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Talk overview

My aim in this talk is to describe three mathematical
problems related to quantum waveguides:

Exponential splitting for distant perturbations
physically “obvious”, mathematically not at all

Squeezing limit of thin graph-like manifolds
where the difficult part still lays ahead

An isoperimetric problem for point interactions
or there are still open questions in Euclidean
geometry, believe or not
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The first problem: distant perturbations
Consider example of a hard-wall (Dirichlet) waveguide with
two Neumann “windows”:
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Naturally this can be regarded as a double waveguide with
two windows in the common boundary (its nontrivial part)
We call the strip Π, its right and left half Π±, respectively.
The Dirichlet part of the boundary is denoted Γl(a), the
Neumann one γl(a). The Laplacian with the appropriate b.c.
is a s-a operator denoted H`(a) which is the main object of
our interest
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Preliminaries: a single window
Recall a few facts – cf. [E.-Šeba-Tater-Vaněk’96] – about
the spectrum of a waveguide with a single Neumann
window of width a. Call this Hamiltonian H(a). Without
loss of generality we may suppose d = π

σess(H(a) = [1,∞) and σdisc(H(a)) 6= ∅ for any a > 0

The simple ev’s λ1(a) < . . . < λn(a) < 1 corresponding
to normalized ef’s ψj ∈ L2(Π) are decreasing w.r.t. a

There are critical values 0 = a0 < a1 < a2 < . . . for which
the system has threshold-resonance solutions ψn

In the limit x1 → ∞ we have

ψn(x) =

√

2

π
sin(x2) + βn e−

√
3 x1 sin(2x2) + O

(

e−
√

8 x1

)

,

ψj(x) = αj(a) e−
√

1−λj(a) x1 sin(x2) + O
(

e−
√

4−λj(a) x1

)
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The non-critical case
Theorem [Borisov-E.’04]: Let a ∈ (an−1, an) for some n ∈ N.
Then the operator Hl(a) with d = π has for any l large
enough exactly 2n eigenvalues λ±j (l, a), j = 1, . . . , n,
situated in the interval (1

4 , 1). Each of them is simple and
has the asymptotic expansions

λ±j (l, a) = λj(a) ∓ µj(a) e−2l
√

1−λj(a) + O
(

e−(4
√

1−λj(a)−σ)l
)

,

as l → ∞ for j = 1, . . . , n with any fixed σ > 0. The
coefficient µj is given by

µj(a) = αj(a)
2π

√

1 − λj(a) =
1

π
√

1 − λj(a)







∫

γ(a)

ψj(x) e
√

1−λj(a) x1 dx1







2

,

where γ(a) denotes the two windows.
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The non-critical case, continued

Theorem, continued: The eigenfunctions ψ±
j (x) associated

with eigenvalues λ±j (l, a), j = 1, . . . , n, are even for λ+
j (l, a)

and odd for λ−j (l, a). Furthermore, in the halfstrips spaces
W 2,1(Π±) they can be approximated for `→ ∞ by

ψ+
j (x) = ψj(x1 ∓ l, x2) + O

(

e−(2
√

1−λj(a)−σ)l
)

,

ψ−
j (x) = ±ψj(x1 ∓ l, x2) + O

(

e−(2
√

1−λj(a)−σ)l
)

.

Remark: The case of a general strip width d is obtained
easily by scaling, cf. [Borisov-E.’04]; the same applies to
the critical case below.
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The critical case
Theorem [Borisov-E.’04]: Let a = an for some n ∈ N. Then
the operator Hl(a) with d = π has for 2n+ 1 ev’s in (1

4 , 1) for l
large enough. The first 2n of them together with the
associated eigenfunctions behave as above, while the last
one, λ+

n+1(l, an), has the asymptotics

λ+
n+1(l, an) = 1 − µ e−4

√
3 l + O

(

e−2(
√

8+
√

3) l
)

,

where

µ = 3β4
nπ

2 =
16

3π2







∫

γ(an)

ψn(x) e
√

3 x1 dx1







4

.
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The critical case, continued

Theorem, continued: The associated eigenfunction ψ+
n+1 is

even w.r.t. x1 and for any fixed R it can be approximated in
the rectangles {x : |x1 ∓ l| < R} ∩ Π for large values of l as

