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Ubi materia, ibi geometria

Even if Kepler wrote this in a particular context and physics of his
cosmography was wrong, the phrase appeared to have a deeper meaning.

With this motto in mind, here is the outline of the course:

Lecture I: Quantum graphs and waveguides, where they come from
and what they are good for.

Lecture II: How to match the wavefunctions at the branching points
and it does mean physically.

Lecture III: Transport in quantum graphs: resonances, spectral bands,
and the Bethe-Sommerfeld property.

Lecture IV: Graphs violating the time-reversal invariance. Taking
tunneling into account: the leaky graph model.

Lecture V: Asymptotical properties of leaky graph spectra. Spectral
optimization problems for graphs and waveguides.

Lecture VI: Spectral effects caused by magnetic fields. Soft quantum
waveguides and an outlook.
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Pauling’s insight

Constrained motions can be found in many parts of physics, often a
distinction between natural and artificial constraints being not sharp.

In QM an example of a constrained motion appeared in its early days when
Linus Pauling suggested that the pictures describing molecules of aromatic
hydrocarbons, like benzene, napfthalene, anthracene sketched here
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and others – ignoring the double edges marking the bond type – are more
than symbols. He conjectured that some electrons form a graph-shaped
frame in which the remaining ones move.

Using this idea, he managed to calculate spectra of such molecules with
∼10% accuracy, a remarkable feat for such a primitive model.
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Matching the wave functions

Doing so, Pauling had to decide how the electron wave functions match
at the graph vertices. He choose a simple receipt assuming that they are
continuous and the sum of their derivatives vanishes, that is, what people
today mostly call Kirchhoff conditions.

This choice requires a justification as it is not the only possibility. The
answer was proposed seventeen years later using another natural idea:
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K. Ruedenberg, C.W. Scherr: Free–electron network model for conjugated systems, I. Theory, J. Chem. Phys. 21 (1953),
1565–1581.

By a formal use of Green’s formula, they showed that the squeezing limit
of free motion in a branched tube with Neumann boundary yields nothing
but the Kirchhoff conditions used by Pauling.

After that, however, the subject was happily forgotten for several decades!
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Rebirth of the concept

The new inspiration came from physics again, namely from the progress
in solid state physics. Since the 1980s the fabrication techniques improved
allowing us to produce structure so tiny and clean that the electron
transport is coherent.

 

The left figure shows a demonstration of Aharonov-Bohm effect in ring of
diameter diameter 784nm made of gold wire of width 41nm, the right one
a ring-type heterostructure made of AlGaAs-GaAs.

R.A. Webb, S. Washburn, C.P. Umbach, R.B. Laibowitz: Observation of h/e Aharonov-Bohm oOscillations in
normal-metal rings, Phys. Rev. Lett. 54 (1985), 2696–2699.

A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Wegscheider, M. Bichler: Energy spectra of quantum rings,
Nature 413 (2001), 822–825.

Quantum graphs appeared be very good models of such systems!
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The sort of graphs we need

Graph theory is venerable part of mathematics which roots can be traced
back at least to 1736 when Lenhard Euler answered the question about the
seven bridges of Königsberg. A graph in this understanding is a collection
of vertices and of edges connecting them in accordance with the graph
adjacency matrix. The literature on these graphs is immense.

We need more, however, our graphs have to metric ones, meaning that we
assign a length with each edge and can identify it with a line segment.
This allows us to consider differential operators on them associated with
QM observables:
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on graph edges,

boundary conditions at vertices

The two graph concepts are related; we will return to this question later.
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Remarks
Unless stated otherwise, we use units in which ~ = 2m = 1, etc.

There are numerous materials of which such graph-like systems are
constructed. We mentioned semiconductors or metals materials, one
can also use carbon nanotubes, etc.

Observed from the stationary point of view, it is not surprising that
properties of such systems can be successfully simulated by microwave
networks built of optical cables.

O. Hul, S. Bauch, P. Pakoński, N. Savytskyy, K. Życzkowski, L. Sirko: Experimental simulation of quantum
graphs by microwave networks, Phys. Rev. E69 (2004), 056205.

Particles confined to a graph can be under influence of external fields.
Here we mostly assume that, apart of the constraint, the motion is
free, however, we will also pay attention to magnetic effects.

