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Meaning of the vertex coupling
Let us return to the question how to choose the way in which wave
functions in the graph vertices. We have mentioned the natural idea to
look into free motion in a network collapsing to the graph, symbolically
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K. Ruedenberg, C.W. Scherr: Free–electron network model for conjugated systems, I. Theory, J. Chem. Phys. 21 (1953),
1565–1581.

It looks simple but if fact it a mathematically quite hard problem!

First of all, the answer depends on which sort of boundary the network
has. Ruedenberg and Scherr assumed that it is Neumann, and finally,
around the turn of the century, mathematicians addressed this case, e.g.

P. Kuchment, H. Zeng: Convergence of spectra of mesoscopic systems collapsing onto a graph, J. Math. Anal. Appl. 258
(2001), 671–700.

J. Rubinstein, M. Schatzman: Variational problems on multiply connected thin strips, I. Basic estimates and convergence
of the Laplacian spectrum, Arch. Rat. Mech. Anal. 160 (2001), 271–308.

Y. Saito: The limiting equation for Neumann Laplacians on shrinking domains, Electron. J. Differ. Eq. 31 (2000), 1–25.
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Squeezing a Neumann network
Let first M0 be a finite connected graph with vertices vk , k ∈ K and
edges ej ' Ij := [0, `j ], j ∈ J; the respective state Hilbert space is thus
the orthogonal sum of L2 spaces on the edges, L2(M0) :=

⊕
j∈J L

2(Ij).

The quadratic form u 7→ ‖u′‖2
M0

:=
∑

j∈J ‖u′‖2
Ij

with the domain

consisting of functions u ∈ H1(M0) is associated with the self-adjoint
operator which acts as −∆M0u = {−u′′j } and satisfies Kirchhoff b.c.

Consider next a Riemannian manifold X of dimension d ≥ 2 and the
corresponding Hilbert space L2(X ) with the volume element dX equal
to (det g)1/2dx in a fixed chart. For u ∈ C∞comp(X ) we set

qX (u) := ‖du‖2
X =

∫
X
|du|2dX , |du|2 =

∑
i ,j

g ij∂iu ∂ju.

The closure of this form is associated with the self-adjoint operator ∆X

which acts in fixed chart coordinates as

∆Xu = −(det g)−1/2
∑
i ,j

∂i
(
(det g)1/2g ij ∂ju

)
.
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Squeezing a Neumann network
If X is compact with a piecewise smooth boundary, the form is initially
defined on C∞(X ) and ∆X is the Neumann Laplacian on X .

This formalism allows us to treat ‘fat graphs’ and ‘sleeves’ on the same
footing; what is important is that lowest ‘transverse’ eigenfunction which
corresponds to the part of the operator referring to a perpendicular cut of
the fattened edge, is in both cases a constant.

We associate with graph M0 a family of manifolds Mε as sketched here

M0 Mε
ej

vk

Uε,j

Vε,k

which are all constructed from X by taking a suitable ε-dependent family
of metrics; the advantage of such an approach is that we work with the
intrinsic geometrical properties only, no need to embed M into some Rd .
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Construction of the approximation
The analysis requires dissection of Mε into a union of ‘building blocks’,
compact edge and vertex components Uε,j and Vε,k with appropriate
scaling properties,

ε

ε

ej vk

Uε,j

Vε,k

for edge regions we assume that Uε,j is diffeomorphic to Ij × F where
F is a compact and connected manifold (with or without a boundary)
of dimension m := d − 1 with a metric h,

for vertex regions we assume that the manifold Vε,k is diffeomorphic
to an ε-independent manifold Vk ,

there is a technical issue: we have to replace the product metric on by
a modified one given by gε := dx2 + ε2h(y). The two coincide up to
an O(ε) error, of course, the reason is that the length of the edge
part changes during the squeezing,
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Eigenvalue convergence
In this setting one can prove the convergence in the following sense:

Theorem

Under the stated assumptions, λk(Mε)→ λk(M0) holds as ε→ 0 .

P.E., O. Post: Convergence of spectra of graph-like thin manifolds, J. Geom. Phys. 54 (2005), 77–115.

This convergence concerns the eigenvalues of −∆Mε associated with
the lowest transverse eigenfunction, the others escape to infinity.

We thus get Kirchhoff conditions. The same holds more generally
when the edge part diameter is nonconstant, the limiting graph
operator then acts as uj 7→ − 1

pj
(pju

′)′.

The same is true if the vertex region scaling is slower, εα, with a
smooth transition between the two regimes, as long as α ∈

(
d−1
d , 1

)
.

On the other hand, if the vertex scaling is too slow, α ∈
[
0, d−1

d

)
, the

result is the family of disconnected edges with Dirichlet endpoints. In
the critical case, α = d−1

d , we get something like a δ coupling but
with the energy-dependent coupling constant.
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Improving the convergence
The fact that we get Kirchhoff coupling is not the only problem. The
obtained eigenvalue convergence for finite graphs is in fact a rather weak
result. Fortunately, one can do better.

