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Transport in quantum graphs
Spectral properties of quantum graphs depend in the first place on
their topology and geometry. If the graph is finite – meaning a finite
number of edges of finite lengths – its spectrum is discrete.

On the other hand, in infinite graphs there is typically has an (absolutely)
continuous spectral component – although there are exceptions – and as a
consequence, particles ‘living’ on such a graph may be transported; this is
the main topic of this lecture.

There are different setting in which transport can be studied, for instance:

The graph has a compact ‘core’ and to some its vertices semiinfinite
‘leads’ are attached. This is a natural framework to investigated
scattering, and of a particular interest are resonances in such systems.

The graph is periodic, then its spectrum typically consists of bands
allowing for transport unless they are flat, they are separated by gaps.

One may ask general questions, for instance, about the number of
gaps or about mutual relations between the band and gap widths.

A periodic graphs may be locally perturbed which typically gives rise
to localized states.
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Resonances in quantum graphs

Our first topic will be resonances on graphs consisting of a compact
‘core’ and semiinfinite ‘leads’. Let us start from some general observations:

There are different definitions of what a resonance is; the to most
common identify it with a complex singularity of either the resolvent
of the Hamiltonian or of the on-shell scattering matrix.

They are often the same things but one has to check this
identification in each particular case; keep in mind that the to concept
are different: in the first case it is a property of a single operator, in
case of scattering we compare operators H and H0, the full and the
free Hamiltonian.

In both cases the singularity is situated on the ‘unphysical sheet’ of
energy, that, in an analytical continuation of the resolvent/S-matrix.

In QM, resonances most often come from perturbations of embedded
eigenvalues; the nontrivial topology of quantum graphs means that
they exhibit resonances frequently.
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Resonances in quantum graphs
Concerning the last claim, in view of a nontrivial topology, the unique
continuation property does not hold in general, in particular, a quantum
graphs Hamiltonian may have compactly supported eigenfunctions as this
example shows:

Courtesy: Peter Kuchment

The conditions that make them possible, for instance, rational relations
between the edge lengths, may be violated; such perturbations then give
rise to resonances.

Let us consider a graph Γ consisting of vertices V = {Xj : j ∈ I}, finite
edges L = {Ljn : (Xj ,Xn) ∈ IL ⊂ I × I}, and semiinfinite edges (leads)
L∞ = {Lj∞ : Xj ∈ IC}. The corresponding state Hilbert space is

H =
⊕
Lj∈L

L2([0, lj ])⊕
⊕

Lj∞∈L∞

L2([0,∞)) ;

its elements we write as columns ψ = (fj : Lj ∈ L, gj : Lj∞ ∈ L∞)T.
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A useful trick

In the absense of external fields, the Hamiltonian acts as − d2

dx2 on
each link on H2

loc functions satisfying the boundary conditions

(Uj − I )Ψj + i(Uj + I )Ψ′j = 0

characterized by unitary matrices Uj at the vertices Xj . A useful trick is to
replace Γ ‘flower-like’ graph with one vertex by putting all the vertices to a
single point,

l1

l2l3

l4

lN

Its degree is, of course, 2N + M, where N := cardL and M := cardL∞.

The coupling in the ‘master vertex’ is then described by the condition

(U − I )Ψ + i(U + I )Ψ′ = 0,

where the unitary (2N + M)× (2N + M) matrix U is block-diagonal with
the blocks Uj reflecting the true topology of Γ.
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Different resonance definitions
Consider first the resolvent resonances. A powerful method method to
reveal them is based on complex scaling.

The method is common in atomic and
molecular physics, recall e.g. helium
autoionization effect; it is illustrated
in the attached picture.

Source: wikipedia

Quantum graphs we consider are ell suited for application of an exterior
complex scaling. Looking for complex eigenvalues of the scaled operator
we preserve the compact part of the graph using the wave function Ansatz
fj(x) = aj sin kx + bj cos kx on the j-th internal edge.

