)$

Ruedenberg-Scherr argument

For simplicity assume that the radius of $U_{\varepsilon, j}$ does not change, i.e., let $p_{j}=1$
Suppose that $\phi=\phi_{\varepsilon}$ is an ef of Δ_{X} with the ev $\lambda=\lambda_{\varepsilon}$. By the Gauss-Green formula we have at the vertex $V_{\varepsilon, k}=V_{\varepsilon}$

$$
\lambda \int_{V_{\varepsilon}} \phi \bar{u} \mathrm{~d} V_{\varepsilon}=\int_{V_{\varepsilon}}\langle\mathrm{d} \phi, \mathrm{~d} u\rangle \mathrm{d} V_{\varepsilon}+\int_{\partial V_{\varepsilon}} \partial_{\mathrm{n}} \phi \bar{u} \mathrm{~d} \partial V_{\varepsilon}
$$

for all $u \in \mathcal{H}^{1}\left(M_{\varepsilon}\right)$
Assume that $\lambda_{\varepsilon} \rightarrow \lambda_{0}$ and $\phi_{\varepsilon} \rightarrow \phi_{0, j}$. Since vertex volume ($\sim \varepsilon^{d}$) decays faster than the interface area ($\sim \varepsilon^{d-1}$) only the boundary integral over ∂V_{ε} survives in the limit $\varepsilon \rightarrow 0$ giving thus Kirchhoff boundary conditions

$$
0=\sum_{j \in J_{k}} \phi_{0, j}^{\prime}\left(v_{k}\right)
$$

Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that $\mathcal{H}, \mathcal{H}^{\prime}$ are separable Hilbert spaces. We want to compare ev's λ_{k} and λ_{k}^{\prime} of nonnegative operators Q and Q^{\prime} with purely discrete spectra defined via quadratic forms q and q^{\prime} on $\mathcal{D} \subset \mathcal{H}$ and $\mathcal{D}^{\prime} \subset \mathcal{H}^{\prime}$. Set $\|u\|_{Q, n}^{2}:=\|u\|^{2}+\left\|Q^{n / 2} u\right\|^{2}$.

Comparison of eigenvalues

Our main tool here will be minimax principle. Suppose that $\mathcal{H}, \mathcal{H}^{\prime}$ are separable Hilbert spaces. We want to compare ev's λ_{k} and λ_{k}^{\prime} of nonnegative operators Q and Q^{\prime} with purely discrete spectra defined via quadratic forms q and q^{\prime} on $\mathcal{D} \subset \mathcal{H}$ and $\mathcal{D}^{\prime} \subset \mathcal{H}^{\prime}$. Set $\|u\|_{Q, n}^{2}:=\|u\|^{2}+\left\|Q^{n / 2} u\right\|^{2}$.
Lemma: Suppose that $\Phi: \mathcal{D} \rightarrow \mathcal{D}^{\prime}$ is a linear map such that there are $n_{1}, n_{2} \geq 0$ and $\delta_{1}, \delta_{2} \geq 0$ such that

$$
\|u\|^{2} \leq\|\Phi u\|^{2}+\delta_{1}\|u\|_{Q, n_{1}}^{2}, \quad q(u) \geq q^{\prime}(\Phi u)-\delta_{2}\|u\|_{Q, n_{2}}^{2}
$$

for all $u \in \mathcal{D} \subset \mathcal{D}\left(Q^{\max \left\{n_{1}, n_{2}\right\} / 2}\right)$. Then to each k there is a positive $\eta_{k}\left(\lambda_{k}, \delta_{1}, \delta_{2}\right)$ which tends to zero as $\delta_{1}, \delta_{2} \rightarrow 0$, such that

$$
\lambda_{k} \geq \lambda_{k}^{\prime}-\eta_{k}
$$

Thickened edges

Let thus $U=I_{j} \times F$ with metric g_{ε}, where cross section F is a compact connected Riemannian manifold of dimension $m=d-1$ with metric h; we assume that $\operatorname{vol} F=1$. We define another metric \tilde{g}_{ε} on $U_{\varepsilon, j}$ by

$$
\tilde{g}_{\varepsilon}:=\mathrm{d} x^{2}+\varepsilon^{2} r_{j}^{2}(x) h(y),
$$

where $r_{j}(x):=\left(p_{j}(x)\right)^{1 / m}$; they coincide up to $\mathcal{O}(\varepsilon)$ error This property allows us to treat manifolds embedded in \mathbb{R}^{d} (with metric \tilde{g}_{ε}) using product metric g_{ε} on the edges