Theorem

Let Mε be graphlike manifolds associated with a metric graph M0, not
necessarily finite. Under some natural uniformity conditions (see below),
−∆Mε → −∆M0 as ε→ 0+ in the norm-resolvent sense (with suitable
identification), in particular, the σdisc and σess converge uniformly in any
bounded interval, and eigenfunctions converge as well.

O. Post: Spectral convergence of quasi-one-dimensional spaces, Ann. Henri Poincaré, 7 (2006), 933–973.

O. Post: Spectral Analysis on Graph-Like Spaces, Lecture Notes in Mathematics, vol. 2039, Springer, Berlin 2011.

The natural uniformity conditions here mean (i) existence of nontrivial
bounds on vertex degrees and volumes, edge lengths, and the second
Neumann eigenvalues at vertices, (ii) appropriate scaling (analogous to
the one described above) of the metrics at the edges and vertices.
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More results of this type
The claim looks simple but in fact it is highly nontrivial because we
compare here operators acting in different spaces; we will mention the
used technique briefly a bit later.

Before doing that, let us
note that on graphs with
semi-infinite ‘outer’ edges
one can investigate reso-
nances. What happens
with them if the graph is re-
placed by a family of ‘fat’
graphs as, for instance, in
the lasso graph example
sketched here?

 

Using exterior complex scaling in the ‘longitudinal’ variable one can prove
a convergence result for resonances in the limit ε→ 0 ; the same is true for
embedded eigenvalues of the graph Laplacian which may either remain
embedded or become resonances for ε > 0.

P.E., O. Post: Convergence of resonances on thin branched quantum wave guides, J. Math. Phys. 48 (2007), 092104.
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Can one get other vertex couplings?

As a hint, let us ask first about an approximation on the graph itself,
replacing the Laplacian by suitable Schrödinger operators.
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For the sake of simplicity, consider again
a star graph with H =

⊕n
j=1 L

2(R+)
and on it Schrödinger operator acting as
ψj 7→ −ψ′′j + Vjψj on the edge compo-
nents of the wave function

We adopt the following assumptions:

Vj ∈ L1
loc(R+), j = 1, . . . , n,

we have the δ coupling in the vertex with a parameter α.

Then the operator, denoted as Hα(V ), is self-adjoint as the potential
terms in the boundary form obviously cancel.

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture II September 6, 2021 - 9 -



Potential approximation of a δ coupling

Suppose that the potential has a shrinking component of the form

Wε,j :=
1

ε
Wj

(x
ε

)
, j = 1, . . . , n.

By an argument analogous to that used in the situation when one
approximates the δ function on line by a family of regular functions,
one can prove the following result:

Theorem

Suppose that Vj ∈ L1
loc(R+) are below bounded and Wj ∈ L1(R+) for

j = 1, . . . , n . Then
H0(V + Wε) −→ Hα(V )

holds as ε→ 0+ in the norm resolvent sense, with the coupling parameter
α :=

∑n
j=1

∫∞
0 Wj(x) dx.

P.E.: Weakly coupled states on branching graphs, Lett. Math. Phys. 38 (1996), 313–320.
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A network model of δ coupling: formulation

For simplicity, we will consider star graphs; extension to more general
cases will be straightforward. Let thus G = Iv have one vertex v and deg v
adjacent edges of lengths `e ∈ (0,∞].

The corresponding Hilbert space is L2(G ) :=
⊕

e∈E L2(I )e , the decoupled
Sobolev space of order k is defined as

Hk
max(G ) :=

⊕
e∈E

Hk(Ie)

together with its natural norm.

Let p = {pe}e be a vector of pe > 0 for e ∈ E . The Sobolev space
associated to p is the subset with prescribed behavior at the, origin,

H1
p(G ) :=

{
f ∈ H1

max(G )
∣∣ f ∈ Cp

}
,

where f := {fe(0)}e , in particular, if p = (1, . . . , 1) we arrive at the
continuous Sobolev space denoted simply as H1(G ) := H1

p(G ).
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Operators on the graph
We introduce first the (in general, weighted) free Hamiltonian ∆G as
the self-adjoint operator associated with the form d = dG given by

d(f ) := ‖f ′‖2
G =

∑
e

‖f ′e‖2
Ie and dom d := H1

p(G )

for a fixed p (from now on, we drop the weight index p); the form is
closed being related to the Sobolev norm ‖f ‖2

H1(G) = ‖f ′‖2
G + ‖f ‖2

G .

Furthermore, the Hamiltonian with δ-coupling of strength q is defined
via the quadratic form h = h(G ,q) given by

h(f ) := ‖f ′‖2
G + q(v)|f (v)|2 and dom h := H1(G ),

where the point potential q(v) is what was a while ago denoted as α.