On the other hand, functions on the semi-infinite edges are scaled by
gjθ(x) = eθ/2gj(xe

θ) with an imaginary θ; the poles of the resolvent on
the second sheet become ‘uncovered’ for θ large enough. The ‘exterior’
boundary values of gj(x) = gje

ikx referring to energy k2 thus equal to

gj(0) = e−θ/2gj , g ′j (0) = ike−θ/2gj .
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Resolvent and scattering resonances
Substituting these boundary values to the matching condition we get[

(U − I )C1(k) + ik(U + I )C2(k)
]
ψ = 0,

where ψ = (a1, b1, a2, . . . , bN , e
−θ/2g1, . . . , e

−θ/2gM)T and Cj(k) are

block- diagonal, Cj := diag (C
(1)
j (k),C

(2)
j (k), . . . ,C

(N)
j (k), i j−1IM×M) with

C
(j)
1 (k) =

(
0 1

sin klj cos klj

)
, C

(j)
2 (k) =

(
1 0

− cos klj sin klj

)
Naturally, this systems of linear equations is solvable if and only if

det [(U − I )C1(k) + ik(U + I )C2(k)] = 0.

Passing to scattering resonances, we choose a combination of two planar
waves, gj = cje

−ikx + dje
ikx , as an Ansatz on the external edges; we ask

about poles of the matrix S = S(k) which maps the amplitudes of the
incoming waves, c = {cn}, into the amplitudes of their outgoing
counterparts, d = {dn}, through the linear relation d = Sc .
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Resolvent and scattering resonances
Matching the functions at the vertices where the leads are attached,
we get

(U − I )C1(k)



a1

b1

a2

.

.

.

bN
c1 + d1

.

.

.

cM + dM


+ ik(U + I )C2(k)



a1

b1

a2

.

.

.

bN
d1 − c1

.

.

.

dM − cM


= 0

It is an easy exercise to eliminate aj , bj from this system arriving at a
system of M equations that yields the map S−1d = c ; this system is not
solvable, det S−1 = 0, under the same condition we have obtained above.
This allows us to conclude:

Proposition

The two above resonance notions, the resolvent and scattering one, are
equivalent for quantum graphs.

P.E., J. Lipovský: Resonances from perturbations of quantum graphs with rationally related edges, J. Phys. A: Math.
Theor. 43 (2010), 105301.
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Effective coupling on the compact subgraph

The problem can be reduced to the graph core only rephrasing it as a
non-selfadjoint spectral problem on the ‘flower’ without the M-fold ‘stalk’.

To this aim, we write U in the block form, U =

(
U1 U2

U3 U4

)
, where U1 in the

2N × 2N matric referring to the compact subgraph, U4 is the M ×M
matrix related to the exterior part, and the off-diagonal U2 and U3 are
rectangular matrices connecting the two.

Eliminating the external part leads to an effective coupling on the compact
subgraph expressed by the condition

(Ũ(k)− I )(f1, . . . , f2N)T + i(Ũ(k) + I )(f ′1 , . . . , f
′

2N)T = 0,

where the corresponding coupling matrix

Ũ(k) := U1 − (1− k)U2[(1− k)U4 − (k + 1)I ]−1U3

is obviously energy-dependent and, in general, non-unitary.

This is another nice illustration of a simple formula know already to Schur,
often attributed to Feshbach, or Grushin, or other people.
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Example: a loop with two leads

g1(x) g2(x)

f1(x)

f2(x)

0
l1
l2

In each vertex we use a four-parameter family of boundary conditions
assuming continuity on the loop, f1(0) = f2(0), together with

f1(0) = α−1
1 (f ′1 (0) + f ′2 (0)) + γ1g

′
1(0),

g2(0) = −γ̄2(f ′1 (l1) + f ′2 (l2)) + α̃−1
2 g ′2(0),

and similarly in the other vertex with αj ∈ R, α̃j ∈ R, and γj ∈ C.

Writing the loop edge lengths as l1 = l(1− λ) and l2 = l(1 + λ) with
λ ∈ [0, 1], which effectively means shifting one of the connections points
around the loop as λ is changing, one arrives at the resonance condition

sin kl(1− λ) sin kl(1 + λ)− 4k2β−1
1 (k)β−1

2 (k) sin2 kl + k[β−1
1 (k) + β−1

2 (k)] sin 2kl = 0,

where β−1
i (k) := α−1

i + ik|γi |2

1−ikα̃−1
i

.
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Example: a loop with two leads

It is easy to see that there are embedded eigenvalues if the parameter λ
characterizing the shift is rational, and also that the singularities become
complex if we move away from such a point; we can then solve the
resonance condition perturbatively.

