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Motivation
Isoperimetric problems are traditional in mathematical
physics. Recall, e.g., the Faber-Krahn inequality for the
Dirichlet Laplacian −∆M

D in a compact M ⊂ R
2: among all

regions with a fixed area the ground state is uniquely
minimized by the circle,

inf σ(−∆M
D ) ≥ π j20,1 |M |−1;

similarly a ball is a minimizer for a compact M ⊂ R
d, d ≥ 3

Another classical example is the PPW conjecture proved
by Ashbaugh and Benguria: in the 2D situation we have

λ2(M)

λ1(M)
≤

(

j1,1

j0,1

)2
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Notice that topology is important

If M is not simply connected, rotational symmetry may
again lead to an extremum but its nature can be different.
Recall a a strip of fixed length and width [E.-Harrell-Loss’99]
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ground state of ground state of<

whenever the strip is not a circular annulus

Another example is a circular obstacle in circular cavity
[Harrell-Kröger-Kurata’01]
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ground state of ground state of<

whenever the obstacle is off center
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Singular Schrödinger operators
Similar results can be proven if the confinement is due to
a (regular or singular) potential. Two models with singular
coupling were analyzed recently [E’05a, E’05b, EHL’05]:
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Singular Schrödinger operators
Similar results can be proven if the confinement is due to
a (regular or singular) potential. Two models with singular
coupling were analyzed recently [E’05a, E’05b, EHL’05]:
In the simplest possible example the interaction has the
form of a closed array of δ potentials, so the Hamiltonian
can be written formally as

−∆ + α̃

N
∑

j=1

δ(x− yj) in L2(Rd) , d = 2, 3 ,

where the yj ’s are vertices of an equilateral polygon PN
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a (regular or singular) potential. Two models with singular
coupling were analyzed recently [E’05a, E’05b, EHL’05]:
In the simplest possible example the interaction has the
form of a closed array of δ potentials, so the Hamiltonian
can be written formally as

−∆ + α̃

N
∑

j=1

δ(x− yj) in L2(R2) , d = 2, 3 ,

where the yj ’s are vertices of an equilateral polygon PN

In the same vein one can analyze an attractive δ potential
supported by a closed loop Γ of fixed length, i.e.

−∆ − αδ(x− Γ) in L2(R2)
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Polymer loops

Consider a problem related to both the above ones;
following [AGHH’88, 05] we can call it a polymer loop

It is an extension of the “discrete” problem to a more
general class of curves: we take a closed loop Γ and
consider a class of singular Schrödinger operators in
L2(Rd), d = 2, 3, given formally by the expression

HN
α,Γ = −∆ + α̃

N−1
∑

j=0

δ

(

x− Γ

(

jL

N

))

We are interested in the shape of Γ which maximizes
the ground state energy provided, of course, that the
discrete spectrum of HN

α,Γ is non-empty.
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Charged necklaces

We will consider at the same time another problem which
concerns a charged necklace. It comes from classical
electrostatics and at a glance it has a little in common
with the quantum mechanical question posed above
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Charged necklaces

We will consider at the same time another problem which
concerns a charged necklace. It comes from classical
electrostatics and at a glance it has a little in common
with the quantum mechanical question posed above

Let Γ : [0, L] → R
3 be again a loop and suppose that N

identical charges are placed at the points Γ(kL/N),
k = 0, 1, . . . , N − 1. We ask about the shape which this
constrained family of point sources will take in absence
of external forces, i.e. about minimum of the potential
energy of the Coulombic repulsion

EPSRC Gregynog Workshop Computation and Analytic Problems in Spectral Theory; July 25, 2005 – p.7/28



Charged necklaces

We will consider at the same time another problem which
concerns a charged necklace. It comes from classical
electrostatics and at a glance it has a little in common
with the quantum mechanical question posed above

Let Γ : [0, L] → R
3 be again a loop and suppose that N

identical charges are placed at the points Γ(kL/N),
k = 0, 1, . . . , N − 1. We ask about the shape which this
constrained family of point sources will take in absence
of external forces, i.e. about minimum of the potential
energy of the Coulombic repulsion

