Isoperimetric problems for point sources and inequalities for loop chords

Pavel Exner
exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

Talk overview

- Motivation: some classical and less classical isoperimetric problems for Schrödinger operators

Talk overview

- Motivation: some classical and less classical isoperimetric problems for Schrödinger operators
- Another motivation coming from electrostatics: charged necklaces

Talk overview

- Motivation: some classical and less classical isoperimetric problems for Schrödinger operators
- Another motivation coming from electrostatics: charged necklaces
- Polymer loops: formulation of the problem

Talk overview

- Motivation: some classical and less classical isoperimetric problems for Schrödinger operators
- Another motivation coming from electrostatics: charged necklaces
- Polymer loops: formulation of the problem
- A geometric reformulation using Krein's formula

Talk overview

- Motivation: some classical and less classical isoperimetric problems for Schrödinger operators
- Another motivation coming from electrostatics: charged necklaces
- Polymer loops: formulation of the problem
- A geometric reformulation using Krein's formula
- Inequalities for ℓ^{p} norms of loop chords

Talk overview

- Motivation: some classical and less classical isoperimetric problems for Schrödinger operators
- Another motivation coming from electrostatics: charged necklaces
- Polymer loops: formulation of the problem
- A geometric reformulation using Krein's formula
- Inequalities for ℓ^{p} norms of loop chords
- Regular polygons as local extrema for polymer loops and charged necklaces

Talk overview

- Motivation: some classical and less classical isoperimetric problems for Schrödinger operators
- Another motivation coming from electrostatics: charged necklaces
- Polymer loops: formulation of the problem
- A geometric reformulation using Krein's formula
- Inequalities for ℓ^{p} norms of loop chords
- Regular polygons as local extrema for polymer loops and charged necklaces
- Global maximizer: a sufficient condition

Talk overview

- Motivation: some classical and less classical isoperimetric problems for Schrödinger operators
- Another motivation coming from electrostatics: charged necklaces
- Polymer loops: formulation of the problem
- A geometric reformulation using Krein's formula
- Inequalities for ℓ^{p} norms of loop chords
- Regular polygons as local extrema for polymer loops and charged necklaces
- Global maximizer: a sufficient condition
- Summary and outlook

Motivation

Isoperimetric problems are traditional in mathematical physics. Recall, e.g., the Faber-Krahn inequality for the Dirichlet Laplacian $-\Delta_{D}^{M}$ in a compact $M \subset \mathbb{R}^{2}$: among all regions with a fixed area the ground state is uniquely minimized by the circle,

$$
\inf \sigma\left(-\Delta_{D}^{M}\right) \geq \pi j_{0,1}^{2}|M|^{-1}
$$

similarly a ball is a minimizer for a compact $M \subset \mathbb{R}^{d}, d \geq 3$

Motivation

Isoperimetric problems are traditional in mathematical physics. Recall, e.g., the Faber-Krahn inequality for the Dirichlet Laplacian $-\Delta_{D}^{M}$ in a compact $M \subset \mathbb{R}^{2}$: among all regions with a fixed area the ground state is uniquely minimized by the circle,

$$
\inf \sigma\left(-\Delta_{D}^{M}\right) \geq \pi j_{0,1}^{2}|M|^{-1}
$$

similarly a ball is a minimizer for a compact $M \subset \mathbb{R}^{d}, d \geq 3$ Another classical example is the PPW conjecture proved by Ashbaugh and Benguria: in the 2D situation we have

$$
\frac{\lambda_{2}(M)}{\lambda_{1}(M)} \leq\left(\frac{j_{1,1}}{j_{0,1}}\right)^{2}
$$

Notice that topology is important

If M is not simply connected, rotational symmetry may again lead to an extremum but its nature can be different. Recall a a strip of fixed length and width [E.-Harrell-Loss'99]

whenever the strip is not a circular annulus

Notice that topology is important

If M is not simply connected, rotational symmetry may again lead to an extremum but its nature can be different. Recall a a strip of fixed length and width [E.-Harrell-Loss'99]

whenever the strip is not a circular annulus
Another example is a circular obstacle in circular cavity [Harrell-Kröger-Kurata'01]

whenever the obstacle is off center

Singular Schrödinger operators

Similar results can be proven if the confinement is due to a (regular or singular) potential. Two models with singular coupling were analyzed recently [E'05a, E'05b, EHL'05]:

Singular Schrödinger operators

Similar results can be proven if the confinement is due to a (regular or singular) potential. Two models with singular coupling were analyzed recently [E'05a, E'05b, EHL'05]: In the simplest possible example the interaction has the form of a closed array of δ potentials, so the Hamiltonian can be written formally as

$$
-\Delta+\tilde{\alpha} \sum_{j=1}^{N} \delta\left(x-y_{j}\right) \quad \text { in } L^{2}\left(\mathbb{R}^{d}\right), d=2,3,
$$

where the y_{j} 's are vertices of an equilateral polygon \mathcal{P}_{N}

Singular Schrödinger operators

Similar results can be proven if the confinement is due to a (regular or singular) potential. Two models with singular coupling were analyzed recently [E'05a, E'05b, EHL'05]: In the simplest possible example the interaction has the form of a closed array of δ potentials, so the Hamiltonian can be written formally as

$$
-\Delta+\tilde{\alpha} \sum_{j=1}^{N} \delta\left(x-y_{j}\right) \quad \text { in } L^{2}\left(\mathbb{R}^{2}\right), d=2,3
$$

where the y_{j} 's are vertices of an equilateral polygon \mathcal{P}_{N} In the same vein one can analyze an attractive δ potential supported by a closed loop Γ of fixed length, i.e.

$$
-\Delta-\alpha \delta(x-\Gamma) \quad \text { in } L^{2}\left(\mathbb{R}^{2}\right)
$$

Polymer loops

Consider a problem related to both the above ones;
following [AGHH'88, 05] we can call it a polymer loop

Polymer loops

Consider a problem related to both the above ones; following [AGHH'88, 05] we can call it a polymer loop

It is an extension of the "discrete" problem to a more general class of curves: we take a closed loop Γ and consider a class of singular Schrödinger operators in $L^{2}\left(\mathbb{R}^{d}\right), d=2,3$, given formally by the expression

$$
H_{\alpha, \Gamma}^{N}=-\Delta+\tilde{\alpha} \sum_{j=0}^{N-1} \delta\left(x-\Gamma\left(\frac{j L}{N}\right)\right)
$$

We are interested in the shape of Γ which maximizes the ground state energy provided, of course, that the discrete spectrum of $H_{\alpha, \Gamma}^{N}$ is non-empty.

Charged necklaces

We will consider at the same time another problem which concerns a charged necklace. It comes from classical electrostatics and at a glance it has a little in common with the quantum mechanical question posed above

Charged necklaces

We will consider at the same time another problem which concerns a charged necklace. It comes from classical electrostatics and at a glance it has a little in common with the quantum mechanical question posed above

Let $\Gamma:[0, L] \rightarrow \mathbb{R}^{3}$ be again a loop and suppose that N identical charges are placed at the points $\Gamma(k L / N)$, $k=0,1, \ldots, N-1$. We ask about the shape which this constrained family of point sources will take in absence of external forces, i.e. about minimum of the potential energy of the Coulombic repulsion

Charged necklaces

We will consider at the same time another problem which concerns a charged necklace. It comes from classical electrostatics and at a glance it has a little in common with the quantum mechanical question posed above

Let $\Gamma:[0, L] \rightarrow \mathbb{R}^{3}$ be again a loop and suppose that N identical charges are placed at the points $\Gamma(k L / N)$, $k=0,1, \ldots, N-1$. We ask about the shape which this constrained family of point sources will take in absence of external forces, i.e. about minimum of the potential energy of the Coulombic repulsion

We are going to show that both these problems reduce essentially to the same geometric question

A reminder: 2D point interactions

Fixing the site y_{j} and "coupling constant" α we define them by b.c. which change locally the domain of $-\Delta$: we require

$$
\psi(x)=-\frac{1}{2 \pi} \log \left|x-y_{j}\right| L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right),
$$

where the generalized b.v. $L_{0}\left(\psi, y_{j}\right)$ and $L_{1}\left(\psi, y_{j}\right)$ satisfy

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R}
$$

A reminder: 2D point interactions

Fixing the site y_{j} and "coupling constant" α we define them by b.c. which change locally the domain of $-\Delta$: we require

$$
\psi(x)=-\frac{1}{2 \pi} \log \left|x-y_{j}\right| L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right)
$$

where the generalized b.v. $L_{0}\left(\psi, y_{j}\right)$ and $L_{1}\left(\psi, y_{j}\right)$ satisfy

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R}
$$

For $Y_{\Gamma}:=\left\{y_{j}:=\Gamma\left(\frac{j L}{N}\right): j=0, \ldots, N-1\right\}$ we define in this way $-\Delta_{\alpha, Y_{\Gamma}}$ in $L^{2}\left(\mathbb{R}^{2}\right)$. It holds $\sigma_{\text {disc }}\left(-\Delta_{\alpha, Y_{\Gamma}}\right) \neq \emptyset$, i.e.

$$
\epsilon_{1} \equiv \epsilon_{1}\left(\alpha, Y_{\Gamma}\right):=\inf \sigma\left(-\Delta_{\alpha, Y_{\Gamma}}\right)<0,
$$

which is always true in two dimensions - cf. [AGHH'88, 05]

A reminder: 3D point interactions

Similarly, for y_{j} and "coupling" α we define them by b.c. which change locally the domain of $-\Delta$: we require

$$
\psi(x)=\frac{1}{4 \pi\left|x-y_{j}\right|} L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right),
$$

where the b.v. $L_{0}\left(\psi, y_{j}\right)$ and $L_{1}\left(\psi, y_{j}\right)$ satisfy again