For larger changes of λ one can still solve the condition numerically to
determine the pole trajectories. In order to make the dependence on λ
visible, we color code them, moving from red (λ = 0) to blue (λ = 1).
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Another example: a cross-shaped graph

g1(x) g2(x)
f1(x)

f2(x)

l1 = l (1 − λ)

l2 = l (1 + λ)

0

This time we restrict ourselves to the δ coupling combined with Dirichlet
conditions at the loose ends; this yields the resonance condition

2k sin 2kl + (α− 2ik)(cos 2klλ− cos 2kl) = 0

The examples correspond to resonances associated with the embedded
eigenvalue for n = 2 and α = 10, 1, 2.596, respectively.
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The last one shows an avoided crossing of resonance trajectories, the
last two also illustrate an effect called quantum holonomy.

T. Cheon, A. Tanaka: New anatomy of quantum holonomy, EPL 85 (2009), 20001.
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High-energy asymptotics
Now something more general. We know that at high energies the
number of bound states is give semiclassically by the Weyl formula; in
open systems like our graphs with leads the same is true for the number
of eigenvalues and resonances taken together.

Brian Davies and Sasha Pushnitski inspected the number of eigenvalues
and resonances in a circle of radius R and made an intriguing observation:
if the coupling is Kirchhoff and some vertices are balanced, meaning that
they connect the same number of internal and external edges, then the
leading term in the asymptotics may be less than Weyl formula prediction.

E.B. Davies, A. Pushnitski: Non-Weyl resonance asymptotics for quantum graphs, Anal. PDE 4(5) (2011), 729–756.

To understand what is happening it is useful to look at graphs with a
general vertex coupling. Denoting e±j := e±iklj and e± := ΠN

j=1e
±
j , we

can write the secular equation determining the singularities is

0 = det
{1

2
[(U−I ) + k(U+I )]E1(k) +

1

2
[(U−I ) + k(U+I )]E2 + k(U+I )E3

+ (U−I )E4 + [(U−I )− k(U+I )] diag (0, . . . , 0, IM×M)
}
,
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High-energy asymptotics
where Ei (k) = diag

(
E

(1)
i ,E

(2)
i , . . . ,E

(N)
i , 0, . . . , 0

)
, i = 1, 2, 3, 4, consists

of a trivial M ×M part and N nontrivial 2× 2 blocks

E
(j)
1 =

(
0 0

−ie+
j e+

j

)
, E

(j)
2 =

(
0 0

ie−j e−j

)
, E

(j)
3 =

(
i 0

0 0

)
, E

(j)
4 =

(
0 1

0 0

)

Fortunately, mathematics is eternal; we have an almost century old result:

Theorem

Let F (k) =
∑n

r=0 ar (k) eikσr , where ar (k) are rational functions of the
complex variable k with complex coefficients, and the numbers σr ∈ R
satisfy σ0 < σ1 < · · · < σn. Let us assume that limk→∞ a0(k) 6= 0 and
limk→∞ an(k) 6= 0. Then there are a compact Ω ⊂ C, real numbers mr

and positive Kr , r = 1, . . . , n, such that the zeros of F (k) outside Ω lie
in the logarithmic strips bounded by the curves −Im k + mr log |k| = ±Kr

and the counting function of the zeros behaves in the limit R →∞ as

N(R,F ) =
σn − σ0

π
R +O(1).

R.E. Langer: On the zeros of exponential sums and integrals, Bull. Amer. Math. Soc. 37 (1931), 213–239.
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Application of Langer theorem
Rewriting the secular equation as F (k) = 0, we need to find the senior
and junior coefficients; by a straightforward computation one can find
that e± = e±ikV , where V :=

∑N
j=1 lj is the size of the graph core.

Lemma

e± =
(
i
2

)N
det [(Ũ(k)− I )± k(Ũ(k) + I )] with Ũ(k) defined above.

Theorem

Given a quantum graph (Γ,HU) with finitely many edges and the vertex
coupling given by matrices Uj , the resonance counting function behaves as

N(R,F ) =
2W

π
R +O(1) for R →∞,

where W is the effective size of Γ satisfying 0 ≤W ≤ V :=
∑N

j=1 lj .
Moreover, W < V (graph is non-Weyl) if and only there is a vertex such
that the matrix Ũj(k) has an eigenvalue (1− k)/(1 + k) or (1 + k)/(1− k).

E.B. Davies, P.E., J. Lipovský: Non-Weyl asymptotics for quantum graphs with general coupling conditions, J. Phys. A:
Math. Theor. 43 (2010), 474013.