We are going to show that both these problems reduce
essentially to the same geometric question
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A reminder: 2D point interactions
Fixing the site yj and “coupling constant” α we define them
by b.c. which change locally the domain of −∆: we require

ψ(x) = −
1

2π
log |x− yj |L0(ψ, yj) + L1(ψ, yj) + O(|x− yj |) ,

where the generalized b.v. L0(ψ, yj) and L1(ψ, yj) satisfy

L1(ψ, yj) − αL0(ψ, yj) = 0 , α ∈ R

For YΓ := {yj := Γ
(

jL
N

)

: j = 0, . . . , N − 1} we define in this

way −∆α,YΓ
in L2(R2). It holds σdisc

(

−∆α,YΓ

)

6= ∅, i.e.

ε1 ≡ ε1(α, YΓ) := inf σ
(

−∆α,YΓ

)

< 0 ,

which is always true in two dimensions – cf. [AGHH’88, 05]
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A reminder: 3D point interactions
Similarly, for yj and “coupling” α we define them by b.c.
which change locally the domain of −∆: we require

ψ(x) =
1

4π|x− yj |
L0(ψ, yj) + L1(ψ, yj) + O(|x− yj |) ,

where the b.v. L0(ψ, yj) and L1(ψ, yj) satisfy again

L1(ψ, yj) − αL0(ψ, yj) = 0 , α ∈ R,

giving −∆α,YΓ
in L2(R3). However, σdisc

(

−∆α,YΓ

)

6= ∅, i.e.

ε1 ≡ ε1(α, YΓ) := inf σ
(

−∆α,YΓ

)

< 0 ,

is now a nontrivial requirement; it holds only for α below
some critical value α0 – cf. [AGHH’88, 05]
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A local maximum
To begin with, let us formulate the assumptions:

Γ is a continuous, piecewise C1 function, [0, L] → R
d, such

that Γ(0) = Γ(L) and |Γ̇(s)| = 1 holds for any s ∈ [0, L]

In fact that we consider R → R
d (modL), i.e. yj = yj(mod N);

an argument shift means a trivial reparametrization.
Spectra of −∆α,YΓ

and −∆α,YΓ′
corresponding Euclidean

related Γ and Γ′ are the same; speaking about curves we
have naturally in mind such equivalence classes

Theorem: Under the stated assumptions, the (nontrivial)
ground state ε1(α, YΓ) is for fixed α and L > 0 locally
sharply maximized by a regular planar polygon, Γ = P̃N .
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A geometric reformulation
By Krein’s formula, the spectral condition is reduced to an
algebraic problem. Using k = iκ with κ > 0, we find the ev’s
−κ2 of our operator from

det Γk = 0 with (Γk)ij := (α− ξk)δij − (1 − δij)g
k
ij ,

where the off-diagonal elements are gk
ij := Gk(yi − yj), or

equivalently

gk
ij =

1

2π
K0(κ|yi − yj |)

and the regularized Green’s function at the interaction site is

ξk = −
1

2π

(

ln
κ

2
+ γE

)
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Geometric reformulation, continued
The ground state refers to the point where the lowest ev
of Γiκ vanishes. Using smoothness and monotonicity
of the κ-dependence we have to check that

minσ(Γiκ̃1
) < minσ(Γ̃iκ̃1

)

holds locally for Γ 6= P̃N , where −κ̃2
1 := ε1(α, P̃N )

There is a one-to-one relation between an ef c = (c1, . . . , cN )
of Γiκ at that point and the corresponding ef of −∆α,Γ given
by c↔

∑N
j=1 cjGiκ(· − yj), up to normalization. In particular,

the lowest ev of Γ̃iκ̃1
corresponds to the eigenvector

φ̃1 = N−1/2(1, . . . , 1); hence the spectral threshold is

minσ(Γ̃iκ̃1
) = (φ̃1, Γ̃iκ̃1

φ̃1) = α− ξiκ̃1 −
2

N

∑

i<j

g̃iκ̃1

ij
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Geometric reformulation, continued
On the other hand, we have minσ(Γiκ̃1

) ≤ (φ̃1,Γiκ̃1
φ̃1), and

therefore it is sufficient to check that
∑

i<j

Giκ(yi − yj) >
∑

i<j

Giκ(ỹi − ỹj)

holds for all κ > 0 and Γ 6= P̃N .