ψ+
n+1(x) = ψn(x1 ∓ l, x2) + O

(

e−2
√

3 l
)

in the W 2,1-norm. Moreover, it behaves asymptotically for
x1 → ±∞ as

ψ+
n+1(x) =

√

2

π
e−κ|x1| sin(x2) + O

(

e−
√

3|x1|
)

,

κ :=
√

1 − λn+1 =
√
µ e−2

√
3l + O

(

e−2
√

8l
)

.
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Scheme of the proof

By the mirror symmetry the problem is reduced to a
halfstrip with one window and a Dirichlet or Neumann
cut at the distance l

Using DN bracketing and techniques of [EŠTV’96] one
shows that each single-window ev is squeezed between
a pair of two-window problem corresponding
respectively to a symmetric and antisymmetric ef,
which depend continuously and monotonously on l,
and converge to each other as l → ∞
Next one has to analyze the resolvent of Hl(a), i.e. to
solve the equation −(∆ + λ)u = f with the appropriate
b.c. for both the unperturbed (one-window) and
perturbed (two-windows) problem; it is sufficient to do
that, say, for a compactly supported f ∈ L2(Π)
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Scheme of the proof, continued
In the unperturbed case we first solve (v) pure Dirichlet
problem in the halfstrip, then we inspect how the
solution changes (w) in a fixed rectangle Πb when the
b.c. change to Neumann in the window. Interpolating
between v and w we rewrite the problem equivalently as
(I + T∞(λ))g = f , where T∞(λ) is a Fredholm operator
on L2(Πb) expressed in terms of v, w

The perturbed case is reformulated similarly into a
Fredholm problem with an operator Tl(λ) which is
checked to be a compact perturbation of T∞(λ)

Resolvents of these operators have meromorphic
structure which is analyzed in a standard way – see,
e.g., the book [Sanchez-Palencia’80]

the threshold-resonance situation is treated similarly,
just the estimates are more complicated �
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Lessons from this example

The asymptotics is similar to what the usual
Schrödinger operator analogy suggests but
not the same as the critical case shows

the result is rather complete including coefficient values
due to explicit construction which yield the singularities

similar construction is likely to work for other QWG with
distant perturbations such as bends, bulges, etc.

At the same time the explicit construction is not simple
and has to be done separately in each particular case.
Thus the following question arises:
Can one formulate a general result using a quantity
which would replace the standard Agmon metric in
the present situation?
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The second problem: quantum graphs
Theoretically, QM on (metric) graphs is a natural concept:

&%
'$

�
�

@
@@
�

�
�

��q q q q Hamiltonian: − ∂2

∂x2

j

+ v(xj)

on graph edges,
boundary conditions at vertices

the question whether it has a practical significance

It appears that it does. First used by Ruedenberg and
Scherr in 1953 as a model of aromatic hydrocarbons, the
idea became really important 10-15 years ago with the
progress of techniques allowing fabrication of quantum
graphs of semiconductor quantum wires
Recently carbon nanotubes became a building material,
after branchings were fabricated, and also microwave
network of optical cables were studied – see [Hul et al.’04]
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Remarks on quantum graphs
The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved using s-a
extensions as I will recall below

Here we consider Schrödinger operators on graphs,
most often free, vj = 0. Naturally one can external
electric and magnetic fields, spin, etc.

Graphs can support also Dirac operators, see
[Bulla-Trenckler’90], although this remains so far a
theoretical possibility only.

The graph literature is extensive; let us refer just to a
review [Kuchment’04] and other references in the recent
topical issue of “Waves in Random Media”
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Vertex coupling
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Consider a star graph with
the state Hilbert space H =
⊕n

j=1 L
2(R+) and an operator

acting on H as ψj 7→ −ψ′′
j

If we take functions from
⊕n

j=1W
2,2(R+) satisfying

ψj(0) = ψ′
j(0) = 0, j = 1, . . . , n, as the domain, we get

a symmetric operator with deficiency indices (n, n).
Admissible Hamiltonian has to be chosen among its s-a
extensions being characterized by n2 real parameters