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture III September 7, 2021 - 15 -



Permutation-invariant couplings
Vertex couplings invariant w.r.t. edge permutations are described by
matrices Uj = ajJ + bj I , where number aj , bj ∈ C such that |bj | = 1
and |bj + ajdeg vj | = 1; matrix J has all the entries equal to one. Note
that both the δ and δ′s are particular cases of such a coupling.

For a vertex with p internal and q external edges and such a coupling
Uj , the effective matrix matrix Ũj(k) is easily calculated; this allows us
to make the following conclusion:

Corollary

If (Γ,HU) has a vertex with a permutation-invariant coupling which is
balanced, p = q, the graph is non-Weyl if and only if the coupling at
this vertex is either of Kirchhoff or anti-Kirchhoff type,

fj = fn, ∀j , n ≤ 2p,

2p∑
j=1

f ′j = 0 or f ′j = f ′n , ∀j , n ≤ 2p,

2p∑
j=1

fj = 0

If one drops the requirement of permutation symmetry, it is possible to
construct examples of non-Weyl graphs in which no vertex is balanced.
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What is the cause of a non-Weyl asymptotics?
We want to show that (anti-)Kirchhoff conditions at balanced vertices
are easy to decouple diminishing thus effectively the graph size.

Γ0

U (2) U (1)

l0

Suppose that a balanced vertex v1 connects p internal edges of the same
length l0 (we can always add ‘dummy’ Kirchhoff vertices) and p external
edges, coupled by a U(1) = aJ2p×2p + bI2p×2p. The coupling to the rest of
the graph, denoted as Γ0, is described by a q × q matrix U(2) with q ≥ p.

The idea is to use a unitary equivalence. Given a unitary p × p matrix V
we define V (1) := diag (V ,V ) and V (2) := diag (I(q−p)×(q−p),V ), then it
is straightforward to check that the original graph Hamiltonian is unitarily
equivalent to the one in which matrices U(1) and U(2) are replaced by
[V (1)]−1U(1)V (1) and [V (2)]−1U(2)V (2), respectively.

If the columns of V are orthonormal eigenvectors of U(1), beginning with
1√
p (1, 1, . . . , 1)T, then [V (1)]−1U(1)V (1) decouples then into 2× blocks.
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What is the cause of a non-Weyl asymptotics?

The first one of those corresponds to the symmetrization of all the
external uj ’s and internal fj ’s, thus leading to the 2× 2 coupling matrix
U2×2 = apJ2×2 + bI2×2; in the complement the internal and external edges
are separated satisfying Robin conditions, (b − 1)vj(0) + i(b + 1)v ′j (0) = 0
and (b − 1)gj(0) + i(b + 1)g ′j (0) = 0 for j = 2, . . . , p.

The ‘overall’ Kirchhoff/anti-Kirchhoff condition at v1 is transformed
into the ‘line’ Kirchhoff/anti-Kirchhoff condition in the subspace of
permutation-symmetric functions, and since this is no coupling at all
(recall that anti-Kirchhhoff and Kirchhoff on line are unitarily equivalent),
this causes non-Weyl behavior by effectively reducing the graph size by l0.

In all the other cases the point interaction corresponding to the matrix
apJ2×2 + bI2×2 is nontrivial, and consequently, the graph size is preserved.

Note that similar trick can used in analysis of tree graphs rephrasing the
task as an investigation of a family of problems of the line.

A.V. Sobolev, M.Z. Solomyak: Schrödinger operator on homogeneous metric trees: spectrum in gaps, Rev. Math. Phys.
14 (2002), 421–467.
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Effective size is a global property

One may ask whether considering the effect of each balanced vertex
separately allows to to determine the effective size. It is not the case, as
the following simple example of Kirchhoff graph Γn shows:

l

l

l

l

l

The symmetry allows to decompose the system w.r.t. the cyclic rotation
group Zn into segments characterized by numbers ω satisfying ωn = 1; the
resonance condition then reads −2(ω2 + 1) + 4ωe−ik` = 0. Using is, we
easily find that the effective size of Γn is

Wn =

{
n`/2 if n 6= 0 (mod4),

(n − 2)`/2 if n = 0 (mod4).