Call `ij := |yi − yj | and
˜̀
ij := |ỹi − ỹj | and define F : (R+)N(N−3)/2 → R by

F ({`ij}) :=

[N/2]
∑

m=2

∑

|i−j|=m

[

Giκ(`ij) − Giκ(˜̀ij)
]

;

Using the convexity of Giκ(·) for a fixed κ > 0 we get

F ({`ij}) ≥

[N/2]
∑

m=2

νm



Giκ





1

νm

∑

|i−j|=m

`ij



 − Giκ(˜̀1,1+m)



 ,

where νn is the number of the appropriate chords

EPSRC Gregynog Workshop Computation and Analytic Problems in Spectral Theory; July 25, 2005 – p.13/28



Geometric reformulation, continued
On the other hand, we have minσ(Γiκ̃1

) ≤ (φ̃1,Γiκ̃1
φ̃1), and

therefore it is sufficient to check that
∑

i<j

Giκ(yi − yj) >
∑

i<j
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Geometric reformulation, continued
It is easy to see that

νm :=

{

N . . . m = 1, . . . ,
[

1
2(N − 1)

]

1
2N . . . m = 1

2N for N even

since for an even N one has to prevent double counting

Since Giκ(·) is also monotonously decreasing in (0,∞),
we thus need only to demonstrate that

˜̀
1,m+1 ≥

1

νn

∑

|i−j|=m

`ij

with the sharp inequality for at least one m if PN 6= P̃N .
In this way the problem becomes purely geometric
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More general chord inequalities
Recall that for a loop Γ : [0, L] → R

2 we have introduced

yj := Γ

(

jL

N

)

, j = 0, 1, . . . , N − 1 ;

For fixed L > 0, N and m = 1, . . . , [12N ] we consider the
following inequalities for `p norms related to the chord
lengths, that is, the quantities Γ

(

· + jL
N

)

− Γ(·)

Dp
L,N (m) :

∑N
n=1 |yn+m − yn|

p ≤
N1−pLp sinp πm

N

sinp π

N

, p > 0 ,

D−p
L,N (m) :

∑N
n=1 |yn+m − yn|

−p ≥
N1+p sinp π

N

Lp sinp πm

N

, p > 0 .

The RHS’s correspond to regular planar polygon P̃N
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Simple observations

If p = 0 the inequalities turn into trivial identities

By scaling one can put, for instance, the loop
length L = 2π without loss of generality

In general, the inequalities are not valid for p > 2
as the example of a rhomboid shows: Dp

L,4(2) is

equivalent to sinp φ+ cosp φ ≤ 21−(p/2) for 0 < φ < π
which obviously holds for p ≤ 2 only
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Elementary properties

Using convexity of x 7→ xα in (0,∞) for α > 1 we get

Proposition: Dp
L,N (m) ⇒ Dp′

L,N (m) if p > p′ > 0
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Proposition: Dp
L,N (m) ⇒ Dp′

L,N (m) if p > p′ > 0

Furthermore, Schwarz inequality implies

Proposition: Dp
L,N (m) ⇒ D−p

L,N (m) for any p > 0

Conjecture: We expect the above inequalities to be
valid for any p ≤ 2, without substantial restrictions to
the regularity of Γ
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Local validity of D1
L,N(m)

We are looking for constrained local maxima of the function

fm : fm(y1, . . . , yN ) =
1

N

N
∑

i=1

|yi − yi+m|

with gi(y1, . . . , yn) := L
N − |yi − yi+1| ≥ 0, i = 1, . . . , N . There

are in fact (N − 2)(d− 1)− 1 independent variables because
2d− 1 parameters are related to Euclidean transformations

Following the convention for inequality-type constraints we
introduce slack variables zr, r = 1, . . . , N, and Lagrange
multipliers λr, r = 1, . . . , N, which determine