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R}
$$

A reminder: 3D point interactions

Similarly, for y_{j} and "coupling" α we define them by b.c. which change locally the domain of $-\Delta$: we require

$$
\psi(x)=\frac{1}{4 \pi\left|x-y_{j}\right|} L_{0}\left(\psi, y_{j}\right)+L_{1}\left(\psi, y_{j}\right)+\mathcal{O}\left(\left|x-y_{j}\right|\right)
$$

where the b.v. $L_{0}\left(\psi, y_{j}\right)$ and $L_{1}\left(\psi, y_{j}\right)$ satisfy again

$$
L_{1}\left(\psi, y_{j}\right)-\alpha L_{0}\left(\psi, y_{j}\right)=0, \quad \alpha \in \mathbb{R}
$$

giving $-\Delta_{\alpha, Y_{\Gamma}}$ in $L^{2}\left(\mathbb{R}^{3}\right)$. However, $\sigma_{\text {disc }}\left(-\Delta_{\alpha, Y_{\Gamma}}\right) \neq \emptyset$, i.e.

$$
\epsilon_{1} \equiv \epsilon_{1}\left(\alpha, Y_{\Gamma}\right):=\inf \sigma\left(-\Delta_{\alpha, Y_{\Gamma}}\right)<0,
$$

is now a nontrivial requirement; it holds only for α below some critical value α_{0} - cf. [AGHH'88, 05]

A local maximum

To begin with, let us formulate the assumptions:
Γ is a continuous, piecewise C^{1} function, $[0, L] \rightarrow \mathbb{R}^{d}$, such that $\Gamma(0)=\Gamma(L)$ and $|\dot{\Gamma}(s)|=1$ holds for any $s \in[0, L]$
In fact that we consider $\mathbb{R} \rightarrow \mathbb{R}^{d}(\bmod L)$, i.e. $y_{j}=y_{j(\bmod N)}$; an argument shift means a trivial reparametrization. Spectra of $-\Delta_{\alpha, Y_{\Gamma}}$ and $-\Delta_{\alpha, Y_{\Gamma^{\prime}}}$ corresponding Euclidean related Γ and Γ^{\prime} are the same; speaking about curves we have naturally in mind such equivalence classes

A local maximum

To begin with, let us formulate the assumptions:
Γ is a continuous, piecewise C^{1} function, $[0, L] \rightarrow \mathbb{R}^{d}$, such that $\Gamma(0)=\Gamma(L)$ and $|\dot{\Gamma}(s)|=1$ holds for any $s \in[0, L]$
In fact that we consider $\mathbb{R} \rightarrow \mathbb{R}^{d}(\bmod L)$, i.e. $y_{j}=y_{j(\bmod N)}$; an argument shift means a trivial reparametrization. Spectra of $-\Delta_{\alpha, Y_{\Gamma}}$ and $-\Delta_{\alpha, Y_{\Gamma^{\prime}}}$ corresponding Euclidean related Γ and Γ^{\prime} are the same; speaking about curves we have naturally in mind such equivalence classes

Theorem: Under the stated assumptions, the (nontrivial) ground state $\epsilon_{1}\left(\alpha, Y_{\Gamma}\right)$ is for fixed α and $L>0$ locally sharply maximized by a regular planar polygon, $\Gamma=\tilde{\mathcal{P}}_{N}$.

A geometric reformulation

By Krein's formula, the spectral condition is reduced to an algebraic problem. Using $k=i \kappa$ with $\kappa>0$, we find the ev's $-\kappa^{2}$ of our operator from

$$
\operatorname{det} \Gamma_{k}=0 \quad \text { with } \quad\left(\Gamma_{k}\right)_{i j}:=\left(\alpha-\xi^{k}\right) \delta_{i j}-\left(1-\delta_{i j}\right) g_{i j}^{k},
$$

where the off-diagonal elements are $g_{i j}^{k}:=G_{k}\left(y_{i}-y_{j}\right)$, or equivalently

$$
g_{i j}^{k}=\frac{1}{2 \pi} K_{0}\left(\kappa\left|y_{i}-y_{j}\right|\right)
$$

and the regularized Green's function at the interaction site is

$$
\xi^{k}=-\frac{1}{2 \pi}\left(\ln \frac{\kappa}{2}+\gamma_{\mathrm{E}}\right)
$$

Geometric reformulation, continued

The ground state refers to the point where the lowest ev of $\Gamma_{i \kappa}$ vanishes. Using smoothness and monotonicity of the κ-dependence we have to check that

$$
\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right)<\min \sigma\left(\tilde{\Gamma}_{i \tilde{\kappa}_{1}}\right)
$$

holds locally for $\Gamma \neq \tilde{\mathcal{P}}_{N}$, where $-\tilde{\kappa}_{1}^{2}:=\epsilon_{1}\left(\alpha, \tilde{\mathcal{P}}_{N}\right)$