Note also that one can demonstrate non-Weyl behavior of graph
resonances experimentally in a model using microwave networks:

M.  Lawniczak, J. Lipovský, L. Sirko: Non-Weyl microwave graphs, Phys. Rev. Lett. 122 (2019), 140503.
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Periodic graphs
Let us no pass to graphs which are truly infinite. There is a number
of interesting cases here; we restrict our attention to periodic graphs, of a
great importance if we think of using graphs to model material structure.

The basic method to deal with them is the same as for other periodic
system in QM, namely to apply to the Hamiltonian the Bloch or Floquet
decomposition writing it as a direct integral

H =

∫
Q∗

H(θ) dθ

where the fiber operator H(θ) acts on L2(Q), where Q ⊂ Rd is period
cell of the graph and the quasimomentum θ runs through the dual cell
Q∗ of the lattice usually called the Brillouin zone.

Bloch decomposition is commonly used to prove that the spectrum of H

is absolutely continuous
has a band-and-gap structure

M.Sh. Birman, T.A. Suslina: A periodic magnetic Hamiltonian with a variable metric. The problem of absolute
continuity, St. Petersburg Math. J. 11 (2000), 203–232.
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Periodic graphs
For quantum graphs, however, the spectrum of H is not necessarily
absolutely continuous since they may exhibit flat bands coming from the
mentioned violation of the unique continuation property. There are also
other differences which we will mention below.

Let us begin with a very simple example, a ring chain graph

assuming that adjacent rings, supposed to be of perimeter 2π, are
connected through a δ coupling of strength α

Take the Ansatz ψL(x) = e−iAx(C+
L eikx + C−L e−ikx) for x ∈ [−π/2, 0]

and energy E := k2 6= 0, and similarly for the other three components;

for E < 0 we put instead k = iκ with κ > 0.

The functions have to be matched through (a) the δ-coupling and
(b) Floquet conditions. This yields equation for the phase factor eiθ,

sin kπ
(
e2iθ − 1

2η(k)eiθ + 1
)

= 0,
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Ring chain graphs

η(k) := 4 cos kπ +
α

k
sin kπ.

We see that the system has flat bands, that is, infinitely degenerate
eigenvalues n2, n ∈ Z. The absolutely continuous part of the spectrum
comes from the second factor.

It yields the condition |η(k)| ≤ 4. Its solution can be found graphically:

i 1
2 i

1
2

1 3
2

2 5
2

3 7
2

−4
−2

2

4

η
α > 0

α = 0

α ∈ (−8/π, 0)
α < −8/π

−→ √z ∈ R+
0←− √z ∈ iR+

There is an infinite number of gaps provided α 6= 0, of asymptotically
constant widths on the energy scale, and one negative band if α < 0.

Note that, up to a factor 1
2 , this nothing but the spectrum of the Kronig-

Penney model as it is clear from the mirror symmetry of the chain.
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Local perturbations: a bent chain

We have mentioned that local perturbations in general give rise to
eigenvalues in the gaps. We shall return to the this question later, for
the moment we mention just one example.

It is related to the previous model with α 6= 0: let us assume we perturb it
by bending the chain, which means shifting the position of a single vertex.

Denote the Hamiltonian as Hϑ. We note that the flat bands (coinciding
with the upper or lower edges of ac bands) are independent of ϑ.

From the general principles we have at most to eigenvalues in each gap,
because H±ϑ and H±0 have a common symmetric restriction with deficiency
indices (2, 2). Furthermore, the mirror symmetry allows us to treat the
even and odd parts separately, that is, the halfchain with the Neumann
and Dirichlet cut, respectively.
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Example: bent-chain spectrum for α = 3
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ℜ
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ϑ
ℜ

(k
2 )

for the even and odd part of the operator, H±ϑ , respectively.

We see that the eigenvalues in gaps may be absent but only at rational
values of ϑ and never simultaneously. Similar pictures we get for other
values of α, the dotted lines mark (real values) of resonance positions.

P. Duclos, P.E., O. Turek: On the spectrum of a bent chain graph, J. Phys. A: Math. Theor. 41 (2008), 415206.
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Periodic graphs: the number of gaps
We have seen that the spectrum may have no gaps but also an infinite
number of them. Let us now ask whether there may be ‘just a few’ gaps.