Thickened edges

Let thus $U=I_{j} \times F$ with metric g_{ε}, where cross section F is a compact connected Riemannian manifold of dimension $m=d-1$ with metric h; we assume that $\operatorname{vol} F=1$. We define another metric \tilde{g}_{ε} on $U_{\varepsilon, j}$ by

$$
\tilde{g}_{\varepsilon}:=\mathrm{d} x^{2}+\varepsilon^{2} r_{j}^{2}(x) h(y),
$$

where $r_{j}(x):=\left(p_{j}(x)\right)^{1 / m}$; they coincide up to $\mathcal{O}(\varepsilon)$ error
This property allows us to treat manifolds embedded in \mathbb{R}^{d} (with metric \tilde{g}_{ε}) using product metric g_{ε} on the edges
Curved edges: If e_{j} is a smooth curve in \mathbb{R}^{d} the metric coming form the embedding contains terms given by the curvature γ of e_{j}. In the limit $\varepsilon \rightarrow 0$ they give rise to effective potential $-\frac{1}{4} \gamma^{2}$. This effect is well known; for simplicity we assume that the edges are straight

Eigenvalue convergence

Theorem [E.-Post'04]: Under the stated assumptions $\lambda_{k}\left(M_{\varepsilon}\right) \rightarrow \lambda_{k}\left(M_{0}\right)$ as $\varepsilon \rightarrow 0$

Eigenvalue convergence

Theorem [E.-Post'04]: Under the stated assumptions $\lambda_{k}\left(M_{\varepsilon}\right) \rightarrow \lambda_{k}\left(M_{0}\right)$ as $\varepsilon \rightarrow 0$

Proof is based on two-sided estimates. The upper one is easier and reads
Proposition: $\lambda_{k}\left(M_{\varepsilon}\right) \leq \lambda_{k}\left(M_{0}\right)+o(1)$ as $\varepsilon \rightarrow 0$
To prove it one one defines $\Phi_{\varepsilon}: L^{2}\left(M_{0}\right) \rightarrow L^{2}\left(M_{\varepsilon}\right)$ by

$$
\Phi_{\varepsilon} u(z):= \begin{cases}\varepsilon^{-m / 2} u\left(v_{k}\right) & \text { if } z \in V_{k} \\ \varepsilon^{-m / 2} u_{j}(x) & \text { if } z=(x, y) \in U_{j}\end{cases}
$$

for any $u \in \mathcal{H}^{1}\left(M_{0}\right)$, i.e. multiplication by a constant function in transverse direction. It is checked directly that the above lemma applies \square

A lower bound

Proposition: $\lambda_{k}\left(M_{0}\right) \leq \lambda_{k}\left(M_{\varepsilon}\right)+o(1)$ as $\varepsilon \rightarrow 0$

A lower bound

Proposition: $\lambda_{k}\left(M_{0}\right) \leq \lambda_{k}\left(M_{\varepsilon}\right)+o(1)$ as $\varepsilon \rightarrow 0$

Here one uses averaging:

$$
N_{j} u(x):=\int_{F} u(x, \cdot) \mathrm{d} F, C_{k} u:=\frac{1}{\operatorname{vol} V_{k}} \int_{V_{k}} u \mathrm{~d} V_{k}
$$

to build the comparison map by interpolation:

$$
\left(\Psi_{\varepsilon}\right)_{j}(x):=\varepsilon^{m / 2}\left(N_{j} u(x)+\rho(x)\left(C_{k} u-N_{j} u(x)\right)\right)
$$

with a suitable ρ smoothly interpolating between zero and one. But a series of estimates one checks that Ψ_{ε} satisfies again assumptions of the lemma \square

A lower bound

Proposition: $\lambda_{k}\left(M_{0}\right) \leq \lambda_{k}\left(M_{\varepsilon}\right)+o(1)$ as $\varepsilon \rightarrow 0$

Here one uses averaging:

$$
N_{j} u(x):=\int_{F} u(x, \cdot) \mathrm{d} F, C_{k} u:=\frac{1}{\operatorname{vol} V_{k}} \int_{V_{k}} u \mathrm{~d} V_{k}
$$

to build the comparison map by interpolation:

$$
\left(\Psi_{\varepsilon}\right)_{j}(x):=\varepsilon^{m / 2}\left(N_{j} u(x)+\rho(x)\left(C_{k} u-N_{j} u(x)\right)\right)
$$

with a suitable ρ smoothly interpolating between zero and one. But a series of estimates one checks that Ψ_{ε} satisfies again assumptions of the lemma \square
In this way the theorem is proved. However, the limiting operator corresponds to Kirchhoff b.c. only