Using standard Sobolev arguments one can show that the δ-coupling is
a ‘small’ perturbation of the free operator by estimating the difference
h(f )− d(f ) of the two forms in various ways in terms d(f ), h(f ) and ‖f ‖2

G .
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Manifold model of the ‘fat’ graph

Given the radius-type parameter ε ∈ (0, ε0] we associate a d-dimensional
manifold Xε to the graph G in the same way as before: to the edge e ∈ E
and the vertex v we ascribe the Riemannian manifolds

Xε,e := Ie × εYe and Xε,v := εXv ,

respectively, where εYe is the symbol for the manifold Ye equipped with
metric hε,e := ε2he , and similarly, εXε,v carries the metric gε,v = ε2gv .

As before, we use the ε-independent coordinates in the ‘dissected’ parts
of the manifold, (s, y) ∈ Xe = Ie × Ye and x ∈ Xv , so the ‘squeezing’
parameter ε only enters the argument via the Riemannian metric.

As before again, we have to deal with the fact such an ε-neighborhood of
an embedded graph G ⊂ Rd requires a correction due to the error of the
edge length of order of ε, but this can be covered an ε-dependence of the
metric in the longitudinal direction.

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture II September 6, 2021 - 13 -



The function spaces on the manifold
We do the same surgery as above, cutting the manifold into the edge
and vertex part; then the Hilbert space of the manifold model can be
written as

L2(Xε) =
⊕
e

(
L2(Ie)⊗ L2(εYe)

)
⊕ L2(εXv )

with the norm given by

‖u‖2
Xε =

∑
e∈E

εd−1

∫
Xe

|u|2 dye ds + εd
∫
Xv

|u|2 dxv

where dxe = dye ds and dxv denote the Riemannian volume measures
associated to the (unscaled) manifolds Xe = Ie × Ye and Xv , respectively.

Note the different scaling in the edge and vertex parts.

Let further H1(Xε) be the Sobolev space of order one, the completion of
the space of smooth functions with compact support under the norm
‖u‖2

H1(Xε) = ‖du‖2
Xε

+ ‖u‖2
Xε

.
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The operators

The Laplacian ∆Xε
on Xε is associated with the quadratic form

dε(u) := ‖du‖2
Xε

=
∑
e∈E

εd−1
∫
Xe

(
|u′(s, y)|2 +

1

ε2
|dYe u|

2
he

)
dye ds + εd−2

∫
Xv

| du|2gv dxv

where u′ is the longitudinal derivative, u′ = ∂su, and du is the exterior
derivative of u. Again, the form dε is closed by definition.

Adding a potential, we define the Hamiltonian Hε as the self-adjoint
operator associated with the form hε = h(Xε,Qε) given by

hε(u) = ‖du‖2
Xε + 〈u,Qεu〉Xε

where Qε is supported only in the vertex region Xv . Inspired by the graph
approximation discussed above, we choose

Qε(x) =
1

ε
Q(x)

where Q = Q1 is a fixed bounded and measurable function on Xv (the ε−1

factor in the argument is not missing, it is hidden in the scaled metric!).
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Relative boundedness

As in the graphs case, one can prove the relative (form-)boundedness of
Hε with respect to the free operator ∆Xε

, that is, the following claim:

Lemma

To a given η ∈ (0, 1) there exists εη > 0 such that the form hε is relatively

form-bounded with respect to the free form dε, i.e., there is C̃η > 0 such
that

|hε(u)− dε(u)| ≤ η dε(u) + C̃η‖u‖2
Xε

whenever 0 < ε ≤ εη with explicit constants εη and C̃η.

I am not going to present the expressions of the constants involved; what
is important that they we can fully control them in term of the parameters
of the model, namely ‖Q‖∞, the minimum edge length `− := mine∈E `e ,
the second eigenvalue λ2(v) of the Neumann Laplacian on Xv , and the
ratio cvol(v) := vol Xv/vol ∂Xv .
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Identification maps
The difficult part of the argument comes from the fact that we want
to compare operators acting in different spaces.

To be concrete, we consider on the graph and the manifold the following
pairs of spaces,

H := L2(G ), H1 := H1(G ), H̃ := L2(Xε), H̃1 := H1(Xε),

respectively, and we thus need, first of all, to define operators relating the
graph and manifold Hamiltonians; we will require them to be quasi-unitary
in the sense made precise below.

I have noted that we can cover situations where the tube cross sections Ye

are mutually different. With this fact in mind we set

pe := (vold−1Ye)1/2 and q(v) =

∫
Xv

Q dxv ;

in the case we are most interested in when all the Ye ’s are the same we
may put all these weights to pe = 1.

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture II September 6, 2021 - 17 -



Identification maps: graph to manifold

First we define the map J : H −→ H̃ between the Hilbert spaces by

Jf := ε−(d−1)/2
⊕
e∈E

(fe ⊗−1e)⊕ 0,

where −1e is the normalized eigenfunction of Ye associated to the lowest
(namely, zero) eigenvalue, in other words, −1e(y) = p−1

e .