Geometric reformulation, continued

The ground state refers to the point where the lowest ev of $\Gamma_{i \kappa}$ vanishes. Using smoothness and monotonicity of the κ-dependence we have to check that

$$
\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right)<\min \sigma\left(\tilde{\Gamma}_{i \tilde{\kappa}_{1}}\right)
$$

holds locally for $\Gamma \neq \tilde{\mathcal{P}}_{N}$, where $-\tilde{\kappa}_{1}^{2}:=\epsilon_{1}\left(\alpha, \tilde{\mathcal{P}}_{N}\right)$
There is a one-to-one relation between an ef $c=\left(c_{1}, \ldots, c_{N}\right)$ of $\Gamma_{i \kappa}$ at that point and the corresponding ef of $-\Delta_{\alpha, \Gamma}$ given by $c \leftrightarrow \sum_{j=1}^{N} c_{j} G_{i \kappa}\left(\cdot-y_{j}\right)$, up to normalization. In particular, the lowest ev of $\tilde{\Gamma}_{i \tilde{\kappa}_{1}}$ corresponds to the eigenvector $\tilde{\phi}_{1}=N^{-1 / 2}(1, \ldots, 1)$; hence the spectral threshold is

$$
\min \sigma\left(\tilde{\Gamma}_{i \tilde{\kappa}_{1}}\right)=\left(\tilde{\phi}_{1}, \tilde{\Gamma}_{i \tilde{k}_{1}} \tilde{\phi}_{1}\right)=\alpha-\xi^{i \tilde{\kappa}_{1}}-\frac{2}{N} \sum_{i<j} \tilde{g}_{i j}^{i \tilde{K}_{1}}
$$

Geometric reformulation, continued

On the other hand, we have $\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right) \leq\left(\tilde{\phi}_{1}, \Gamma_{i \tilde{\kappa}_{1}} \tilde{\phi}_{1}\right)$, and therefore it is sufficient to check that

$$
\sum_{i<j} G_{i \kappa}\left(y_{i}-y_{j}\right)>\sum_{i<j} G_{i \kappa}\left(\tilde{y}_{i}-\tilde{y}_{j}\right)
$$

holds for all $\kappa>0$ and $\Gamma \neq \tilde{\mathcal{P}}_{N}$.

Geometric reformulation, continued

On the other hand, we have $\min \sigma\left(\Gamma_{i \tilde{\kappa}_{1}}\right) \leq\left(\tilde{\phi}_{1}, \Gamma_{i \tilde{\kappa}_{1}} \tilde{\phi}_{1}\right)$, and therefore it is sufficient to check that

$$
\sum_{i<j} G_{i \kappa}\left(y_{i}-y_{j}\right)>\sum_{i<j} G_{i \kappa}\left(\tilde{y}_{i}-\tilde{y}_{j}\right)
$$

holds for all $\kappa>0$ and $\Gamma \neq \tilde{\mathcal{P}}_{N}$. Call $\ell_{i j}:=\left|y_{i}-y_{j}\right|$ and $\tilde{\ell}_{i j}:=\left|\tilde{y}_{i}-\tilde{y}_{j}\right|$ and define $F:\left(\mathbb{R}_{+}\right)^{N(N-3) / 2} \rightarrow \mathbb{R}$ by

$$
F\left(\left\{\ell_{i j}\right\}\right):=\sum_{m=2}^{[N / 2]} \sum_{|i-j|=m}\left[G_{i \kappa}\left(\ell_{i j}\right)-G_{i \kappa}\left(\tilde{\ell}_{i j}\right)\right] ;
$$

Using the convexity of $G_{i \kappa}(\cdot)$ for a fixed $\kappa>0$ we get

$$
F\left(\left\{\ell_{i j}\right\}\right) \geq \sum_{m=2}^{[N / 2]} \nu_{m}\left[G_{i \kappa}\left(\frac{1}{\nu_{m}} \sum_{|i-j|=m} \ell_{i j}\right)-G_{i \kappa}\left(\tilde{\ell}_{1,1+m}\right)\right],
$$

where ν_{n} is the number of the appropriate chords

Geometric reformulation, continued

It is easy to see that

$$
\nu_{m}:=\left\{\begin{array}{cll}
N & \ldots & m=1, \ldots,\left[\frac{1}{2}(N-1)\right] \\
\frac{1}{2} N & \ldots & m=\frac{1}{2} N \quad \text { for } N \text { even }
\end{array}\right.
$$

since for an even N one has to prevent double counting

Geometric reformulation, continued

It is easy to see that

$$
\nu_{m}:=\left\{\begin{array}{cll}
N & \ldots & m=1, \ldots,\left[\frac{1}{2}(N-1)\right] \\
\frac{1}{2} N & \ldots & m=\frac{1}{2} N \quad \text { for } N \text { even }
\end{array}\right.
$$

since for an even N one has to prevent double counting Since $G_{i \kappa}(\cdot)$ is also monotonously decreasing in $(0, \infty)$, we thus need only to demonstrate that

$$
\tilde{\ell}_{1, m+1} \geq \frac{1}{\nu_{n}} \sum_{|i-j|=m} \ell_{i j}
$$

with the sharp inequality for at least one m if $\mathcal{P}_{N} \neq \tilde{\mathcal{P}}_{N}$. In this way the problem becomes purely geometric