Once more heuristics à la R-S

Trying to get other b.c., consider again the formula

$$
\lambda \int_{V_{\varepsilon}} \phi \bar{u} \mathrm{~d} V_{\varepsilon}=\int_{V_{\varepsilon}}\langle\mathrm{d} \phi, \mathrm{~d} u\rangle \mathrm{d} V_{\varepsilon}+\int_{\partial V_{\varepsilon}} \partial_{\mathrm{n}} \phi \bar{u} \mathrm{~d} \partial V_{\varepsilon}
$$

with different scaling rates of edges and vertices

Once more heuristics à la R-S

Trying to get other b.c., consider again the formula

$$
\lambda \int_{V_{\varepsilon}} \phi \bar{u} \mathrm{~d} V_{\varepsilon}=\int_{V_{\varepsilon}}\langle\mathrm{d} \phi, \mathrm{~d} u\rangle \mathrm{d} V_{\varepsilon}+\int_{\partial V_{\varepsilon}} \partial_{\mathrm{n}} \phi \bar{u} \mathrm{~d} \partial V_{\varepsilon}
$$

with different scaling rates of edges and vertices
If the vertex volume decays slower than $\operatorname{vol}_{d-1} \partial V_{\varepsilon}$, the integrals over V_{ε} dominate. Normalized ef's are nearly vanishing on V_{ε} on the scale on $U_{\varepsilon, j}$; this suggests Dirichlet decoupling plus extra zero modes at vertices

Once more heuristics à la R-S

Trying to get other b.c., consider again the formula

$$
\lambda \int_{V_{\varepsilon}} \phi \bar{u} \mathrm{~d} V_{\varepsilon}=\int_{V_{\varepsilon}}\langle\mathrm{d} \phi, \mathrm{~d} u\rangle \mathrm{d} V_{\varepsilon}+\int_{\partial V_{\varepsilon}} \partial_{\mathrm{n}} \phi \bar{u} \mathrm{~d} \partial V_{\varepsilon}
$$

with different scaling rates of edges and vertices If the vertex volume decays slower than $\operatorname{vol}_{d-1} \partial V_{\varepsilon}$, the integrals over V_{ε} dominate. Normalized ef's are nearly vanishing on V_{ε} on the scale on $U_{\varepsilon, j}$; this suggests Dirichlet decoupling plus extra zero modes at vertices In the borderline case, $\operatorname{vol}_{d} V_{\varepsilon} \approx \operatorname{vol}_{d-1} \partial V_{\varepsilon}$, the ef's should again vary slowly making the integral of $\langle\mathrm{d} \phi, \mathrm{d} u\rangle$ negligible and giving

$$
\lambda_{0} \phi_{0}\left(v_{k}\right)=\sum_{j \in J_{k}} \phi_{0, j}^{\prime}\left(v_{k}\right)
$$

Hence, try a more general scaling

Furthermore, one can try to do the same using different scaling of the edge and vertex regions. Some technical assumptions needed, e.g., the bottlenecks must be "simple"
vertex region $V_{\varepsilon, k}$

Two-speed scaling limit

Let vertices scale as ε^{α}. In a similar way (just more complicated) we find that

- if $\alpha \in\left(1-d^{-1}, 1\right]$ the result is as above: the ev's at the spectrum bottom converge the graph Laplacian with Kirchhoff b.c., i.e. continuity and

$$
\sum \quad u_{j}^{\prime}\left(v_{k}\right)=0
$$

edges meeting at v_{k}

Two-speed scaling limit

Let vertices scale as ε^{α}. In a similar way (just more complicated) we find that

- if $\alpha \in\left(1-d^{-1}, 1\right]$ the result is as above: the ev's at the spectrum bottom converge the graph Laplacian with Kirchhoff b.c., i.e. continuity and

$$
\sum \quad u_{j}^{\prime}\left(v_{k}\right)=0 ;
$$

edges meeting at v_{k}

- if $\alpha \in\left(0,1-d^{-1}\right)$ the "limiting" Hilbert space is $L^{2}\left(M_{0}\right) \oplus \mathbb{C}^{K}$, where K is \# of vertices, and the "limiting" operator acts as Dirichlet Laplacian at each edge and as zero on \mathbb{C}^{K}