To relate the Sobolev spaces we need a similar map, J1 : H1 −→ H̃1,
which is defined by

J1f := ε−(d−1)/2
(⊕
e∈E

(fe ⊗−1e)⊕ f (v)1v
)
,

where 1v is the constant function on the vertex region Xv having value 1.
This map is well defined; note that the function J1f matches at v along
the different components of the manifold, hence we have Jf ∈ H1(Xε).
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Identification maps: manifold to graph
Let us next introduce the following averaging operators:

−
∫
vu := −

∫
Xv

u dxv and −
∫
eu(s) := −

∫
Ye

u(s, ·)dye

They allow us to express the map in the opposite direction, J ′ : H̃ −→ H,
from the manifold to the graphs, given by the adjoint to J,

(J ′u)e(s) = ε(d−1)/2〈−1e , ue(s, ·)〉Ye = ε(d−1)/2pe−
∫
eu(s)

In the same vein, we define J ′1 : H̃1 −→ H1 between the Sobolev spaces by

(J ′e
1u)(s) := ε(d−1)/2

[
〈−1e , ue(s, ·)〉Ye + χe(s)pe

(
−
∫
vu − −

∫
eu(0)

)]
,

where χe is a smooth cut-off function such that χe(0) = 1 and
χe(`e) = 0. By construction, J ′e

1u ∈ H1
p(G ), in particular, it belongs to

H1(G ) in the case of identical edge profiles we are most interested in.
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δ-coupling results
The above maps are not unitary, of course, but they are quasi-unitary
in the sense that norms of Jf − J1f and J∗u − J ′1u are small in terms of
Sobolev norms of f and u and vanish as ε→ 0. If the same can be said
about |h(J ′1u, f )− hε(u, J

1f )|, the forms are quasi-unitarily equivalent.

This concept leads to an abstract convergence result, the idea of which
belongs to Olaf Post; in the present context it yields the following result:

Theorem

We have

‖J(H − z)−1 − (Hε − z)−1J‖ = O(ε1/2),

‖J(H − z)−1J ′ − (Hε − z)−1‖ = O(ε1/2)

for z /∈ [λ0,∞). The error depends only on the parameters listed above.
Moreover, ϕ(λ) = (λ− z)−1 can be replaced by any measurable, bounded
function converging to a constant as λ→∞ and being continuous in a
neighborhood of σ(H).
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δ-coupling results: consequences of the theorem
Note that the Sobolev map J1 does not appear in the formulation of
the theorem but it is clear that it plays a crucial role in the proof.

The norm resolvent convergence established in the theorem implies:

Corollary

The spectrum of Hε converges to the spectrum of H uniformly on any
finite energy interval. The same is true for the essential spectrum.

and

Corollary

For any λ ∈ σdisc(H) there exists a family {λε}ε with λε ∈ σdisc(Hε) such
that λε → λ as ε→ 0, and moreover, the multiplicity is preserved. If λ is
a simple eigenvalue with normalized eigenfunction ϕ, then there exists a
family of simple normalized eigenfunctions {ϕε}ε of Hε such that

‖Jϕ− ϕε‖Xε → 0
holds as ε→ 0.
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More complicated graphs
We choose star graphs to explain the approximation. However, the
nature of the construction has a local character; the same technique of
‘dissecting’ the graph and the corresponding manifold into a family of
edge and vertex regions also works in the general case. In this way one
can prove the following result:

Theorem

Assume that G is a (possibly infinite, but locally finite) metric graph and
Xε the corresponding approximating manifold. If

inf
v∈V

λ2(v) > 0, sup
v∈V

vol Xv

vol ∂Xv
<∞, sup

v∈V
‖Q�Xv

‖∞ <∞, inf
e∈E

λ2(e) > 0, inf
e∈E

`e > 0,

then the corresponding Hamiltonians, i.e. H = ∆G +
∑

v q(v)δv and
Hε = ∆Xε

+
∑

v ε
−1Qv , are O(ε1/2)-close with the error depending only

on the above indicated global constants.

P.E., O. Post: Approximation of quantum graph vertex couplings by scaled Schrödinger operators on thin branched
manifolds, J. Phys. A: Math. Theor. 42 (2009), 415305.
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How about the other couplings?
The above scheme does not work for other couplings than δ – still a
small subset in the family of all self-adjoint ones – recall that the δ is
the only coupling with functions continuous at the vertex.

The deal with the others, let us use the same strategy as for δ, namely

first we work out an approximation on the graph itself

then we ‘lift’ it to an appropriate family of manifolds

Note that it is nontrivial even in situations as simple as approximating
the δ′ interaction on the line. For a long time mathematicians believed
one cannot do that using scaled Schrödinger operators.