More general chord inequalities

Recall that for a loop $\Gamma:[0, L] \rightarrow \mathbb{R}^{2}$ we have introduced

$$
y_{j}:=\Gamma\left(\frac{j L}{N}\right), \quad j=0,1, \ldots, N-1 ;
$$

More general chord inequalities

Recall that for a loop $\Gamma:[0, L] \rightarrow \mathbb{R}^{2}$ we have introduced

$$
y_{j}:=\Gamma\left(\frac{j L}{N}\right), \quad j=0,1, \ldots, N-1 ;
$$

For fixed $L>0, N$ and $m=1, \ldots,\left[\frac{1}{2} N\right]$ we consider the following inequalities for ℓ^{p} norms related to the chord lengths, that is, the quantities $\Gamma\left(\cdot+\frac{j L}{N}\right)-\Gamma(\cdot)$

$$
\begin{array}{lll}
D_{L, N}^{p}(m): & \sum_{n=1}^{N}\left|y_{n+m}-y_{n}\right|^{p} \leq \frac{N^{1-p} L^{p} \sin ^{p} \frac{\pi m}{N}}{\sin ^{p} \frac{\pi}{N}}, & p>0, \\
D_{L, N}^{-p}(m): & \sum_{n=1}^{N}\left|y_{n+m}-y_{n}\right|^{-p} \geq \frac{N^{1+p} \sin ^{p} \frac{\pi}{N}}{L^{p} \sin ^{p} \frac{\pi}{N}}, & p>0 .
\end{array}
$$

The RHS's correspond to regular planar polygon $\tilde{\mathcal{P}}_{N}$

Simple observations

- If $p=0$ the inequalities turn into trivial identities

Simple observations

- If $p=0$ the inequalities turn into trivial identities
- By scaling one can put, for instance, the loop length $L=2 \pi$ without loss of generality

Simple observations

- If $p=0$ the inequalities turn into trivial identities
- By scaling one can put, for instance, the loop length $L=2 \pi$ without loss of generality
- In general, the inequalities are not valid for $p>2$ as the example of a rhomboid shows: $D_{L, 4}^{p}(2)$ is equivalent to $\sin ^{p} \phi+\cos ^{p} \phi \leq 2^{1-(p / 2)}$ for $0<\phi<\pi$ which obviously holds for $p \leq 2$ only

Elementary properties

Using convexity of $x \mapsto x^{\alpha}$ in $(0, \infty)$ for $\alpha>1$ we get
Proposition: $D_{L, N}^{p}(m) \Rightarrow D_{L, N}^{p^{\prime}}(m)$ if $p>p^{\prime}>0$

Elementary properties

Using convexity of $x \mapsto x^{\alpha}$ in $(0, \infty)$ for $\alpha>1$ we get
Proposition: $D_{L, N}^{p}(m) \Rightarrow D_{L, N}^{p^{\prime}}(m)$ if $p>p^{\prime}>0$
Furthermore, Schwarz inequality implies
Proposition: $D_{L, N}^{p}(m) \Rightarrow D_{L, N}^{-p}(m)$ for any $p>0$

Elementary properties

Using convexity of $x \mapsto x^{\alpha}$ in $(0, \infty)$ for $\alpha>1$ we get
Proposition: $D_{L, N}^{p}(m) \Rightarrow D_{L, N}^{p^{\prime}}(m)$ if $p>p^{\prime}>0$
Furthermore, Schwarz inequality implies
Proposition: $D_{L, N}^{p}(m) \Rightarrow D_{L, N}^{-p}(m)$ for any $p>0$

Conjecture: We expect the above inequalities to be valid for any $p \leq 2$, without substantial restrictions to the regularity of Γ

Local validity of $D_{L, N}^{1}(m)$

We are looking for constrained local maxima of the function

$$
f_{m}: f_{m}\left(y_{1}, \ldots, y_{N}\right)=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-y_{i+m}\right|
$$

with $g_{i}\left(y_{1}, \ldots, y_{n}\right):=\frac{L}{N}-\left|y_{i}-y_{i+1}\right| \geq 0, i=1, \ldots, N$. There are in fact $(N-2)(d-1)-1$ independent variables because $2 d-1$ parameters are related to Euclidean transformations