Two-speed scaling limit

- if $\alpha=1-d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_{0}(u):=\sum_{j}\left\|u_{j}^{\prime}\right\|_{I_{j}}^{2}$, the domain of which consists of $u=\left\{\left\{u_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}\right\}$ such that $u \in H^{1}\left(M_{0}\right) \oplus \mathbb{C}^{K}$ and the edge and vertex parts are coupled by $\left(\operatorname{vol}\left(V_{k}^{-}\right)^{1 / 2} u_{j}\left(v_{k}\right)=u_{k}\right.$

Two-speed scaling limit

- if $\alpha=1-d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_{0}(u):=\sum_{j}\left\|u_{j}^{\prime}\right\|_{I_{j}}^{2}$, the domain of which consists of $u=\left\{\left\{u_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}\right\}$ such that $u \in H^{1}\left(M_{0}\right) \oplus \mathbb{C}^{K}$ and the edge and vertex parts are coupled by $\left(\operatorname{vol}\left(V_{k}^{-}\right)^{1 / 2} u_{j}\left(v_{k}\right)=u_{k}\right.$
- finally, if vertex regions do not scale at all, $\alpha=0$, the manifold components decouple in the limit again,

$$
\bigoplus_{j \in J} \Delta_{I_{j}}^{\mathrm{D}} \oplus \bigoplus_{k \in K} \Delta_{V_{0, k}}
$$

Two-speed scaling limit

- if $\alpha=1-d^{-1}$, Hilbert space is the same but the limiting operator is given by quadratic form $q_{0}(u):=\sum_{j}\left\|u_{j}^{\prime}\right\|_{I_{j}}^{2}$, the domain of which consists of $u=\left\{\left\{u_{j}\right\}_{j \in J},\left\{u_{k}\right\}_{k \in K}\right\}$ such that $u \in H^{1}\left(M_{0}\right) \oplus \mathbb{C}^{K}$ and the edge and vertex parts are coupled by $\left(\operatorname{vol}\left(V_{k}^{-}\right)^{1 / 2} u_{j}\left(v_{k}\right)=u_{k}\right.$
- finally, if vertex regions do not scale at all, $\alpha=0$, the manifold components decouple in the limit again,

$$
\bigoplus_{j \in J} \Delta_{I_{j}}^{\mathrm{D}} \oplus \bigoplus_{k \in K} \Delta_{V_{0, k}}
$$

- Moral: such a straightforward limiting procedure does not help us to justify choice of appropriate s-a extension It seems that to get a nontrivial coupling one has to add either manifold geometry or external potentials

The third topic: isoperimetric problems

This a traditional topic indeed. Recall, e.g., the Faber-Krahn inequality for the Dirichlet Laplacian $-\Delta_{D}^{M}$ in a compact M : among all regions with a fixed area the ground state is uniquely minimized by the circle,

$$
\inf \sigma\left(-\Delta_{D}^{M}\right) \geq \pi j_{0,1}^{2}|M|^{-1}
$$

The third topic: isoperimetric problems

This a traditional topic indeed. Recall, e.g., the Faber-Krahn inequality for the Dirichlet Laplacian $-\Delta_{D}^{M}$ in a compact M : among all regions with a fixed area the ground state is uniquely minimized by the circle,

$$
\inf \sigma\left(-\Delta_{D}^{M}\right) \geq \pi j_{0,1}^{2}|M|^{-1}
$$

However, topology is crucial. In various problems with non-simply connected M the ground state is maximized by a rotationally symmetric shape:

- a strip of fixed length and width [E.-Harrell-Loss'99]
- a circular obstacle in circular cavity [Harrell-Kröger-Kurata'01]

Point interaction 'loops"

It is not a priori clear what happened if the particle is not strictly confined to a given spatial region as is the case for leaky quantum wires

Point interaction "loops"

It is not a priori clear what happened if the particle is not strictly confined to a given spatial region as is the case for leaky quantum wires
Let us discuss the simplest possible example where the confinement is due to a closed array of δ potentials, so the Hamiltonian can be written formally as

$$
-\Delta+\tilde{\alpha} \sum_{j+1}^{N} \delta\left(x-y_{j}\right) \quad \text { in } L^{2}\left(\mathbb{R}^{d}\right), d=2,3,
$$

where the y_{j} 's are vertices of an equilateral polygon \mathcal{P}_{N}

Point interaction "loops"