Let us recall that for ‘ordinary’ Schrödinger operators the dimension
is known to be decisive:systems which are Z-periodic have generically
an infinite number of open gaps, while Zd -periodic systems with d ≥ 2
have only finitely many open gaps

This is the celebrated Bethe-Sommerfeld conjecture, rather plausible but
mathematically quite hard, to which we have nowadays an affirmative
answer in a large number of cases

L. Parnovski: Bethe-Sommerfeld conjecture, Ann. Henri Poincaré 9 (2008), 457–450.

Question: How the situation looks for quantum graphs which, in a sense,
are ‘mixing’ different dimensionalities?

G. Berkolaiko, P. Kuchment: Introduction to Quantum Graphs, AMS, Providence, R.I., 2013.

The literature says that – while the situation is similar – the finiteness
of the gap number is not a strict law, and topology is the reason.

P. Exner: Constrained quantum dynamics ISSAQM 2021 – Lecture III September 7, 2021 - 25 -



Graph decoration

An infinite number of gaps in the spectrum of a periodic graph can be
created by decorating its vertices by copies of a fixed compact graph.
This fact was observed first in the combinatorial graph context,

J.H. Schenker, M. Aizenman: The creation of spectral gaps by graph decoration, Lett. Math. Phys. 53 (2000), 253–262.

and the argument extends easily to metric graphs we consider here

Courtesy: Peter Kuchment

Thus, instead of ‘not a strict law’, the question rather is whether
it is a ‘law’ at all: do infinite periodic graphs having a finite nonzero
number of open gaps exist? From obvious reasons we would call them
Bethe-Sommerfeld graphs.
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The answer depends on the vertex coupling
Recall that self-adjointness requires the matching conditions
(U − I )ψ + i(U + I )ψ′ = 0 , where ψ, ψ′ are vectors of values and
derivatives at the vertex of degree n and U is an n × n unitary matrix

The condition can be decomposed into Dirichlet, Neumann, and Robin
parts corresponding to eigenspaces of U with eigenvalues −1, 1, and
the rest, respectively; if the latter is absent we call such a coupling
scale-invariant. As an example, one can mention the Kirchhoff coupling.

Theorem

An infinite periodic quantum graph does not belong to the Bethe-
Sommerfeld class if the couplings at its vertices are scale-invariant.

P.E., O. Turek: Periodic quantum graphs from the Bethe- Sommerfeld perspective, J. Phys. A: Math. Theor. 50 (2017),
455201.

Worse than that, it was shown that in a ‘typical’ periodic graph the
probability of being in a band or gap is 6= 0, 1.

R. Band, G. Berkolaiko: Universality of the momentum band density of periodic networks, Phys. Rev. Lett. 113 (2013),
130404.
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The existence

Nevertheless, the answer to our question is affirmative:

Theorem

Bethe-Sommerfeld graphs exist.

It is sufficient, of course, to demonstrate an example. With this aim
we are going to revisit the model of a rectangular lattice graph with
a δ coupling in the vertices introduced in

P.E.: Contact interactions on graph superlattices, J. Phys. A: Math. Gen. 29 (1996), 87–102.

P.E., R. Gawlista: Band spectra of rectangular graph superlattices, Phys. Rev. B53 (1996), 7275–7286.

q q q qa

bq q q qq q q qq q q q
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Spectral condition
The Bloch analysis is not difficult in this case. In particular, we find
that a number k2 > 0 belongs to a gap if and only if k > 0 satisfies the
gap condition which reads

2k

[
tan

(
ka

2
− π

2

⌊
ka

π

⌋)
+ tan

(
kb

2
− π

2

⌊
kb

π

⌋)]
< α for α > 0

and

2k

[
cot

(
ka

2
− π

2

⌊
ka

π

⌋)
+ cot

(
kb

2
− π

2

⌊
kb

π

⌋)]
< |α| for α < 0 ;

we neglect the Kirchhoff case, α = 0, which is trivial from the present
point of view, σ(H) = [0,∞).

Note that for α < 0 the spectrum extends to the negative part of the
real axis and may have a gap there – this happens if α < −4(a−1+b−1)
– which is not important here because there is not more than a single
negative gap, and this gap always extends to positive values.
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What is known about such a quantum graph
The spectrum depends on the ratio θ = a

b . If θ is rational, σ(H) has
clearly infinitely many gaps unless α = 0 in which case σ(H) = [0,∞)

The same is true if θ is is an irrational well approximable by rationals,
which means equivalently that in the continued fraction representation
θ = [a0; a1, a2, . . . ] the sequence {aj} is unbounded.