Then Cheon and Shigehara proposed a formal limiting procedure, and it
turned out that it can be adapted into a norm resolvent approximation

T. Cheon, T. Shigehara: Realizing discontinuous wave functions with renormalized short-range potentials, Phys. Lett.
A243 (1998), 111–116.

S. Albeverio, L. Nizhnik: Approximation of general zero-range potentials, Ukrainian Math. J. 52 (2000), 582–589.

P.E., H. Neidhardt, V.A. Zagrebnov: Potential approximations to δ′: an inverse Klauder phenomenon with
norm-resolvent convergence, Commun. Math. Phys. 224 (2001), 593–612.

The convergence is a rather subtle effect here, in the fifth order only!
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Following the idea of Cheon and Shigehara
In a similar way one can approximate the δ′s coupling at the vertex
of a star graphs; the scheme of the approximation is the following:
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a→ 0

βa

b(a)

c(a)

HβHb,c

Core of the procedure lies in a suitable, a-dependent choice of the
parameters of these δ-couplings: we put

Hβ,a := ∆G + b(a)δv0 +
∑
e

c(a)δve , b(a) =− β
a2
, c(a) =−1

a

which corresponds to the quadratic form

hβ,a(f ) :=
∑
e

‖f ′e‖2 − β

a2
|f (0)|2 − 1

a

∑
e

|fe(a)|2, dom ha = H1(G )
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Following the idea of Cheon and Shigehara

Theorem

‖(Hβ,a − z)−1 − (Hβ − z)−1‖ = O(a) holds as a→ 0 for any z /∈ R.

T. Cheon, P.E.: An approximation to δ′ couplings on graphs, J. Phys. A: Math. Gen. 37 (2004), L329–L335.

In the next step, we lift this approximation to manifolds as sketched here:
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The corresponding δ′s approximation result

Using the same technique as in the δ case, one can prove:

Theorem

Fix α ∈
(
0, 1

13

)
, then with b(aε), c(aε) as in [Cheon-E’04, loc.cit.] we have∥∥(Hβ

ε − i)−1J − J(Hβ − i)−1
∥∥ → 0

as the radius parameter ε→ 0.

Remarks: (i) The value 1
13 is by all accounts not optimal.

(ii) The operator families Hβ
ε and Hβ,aε do not have for β ≥ 0

a uniform lower bound with respect to the parameter ε.

This does not contradict, however, to the fact that the limiting operator
Hβ is non-negative for β ≥ 0. Note that the spectral convergence holds
only for compact intervals I ⊂ R, which means that the negative spectral
branches of Hβ

ε all have to tend to −∞ as ε→ 0.
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How to deal with the general vertex coupling
To go beyond these examples, one can try Cheon-Shigehara idea
without the permutation symmetry; this yields a 2n-parameter family.

P.E., O. Turek: Approximations of singular vertex couplings in quantum graphs, Rev. Math. Phys. 19 (2007), 571–606.

To get a wider class, however, new ideas are needed. We can, for instance

modify the topology locally adding edges which vanish in the limit.
This yields formally AΨ + BΨ′ = 0 with real-valued matrices A,B
with the needed properties, i.e., all time-reversal invariant couplings,
to get complex A,B one has to amend the approximating operators
with suitably scaled magnetic fields
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The ST-form of coupling conditions
To make use of these ideas, one has to cast the vertex coupling written
as AΨ + BΨ′ = 0 into a suitable form, namely:

Theorem

Consider a quantum graph vertex of degree n. If m ≤ n, S ∈ Cm,m is a
self-adjoint matrix and T ∈ Cm,n−m, then the relation(

I (m) T

0 0

)
Ψ′ =

(
S 0

−T ∗ I (n−m)

)
Ψ

expresses self-adjoint boundary conditions. Conversely, for any self-adjoint
vertex coupling there is an m ≤ n and a numbering of the edges such that
the coupling is described by the above conditions with uniquely given
matrices T ∈ Cm,n−m and self-adjoint S ∈ Cm,m.

T. Cheon, P.E., O. Turek: Approximation of a general singular vertex coupling in quantum graphs, Ann. Phys. 325
(2010), 548–578.

Note that the condition (U − I )Ψ(0) + i(U + I )Ψ′(0) = 0 can be split into
the Dirichlet, Neumann, and Robin parts related to eigenspaces of U. In
the theorem we single out the Dirichlet part referring to eigenvalue −1.
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Some notations

Let me show the result – without going into much technical details –
mentioning some notations first.

The approximation scheme for a ver-
tex of degree n = 3 and n = 5.
The inner edges are of length 2d ,
some may be missing depending on
the choice of the matrices S and T .
The arrows symbolize the vector po-
tential. In vertices vj , v{j,k} one
places δ interactions of strengths wj ,
w{j,k}, respectively.  