It is not a priori clear what happened if the particle is not strictly confined to a given spatial region as is the case for leaky quantum wires
Let us discuss the simplest possible example where the confinement is due to a closed array of δ potentials, so the Hamiltonian can be written formally as

$$
-\Delta+\tilde{\alpha} \sum_{j+1}^{N} \delta\left(x-y_{j}\right),
$$

where the y_{j} 's are vertices of an equilateral polygon \mathcal{P}_{N}
We ask about extremal properties of a regular polygon $\tilde{\mathcal{P}}_{N}$ of the edge length ℓ, which means planar (trivial if $d=2$) with vertices lying on a circle of radius $\ell\left(2 \sin \frac{\pi}{N}\right)^{-1}$

2D point interactions

Fixing the site y and "coupling constant" α we define them by b.c. which change locally the domain of $-\Delta$: we require

$$
\psi(x)=-\frac{1}{2 \pi} \log |x-y| L_{0}(\psi, y)+L_{1}(\psi, y)+\mathcal{O}(|x-y|)
$$

where the generalized b.v. $L_{0}(\psi, y)$ and $L_{1}(\psi, y)$ satisfy

$$
L_{1}(\psi, y)+2 \pi \alpha L_{0}(\psi, y)=0, \quad \alpha \in \mathbb{R}
$$

2D point interactions

Fixing the site y and "coupling constant" α we define them by b.c. which change locally the domain of $-\Delta$: we require

$$
\psi(x)=-\frac{1}{2 \pi} \log |x-y| L_{0}(\psi, y)+L_{1}(\psi, y)+\mathcal{O}(|x-y|)
$$

where the generalized b.v. $L_{0}(\psi, y)$ and $L_{1}(\psi, y)$ satisfy

$$
L_{1}(\psi, y)+2 \pi \alpha L_{0}(\psi, y)=0, \quad \alpha \in \mathbb{R}
$$

In this way we define our Hamiltonian $-\Delta_{\alpha, \mathcal{P}_{N}}$ in $L^{2}\left(\mathbb{R}^{d}\right)$ with N point interactions. We suppose $\sigma_{\text {disc }}\left(-\Delta_{\alpha, \mathcal{P}_{N}}\right) \neq \emptyset$, i.e.

$$
\epsilon_{1} \equiv \epsilon_{1}\left(\alpha, \mathcal{P}_{N}\right):=\inf \sigma\left(-\Delta_{\alpha, \mathcal{P}_{N}}\right)<0,
$$

which is satisfied for any $\alpha \in$ if $d=2$, while in the case $d=3$ it is true below a certain critical value of $\alpha-\mathrm{cf}$. [AGHH'88]

The result

Theorem [E.'04]: Under the stated conditions, $\epsilon_{1}\left(\alpha, \mathcal{P}_{N}\right)$ is for fixed α and ℓ locally sharply maximized by a regular polygon, $\mathcal{P}_{N}=\tilde{\mathcal{P}}_{N}$.

The result

Theorem [E.'04]: Under the stated conditions, $\epsilon_{1}\left(\alpha, \mathcal{P}_{N}\right)$ is for fixed α and ℓ locally sharply maximized by a regular polygon, $\mathcal{P}_{N}=\tilde{\mathcal{P}}_{N}$.

Proof will be reduced to the following geometric problem: Let \mathcal{P}_{N} be an equilateral polygon in $\mathbb{R}^{d}, d \geq 2$. Given a fixed integer $m=2, \ldots,\left[\frac{1}{2} N\right]$ we denote by \mathcal{D}_{m} the sum of lengths of all m-diagonals, i.e. those jumping over m vertices.
$\left(P_{m}\right)$ The quantity \mathcal{D}_{m} is, in the set of equilateral polygons $\mathcal{P}_{N} \subset \mathbb{R}^{d}$ with a fixed edge length $\ell>0$, uniquely maximized by $\tilde{\mathcal{D}}_{m}$ referring to the (family of) regular polygon(s) $\tilde{\mathcal{P}}_{N}$.

Geometric reformulation

By Krein formula, the spectral condition is reduced to an algebraic problem. Using $k=i \kappa$ with $\kappa>0$, we find the ev's $-\kappa^{2}$ from

$$
\operatorname{det} \Gamma_{k}=0 \quad \text { with } \quad\left(\Gamma_{k}\right)_{i j}:=\left(\alpha-\xi^{k}\right) \delta_{i j}-\left(1-\delta_{i j}\right) g_{i j}^{k},
$$