Since the operator is second-order, all such extensions
are characterized by boundary condition which couple
Ψ(0) := {ψj(0)} and Ψ′(0) := {ψ′

j(0)}
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Vertex coupling parametrization
Universal b.c. were proposed in [Kostrykin-Schrader’99].
They are given by a pair of n× n matrices A,B such that

rank (A,B) = n

AB∗ is self-adjoint

The boundary values have to satisfy the conditions

AΨ(0) +BΨ′(0) = 0

Moreover, the obvious non-uniqueness of such a
parametrization can be removed:

Proposition [Harmer’00]: Vertex couplings are uniquely
characterized by unitary n× n matrices U such that

A = U − I , B = i(U + I)
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Examples of vertex coupling
Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n
∑

j=1

ψ′

j(0) = αψ(0)

with “coupling strength” α ∈ R; α = ∞ gives U = −I

α = 0 corresponds to the “free motion”, the so-called
Kirchhoff boundary conditions (not a well chosen name)

Similarly, U = I − 2
n−iβJ describes the δ′s coupling

ψ′

j(0) = ψ′

k(0) =: ψ′(0) , j, k = 1, . . . , n ,
n
∑
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Why are vertices interesting?

While usually conductivity of graph structures is
controlled by external fields, vertex coupling can
serve the same purpose

It is an interesting problem in itself, recall that for the
generalized point interaction, i.e. graph with n = 2,
the spectrum has nontrivial topological structure
[Tsutsui-Fülöp-Cheon’01]

More recently, the same system has been proposed as
a way to realize a qubit , with obvious consequences
[Tsutsui-Fülöp-Cheon, quant-ph/0404039]

Recall also that in a rectangular lattice with δ coupling
of nonzero α spectrum depends on number theoretic
properties of model geometric parameters [E.’95,’96a;
E.-Gawlista’96]
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It seems to be obvious what to do
Take a more realistic situation with no ambiguity, such
as branching tubes and analyze the squeezing limit :

@
@

@
@

�
�

�
�

@
@

�
�r−→

Unfortunately, this is not sufficient because

after a long effort the Neumann case was solved
[Kuchment-Zeng’01, Rubinstein-Schatzmann’01,
Saito’01] leading to Kirchhoff b.c. only

the important Dirichlet case is open (and difficult)

there are interesting situations – remember the
branching nanotubes mentioned above, etc.
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Preliminaries: weighted graphs
Let M0 be a finite connected graph with vertices vk, k ∈ K

and edges ej ' Ij := [0, `j ], j ∈ J . We add smooth weights
pj : Ij → R+ so the state Hilbert space is

L2(M0) :=
⊕

j∈J

L2(Ij , pj(x) dx) ;

in a similar way Sobolev spaces on M0 are introduced

The form u 7→ ‖u′‖2
M0

:=
∑

j∈J ‖u′‖2
Ij

with u ∈ H1(M0) is
associated with the operator which acts as

∆M0
u = − 1

pj(x)
(pj(x)u

′
j)

′

and satisfies (weighted) Kirchhoff b.c.,
∑

j, ej meets vk

pj(vk)u
′
j(vk) = 0
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Preliminaries: Laplacian on manifolds
Consider a Riemannian manifold X of dimension d ≥ 2 and
the corresponding space L2(X) w.r.t. volume dX equal to
(det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2
X =

∫

X
|du|2dX , |du|2 =

∑

i,j

gij∂iu ∂ju

The closure of this form is associated with the s-a operator
∆X which acts in fixed chart coordinates as

∆Xu = −(det g)−1/2
∑

i,j

∂i((det g)1/2gij ∂ju)

If X is compact with piecewise smooth boundary, one starts
from the form defined on C∞(X). This yields ∆X as the
Neumann Laplacian on X and allows us to treat “fat graphs”
and “sleeves” on the same footing
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Fat graphs and sleeves: manifolds

We associate with the graph M0 a family of manifolds Mε

M0 Mε

ej

vk

Uε,j

Vε,k

We suppose that Mε is a union of compact edge and vertex
components Uε,j and Vε,k such that their interiors are
mutually disjoint for all possible j ∈ J and k ∈ K
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Manifold building blocks

ε

ε

ej vk

Uε,j

Vε,k

However, Mε need not be embedded in some R
d.

