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Magnetic effects and soft waveguides

Of the numerous extensions of the topics discussed in the previous ~
lectures we are going to discuss here two:

@ The first one concerns the effects that a magnetic field can have
on a constrained motion. They are numerous. For instance, under
a homogeneous field periodic graphs can have flat bands only.

@ One the magnetic field is inhomogenous, the result can be even more
spectacular, for instance, the spectrum may have a fractal character.

o Likewise, interesting magnetic effects occur in /leaky graphs, e.g.,
the field can change the effective size of the graph entering the
Weyl asymptotics, or a loop with a strong enough coupling may
exhibit persistent currents.

@ In infinite graphs even an Aharonov-Bohm field that vanishes
everywhere except one point may alter the spectrum dramatically.

@ We will also mention a model of soft waveguides which reflects the
deficiencies of both the hard-wall tubes and leaky graphs making
use of guiding effects of finite-width potential ditches.
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A magnetic ring chain

@)
Our first example illustrating that a magnetic field is able to change S
the spectral properties fundamentally concerns the ring chain discussed
in Lecture Ill; now we suppose that is exposed to a field, in general

inhomoheneous, perpendicular to the graph plane.

The Hamiltonian is now the magnetic Laplacian, 1; — —D?y); on each
graph link, where D := —/V — A, and for we again assume o-coupling in
the vertices, i.e. the domain consists of functions from H2 (I) satisfying

$i(0) = ¥j(0) =:¢p(0), i,j=1,....,n, > Di(0) =a(0),
i=1

ﬁ V. Kostrykin, R. Schrader: Quantum wires with magnetic fluxes, Commun. Math. Phys. 237 (2003), 161-179.

Here o € R is again the coupling constant and we have n = 4. In fact,
the vector potentials cancel and we get the same condition as before.
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Floquet analysis of the fully periodic case @
Consider first the case when the field is homogenous, A; = A, j € Z. &
As before the solution comes from analysis of the basic cell of the chain,

We use a modified Ansatz 1, (x) = e *(C,fe™ + C; e=™) for
x € [-m/2,0] and energy E := k? # 0, and similarly for the other

three components; for E < 0 we put instead k = ix with x > 0.

The functions are again matched through (2) the o-coupling and
(b) Floquet conditions. Using the function n(k) := 4 cos km + ¢ sin km,
we can write now the spectral condition as

In(k)| < 4| cos Ar|;

the difference due to the magnetic field presence is at the right-hand side;
note that it is the fractional part of A which matters.

It is illustrative to show the solutions in the graphical form.
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In picture: determining the spectral bands

It is easy to see that the degenerate bands referring to Dirichlet
eigenvalues are not affected to the magnetic field; the other bands
can be derived from the picture we have seen before,

a>0

\ n —a=0

\ --ac€(-8/x0)
o ---a < —8/w

PN 2

\

Yo 1 3 b /1
gt S 3 L 3 2 3 9 3

—4 -

— VZeiR ol — VZER]

however, vertically the shaded strip shrinks for a non-integer A to the
interval [—4| cos Ar|, 4| cos Ar|], in particular, to a /ine for A— % € Z.

Conseuently, in the latter case the chain spectrum consists of /infinitely
degenerate eigenvalues only, or flat bands as physicists would say, and
elementary eigenfunctions are supported by pairs of adjacent loops.
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Making it a little more complicated C

It is relatively easy to deal with /ocal perturbations. In a similar way

we dealt with a bent chain we can treat a variation of A in a single ring,

A={...,A A, A... }. It may or may not give rise to a discrete

spectrum; we have a single simple eigenvalue in each gap provided
cos Ay
[cosAur|
| cos Arr|

i.e. ‘closer the non-magnetic case’, otherwise spectrum does not change.

@ P.E., Stepan Manko: Spectral properties of magnetic chain graphs, Ann. H. Poincaré 18 (2017), 929-953.

Global changes are more interesting. Suppose that the field varies /inearly
along the chain, A; = 1j + 6 for some 1,0 € R and every j € Z.