In addition to Schrödinger, graphs can also support Dirac operators.
Such models gained importance recently; the reason is that electron
motion in graphene can be described by massless Dirac equation.

W. Bulla, T. Trenkler : The free Dirac operator on compact and noncompact graphs, J. Math. Phys. 31 (1990),
1157–1163.
J. Bolte, J.M. Harrison: Spectral statistics for the Dirac operator on graphs, J. Phys. A: Math. Gen. 36 (2003),
2747–2769.
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Remarks

Graphs are also used to describe other physical processes governed,
for example, by the wave or elasticity equation.

P. Freitas, J. Lipovský: Eigenvalue asymptotics for the damped wave equation on metric graphs, J. Diff. Eqs 263
(2013), 2780–2811.

J.-C. Kiik, P. Kurasov, M. Usman: On vertex conditions for elastic systems, Phys. Lett. A379 (2015), 1871–1876.

One can also consider other than linear dynamics on graphs, for
instance, the nonlinear Schrödinger equation used as effective
description of many particle systems, and others.

D. Noja: Nonlinear Schrödinger equation on graphs: recent results and open problems, Phil. Trans. Roy. Soc.
A372 (2014), 20130002.

M. Cavalcante: The Korteweg-de Vries equation on a metric star graph, ZAMP 69 (2018), 124.

Graphs proved to be a versatile tool to study quantum chaos.

T. Kottos, U. Smilansky: Quantum chaos on graphs, Phys. Rev. Lett. 79 (1997), 4794–4797.

The graph literature is extensive indeed; the best source I can
recommend to start with is the monograph

G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.
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Vertex coupling

After setting the scene, let us return the concept of quantum graph,
in particular to matching the wave functions.

Recall that to define a QM Hamiltonian, in general it is not sufficient to
specify its differential symbol. To qualify as an observable, the operator
must be self-adjoint, H = H∗, which for an unbounded operator is a
considerably stronger requirement than mere symmetry, H ⊂ H∗.

In physicist’s language this means to demand that that the probability
current must be preserved. Let us illustrate that on an example:
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The most simple case is a star graph with
the state Hilbert space H =

⊕n
j=1 L

2(R+)
and the particle Hamiltonian acting on H
as ψj 7→ −ψ′′j
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Vertex coupling
Since the operator is of second order, the boundary condition involve
the values of functions and the first outward derivatives at the vertex.

These boundary values can be written as columns, Ψ(0) := {ψj(0)} and
Ψ′(0) := {ψ′j(0)}, the entries understood as left limits at the endpoint;
then the most general self-adjoint matching conditions are of the form

AΨ(0) + BΨ′(0) = 0,

where the n × n matrices A,B satisfy the conditions

rank (A,B) = n

AB∗ is Hermitean

V. Kostrykin, R. Schrader: Kirhhoff’s rule for quantum wires, J. Phys. A: Math. Gen. 32 (1999), 595–630.

Naturally, these conditions are non-unique, as A,B can be replaced by
CA,CB with a regular C . This non-uniqueness can be removed by using

(U − I )Ψ(0) + i(U + I )Ψ′(0) = 0,

where U is a unitary n × n matrix.
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Vertex coupling
The claim is easy to verify. To see that it is enough to express the
squared norms ‖Ψ(0)± i`Ψ′(0)‖2

Cn and subtract them from each other;
the difference is nothing but the boundary form,

(Hψ,ψ)− (ψ,Hψ) =
n∑

j=1

(ψ̄jψ
′
j − ψ̄′jψj)(0) = 0,

which has to vanish to make the operator self’adjoint.

Note that each term of the sum is, up to the factor 1
2 , nothing but the

probability current in the jth edge, taken in the outward direction.

As a consequence, the two vectors having the same norm must be related
by an n × n unitary matrix; this gives (U − I )Ψ(0) + i`(U + I )Ψ′(0) = 0.

It seems that we have one more parameter, but it is not important because
the matrices corresponding to two different values are related by

U ′ =
(`+ `′)U + `− `′

(`− `′)U + `+ `′
.

Thus we can set ` = 1, which means just a choice of the length scale.
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Why we should care about different couplings?
The answer to this question is: from the simple reason – because they
describe a different physics. We will encounter various manifestation of
this fact but let us illustrate the claim on the example of star graph of
n edges, denoting its different Hamiltonians as HU .