Local validity of $D_{L, N}^{1}(m)$

We are looking for constrained local maxima of the function

$$
f_{m}: f_{m}\left(y_{1}, \ldots, y_{N}\right)=\frac{1}{N} \sum_{i=1}^{N}\left|y_{i}-y_{i+m}\right|
$$

with $g_{i}\left(y_{1}, \ldots, y_{n}\right):=\frac{L}{N}-\left|y_{i}-y_{i+1}\right| \geq 0, i=1, \ldots, N$. There are in fact $(N-2)(d-1)-1$ independent variables because $2 d-1$ parameters are related to Euclidean transformations Following the convention for inequality-type constraints we introduce slack variables $z_{r}, r=1, \ldots, N$, and Lagrange multipliers $\lambda_{r}, r=1, \ldots, N$, which determine
$K_{m}\left(y_{1}, \ldots, y_{N}, z_{1}, \ldots, z_{N}\right):=f_{m}\left(y_{1}, \ldots, y_{N}\right)+\sum_{r=1}^{N} \lambda_{r}\left(g_{r}\left(y_{1}, \ldots, y_{n}\right)-z_{r}^{2}\right)$

Local validity, continued

It is straightforward to check that $\nabla_{j} K_{m}\left(y_{1}, \ldots, y_{N}\right)$ vanish for a regular planar polygon, with all the Lagrange multipliers taking the same value

$$
\lambda=\frac{\sigma_{m}}{N \Upsilon_{m}} \quad \text { with } \quad \sigma_{m}:=\frac{\sin ^{2} \frac{\pi m}{N}}{\sin ^{2} \frac{\pi}{N}}, \Upsilon_{m}:=\ell^{-1}\left|\tilde{y}_{j}-\tilde{y}_{j \pm m}\right|
$$

Local validity, continued

It is straightforward to check that $\nabla_{j} K_{m}\left(y_{1}, \ldots, y_{N}\right)$ vanish for a regular planar polygon, with all the Lagrange multipliers taking the same value

$$
\lambda=\frac{\sigma_{m}}{N \Upsilon_{m}} \quad \text { with } \quad \sigma_{m}:=\frac{\sin ^{2} \frac{\pi m}{N}}{\sin ^{2} \frac{\pi}{N}}, \Upsilon_{m}:=\ell^{-1}\left|\tilde{y}_{j}-\tilde{y}_{j \pm m}\right|
$$

At the same time, one requires vanishing of the derivatives

$$
\partial_{z_{j}} K_{m}=2 \lambda_{j} z_{j}, \quad j=1, \ldots, N,
$$

which means that at the extremum all the slack variables vanish, $z_{j}=0$. This is not surprising; one expects critical points of f_{m} to be reached under given constraints with the neighbour distances maximal, i.e. for a polygon

Local validity, continued

Negative definiteness of the Hessian needs more computation. A simple estimate then shows that it is sufficient to establish negative definiteness of the form

$$
\xi \mapsto S_{m}[\xi]:=\sum_{j}\left\{\left|\xi_{j}-\xi_{j+m}\right|^{2}-\sigma_{m}\left|\xi_{j}-\xi_{j+1}\right|^{2}\right\}
$$

on $\mathbb{R}^{2 N}$ (the case $m=2$ needs an additional argument)

Local validity, continued

Negative definiteness of the Hessian needs more computation. A simple estimate then shows that it is sufficient to establish negative definiteness of the form

$$
\xi \mapsto S_{m}[\xi]:=\sum_{j}\left\{\left|\xi_{j}-\xi_{j+m}\right|^{2}-\sigma_{m}\left|\xi_{j}-\xi_{j+1}\right|^{2}\right\}
$$

on $\mathbb{R}^{2 N}$ (the case $m=2$ needs an additional argument) The two parts can be simultaneously diagonalized; using their ev's one rewrites the condition as the inequality

$$
U_{m-1}\left(\cos \frac{\pi}{N}\right)>\left|U_{m-1}\left(\cos \frac{\pi r}{N}\right)\right|, r=2, \ldots, m-1
$$

for Chebyshev polynomials of the second kind which can be checked directly. This proves the above theorem

Application to charged necklaces

Theorem: Under the stated assumptions, the Coulomb energy of a charged necklace is locally sharply minimized by a regular planar polygon, $\Gamma=\tilde{\mathcal{P}}_{N}$

Application to charged necklaces

Theorem: Under the stated assumptions, the Coulomb energy of a charged necklace is locally sharply minimized by a regular planar polygon, $\Gamma=\tilde{\mathcal{P}}_{N}$

Proof: For a given nonzero charge q of each "bead" the potential energy equals

$$
q^{2} \sum_{j \neq k}\left|y_{j}-y_{k}\right|^{-1}=q^{2} \sum_{m=1}^{\left[\frac{1}{2} N\right]} \frac{\nu_{m}}{N} \sum_{n=1}^{N}\left|y_{n+m}-y_{n}\right|^{-1},
$$

and since the inequality $D_{L, N}^{1}(m)$ implies $D_{L, N}^{-1}(m)$, the sum of all repulsion-energy terms is locally sharply minimized by $\tilde{\mathcal{P}}_{N}$. \square

Is $D_{L, N}^{2}(m)$ globally valid?