You may say, that in nature one never meets a (globally) linear magnetic
field. As a possible excuse, let me quote Bratelli and Robinson:

. while the experimentalist might collect all his data between breakfast and lunch in a small
cluttered laboratory, his theoretical colleagues interpret those results in terms of isolated systems
moving eternally in an infinitely extended space. The validity of such idealizations is the heart
and soul of theoretical physics and has the same fundamental significance as the reproducibility
of experimental data.
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A more practical point of view

One can also say: it is the bridge at which mathematics and physics
meet, at least since Newton times.

In fact, the unbounded character of the sequence {A;} need not bother
us as it is not essential. The point is that, as we noted already, from the
spectral point of view only the fractional part of each A; matters.

The reason is that our operator — which we denote as —A, 4 a given
ac€Rand A= {A;} CR —is unitarily equivalent to —A, 4 with

Aj- = Aj + n with n € Z by the operator acting as ¥;(x) — 1;(x) e™"™;
a physicist would call it a gauge transformation.

This simplifies the analysis in the case when the slope u is rational.
Indeed, is such a situation we can assume without loss of generality that
the sequence {A;} is periodic and solve the problem using the Floquet
method similarly as we did that for a constant A.
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Results of Floquet analysis in the rational case @

Theorem

Let Aj = pj + 6 for some 1,6 € R and every j € Z. Then for the spectrum
o(—Ag,a) the following holds:

(a) If p,0 € Z and o = 0, then o,c(—Aq 4) = [0,00) and
pp(—Da,a) = {n?|n € N}

(b) If « # 0 and p = p/q with p,q relatively prime, puj + 6 + % ¢ 7 for
allj=0,...,q—1, then —A, 4 has infinitely degenerate ev's {n?| n € N}
interlaced with an ac part consisting of q-tuples of closed intervals

(c) If the situation is as in (b) but pj + 0 + 3 € Z holds for some
Jj=0,...,q9—1, then the spectrum o(—Aq ) consists of infinitely
degenerate eigenvalues only, the Dirichlet ones plus q distinct others in
each interval (—o0,1) and (n?,(n+1)?).

@ P.E., D. Vagata: Cantor spectra of magnetic chain graphs, J. Phys. A: Math. Theor. 50 (2017), 165201.
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Duality
The case of an irrational ;i requires a different approach. @'

The idea is to rephrase our differential operator problem of the metric
graph in term of a difference equation, as proposed in the 1980's by
physicists, Alexander and de Gennes, followed by mathematicians.

It is particularly simple if the graph in question is equilateral like in our
example. We consider 8 := {k: Imk > 0 A k ¢ Z} to exclude Dirichlet

ev's and seek the spectrum through solution of (A, 4 — kh(ig’ :3) =0

This leads to the difference equation
2 cos(Aim)iy1(k) + 2cos(Ai_rm)y_1(k) = n(k)ui(K), k € &,

where v;(k) := (jm, k) and n(k) := 4 cos km + ¢ sin k7 as above,
amended by 7(k) = 4 + ar for k = 0.

What is important, this is a two-way correspondence; we can reconstruct
the solution of the original problem from that of the difference one.
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Duality, continued

Specifically, we have

(89 = vt [ymts o)

(a1 (k)eEAT — 45 (k) cos kw)M] x € (jm G+ 1)),
sin k7

and in addition, the function on the left-hand side belongs to LP(I) if and
only if {¢j(k)}jez € £P(Z) holds with p € {2, 00}.

This relates weak solutions of the two problems but we can do better:

Theorem

For any interval J C R\ op, the operator (—Aq a)y is unitarily equivalent
to the pre-image n(~1) ((La)y(s)), where Ly is the operator on (*(Z)
acting as (Lap)j = 2 cos(Ajm)pjt1 + 2cos(Aj_1m)pj_1.