One of them is HD corresponding to U = −I , in other words, each edge
component of HU is a halfline Laplacian with Dirichlet boundary condition,
ψj(0) = 0. The spectrum of these operators is easily found, it implies that
σ(HD) = R+ of multiplicity n.

For any U we have σess(HU) = R+, because (HU − z)−1 − (HD − z)−1

is an operator of finite rank (equal to n) but in addition, there may be
negative eigenvalues.

Question: How many of them do we have?

Answer: Their number coincides with the number of eigenvalues of U in
the open upper complex halfplane. Indeed, the matching condition can
diagonalized, and on the appropriate subspaces of

⊕n
j=1 L

2(R+) we get n

Robin problems, φ′j(0) + tan
αj

2 φj(0) = 0 for the eigenvalue eiαj of U.
P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture I September 6, 2021 - 12 -



Examples of vertex coupling
Denote by J the n × n matrix whose all entries are equal to one;
then U = 2

n+iαJ − I corresponds to the so-called δ coupling,

ψj(0) = ψk(0) =: ψ(0), j , k = 1, . . . , n,
n∑

j=1

ψ′j (0) = αψ(0)

with ‘coupling strength’ α ∈ R; α =∞ gives the Dirichlet U = −I
On the other hand, α = 0 is the Kirchhoff condition representing a
‘free motion’. The name is unfortunate – ‘free’ or ‘standard’ would
be better – but it stuck.
Similarly, U = I − 2

n−iβJ describes the δ′s coupling,

ψ′j (0) = ψ′k(0) =: ψ′(0), j , k = 1, . . . , n,
n∑

j=1

ψj(0) = βψ′(0)

with β ∈ R. For β =∞ we get the Neumann decoupling; the case
β = 0 is sometimes referred to as anti-Kirchhoff condition.
Another generalization of the 1D δ′ interaction is the δ′ coupling:

n∑
j=1

ψ′j (0) = 0, ψj(0)− ψk(0) =
β

n
(ψ′j (0)− ψ′k(0)), 1 ≤ j , k ≤ n

with U = n−iα
n+iα I −

2
n+iαJ and Neumann edge decoupling for β =∞.
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More examples

The above one-parameter families of vertex couplings exhibit a
permutation symmetry related to the fact that their U’s are
combinations of I and J . In general, couplings with this property
form a two-parameter family described by U = uI + vJ satisfying
|u| = 1 and |u + nv | = 1 corresponding to the conditions

(u − 1)(ψj(0)− ψk(0)) + i(u − 1)(ψ′j(0)− ψ′k(0)) = 0

(u − 1 + nv)
n∑

k=1

ψk(0) + i(u − 1 + nv)
n∑

k=1

ψ′k(0) = 0

This is still a small subset among all couplings which depend on n2

real parameters. Symmetries allow us to distinguish other subfamilies.
For instance, since the time reversal is (in spinless systems) realized
through complex conjugation, HU describes a time-reversal-invariant
dynamics iff the matrix U is invariant w.r.t. transposition, U = Ut.

Other examples will be mentioned later.
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Quantum waveguides
We return to graphs later, now let us change the topic. Using graphs
to model real-world objects like semiconductor quantum wires we make
certainly some idealizations:

real wires have a nonzero diameter

the confinement is not perfect, in particular, quantum tuneling is
possible between different wires (or different part of the same wire)

Let us deal with the first point, forgetting temporarily about the possibility
of tuneling; for simplicity supppose that we are in a 2D situation and the
particle is confined to a strip of width 2a in the plane with hard walls.

In the absence of other forces, the Hamiltonian is then the (negative)
Laplacian, −∆, and the spectral problem means to solve the equation

−
( ∂2

∂x2
+

∂2

∂y2

)
ψ(x , y) = λψ(x , y), x ∈ R, |y | < a,

with Dirichlet boundary condition describing the hard wall, that is

ψ(x ,±a) = 0.
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A 2D quantum waveguide
This is easy to solve by separation of variables: the transverse problem,
−χ′′(y) = κ2χ(y), has a discrete spectrum,

κ2
n =

(πn
2a

)2

, χ2n−1(y) =
1√
a

cosκ2n−1y , χ2n(y) =
1√
a

sinκ2ny , n = 1, 2, . . .,

while the spectrum of the longitudinal part is [0,∞). Consequently, the
spectrum of the full problem in [κ2

1,∞) with the generalized eigenfunctions

χn(y) e±ikx referring to energy κ2
n + k2

It is so simple that you may wonder why I am mentioning it at all. The
reason will become with obvious when we note a nontrivial geometry may
change the picture. As the simplest example suppose that the strip is bent.