We number lines of T from 1 to m and the columns from m + 1 to n, then

the δ-coupling of strength wj(d) is imposed at the points vj ,

vertices vj , vk , j 6= k are connected by edges of length 2d with the
center v{j ,k} provided (a) Tjk 6= 0, and (b) either Sjk 6= 0 or there is
an l such that Tjl 6= 0 ∧ Tkl 6= 0; on them we have vector potential
A(j ,k)(d) and at their center δ-interaction of strength w{j ,k}(d)
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The approximation scheme
The choice of the functions vj(·), w{j ,k}(·) and A(j ,k)(·) is, of course,
crucial. We by Nj the index set of the vertices connected to vj . We
distinguish two cases:

Case I: edges connecting the Robin and Dirichlet part. Then we choose

A(j ,l)(d) =

{
1

2d arg Tjl if ReTjl ≥ 0 ,

1
2d (arg Tjl − π) if ReTjl < 0

and

wl(d) =
1−#Nl +

∑m
h=1〈Thl〉

d
, w{j ,l}(d) =

1

d

(
−2 +

1

〈Tjl〉

)
where 〈c〉 for c ∈ C means ±|c | for Re c ≥ 0 and Re c < 0, respectively.

In fact the choice of vl(d) is not unique; this is related to the fact that for
m < n the number of coupling parameters is reduced from the ‘full value’
n2 to at most n2 − (n −m)2.
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The approximation scheme
Case II: edges connecting ‘Robin’ vertices. In this situation we choose

A(j ,k)(d) =
1

2d
arg

(
d · Sjk +

n∑
l=m+1

TjlTkl − µπ
)
,

where µ = 0 if Re
(
d · Sjk +

∑n
l=m+1 TjlTkl

)
≥ 0 and µ = 1 otherwise.

The δ-coupling parameters w{j ,k} and wj(d) are given by

w{j ,k} = − 1

d

(
2 +

〈
d · Sjk +

n∑
l=m+1

TjlTkl

〉−1
)

and

wj(d) = Sjj −
#Nj

d
−

m∑
k=1

〈
Sjk +

1

d

n∑
l=m+1

TjlTkl

〉
+

1

d

n∑
l=m+1

(
1 + 〈Tjl〉

)
〈Tjl〉 .

Note that most coefficients behave as O(d−1) when d → 0+ but w{j ,k}
may have stronger singularity , O(d−2), if the sum in the bracket vanishes.
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The convergence
We must take into account, that the Hamiltonians, Hstar and Happrox

d ,
as well as their resolvents, Rstar(z) and Rapprox

d (z), respectively, act on
different spaces, namely Rstar(z) on L2(Γ), while Rapprox

d (k2) acts on the

larger space L2(Γd) := L2(Γ⊕ (0, d)
∑n

j=1 Nj ).

To be able to compare them, we identify Rstar(z) with

Rstar
d (z) = Rstar(z)⊕ 0.

Theorem

In the described setting, the operator family Happrox
d converges to Hstar

in the norm-resolvent sense as d → 0.

The obtained approximation is again non-generic; if we violate the
elaborate choice of the coefficient functions, ‘almost surely’ we would
arrive at the trivial result describing decoupled edges.

At the same time, the described approximation is certainly not unique,
note that for δ′s it differs from the one give in the example above.
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Complete solution of the Neumann case
Coming to the climax of the story, we have to lift the obtained
approximation to tubular Neumann-like manifolds. It is done in the
same way as above, with d = εα. One has to go through all the
estimates which is rather tedious but relatively straightforward. In
this way we arrive at the following conclusion:

Theorem

Assume that Γ(0) is a star graph with vertex condition parametrised by
matrices S and T , and let 0 < α < 1/13. Then there is a magnetic
Schrödinger operator Hε on an approximating manifold Xε constructed
in the above described way such that

‖JRstar
d (z)J∗ − Rε(z)‖ = O(εmin{1−13α,α}/2)

holds true for z ∈ C \ R, where Rε(z) = (Hε − z)−1.

P.E., O. Post: A general approximation of quantum graph vertex couplings by scaled Schrödinger operators on thin
branched manifolds, Commun. Math. Phys. 322 (2013), 207–227.
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Briefly about the Dirichlet case
We are naturally interested what we can get when a Dirichlet network
is squeezed, and it appear that the results are completely different.

The essential difference come from the transverse contribution to energy:
while in the Neumann case it is zero, now it depends on the radius a of the
channel and diverges as a→ 0. Consequently, the limit needs an energy
renormalization, in other words, to subtract the divergent term.

This can be done in different ways. For instance, if you blow up the
spectrum from a fixed point separated from thresholds, pictorially

r r r��
�� r

0 ε1 ε ε2

one gets a nontrivial limit with the matching conditions fixed by scattering
on the ‘fat star’. However, the resulting operator is unbounded from below
and does not fit into our quantum graph picture.