K. Pankrashkin: Unitary dimension reduction for a class of self-adjoint extensions with applications to graph-like
structures, J. Math. Anal. Appl. 396 (2012), 640-655.
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Another way to rephrase the problem
Let me recall the well-known almost Mathieu equation

Un+1 + Up—1 + Acos(2mrun + 0))u, = eu,

in the critical case, A = 2, also called Harper equation
The spectrum of the corresponding difference operator H,, » 9, independent
of 6, as a function of p is the well-known Hofstadter butterfly

Source: Fermat's Library
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The Ten Martini Problem

If € Q, the spectrum of H, > g is easily seen to be absolutely
continuous and of the band-gap type.

For 1 & Q the problem is much harder. lts Cantor structure was
conjectured — under the name proposed by B. Simon — but it took
two decades to achieve the solution:

@ A. Avila, S. Jitomirskaya: The Ten Martini Problem, Ann. Math. 170 (2009), 303-342.

Theorem

For any i & Q, the spectrum of H, > ¢ does not depend on 6 and it is a
Cantor set (i.e., having no interior points) of Lebesgue measure zero.

N.B.: Such a behavior was anticipated in physics half a century ago,

@ M.Ya. Azbel: Energy spectrum of a conduction electron in a magnetic field, J. Exp. Theor. Phys. 19 (1964), 634—645.

and recently confirmed by several groups observing graphene lattices in
a homogeneous magpnetic field.
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How is this related to our problem? =
We employ the trick originally proposed in @
@ M.A. Shubin: Discrete magnetic Laplacian, Commun. Math. Phys. 164 (1994), 259-275.

and consider a rotation algebra A, generated by elements u, v such that
uv = e®™ vy, It is simple for 1 € Q, thus having faithful representations.

We construct two representations of A, which map a single element
utv4utyvle A, to La and H, 29, respectively, which implies
that their spectra coincide, o(La) = 0(H,2,).

Thus we get a nontrivial result in a cheap way: using the duality and the

fact that the function 7 is locally analytic we can complete the result from
@ P.E., D. Va%ata: Cantor spectra of magnetic chain graphs, J. Phys. A: Math. Theor. 50 (2017), 165201.

Theorem

(d) If o # 0 and pu ¢ Q, then o(—Aq a) does not depend on § and it is
a disjoint union of the isolated-point family {n?| n € N} and Cantor sets,
one inside each interval (—oo, 1) and (n?,(n+ 1)?), n € N. Moreover,
the overall Lebesgue measure of o(—Aq a) is zero.
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Hausdorff dimension

The almost Mathieu operator is one of the most intensely studied,
and there are other results which have implications for our magnetic
chain model. Let us mention two of them with their consequences;
recall that a G set is a countable intersection of open sets.

Corollary

Let A; = puj + 6 for some 11,0 € R and every j € 7. There exists a dense
Gy set of the slopes 1 for which, and all 6, the Haussdorff dimension

dimH U(—Aa,A) =0

Y. Last, M. Shamis: Zero Hausdorff dimension spectrum for the almost Mathieu operator, Commun. Math. Phys. 348
(2016), 729-750.

Corollary

There is another dense set of the slopes i, with positive Hausdorff
measure, for which, on the contrary, dimy o(—A, ) > 0.

B. Helffer, Qinghui Liu, Yanhui Qu , Qi Zhou: Positive Hausdorff dimensional spectrum for the critical almost Mathieu
operator, Commun. Math. Phys. 368 (2019), 369-382.
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Resonance count _
Presence of a magnetic field can influence also other quantum graphs@

properties. Recall the high-energy asymptotics of the resonance counting
function we discussed in Lecture Ill, and expose such a graph I with leads
to a field described by a vector potential A referring to it as I 4.

Using the technique from [Davies-E-Lipovsky'10], reducing the problem to
analysis of the core graph with energy-dependent boundary conditions at
the ‘outer’ vertices, one can check the following claim:

If Tis Weyl, W = Zszl li, then [' 4 is also Weyl.

On the other hand: for non-Weyl graphs the field may change their
effective size. Here is a simple example:

(=

This (Kirchhoff) graph is non-Weyl for A =0, and thus for any A.
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Resonance count, continued

The resonance condition for such a graph is easily found to be
—2cosp+e k=0,

where ¢ = Al is the magnetic flux through the loop. The senior term,
e’k is missing, so by Langer theorem the effective size is W = %E
provided the (-independent term is nonzero.