where $g_{i j}^{k}:=G_{k}\left(y_{i}-y_{j}\right)$, or equivalently

$$
g_{i j}^{k}=\left\{\begin{array}{ccc}
\frac{1}{2 \pi} K_{0}\left(\kappa\left|y_{i}-y_{j}\right|\right) & \ldots & d=2 \\
\frac{e^{-k \kappa y_{i}--y_{j} \mid}}{4 \pi\left|y_{i}-y_{j}\right|} & \ldots & d=3
\end{array}\right.
$$

and the regularized Green's f. at the interaction site is

$$
\xi^{k}=\left\{\begin{array}{ccc}
-\frac{1}{2 \pi}\left(\ln \frac{\kappa}{2}+\gamma_{\mathrm{E}}\right) & \ldots & d=2 \\
-\frac{\kappa}{4 \pi} & \ldots & d=3
\end{array}\right.
$$

Geometric reformulation, continued

The ground state refers to point where the lowest ev of $\Gamma_{i \kappa}$ vanishes. Using smoothness and monotonicity of the κ-dependence we have to check that

$$
\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right)<\min \sigma\left(\tilde{\Gamma}_{i \tilde{\kappa}_{1}}\right)
$$

holds locally for $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$, where $-\tilde{\kappa}_{1}^{2}:=\epsilon_{1}\left(\alpha, \tilde{\mathcal{P}}_{N}\right)$

Geometric reformulation, continued

The ground state refers to point where the lowest ev of $\Gamma_{i \kappa}$ vanishes. Using smoothness and monotonicity of the κ-dependence we have to check that

$$
\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right)<\min \sigma\left(\tilde{\Gamma}_{i \tilde{\kappa}_{1}}\right)
$$

holds locally for $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$, where $-\tilde{\kappa}_{1}^{2}:=\epsilon_{1}\left(\alpha, \tilde{\mathcal{P}}_{N}\right)$
There is a one-to-one relation between an ef $c=\left(c_{1}, \ldots, c_{N}\right)$ of $\Gamma_{i \kappa}$ at that pointand the corresponding ef of $-\Delta_{\alpha, \mathcal{P}_{N}}$ given by $c \leftrightarrow \sum_{j=1}^{N} c_{j} G_{i \kappa}\left(\cdot-y_{j}\right)$, up to normalization. In particular, the lowest ev of $\tilde{\Gamma}_{i \tilde{\kappa}_{1}}$ corresponds to the eigenvector $\tilde{\phi}_{1}=N^{-1 / 2}(1, \ldots, 1)$. Hence

$$
\min \sigma\left(\tilde{\Gamma}_{i \tilde{\kappa}_{1}}\right)=\left(\tilde{\phi}_{1}, \tilde{\Gamma}_{i \tilde{\kappa}_{1}} \tilde{\phi}_{1}\right)=\alpha-\xi^{i \tilde{\kappa}_{1}}-\frac{2}{N} \sum_{i<j} \tilde{g}_{i j}^{i \tilde{\kappa}_{1}}
$$

Geometric reformulation, continued

On the other hand, we have $\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right) \leq\left(\tilde{\phi}_{1}, \Gamma_{i \tilde{\kappa}_{1}} \tilde{\phi}_{1}\right)$, and therefore it is sufficient to check that

$$
\sum_{i<j} G_{i \kappa}\left(y_{i}-y_{j}\right)>\sum_{i<j} G_{i \kappa}\left(\tilde{y}_{i}-\tilde{y}_{j}\right)
$$

holds for all $\kappa>0$ and $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$.

Geometric reformulation, continued

On the other hand, we have $\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right) \leq\left(\tilde{\phi}_{1}, \Gamma_{i \tilde{\kappa}_{1}} \tilde{\phi}_{1}\right)$, and therefore it is sufficient to check that

$$
\sum_{i<j} G_{i \kappa}\left(y_{i}-y_{j}\right)>\sum_{i<j} G_{i \kappa}\left(\tilde{y}_{i}-\tilde{y}_{j}\right)
$$

holds for all $\kappa>0$ and $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$. Call $\ell_{i j}:=\left|y_{i}-y_{j}\right|$ and $\tilde{\ell}_{i j}:=\left|\tilde{y}_{i}-\tilde{y}_{j}\right|$ and define $F:\left(\mathbb{R}_{+}\right)^{N(N-3) / 2} \rightarrow \mathbb{R}$ by

$$
F\left(\left\{\ell_{i j}\right\}\right):=\sum_{m=2}^{[N / 2]} \sum_{|i-j|=m}\left[G_{i \kappa}\left(\ell_{i j}\right)-G_{i \kappa}\left(\tilde{\ell}_{i j}\right)\right] ;
$$