To be specific, consider a curve Γ : R→ R2 assuming that it is smooth
and asymptotically straight and put Ω := {x ∈ R2 : dist(x , Γ) < a}; the
strip considered above, which denote as Ω0, refers naturally to the trivial
situation when Γ is a straight line.
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A bent Dirichlet strip
Classical intuition suggests that nothing much happens: the particle
may reflect from the walls but the only closed trajectories are those
perpendicular to the strip axis, a zero measure set in the phase space.

To see what happens with a quantum particle, we have to solve the
spectral problem, −∆Ω

Dψ = λψ, for the corresponding Dirichlet Laplacian.
A useful trick is to parametrize Ω using locally orthogonal curvilinear
coordinates s, u, parallel and perpendicular to the strip axis, respectively,

x(s, u) =
(
Γ1(s)− uΓ̇2(s), Γ2(s) + uΓ̇1(s)

)
, |u| < a.

We transform −∆ into these coordinates and remove the Jacobian
replacing, with an abuse of notation, ψ(x) with (1 + uγ(s))1/2ψ(s, u),
where γ(s) := (Γ̈2Γ̇1 − Γ̈1Γ̇2)(s) is the signed curvature of Γ; then we
have to find the spectrum of the following Dirichlet operator in L2(Ω0):

H =− ∂

∂s
(1 + uγ(s))−2 ∂

∂s
− ∂2

∂u2
+ V (s, u),

V (s, u) :=− γ(s)2

4(1 + uγ(s))2
+

uγ̈(s)

2(1 + uγ(s))3
− 5

4

u2γ̇(s)2

(1 + uγ(s))4
.
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A bent Dirichlet strip

In this way, we have to solve an equation on a straight strip but a
more complicated; the geometry was now translated into the coefficients.

It is not as bad as it looks at a glance. First of all, since Ω is supposed to
be asymptotically straight, it is not difficult to check that the bend keeps
the essential spectrum preserved, σ(−∆Ω

D) = [κ2
1,∞). Moreover, we have

H = − ∂2

∂u2
− ∂2

∂s2
− 1

4
γ(s)2 +O(a) as a→ 0,

and as a 1D Schrödinger operator with a purely attractive potential, the
longitudinal part has at least one negative eigenvalues whenever γ 6= 0.

Remark: Limits like a→ 0 were studied in the 1970s as a tool for
quantization on manifolds. In particular, Jǐŕı Tolar computed them in all
dimensions and codimensions – but his supervisor told him it was good for
nothing so he put it into his drawer and published it only many years later:

J. Tolar: On a quantum mechanical d’Alembert principle, in Group Theoretical Methods in Physics, Lecture Notes in
Physics, vol. 313, Springer, Berlin 1988; pp. 268-274.

Moral: Listen to your supervisor, but think twice before taking his advice!
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A bent Dirichlet strip

But we can do better, without restriction on the strip width. Consider
any a > 0 for which the strip boundary is still smooth, a‖γ‖∞ < 1, and
the strip does not intersect itself.

We apply the variational method: if we find a function φ ∈ D(H) such
that (ψ,Hψ) < κ2

1‖ψ‖2, the spectrum threshold would be below κ2
1.

Using the Ansatz ψ(s, u) = φλ(s)χ1(u) + εf (s, u), one can check that
choosing appropriately functions φλ(s) and f and the number ε, we
achieve the goal obtaining the following result:

Theorem

If the strip axis is a C 4 smooth curve, not straight but asymptotically
straight [leaving out the precise formulation], the the Dirichlet Laplacian
in the curved strip has at least one isolated eigenvalue below κ2

1.

J. Goldstone, R.L. Jaffe: Bound states in twisting tubes, Phys. Rev. B45 (1992), 14100–14107.

P. Duclos, P.E.: Curvature–induced bound states in quantum waveguides in two and three dimensions, Rev. Math. Phys.
7 (1995), 73–102.
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How it differs from the classical motion?