It is convenient to assume that Uε,j and Vε,k depend on ε
only through their metric:

for edge regions we assume that Uε,j is diffeomorphic to
Ij × F where F is a compact and connected manifold
(with or without a boundary) of dimension m := d− 1

for vertex regions we assume that the manifold Vε,k is
diffeomorphic to an ε-independent manifold Vk
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Ruedenberg-Scherr argument
For simplicity assume that the radius of Uε,j does not
change, i.e., let pj = 1

Suppose that φ = φε is an ef of ∆X with the ev λ = λε. By
the Gauss-Green formula we have at the vertex Vε,k = Vε

λ

∫

Vε

φu dVε =

∫

Vε

〈dφ, du〉 dVε +

∫

∂Vε

∂nφu d∂Vε

for all u ∈ H1(Mε)

Assume that λε → λ0 and φε → φ0,j. Since vertex volume
(∼ εd) decays faster than the interface area (∼ εd−1) only
the boundary integral over ∂Vε survives in the limit ε→ 0
giving thus Kirchhoff boundary conditions

0 =
∑

j∈Jk

φ′0,j(vk)
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Comparison of eigenvalues
Our main tool here will be minimax principle. Suppose that
H, H′ are separable Hilbert spaces. We want to compare
ev’s λk and λ′k of nonnegative operators Q and Q′ with
purely discrete spectra defined via quadratic forms q and q′

on D ⊂ H and D′ ⊂ H′. Set ‖u‖2
Q,n := ‖u‖2 + ‖Qn/2u‖2.

Lemma: Suppose that Φ : D → D′ is a linear map such that
there are n1, n2 ≥ 0 and δ1, δ2 ≥ 0 such that

‖u‖2 ≤ ‖Φu‖′2 + δ1‖u‖2
Q,n1

, q(u) ≥ q′(Φu) − δ2‖u‖2
Q,n2

for all u ∈ D ⊂ D(Qmax{n1,n2}/2). Then to each k there is a
positive ηk(λk, δ1, δ2) which tends to zero as δ1, δ2 → 0, such
that

λk ≥ λ′k − ηk
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Thickened edges
Let thus U = Ij × F with metric gε, where cross section F
is a compact connected Riemannian manifold of dimension
m = d− 1 with metric h; we assume that volF = 1. We
define another metric g̃ε on Uε,j by

g̃ε := dx2 + ε2r2j (x)h(y) ,

where rj(x) := (pj(x))
1/m; they coincide up to O(ε) error

This property allows us to treat manifolds embedded in R
d

(with metric g̃ε) using product metric gε on the edges

Curved edges: If ej is a smooth curve in R
d the metric

coming form the embedding contains terms given by the
curvature γ of ej. In the limit ε→ 0 they give rise to effective
potential −1

4γ
2. This effect is well known; for simplicity we

assume that the edges are straight
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Eigenvalue convergence

Theorem [E.-Post’04]: Under the stated assumptions
λk(Mε) → λk(M0) as ε→ 0

Proof is based on two-sided estimates. The upper one is
easier and reads
Proposition: λk(Mε) ≤ λk(M0) + o(1) as ε→ 0

To prove it one one defines Φε : L2(M0) → L2(Mε) by

Φεu(z) :=

{

ε−m/2u(vk) if z ∈ Vk

ε−m/2uj(x) if z = (x, y) ∈ Uj

for any u ∈ H1(M0), i.e. multiplication by a constant function
in transverse direction. It is checked directly that the above
lemma applies �
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A lower bound
Proposition: λk(M0) ≤ λk(Mε) + o(1) as ε→ 0
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A lower bound
Proposition: λk(M0) ≤ λk(Mε) + o(1) as ε→ 0

Here one uses averaging:

Nju(x) :=

∫

F
u(x, ·) dF , Cku :=

1

volVk

∫

Vk

u dVk

to build the comparison map by interpolation:

(Ψε)j(x) := εm/2(Nju(x) + ρ(x)(Cku−Nju(x)))

with a suitable ρ smoothly interpolating between zero and
one. But a series of estimates one checks that Ψε satisfies
again assumptions of the lemma �
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(Ψε)j(x) := εm/2(Nju(x) + ρ(x)(Cku−Nju(x)))

with a suitable ρ smoothly interpolating between zero and
one. But a series of estimates one checks that Ψε satisfies
again assumptions of the lemma �

In this way the theorem is proved. However, the limiting
operator corresponds to Kirchhoff b.c. only
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Once more heuristics à la R-S
Trying to get other b.c., consider again the formula

λ

∫

Vε

φu dVε =

∫

Vε

〈dφ, du〉 dVε +

∫

∂Vε

∂nφu d∂Vε

with different scaling rates of edges and vertices
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If the vertex volume decays slower than vold−1∂Vε, the
integrals over Vε dominate. Normalized ef’s are nearly
vanishing on Vε on the scale on Uε,j; this suggests Dirichlet
decoupling plus extra zero modes at vertices
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If the vertex volume decays slower than vold−1∂Vε, the
integrals over Vε dominate. Normalized ef’s are nearly
vanishing on Vε on the scale on Uε,j; this suggests Dirichlet
decoupling plus extra zero modes at vertices
In the borderline case, voldVε ≈ vold−1∂Vε, the ef’s should
again vary slowly making the integral of 〈dφ, du〉 negligible
and giving

λ0φ0(vk) =
∑

j∈Jk

φ′0,j(vk)
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Hence, try a more general scaling

Furthermore, one can try to do the same using different
scaling of the edge and vertex regions. Some technical
assumptions needed, e.g., the bottlenecks must be “simple”

transition region Aε,jk

fat edge Uε,j

vertex region Vε,k

scaled as ε

scaled as εα
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Two-speed scaling limit

Let vertices scale as εα. In a similar way (just more
complicated) we find that

if α ∈ (1−d−1, 1] the result is as above: the ev’s at the
spectrum bottom converge the graph Laplacian with
Kirchhoff b.c., i.e. continuity and

∑

edges meeting at vk

u′j(vk) = 0 ;

if α ∈ (0, 1−d−1) the “limiting” Hilbert space is
L2(M0) ⊕ C

K , where K is # of vertices, and the
“limiting” operator acts as Dirichlet Laplacian at each
edge and as zero on C

K
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Two-speed scaling limit

if α = 1−d−1, Hilbert space is the same but the limiting
operator is given by quadratic form q0(u) :=

∑

j ‖u′j‖2
Ij

,
the domain of which consists of u = {{uj}j∈J , {uk}k∈K}
such that u ∈ H1(M0) ⊕ C

K and the edge and vertex
parts are coupled by (vol (V −

k )1/2uj(vk) = uk

finally, if vertex regions do not scale at all, α = 0, the
manifold components decouple in the limit again,

⊕

j∈J

∆D
Ij
⊕
⊕

k∈K

∆V0,k

Moral: such a straightforward limiting procedure does
not help us to justify choice of appropriate s-a extension
It seems that to get a nontrivial coupling one has to add
either manifold geometry or external potentials
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The third topic: isoperimetric problems

This a traditional topic indeed. Recall, e.g., the Faber-Krahn
inequality for the Dirichlet Laplacian −∆M

D in a compact M :
among all regions with a fixed area the ground state is
uniquely minimized by the circle,

inf σ(−∆M
D ) ≥ π j20,1 |M |−1

However, topology is crucial. In various problems with
non-simply connected M the ground state is maximized by
a rotationally symmetric shape:

a strip of fixed length and width [E.-Harrell-Loss’99]

a circular obstacle in circular cavity
[Harrell-Kröger-Kurata’01]
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Point interaction “loops”
It is not a priori clear what happened if the particle is not
strictly confined to a given spatial region as is the case for
leaky quantum wires
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Point interaction “loops”
It is not a priori clear what happened if the particle is not
strictly confined to a given spatial region as is the case for
leaky quantum wires
Let us discuss the simplest possible example where the
confinement is due to a closed array of δ potentials, so the
Hamiltonian can be written formally as

−∆ + α̃

N
∑

j+1

δ(x− yj) in L2(Rd), d = 2, 3 ,

where the yj ’s are vertices of an equilateral polygon PN
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It is not a priori clear what happened if the particle is not
strictly confined to a given spatial region as is the case for
leaky quantum wires
Let us discuss the simplest possible example where the
confinement is due to a closed array of δ potentials, so the
Hamiltonian can be written formally as