S. Molchanov, B. Vainberg: Scattering solutions in networks of thin fibers, Comm. Math. Phys. 273 (2007), 533–559.
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Threshold resonances
It is natural to subtract the threshold energy, ε1 in the above picture.

Then, however, we are facing a different problem: the limit is generically
trivial yielding disconnected edges with Dirichlet endpoints. Fortunately,
there are situations when the limit is nontrivial; this happens if the
operator describing the network has a resonance at the threshold.

Let us illustrate this claim on the simplest nontrivial example where there
is no branching, just a bent waveguide collapsing onto a broken line, i.e.
two halflines meeting at a point with a non-straight angle.

It is clear that we have to change the channel width and the curvature
radius at the same time. Should we do the limits consecutively, the
−1

4γ(s)2 potential would cause trouble, since the curvature of a broken
line is proportional to a δ function.

We know that a bent waveguide has always a nontrivial discrete spectrum
and note that by increasing the bending angle one can produce more
eigenvalues, in particular, there are configuration when the eigenvalue is
‘emerging from the continuum’, i.e. the singularity is at the threshold.
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The bent waveguide
The operator to consider is Dirichlet Laplacian on the bent strip,

Ω := {(x , y) ∈ R2 : x = Γ1(s)− uΓ′2(s), y = Γ2(s) + uΓ′1(s), s ∈ R, u ∈ (−a, a)}

built over a curve Γ determined by its signed curvature γ. We suppose
that γ(·) is smooth outside a compact, and that apart from a bounded
part of it, the strip is straight. Recall that the total bending angle of such
a strip is θ =

∫
R γ(s) ds.

Now we assume now that the strip changes its shape and width in
dependence on the parameter ε ∈ (0, 1] as

γε(s) :=

√
λ(ε)

ε
γ
(s
ε

)
and aε := εαa with α > 1,

where λ(ε) is a fixed function, real and positive; by assumption the width
shrinks faster than the curvature radius. In particular, the simplest choice
λ(ε) = 1 means that the bending angle is preserved.

S.A. Albeverio, C. Cacciapuoti, D. Finco: Coupling in the singular limit of thin quantum waveguides, J. Math. Phys. 48
(2007), 032103.
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The bent waveguide
Let us be slightly more general and suppose the function to analytic
near the origin, with the expansion

λ(ε) = 1 + λ1ε+O(ε2).

which means the strip is ‘wiggling’, its bending angle being

θε =

∫
R
γε(s)ds = θ

√
λ(ε) = θ

(
1 +

1

2
λ1ε

)
+O(ε2).

We may again pass to the unitarily equivalent operator on a straight strip,

Hε = − ∂

∂s

1

(1 + εα−1u
√
λ(ε)γ( sε))2

∂

∂s
− 1

ε2α

∂2

∂u2
+

1

ε2
Vε(s, u)

with the effective potential Vε(s, u) given by

Vε(s, u) = −
λ(ε)γ( s

ε
)2

4(1+εα−1u
√
λ(ε)γ( s

ε
))2

+
εα−1u

√
λ(ε)γ′′( s

ε
)

2(1+εα−1u
√
λ(ε)γ( s

ε
))3
−

5

4

ε2α−2u2λ(ε)γ′( s
ε

)2

(1+εα−1u
√
λ(ε)γ( s

ε
))4

and D(Hε) = {ψ ∈ L2(Ω0)|ψ ∈ C∞(Ω0), ψ(s,±d) = 0, Hεψ ∈ L2(Ω0)}.
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Energy renomalization
Consider the transverse modes, i.e. normalized solutions ϕn(u) to
−ε−2αϕ′′n(u) = Eε,nϕn(u) satisfying ϕn(±εαd) = 0; the corresponding
eigenvalues Eε,n are

Eε,n =
( nπ

2dεα

)2
with n = 1, 2, . . ..

In a straight strip they are decoupled. This is not the case when the strip
is bent, however, the coupling becomes weaker as the strip gets thin.

As in the Neumann case, we are interested in the resolvent convergence.
The resolvent can be written as a matrix integral operator with respect to
projections on the transverse-mode eigenspaces

We take the energy renormalized by the corresponding threshold value

R̄ε
n,m(k2, s, s ′) :=

∫ d

−d

∫ d

−d
du du′ ϕn(u)(Hε − k2−Eε,m)−1(s, u, s ′, u′)ϕm(u′).

The operators R̄εn,m(k2) are bounded operator-valued analytic functions of
k2 for all k2 ∈ C\R and Im k > 0.
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Threshold resonances
Let us recall what the threshold (or zero-energy) resonance means for

a 1D Schrödinger operator H = − d2

ds2 + V (s): we use this term if there
is a function ψr ∈ L∞(R) \ L2(R) solving the equation Hψr = 0 in the
sense of distributions. In particular, if∫

R
V (s) ds 6= 0 and ea|·|V ∈ L1(R)

for some a > 0, then exactly one of the following situations can occur:

Case I: H has no zero energy resonance

Case II: there is such a resonance; then ψr can be chosen real and
the numbers c2 := −1

2

∫
R sV (s)ψr (s)ds and

c1 =

[ ∫
R
V (s)ds

]−1 ∫
R

∫
R
V (s)

|s − s ′|
2

V (s ′)ψr (s
′)ds ds ′

cannot not vanish simultaneously.