Try to adapt the idea of [EHL'05] in the "discrete" case. We put $L=2 \pi$ and express Γ through its Fourier series,

$$
\Gamma(s)=\sum_{0 \neq n \in \mathbb{Z}} c_{n} \mathrm{e}^{\text {ins }}
$$

with $c_{n} \in \mathbb{C}^{d}$; since $\Gamma(s) \in \mathbb{R}^{d}$ one has to require $c_{-n}=\bar{c}_{n}$. Notice that the assumption $c_{0}=0$ can be always satisfied by a choice of the coordinate system.

Is $D_{L, N}^{2}(m)$ globally valid?

Try to adapt the idea of [EHL'05] in the "discrete" case. We put $L=2 \pi$ and express Γ through its Fourier series,

$$
\Gamma(s)=\sum_{0 \neq n \in \mathbb{Z}} c_{n} \mathrm{e}^{\text {ins }}
$$

with $c_{n} \in \mathbb{C}^{d}$; since $\Gamma(s) \in \mathbb{R}^{d}$ one has to require $c_{-n}=\bar{c}_{n}$. Notice that the assumption $c_{0}=0$ can be always satisfied by a choice of the coordinate system.
It is convenient to assume $\Gamma \in C^{2}$; the validity of $D_{L, N}^{2}(m)$ can be extended by means of Weierstrass theorem and continuity of the functions involved. Then the derivative of Γ is a sum of the uniformly convergent Fourier series

$$
\dot{\Gamma}(s)=i \sum_{0 \neq n \in \mathbb{Z}} n c_{n} \mathrm{e}^{i n s}
$$

Global validity, continued

The arc-length parametrization, $|\dot{\Gamma}(s)|=1$, gives

$$
2 \pi=\int_{0}^{2 \pi}|\dot{\Gamma}(s)|^{2} \mathrm{~d} s=\int_{0}^{2 \pi} \sum_{0 \neq l \in \mathbb{Z}} \sum_{0 \neq n \in \mathbb{Z}} n l c_{l}^{*} \cdot c_{n} \mathrm{e}^{i(n-l) s} \mathrm{~d} s
$$

where $c_{l}^{*}=\left(\bar{c}_{l, 1}, \ldots, \bar{c}_{l, d}\right)$, or equivalently, the condition

$$
\sum_{0 \neq n \in \mathbb{Z}} n^{2}\left|c_{n}\right|^{2}=1
$$

Global validity, continued

The arc-length parametrization, $|\dot{\Gamma}(s)|=1$, gives

$$
2 \pi=\int_{0}^{2 \pi}|\dot{\Gamma}(s)|^{2} \mathrm{~d} s=\int_{0}^{2 \pi} \sum_{0 \neq l \in \mathbb{Z}} \sum_{0 \neq n \in \mathbb{Z}} n l c_{l}^{*} \cdot c_{n} \mathrm{e}^{i(n-l) s} \mathrm{~d} s,
$$

where $c_{l}^{*}=\left(\bar{c}_{l, 1}, \ldots, \bar{c}_{l, d}\right)$, or equivalently, the condition

$$
\sum_{0 \neq n \in \mathbb{Z}} n^{2}\left|c_{n}\right|^{2}=1
$$

Furthermore, the left-hand side of $D_{2 \pi, N}^{2}(m)$ equals
$\sum_{n=1}^{N} \sum_{0 \neq j, k \in \mathbb{Z}} c_{j}^{*} \cdot c_{k}\left(\mathrm{e}^{-2 \pi i m j / N}-1\right)\left(\mathrm{e}^{2 \pi i m k / N}-1\right) \mathrm{e}^{2 \pi i n(k-j) / N}$

Global validity, continued

Next we change the order of summation and observe that $\sum_{n=1}^{N} \mathrm{e}^{2 \pi i n(k-j) / N}=N$ if $j=k(\bmod N)$ and zero otherwise; this allows us to write the last expression as

$$
4 N \sum_{l \in \mathbb{Z}} \sum_{\substack{0 \neq j, k \in \mathbb{Z} \\ j-k=l N}}|j| c_{j}^{*} \cdot|k| c_{k}\left|j^{-1} \sin \frac{\pi m j}{N}\right|\left|k^{-1} \sin \frac{\pi m k}{N}\right| .
$$

Global validity, continued

Next we change the order of summation and observe that $\sum_{n=1}^{N} \mathrm{e}^{2 \pi i n(k-j) / N}=N$ if $j=k(\bmod N)$ and zero otherwise; this allows us to write the last expression as

$$
4 N \sum_{l \in \mathbb{Z}} \sum_{\substack{0 \neq j, k \in \mathbb{Z} \\ j-k=l N}}|j| c_{j}^{*} \cdot|k| c_{k}\left|j^{-1} \sin \frac{\pi m j}{N}\right|\left|k^{-1} \sin \frac{\pi m k}{N}\right| .
$$

Hence the sought inequality $D_{2 \pi, N}^{2}(m)$ is equivalent to

$$
\left(d,\left(A^{(N, m)} \otimes I\right) d\right) \leq\left(\frac{\pi \sin \frac{\pi m}{N}}{N \sin \frac{\pi}{N}}\right)^{2}
$$