−∆ + α̃

N
∑

j+1

δ(x− yj) ,

where the yj ’s are vertices of an equilateral polygon PN

We ask about extremal properties of a regular polygon P̃N

of the edge length `, which means planar (trivial if d = 2)
with vertices lying on a circle of radius `

(

2 sin π
N

)−1
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2D point interactions
Fixing the site y and “coupling constant” α we define them
by b.c. which change locally the domain of −∆: we require

ψ(x) = − 1

2π
log |x− y|L0(ψ, y) + L1(ψ, y) + O(|x− y|) ,

where the generalized b.v. L0(ψ, y) and L1(ψ, y) satisfy

L1(ψ, y) + 2παL0(ψ, y) = 0 , α ∈ R

In this way we define our Hamiltonian −∆α,PN
in L2(Rd) with

N point interactions. We suppose σdisc

(

−∆α,PN

)

6= ∅, i.e.

ε1 ≡ ε1(α,PN ) := inf σ
(

−∆α,PN

)

< 0 ,

which is satisfied for any α ∈ if d = 2, while in the case d = 3
it is true below a certain critical value of α – cf. [AGHH’88]
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The result
Theorem [E.’04]: Under the stated conditions, ε1(α,PN )
is for fixed α and ` locally sharply maximized by a regular
polygon, PN = P̃N .

Proof will be reduced to the following geometric problem:

Let PN be an equilateral polygon in R
d, d ≥ 2. Given a fixed

integer m = 2, . . . , [12N ] we denote by Dm the sum of lengths
of all m-diagonals, i.e. those jumping over m vertices.

(Pm) The quantity Dm is, in the set of equilateral polygons
PN ⊂ R

d with a fixed edge length ` > 0, uniquely
maximized by D̃m referring to the (family of) regular
polygon(s) P̃N .

Do not believe to find it in Euclidean geometry textbooks :-(
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Geometric reformulation
By Krein formula, the spectral condition is reduced to an
algebraic problem. Using k = iκ with κ > 0, we find the ev’s
−κ2 from

det Γk = 0 with (Γk)ij := (α− ξk)δij − (1 − δij)g
k
ij ,

where gk
ij := Gk(yi − yj), or equivalently

gk
ij =







1
2πK0(κ|yi − yj |) . . . d = 2

e−κ|yi−yj |

4π|yi−yj | . . . d = 3

and the regularized Green’s f. at the interaction site is

ξk =







− 1
2π

(

ln κ
2 + γE

)

. . . d = 2

− κ
4π . . . d = 3
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Geometric reformulation, continued
The ground state refers to point where the lowest ev
of Γiκ vanishes. Using smoothness and monotonicity
of the κ-dependence we have to check that

minσ(Γiκ̃1
) < minσ(Γ̃iκ̃1

)

holds locally for PN 6= P̃N , where −κ̃2
1 := ε1(α, P̃N )

There is a one-to-one relation between an ef c = (c1, . . . , cN )
of Γiκ at that pointand the corresponding ef of −∆α,PN

given
by c↔∑N

j=1 cjGiκ(· − yj), up to normalization. In particular,
the lowest ev of Γ̃iκ̃1

corresponds to the eigenvector
φ̃1 = N−1/2(1, . . . , 1). Hence

minσ(Γ̃iκ̃1
) = (φ̃1, Γ̃iκ̃1

φ̃1) = α− ξiκ̃1 − 2

N

∑

i<j

g̃iκ̃1

ij
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Geometric reformulation, continued
On the other hand, we have minσ(Γiκ̃1

) ≤ (φ̃1,Γiκ̃1
φ̃1), and

therefore it is sufficient to check that
∑

i<j

Giκ(yi − yj) >
∑

i<j

Giκ(ỹi − ỹj)

holds for all κ > 0 and PN 6= P̃N .