D. Bollé, F. Gesztesy, S.F.J. Wilk: A complete treatment of low energy scattering in one dimension, J. Operator Theory
13 (1985), 3–32.
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Point interactions
We distinguish two types operators on line referring to the symbol
− d2

ds2 . The first one, Hd , describes Dirichlet-decoupled halflines which

means that its domain is D(Hd) := {f ∈ H2(R \ {0}) ∩ H1(R)| f (0) = 0}.
The other is a point-interaction Hamiltonian H r the domain of which is

D(Hr ) =
{
f ∈ H2(R \ 0)| (c1 + c2)f (0+) = (c1 − c2)f (0−),

(c1 − c2)f ′(0+) = (c1 + c2)f ′(0−) +
λ̃

c1 + c2
f (0−)

}
for c2 6= −c1,

D(Hr ) =
{
f ∈ H2(R \ 0)| f (0−) = 0 , f ′(0+) =

λ̃

4c2
1

f (0+)
}

for c2 = −c1,

where we put
λ̃ := λ1

∫
R
V (s)ψr (s)2 ds.

The operators H r obviously depend on two real parameters and their
matching conditions can be written using 2× 2 unitary matrices

U :=
1

2(c2
1 + c2

2 ) + i λ̃

(
−4c1c2 − i λ̃ 2(c2

1 − c2
2 )

2(c2
1 − c2

2 ) 4c1c2 − i λ̃

)
.
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The approximation result
In particular, for λ1 = 0 the conditions define the ‘scale invariant’
point interaction, on the other hand, the standard δ interaction of coupling
strength λ̃ corresponds to c1 = 1 and c2 = 0.

Theorem

Let the curve Cε have no self-intersections, γ be piecewise C 2 with a
compact support, and γ′, γ′′ bounded. Assume further that α > 5

2 , then
we have the following approximation results in the norm-resolvent sense:

(i) If − d2

ds2 − 1
4γ

2(s) has no zero energy resonance, then

lim
ε→0

Rεn,m(k2) = δn,mR
d(k2), k2 ∈ C\R, Im k > 0.

(ii) On the other hand, if there is such a resonance, then

lim
ε→0

Rεn,m(k2) = δn,mR
r (k2), k2 ∈ ρ(H r ), Im k > 0,

where c1, c2 and λ̃ are defined as above with V (s) := −1
4γ

2(s).

C. Cacciapuoti, P.E.: Nontrivial edge coupling from a Dirichlet network squeezing: the case of a bent waveguide,
J. Phys. A: Math. Theor. 40 (2007) F511–F523.
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Remarks
Approximations using threshold resonances are also used in other
situations. Recall point interactions in dimensions two and three,
known alternatively as Fermi pseudopotentials. If you want to
approximate them by scaled potentials, you have to employ – in
contrast to dimension one – Schrödinger operators having a
zero-energy resonance, otherwise the limit becomes trivial.

S. Albeverio, F. Gesztesy, R. Høegh-Krohn, H. Holden: Solvable Models in Quantum Mechanics, 2nd edition,
AMS Chelsea Publishing, Providence, R.I., 2005.

Approximation of vertex coupling in case of branched Dirichlet
networks follows the same idea: one has to used properly scaled
operators exhibiting threshold resonances

D. Grieser: Spectra of graph neighborhoods and scattering, Proc. London Math. Soc. 97 (2008), 718–752.

G.F. Dell’Antonio, E. Costa: Effective Schrödinger dynamics on ε-thin Dirichlet waveguides via quantum graphs:
I. Star-shaped graphs, J. Phys. A: Math. Theor. 43 (2010), 474014.

While the mechanism on which the approximation in the Dirichlet
case is clear, we are far from a complete understanding at the level
achieved with Neumann networks. There is a lot of room here for
your activity.
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What to bring home from Lecture II

The multitude of vertex couplings that preserve the probability
current is not a mathematical artefact. We have various ways to give
physical meaning to them; one of them is to regard such graphs as
squeezing limits of the appropriate networks.

A simple physical idea may raise question that mathematically hard,
but on the other hand, it can sometimes inspire question of interest
for mathematics itself.

For Neuman-type network we have a complete solution allowing us
to approximate any self-adjoint vertex coupling.

For Dirichlet networks, on the other hand, we gave now a clear
understinf the mechanism of the squeezing approximation based on
threshold resonances, which gives rise to limit of a non-generic type.
Particular cases are worked out but a complete solution is in this case
so far missing.
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