Km(y1, . . . , yN , z1, . . . , zN ) := fm(y1, . . . , yN ) +

N
∑

r=1

λr

(

gr(y1, . . . , yn) − z2
r

)
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Local validity, continued

It is straightforward to check that ∇jKm(y1, . . . , yN ) vanish
for a regular planar polygon, with all the Lagrange
multipliers taking the same value

λ =
σm

NΥm
with σm :=

sin2 πm
N

sin2 π
N

, Υm := `−1|ỹj − ỹj±m|

At the same time, one requires vanishing of the derivatives

∂zj
Km = 2λjzj , j = 1, . . . , N,

which means that at the extremum all the slack variables
vanish, zj = 0. This is not surprising; one expects critical
points of fm to be reached under given constraints with the
neighbour distances maximal, i.e. for a polygon
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Local validity, continued
Negative definiteness of the Hessian needs more
computation. A simple estimate then shows that it is
sufficient to establish negative definiteness of the form

ξ 7→ Sm[ξ] :=
∑

j

{

|ξj − ξj+m|2 − σm|ξj − ξj+1|
2
}

on R
2N (the case m = 2 needs an additional argument)

The two parts can be simultaneously diagonalized; using
their ev’s one rewrites the condition as the inequality

Um−1

(

cos
π

N

)

>
∣

∣

∣
Um−1

(

cos
πr

N

)∣

∣

∣ , r = 2, . . . ,m− 1 ,

for Chebyshev polynomials of the second kind which can
be checked directly. This proves the above theorem
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Application to charged necklaces

Theorem: Under the stated assumptions, the Coulomb
energy of a charged necklace is locally sharply minimized
by a regular planar polygon, Γ = P̃N

Proof: For a given nonzero charge q of each “bead” the
potential energy equals

q2
∑

j 6=k

|yj − yk|
−1 = q2

[ 1

2
N ]

∑

m=1

νm

N

N
∑

n=1

|yn+m − yn|
−1,

and since the inequality D1
L,N (m) implies D−1

L,N (m), the
sum of all repulsion-energy terms is locally sharply
minimized by P̃N . �
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Is D2
L,N(m) globally valid?

Try to adapt the idea of [EHL’05] in the “discrete” case. We
put L = 2π and express Γ through its Fourier series,

Γ(s) =
∑

06=n∈Z

cn eins

with cn ∈ C
d; since Γ(s) ∈ R

d one has to require c−n = c̄n.
Notice that the assumption c0 = 0 can be always satisfied
by a choice of the coordinate system.

It is convenient to assume Γ ∈ C2; the validity of D2
L,N (m)

can be extended by means of Weierstrass theorem and
continuity of the functions involved. Then the derivative
of Γ is a sum of the uniformly convergent Fourier series

Γ̇(s) = i
∑

06=n∈Z

ncn eins
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Global validity, continued
The arc-length parametrization, |Γ̇(s)| = 1, gives

2π =

∫ 2π

0
|Γ̇(s)|2 ds =

∫ 2π

0

∑

06=l∈Z

∑

06=n∈Z

nl c∗l · cn ei(n−l)s ds ,

where c∗l = (c̄l,1, . . . , c̄l,d), or equivalently, the condition
∑

06=n∈Z

n2|cn|
2 = 1 .

Furthermore, the left-hand side of D2
2π,N (m) equals

N
∑

n=1

∑

06=j,k∈Z

c∗j · ck

(

e−2πimj/N − 1
) (

e2πimk/N − 1
)

e2πin(k−j)/N

EPSRC Gregynog Workshop Computation and Analytic Problems in Spectral Theory; July 25, 2005 – p.23/28



Global validity, continued
The arc-length parametrization, |Γ̇(s)| = 1, gives

2π =

∫ 2π

0
|Γ̇(s)|2 ds =

∫ 2π

0

∑

06=l∈Z

∑

06=n∈Z

nl c∗l · cn ei(n−l)s ds ,

where c∗l = (c̄l,1, . . . , c̄l,d), or equivalently, the condition
∑

06=n∈Z

n2|cn|
2 = 1 .