Using convexity of $G_{i \kappa}(\cdot)$ for a fixed $\kappa>0$ we get

$$
F\left(\left\{\ell_{i j}\right\}\right) \geq \sum_{m=2}^{[N / 2]} \nu_{m}\left[G_{i \kappa}\left(\frac{1}{\nu_{m}} \sum_{|i-j|=m} \ell_{i j}\right)-G_{i \kappa}\left(\tilde{\ell}_{1,1+m}\right)\right],
$$

where ν_{n} is the number of the appropriate diagonals

Geometric reformulation, continued

Since $G_{i \kappa}(\cdot)$ is monotonously decreasing in $(0, \infty)$, we need

$$
\tilde{\ell}_{1, m+1} \geq \frac{1}{\nu_{n}} \sum_{|i-j|=m} \ell_{i j}
$$

with the sharp inequality for at least one m if $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$. In this way the problem becomes purely geometric

Geometric reformulation, continued

Since $G_{i \kappa}(\cdot)$ is monotonously decreasing in $(0, \infty)$, we need

$$
\tilde{\ell}_{1, m+1} \geq \frac{1}{\nu_{n}} \sum_{|i-j|=m} \ell_{i j}
$$

with the sharp inequality for at least one m if $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$. In this way the problem becomes purely geometric

The claim is then implied by the following result:
Proposition: The property $\left(P_{m}\right)$ holds locally for any $m=2, \ldots,\left[\frac{1}{2} N\right]$

Proof

We are looking for constrained local maxima of the function

$$
f_{m}: f_{m}\left(y_{1}, \ldots, y_{N}\right)=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-y_{i+m}\right|
$$

with $g_{i}\left(y_{1}, \ldots, y_{n}\right):=\ell-\left|y_{i}-y_{i+1}\right|=0, i=1, \ldots, N$. There are in fact $(N-2)(d-1)-1$ independent variables because $2 d-1$ parameters are related to Euclidean transformations

Proof

We are looking for constrained local maxima of the function

$$
f_{m}: f_{m}\left(y_{1}, \ldots, y_{N}\right)=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-y_{i+m}\right|
$$

with $g_{i}\left(y_{1}, \ldots, y_{n}\right):=\ell-\left|y_{i}-y_{i+1}\right|=0, i=1, \ldots, N$. There are in fact $(N-2)(d-1)-1$ independent variables because $2 d-1$ parameters are related to Euclidean transformations It is straightforward to check that $\nabla_{j} K_{m}\left(y_{1}, \ldots, y_{N}\right)$ vanish for a regular polygon, $K_{m}:=f_{m}+\sum_{r=1}^{N} \lambda_{r} g_{r}$, with the Lagrange multipliers taking the value

$$
\lambda=\frac{\sigma_{m}}{N \Upsilon_{m}} \quad \text { with } \quad \sigma_{m}:=\frac{\sin ^{2} \frac{\pi m}{N}}{\sin ^{2} \frac{\pi}{N}}, \Upsilon_{m}:=\ell^{-1}\left|\tilde{y}_{j}-\tilde{y}_{j \pm m}\right|
$$

Proof, continued

Negative definiteness of the Hessian needs more computation. A simple estimate then shows that it is sufficient to establish negative definiteness of the form

$$
\xi \mapsto S_{m}[\xi]:=\sum_{j}\left\{\left|\xi_{j}-\xi_{j+m}\right|^{2}-\sigma_{m}\left|\xi_{j}-\xi_{j+1}\right|^{2}\right\}
$$

on $\mathbb{R}^{N d}$ (the case $m=2$ needs an additional argument)

Proof, continued

Negative definiteness of the Hessian needs more computation. A simple estimate then shows that it is sufficient to establish negative definiteness of the form

$$
\xi \mapsto S_{m}[\xi]:=\sum_{j}\left\{\left|\xi_{j}-\xi_{j+m}\right|^{2}-\sigma_{m}\left|\xi_{j}-\xi_{j+1}\right|^{2}\right\}
$$

on $\mathbb{R}^{N d}$ (the case $m=2$ needs an additional argument)
The two parts can be simultaneously diagonalized; using their ev's one rewrites the condition as the inequality

$$
U_{m-1}\left(\cos \frac{\pi}{N}\right)>\left|U_{m-1}\left(\cos \frac{\pi r}{N}\right)\right|, r=2, \ldots, m-1,
$$

for Chebyshev polynomials of the second kind which can be checked directly \square

Is the maximum global?