Call `ij := |yi − yj | and
˜̀
ij := |ỹi − ỹj | and define F : (R+)N(N−3)/2 → R by

F ({`ij}) :=

[N/2]
∑

m=2

∑

|i−j|=m

[

Giκ(`ij) −Giκ(˜̀ij)
]

;

Using convexity of Giκ(·) for a fixed κ > 0 we get

F ({`ij}) ≥
[N/2]
∑

m=2

νm



Giκ





1

νm

∑

|i−j|=m

`ij



−Giκ(˜̀1,1+m)



 ,

where νn is the number of the appropriate diagonals
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Geometric reformulation, continued

Since Giκ(·) is monotonously decreasing in (0,∞),
we need

˜̀
1,m+1 ≥ 1

νn

∑

|i−j|=m

`ij

with the sharp inequality for at least one m if PN 6= P̃N .
In this way the problem becomes purely geometric

The claim is then implied by the following result:

Proposition: The property (Pm) holds locally for
any m = 2, . . . , [12N ]
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Proof
We are looking for constrained local maxima of the function

fm : fm(y1, . . . , yN ) =
1

N

N
∑

i=1

|yi − yi+m|

with gi(y1, . . . , yn) := `− |yi − yi+1| = 0, i = 1, . . . , N . There
are in fact (N − 2)(d− 1)− 1 independent variables because
2d− 1 parameters are related to Euclidean transformations

It is straightforward to check that ∇jKm(y1, . . . , yN ) vanish
for a regular polygon, Km := fm +

∑N
r=1 λrgr, with the

Lagrange multipliers taking the value

λ =
σm

NΥm
with σm :=

sin2 πm
N

sin2 π
N

, Υm := `−1|ỹj − ỹj±m|
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Proof, continued
Negative definiteness of the Hessian needs more
computation. A simple estimate then shows that it is
sufficient to establish negative definiteness of the form

ξ 7→ Sm[ξ] :=
∑

j

{

|ξj − ξj+m|2 − σm|ξj − ξj+1|2
}

on R
Nd (the case m = 2 needs an additional argument)

The two parts can be simultaneously diagonalized; using
their ev’s one rewrites the condition as the inequality

Um−1

(

cos
π

N

)

>
∣

∣

∣Um−1

(

cos
πr

N

)∣

∣

∣ , r = 2, . . . ,m− 1 ,

for Chebyshev polynomials of the second kind which can
be checked directly �
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Is the maximum global?
Conjecture: The property (Pm) holds globally for
any m = 2, . . . , [12N ]

QMath9; Presque Île de Giens, September 12, 2004 – p.42/44



Is the maximum global?
Conjecture: The property (Pm) holds globally for
any m = 2, . . . , [12N ]

We can prove only a particular case:

Proposition: The property (P2) holds globally if d = 2
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Is the maximum global?
Conjecture: The property (Pm) holds globally for
any m = 2, . . . , [12N ]

We can prove only a particular case:

Proposition: The property (P2) holds globally if d = 2

Proof: Call βi the “bending angle” at i-th vertex, then the
mean length of the 2-diagonals is M2 = 2`

N

∑N
i=1 cos βi

2 .
Using strict convexity of the function u 7→ − cos u

2 in (−π, π)

together with
∑N

i=1 βi = 2πw, w ∈ Z, we find

−
N
∑

i=1

cos
βi

2
≥ −N cos

(

N
∑

i=1

βi

2

)

= −N cos
π

N
;

the inequality is sharp unless all the βi’s are the same �
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Some open questions

“Tunneling estimates” for other examples of QWG
with spatially widely separated perturbations: bends,
bulges, periodic perturbations, etc.

Is there a general result on distant perturbations
analogous to usual Agmon metric estimates?

Can one get a nontrivial squeezing limit for sleeve
manifolds if the (extrinsic) geometrically induced
potential, say K −M2, is included?

The squeezing limit for a branched tube system
with Dirichlet boundary conditions

Prove the above polygon diagonal conjecture

Analogues of the isoperimetric problem: non-symmetric
mass distribution, continuous, higher-dimensional, etc.
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The talk was based on
[BE04] D. Borisov, P.E.: Exponential splitting of bound states in a waveguide with a pair of

distant windows, J. Phys. A: Math. Gen. A37 (2004), 3411-3428

[EP04] P.E., O. Post: Convergence of spectra of graph-like thin manifolds, J. Geom. Phys.,
to appear; math-ph/0312028

[E04] P.E.: An isoperimetric problem for point interactions, math-ph/0406017

for more information see http://www.ujf.cas.cz/ ẽxner
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