Trying to understand where this effect might come from we may think
of what classical mechanics tells us about a bobsleigh moving down
through a twisting, banked, iced track. As we all know in the curved
part the conservation laws make the bobsleigh ‘climb’ the track wall,

Source: Wikipedia

However, for a ‘quantum bobsleigh’ the transverse contribution to the
energy is quantized so it may not be able to ‘jump’ from one transverse
level to another one.

The comparison is only partly fitting, of course, one can note that a
bobsleigh in a rectangular-shaped track would climb nowhere.
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Smoothness is not obligatory

What is important, the effect of geometrically induced binding is robust.

To illustrate this claim, consider Ω in the shape of an L-shaped strip; we
choose the width 2a = π so that κ2

1 = 1. Expanding the sought solution to
−∆Ω

Dψ = λψ into the ‘transverse’ basis, one can prove that the operator
has a single eigenvalue ≈ 0.929; the corresponding eigenfunction is

P.E., P. Šeba, P. Št’ov́ıček: On existence of a bound state in an L-shaped waveguide, Czech. J. Phys. B39 (1989),
1181–1191.
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Other geometries
Moreover, the binding effect coming from the geometry of the guide is
not restricted to bends. For instance, it is not difficult to see that bound
states occur if the tube has a local ‘bulge’.

Similar effect can also be seen in more complicated geometries. Consider,
for instance, a pair of parallel Dirichlet strips of widths d1, d2 and suppose
they are connected laterally by window of width a in the common boundary

The essential (absolutely continuous) spectrum of the Hamiltonian H

starts now at
(
π
d

)2
, where d = max{d1, d2} and we have

Theorem

The discrete spectrum of H is nonempty for any a > 0 and

]σdisc(H) ≥ 2a

d

√
1−

( d

d1 + d2

)2

P.E., P. Šeba, M. Tater, D. Vaněk: Bound states and scattering in quantum waveguides coupled laterally through a
boundary window, J. Math. Phys. 37 (1996), 4867–4887.
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Example: two particular cases

Let us plot two eigenfunction, the ground state for d1 = d2 and the
second excited state is an asymmetric waveguide:

In particular, this example illustrates well the purely quantum nature of
the effect: a classical particle in such a system cannot be trapped except
for the (phase-space measure zero!) events of reflections, either from
the window edges or perpendicular to the walls.
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A detour: Šeba billiard
Of course, this is not the only example illustrating profound differences
between the classical and quantum mechanics. Let us mention one more,
remotely related, which concerns a chaotic behavior.

In the canonical chaotic behavior example of Sinai billiard, shrinking the
obstacle to a point, the system becomes integrable.

Quantum chaos shows in the eigenvalue spacing distribution, and the
quantum Sinai billiard remains chaotic even if the obstacle is a point
interaction – for the moment we leave aside what this means. What is
important, such an effect was also observed experimentally.

Source: wikipedia
Source: [SAYO’10]

P. Šeba: Wave chaos in singular quantum billiard, Phys. Rev. Lett. 64 (1990), 1855–1858.

C. Stone, Y.A. El Aoudi, V.A. Yurovsky, M. Olshanii1: Two simple systems with cold atoms: quantum chaos tests and
non-equilibrium dynamics, New J. Phys. 12 (2010), 055022.
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More results about waveguides

The results can be tested experimentally in flat electromagnetic
waveguides.

J.T. Londergan, J.P. Carini, D.P. Murdock: Binding and Scattering in Two-Dimensional Systems. Applications
to Quantum Wires, Waveguides and Photonic Crystals, Springer LNP m60, Berlin 1999.

Similar results hold for other boundary conditions except Neumann.
However, if the boundaries are different, the orientation matters, e.g.,
in a DN strip a bending produces bound states if the Dirichlet
condition is ‘inside’ and it does not in the opposite case.

J. Dittrich, J. Kř́ıž: Curved planar quantum wires with Dirichlet and Neumann boundary conditions, J. Phys. A:
Math. Gen. 35 (2002), L269–275.

Similar results hold for three-dimensional bent tubes of circular cross
section.

If the cross section is not circular, we have to consider the twisting
which, in contrast to the bending, produces a repulsive interaction.