Conjecture: The property (P_{m}) holds globally for any $m=2, \ldots,\left[\frac{1}{2} N\right]$

Is the maximum global?

Conjecture: The property $\left(P_{m}\right)$ holds globally for any $m=2, \ldots,\left[\frac{1}{2} N\right]$

We can prove only a particular case:
Proposition: The property $\left(P_{2}\right)$ holds globally if $d=2$

Is the maximum global?

Conjecture: The property $\left(P_{m}\right)$ holds globally for any $m=2, \ldots,\left[\frac{1}{2} N\right]$

We can prove only a particular case:
Proposition: The property $\left(P_{2}\right)$ holds globally if $d=2$
Proof: Call β_{i} the "bending angle" at i-th vertex, then the mean length of the 2 -diagonals is $M_{2}=\frac{2 \ell}{N} \sum_{i=1}^{N} \cos \frac{\beta_{i}}{2}$. Using strict convexity of the function $u \mapsto-\cos \frac{u}{2}$ in $(-\pi, \pi)$ together with $\sum_{i=1}^{N} \beta_{i}=2 \pi w, w \in \mathbb{Z}$, we find

$$
-\sum_{i=1}^{N} \cos \frac{\beta_{i}}{2} \geq-N \cos \left(\sum_{i=1}^{N} \frac{\beta_{i}}{2}\right)=-N \cos \frac{\pi}{N} ;
$$

the inequality is sharp unless all the β_{i} 's are the same \square

Some open questions

- "Tunneling estimates" for other examples of QWG with spatially widely separated perturbations: bends, bulges, periodic perturbations, etc.

Some open questions

- "Tunneling estimates" for other examples of QWG with spatially widely separated perturbations: bends, bulges, periodic perturbations, etc.
- Is there a general result on distant perturbations analogous to usual Agmon metric estimates?

Some open questions

- "Tunneling estimates" for other examples of QWG with spatially widely separated perturbations: bends, bulges, periodic perturbations, etc.
- Is there a general result on distant perturbations analogous to usual Agmon metric estimates?
- Can one get a nontrivial squeezing limit for sleeve manifolds if the (extrinsic) geometrically induced potential, say $K-M^{2}$, is included?

Some open questions

- "Tunneling estimates" for other examples of QWG with spatially widely separated perturbations: bends, bulges, periodic perturbations, etc.
- Is there a general result on distant perturbations analogous to usual Agmon metric estimates?
- Can one get a nontrivial squeezing limit for sleeve manifolds if the (extrinsic) geometrically induced potential, say $K-M^{2}$, is included?
- The squeezing limit for a branched tube system with Dirichlet boundary conditions

Some open questions

- "Tunneling estimates" for other examples of QWG with spatially widely separated perturbations: bends, bulges, periodic perturbations, etc.
- Is there a general result on distant perturbations analogous to usual Agmon metric estimates?
- Can one get a nontrivial squeezing limit for sleeve manifolds if the (extrinsic) geometrically induced potential, say $K-M^{2}$, is included?
- The squeezing limit for a branched tube system with Dirichlet boundary conditions
- Prove the above polygon diagonal conjecture

Some open questions

- "Tunneling estimates" for other examples of QWG with spatially widely separated perturbations: bends, bulges, periodic perturbations, etc.
- Is there a general result on distant perturbations analogous to usual Agmon metric estimates?
- Can one get a nontrivial squeezing limit for sleeve manifolds if the (extrinsic) geometrically induced potential, say $K-M^{2}$, is included?
- The squeezing limit for a branched tube system with Dirichlet boundary conditions
- Prove the above polygon diagonal conjecture
- Analogues of the isoperimetric problem: non-symmetric mass distribution, continuous, higher-dimensional, etc.

The talk was based on

[BE04] D. Borisov, P.E.: Exponential splitting of bound states in a waveguide with a pair of distant windows, J. Phys. A: Math. Gen. A37 (2004), 3411-3428
[EP04] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, J. Geom. Phys., to appear; math-ph / 0312028
[E04] P.E.: An isoperimetric problem for point interactions, math-ph/0406017

The talk was based on

[BE04] D. Borisov, P.E.: Exponential splitting of bound states in a waveguide with a pair of distant windows, J. Phys. A: Math. Gen. A37 (2004), 3411-3428
[EP04] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, J. Geom. Phys., to appear; math-ph / 0312028
[E04] P.E.: An isoperimetric problem for point interactions, math-ph/0406017
for more information see http://www.ujf.cas.cz/ ${ }^{\text {/exner }}$