Global validity, continued

Here the vector $d \in \ell^{2}(\mathbb{Z}) \otimes \mathbb{C}^{d}$ has the components $d_{j}:=|j| c_{j}$ and the operator $A^{(N, m)}$ on $\ell^{2}(\mathbb{Z})$ is defined as

$$
A_{j k}^{(N, m)}:= \begin{cases}\left|j^{-1} \sin \frac{\pi m j}{N}\right|\left|k^{-1} \sin \frac{\pi m k}{N}\right| & \text { if } 0 \neq j, k \in \mathbb{Z}, j-k=l N \\ 0 & \text { otherwise }\end{cases}
$$

Global validity, continued

Here the vector $d \in \ell^{2}(\mathbb{Z}) \otimes \mathbb{C}^{d}$ has the components $d_{j}:=|j| c_{j}$ and the operator $A^{(N, m)}$ on $\ell^{2}(\mathbb{Z})$ is defined as
$A_{j k}^{(N, m)}:= \begin{cases}\left|j^{-1} \sin \frac{\pi m j}{N}\right|\left|k^{-1} \sin \frac{\pi m k}{N}\right| & \text { if } 0 \neq j, k \in \mathbb{Z}, j-k=l N \\ 0 & \text { otherwise }\end{cases}$
$A^{(N, m)}$ is obviously bounded because its Hilbert-Schmidt norm is finite. Since $\|d\|=1$ by construction, we arrive at the following conclusion:
Proposition: The inequality $D_{L, N}^{2}(m)$, and thus also $D_{L, N}^{ \pm p}(m)$ with $p \leq 2$, for fixed values of $N=2,3, \ldots$ and $m=1, \ldots,\left[\frac{1}{2} N\right]$ is valid provided the norm of the operator $A^{(N, m)}$ does not exceed $\left(\frac{\pi \sin \frac{\pi m}{N}}{N \sin \frac{N}{N}}\right)^{2}$.

Remarks

- The "continuous" case corresponds formally to $N=\infty$. Then $A^{(N, m)}$ is a multiple of I and it is only necessary to employ $|\sin j x| \leq j \sin x$ for any $j \in \mathbb{N}$ and $x \in\left(0, \frac{1}{2} \pi\right]$. Here due to infinitely many side diagonals such a simple estimate yields an unbounded Toeplitz-type operator, and one has use the matrix-element decay

Remarks

- The "continuous" case corresponds formally to $N=\infty$. Then $A^{(N, m)}$ is a multiple of I and it is only necessary to employ $|\sin j x| \leq j \sin x$ for any $j \in \mathbb{N}$ and $x \in\left(0, \frac{1}{2} \pi\right]$. Here due to infinitely many side diagonals such a simple estimate yields an unbounded Toeplitz-type operator, and one has use the matrix-element decay
- In the "continuous" case one uses Parseval relation and the integral analogue of $\sum_{i=1}^{N}\left|y_{i}-y_{i+m}\right|^{2}$ is naturally invariant w.r.t. shifts in the arc-length parametrization. This is not true here; the shift $s \rightarrow s+s_{0}$ is equivalent to the replacement of c_{j} by $c_{j} \mathrm{e}^{i s_{0}}$, which changes in general the expression due to the presence of the off-diagonal terms

Summary and outlook

- In contrast to the "continuous" case the argument giving the global solution is more difficult to be completed, but it can be done - a work in progress

Summary and outlook

- In contrast to the "continuous" case the argument giving the global solution is more difficult to be completed, but it can be done - a work in progress
- Open question: to find extrema in situations without a built-in symmetry, i.e. with different couplings or source spacing. This problem is no longer purely geometric

Summary and outlook

- In contrast to the "continuous" case the argument giving the global solution is more difficult to be completed, but it can be done - a work in progress
- Open question: to find extrema in situations without a built-in symmetry, i.e. with different couplings or source spacing. This problem is no longer purely geometric
- Another open question: to find higher-dimensional analogues of the inequalities discussed here

The talk was based on

[E05a] P.E.: An isoperimetric problem for point interactions, J. Phys. A: Math. Gen. A38 (2005), 4795-4802
[E05b] P.E.: An isoperimetric problem for leaky loops and related mean-chord inequalities, J. Math. Phys. 46 (2005), 062105
[EHL05] P.E., E. Harrell, M. Loss: Global mean-chord inequalities with application to isoperimetric problems, in preparation

The talk was based on

[E05a] P.E.: An isoperimetric problem for point interactions, J. Phys. A: Math. Gen. A38 (2005), 4795-4802
[E05b] P.E.: An isoperimetric problem for leaky loops and related mean-chord inequalities, J. Math. Phys. 46 (2005), 062105
[EHL05] P.E., E. Harrell, M. Loss: Global mean-chord inequalities with application to isoperimetric problems, in preparation
for more information see http://www.ujf.cas.cz/~exner