For many more results see

P.E., H. Kovǎŕık: Quantum Waveguides; xxii + 382 p.; Springer International, Heidelberg 2015.
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Quantum layers

If we take this exercise one dimension higher, we can observe other
interesting phenomena. Such situations have again a physical meaning,
say, as models of electrons is semiconductor layers on a non-flat substrate.

 

 

                            

 

We consider a particle confined to a hard-wall layer
of width 2a built over an infinite, smooth, non-
planar, asymptotically flat surface Σ. As in the
previous case we can use the curvilinear coordi-
nates in which, for thin layers, we have

H = − ∂2

∂u2
− g−1/2 ∂

∂sµ
g1/2gµν

∂

∂sν
+ K −M2 +O(a),

where g is metric tensor of the surface Σ, and K , M are its Gauss and
mean curvatures, respectively. Since K = k1k2 and M = 1

2 (k1 + k2), the
leading term of the effective potential, K −M2 = −1

4 (k1 − k2)2, is again
of the attractive nature, vanishing only on planes and spheres.
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The effective potential in a thin layer
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Curvature induced bound states in layers
However, the existence results are not limited to thin layers only:

Theorem

If the surface Σ is C 4 smooth non-planar and K =
∫

Σ K dΣ ≤ 0 we have
inf σ(H) < κ2

1. If Σ is asymptotically flat [leaving out again the precise
formulation], the the Dirichlet Laplacian has at least one isolated
eigenvalue below κ2

1.

P. Duclos, P.E., H. Krejčǐŕık: Bound states in curved quantum layers, Commun. Math. Phys. 223 (2001), 13–28.

Furthermore, the Cohn-Vossen inequality states that

K ≤ 2π (2− 2h − e),

where h is the genus of Σ and e is the number of ends
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Nontrivial topology & positive Gauss curvature

Hence K < 0 whenever h ≥ 1 and we have

Theorem

Conclusions of the previous theorem hold whenever Σ is not conformally
equivalent to the plane.

G. Carron, P.E., D. Krejčǐŕık: Topologically non-trivial quantum layers, J. Math. Phys. 45 (2004), 774–784.

In the opposite situation, K > 0, we do not have such a universal result,
just several sufficient conditions. As you may expect, one of them
guarantees the existence of curvature induced bound states provided the
layer halfwidth a is small enough.

But layers of positive Gauss curvature reveal other interesting property,
namely that the spectral properties may depend on the global geometry
of the region to which the particle is confined.
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Example: conical layers

Consider a hard-wall layer of the thickness π built over conical surface
of an opening angle π − 2θ for some θ ∈ (0, 1

2π),

Σθ := {(r , φ, z) ∈ R3 : z = r sin θ, φ ∈ [0, 2π)}

Call the corresponding Dirichlet Laplacian Hθ. We have

Theorem

For any fixed θ ∈ (0, 1
2π) we have σess(Hθ) = [1,∞) while the discrete

spectrum of the operator is non-empty with ]σdisc(Hθ) =∞. Each
eigenfunction is axially symmetric, i.e. independent of φ.

P.E., M. Tater: Spectrum of Dirichlet Laplacian in a conical layer, J. Phys. A: Math. Theor. 43 (2010), 474023.

The discrete spectrum infiniteness is related to the fact that the geodetic
circles on Σθ are shorter than their counterparts in the plane, which means
that the effective attractive potential that behaves asymptotically as c

r2 .
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Conical layer eigenvalues

 

Plot of the dependence of the first six eigenvalues on θ
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Conical layer eigenfunctions

 

Plot of the first seven eigenvalues for θ = 5π
36
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Conical layer probability distributions

 Plot of the radial cuts of the first seven probability distributions for θ = 5π
36
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What to bring home from Lecture I

A novel concept, such as the one of a quantum graph, is likely to
develop rapidly if it reflects a topic of wide interest in physics. If
it is connected with attractive mathematical problems, the better.

Quantum graphs offer a nice illustration of the importance of
self-adjointness, or more specifically, they show that this property
is much more than mere ‘Hermiticity’ of operators supposed to
represent observables.

Quantum waveguides, layers, and other structures of this type offer
a demonstration that geometric constraints can induce nontrivial
spectral and dynamical properties.

They also show that such system may exhibit behavior of purely
quantum nature which defies our intuition rooted in our everyday
‘classical’ experience.
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