On the other hand, θ ∈ R is badly approximable if there is a c > 0 such
that ∣∣∣θ − p

q

∣∣∣ > c

q2

for all p, q ∈ Z with q 6= 0; in that case there are no gaps in the spectrum
provided that |α| is small enough.

Recall that for such numbers one introduces the Markov constant by

µ(θ) := inf

{
c > 0

∣∣ (∃∞(p, q) ∈ N2
) (∣∣∣θ − p

q

∣∣∣ < c

q2

)}
;

(we note that µ(θ) = µ(θ−1)) and its ‘one-sided analogues’.
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The golden mean situation
As an example, take the golden mean, θ =

√
5+1
2 = [1; 1, 1, . . . ], which

can be regarded as the ‘worst’ irrational.

It may be infinity or nothing, e.g., plotting the minima of the function
appearing in the first gap condition, α > 0, the picture looks as follows

where the points approach the limit values from above. Note also that
‘higher’ gap series open as the coupling strength α increases; the critical
values at which that happens are π2

√
5ab
θ±1/2|n2 −m2 − nm|, n,m ∈ N ,

cf. [E-Gawlista’96, loc.cit.].
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But a closer look shows a more complex picture
But a detailed analysis, cf. [E-Turek’17, loc.cit.], shows to a different
and more subtle picture:

Theorem

Let a
b = θ =

√
5+1
2 , then the following claims are valid:

(i) If α > π2
√

5a
or α ≤ − π2

√
5a

, there are infinitely many spectral gaps.

(ii) If
−2π

a
tan
(3−

√
5

4
π
)
≤ α ≤ π2

√
5a
,

there are no gaps in the positive spectrum.

(iii) If − π2

√
5a

< α < −2π

a
tan
(3−

√
5

4
π
)
,

there is a nonzero and finite number of gaps in the positive spectrum.

Corollary

The above claim about the existence of BS graphs is valid.
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More about this example

The window in which the golden-mean lattice has the BS property is
narrow, it is roughly 4.298 . −αa . 4.414.

We are also able to control the number of gaps in the BS regime; a more
refined Diophantine analysis yields the following result:

Theorem

For a given N ∈ N, there are exactly N gaps in the positive spectrum if
and only if α is chosen within the bounds

−
2π
(
θ2(N+1) − θ−2(N+1)

)
√

5a
tan
(π

2
θ−2(N+1)

)
≤ α < −

2π
(
θ2N − θ−2N

)
√

5a
tan
(π

2
θ−2N

)
.

Note that the numbers Aj :=
2π(θ2j−θ−2j)√

5
tan
(
π
2 θ
−2j
)

form an increasing

sequence the first element of which is A1 = 2π tan
(

3−
√

5
4 π

)
and

Aj <
π2

√
5

holds for all j ∈ N .
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Beyond the golden mean case
The used technique allows to derive within the present model a more
general result, applicable to any α badly approximable by rationals:

Theorem

Let θ = a
b and define

γ+ := min

{
inf
m∈N

{
2mπ

a
tan
(π

2
(mθ−1 − bmθ−1c)

)}
, inf
m∈N

{
2mπ

b
tan
(π

2
(mθ − bmθc)

)}}

and γ− similarly with b·c replaced by d·e. If the coupling constant α
satisfies

γ± < ±α <
π2

max{a, b}µ(θ) ,

then there is a nonzero and finite number of gaps in the positive spectrum.

Choosing, for instance, θ = [0; t, t, 1, 1, . . . ] with t ≥ 3, one can check that
the BS property may also hold in lattices with repulsive δ coupling, α > 0.

Nevertheless, the BS behavior is exceptional and one wonders whether and
how often it could be observed in other quantum graph situations.
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What to bring home from Lecture III

Transport in infinite quantum graphs may take many forms.

Graphs with leads are suitable for investigations of resonance effects.

In resonance scattering on graphs, semiclassical considerations must
be taken with caution as, e.g., the Weyl asymptotics may not hold.

The spectrum of periodic quantum graphs may contain flat bands.

Local perturbations of periodic graphs do not change the essential
spectrum, in other words, the bands, but they typically give rise to
eigenvalues in the gaps.

Periodic graphs can exhibit Bethe-Sommerfeld behavior having a
finite but nonzero open gaps in the spectrum.
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