Furthermore, the left-hand side of D2
2π,N (m) equals

N
∑

n=1

∑

06=j,k∈Z

c∗j · ck

(

e−2πimj/N − 1
) (

e2πimk/N − 1
)

e2πin(k−j)/N

EPSRC Gregynog Workshop Computation and Analytic Problems in Spectral Theory; July 25, 2005 – p.23/28



Global validity, continued

Next we change the order of summation and observe that
∑N

n=1 e2πin(k−j)/N = N if j = k (modN) and zero otherwise;
this allows us to write the last expression as

4N
∑

l∈Z

∑

0 6= j, k ∈ Z

j − k = lN

|j|c∗j · |k|ck

∣

∣

∣

∣

j−1 sin
πmj

N

∣

∣

∣

∣

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

.

Hence the sought inequality D2
2π,N (m) is equivalent to

(

d, (A(N,m) ⊗ I)d
)

≤

(

π sin πm
N

N sin π
N

)2
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Global validity, continued
Here the vector d ∈ `2(Z) ⊗ C

d has the components
dj := |j|cj and the operator A(N,m) on `2(Z) is defined as

A
(N,m)
jk :=











∣

∣j−1 sin πmj
N

∣

∣

∣

∣k−1 sin πmk
N

∣

∣ if 0 6= j, k ∈ Z, j − k = lN

0 otherwise

A(N,m) is obviously bounded because its Hilbert-Schmidt
norm is finite. Since ‖d‖ = 1 by construction, we arrive at
the following conclusion:
Proposition: The inequality D2

L,N (m), and thus also
D±p

L,N (m) with p ≤ 2, for fixed values of N = 2, 3, . . . and
m = 1, . . . ,

[

1
2N

]

is valid provided the norm of the operator

A(N,m) does not exceed
(

π sin πm

N

N sin π

N

)2
.
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Remarks

The “continuous” case corresponds formally to N = ∞.
Then A(N,m) is a multiple of I and it is only necessary
to employ |sin jx| ≤ j sinx for any j ∈ N and x ∈ (0, 1

2π].
Here due to infinitely many side diagonals such a
simple estimate yields an unbounded Toeplitz-type
operator, and one has use the matrix-element decay

In the “continuous” case one uses Parseval relation and
the integral analogue of

∑N
i=1 |yi − yi+m|2 is naturally

invariant w.r.t. shifts in the arc-length parametrization.
This is not true here; the shift s→ s+ s0 is equivalent to
the replacement of cj by cjeis0, which changes in
general the expression due to the presence of the
off-diagonal terms

EPSRC Gregynog Workshop Computation and Analytic Problems in Spectral Theory; July 25, 2005 – p.26/28



Remarks

The “continuous” case corresponds formally to N = ∞.
Then A(N,m) is a multiple of I and it is only necessary
to employ |sin jx| ≤ j sinx for any j ∈ N and x ∈ (0, 1

2π].
Here due to infinitely many side diagonals such a
simple estimate yields an unbounded Toeplitz-type
operator, and one has use the matrix-element decay

In the “continuous” case one uses Parseval relation and
the integral analogue of

∑N
i=1 |yi − yi+m|2 is naturally

invariant w.r.t. shifts in the arc-length parametrization.
This is not true here; the shift s→ s+ s0 is equivalent to
the replacement of cj by cjeis0, which changes in
general the expression due to the presence of the
off-diagonal terms

EPSRC Gregynog Workshop Computation and Analytic Problems in Spectral Theory; July 25, 2005 – p.26/28



Summary and outlook

In contrast to the “continuous” case the argument
giving the global solution is more difficult to be
completed, but it can be done – a work in progress

Open question: to find extrema in situations without a
built-in symmetry, i.e. with different couplings or source
spacing. This problem is no longer purely geometric

Another open question: to find higher-dimensional
analogues of the inequalities discussed here
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The talk was based on
[E05a] P.E.: An isoperimetric problem for point interactions, J. Phys. A: Math. Gen. A38

(2005), 4795-4802

[E05b] P.E.: An isoperimetric problem for leaky loops and related mean-chord inequalities,
J. Math. Phys. 46 (2005), 062105

[EHL05] P.E., E. Harrell, M. Loss: Global mean-chord inequalities with application to
isoperimetric problems, in preparation

for more information see http://www.ujf.cas.cz/ ẽxner
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