However, for ¢ = £7/2 (mod ), this term disappears. The effective size
of the graph is then zero; it is straightforward to see that in the present
case there are no resonances at all.

P.E., J. Lipovsky: Non-Weyl resonance asymptotics for quantum graphs in a magnetic field, Phys. Lett. A375 (2011),
805-807.

Recall that (in the used units) the flux guantum is 27, hence resonances
are absent for odd multiples of a quarter of the quantum. One could
compare it with the ring chain where the absolutely continuous spectrum
disappeared for odd multiples of one half of the quantum.
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Leaky loops with a magnetic field

Magnetic field effects can also be seen in /eaky graphs. To give an ~
example, consider a singular interaction supported by a planar loop

in a homogeneous field with the vector potential A = lB(—xz,xl).

An important physical question concerns the existence of persistent
currents, in other words, a nonzero probability flux along the loop
satisfying the relation

yine OMn(9) _ 1

o6
where A,(¢) is the nth eigenvalue of the Hamiltonian
Har(B) := (—iV — A)> — ad(x — T);

here ¢ is again the magnetic flux (the quantum of which is 2%%)

d
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Persistent currents

C )
We can find the strong-coupling asymptotics as we did in Lecture V @'
using the same technique, but a different comparison operator, namely
aZ 1
Sr(B) = —@ - Zk(s)z
on L2(0, L) with ¢(L—) = eBI?ly(0+) and ¢'(L—) = By (04),
where Q is the area encircled by I and B|Q| is the f/ux.

Theorem

Let T be a C*-smooth. The for large o the operator Hy r(B) has a
non-empty discrete spectrum and the jth eigenvalue behaves as

1
Aj(a, B) = —Zoz2 +uj(B) + O(atIna),
where 11j(B) is the jth eigenvalue of Sr(B) and the error term is uniform

in B. In particular, for a fixed j and « large enough the function \j(c, -)
cannot be constant giving rise to a persistent current.

P. Exner, K. Yoshitomi: Persistent currents for 2D Schrodinger operator with a strong §-interaction on a loop, J. Phys.
A: Math. Gen. 35 (2002), 3479-3487.
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Concentric d-shells

C )
To give one more example, consider first a specific leaky system the @
Hamiltonian of which contains d-interactions supported by concentric

hell
e Hs= D+ 8> 8(x| — ) in L2(RY), v>2

n
(n — %)s, d>0,n=1,2,..., and let hg be the Hamiltonian
of the corresponding 1D Kronig-Penney model

with r, 1=

In the nontrivial case, 3 # 0, the spectrum is already interesting enough:
® 0ess(Hg) = [Es,0), where Eg :=inf o(hg)
@ it consists of interlacing intervals of a.c. and dense p.p. spectrum
® 04isc(Hg) is empty for v > 3 and infinite for v = 2; Malcolm Brown
coined the term Welsh eigenvalues for ogisc(Ha) in the latter case

P.E., M. Fraas: On the dense point and absolutely continuous spectrum for Hamiltonians with concentric § shells, Lett.
Math. Phys. 82 (2007), 25-37.

The same as is known to be true for regular, radially periodic potentials

B.M. Brown, M.S.P. Eastham , A.M. Hinz, T. Kriecherbauer, D.K.R. McCornack, K. Schmidt: Welsh eigenvalues of
radially periodic Schrodinger operators, J. Math. Anal. Appl. 225 (1998), 347-357.

K.M. Schmidt: Critical coupling constants and eigenvalue asymptotics of perturbed periodic Sturm-Liouville operators,
Commun. Math. Phys.211 (2000), 645-685.
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Welsh eigenvalues vs. Aharonov & Bohm
Let us now insert a singular magnetic flux into circles center, ~

Hap = (—iV = A +a ) 6(Ix]| = ra),
n
where the field is zero away from the center, corresponding to

_ 9 [y X
M= (-4.%))
since in the rational units the flux quantum is 27, we introduce « := %

The free Aharonov-Bohm Hamiltonian H, o := (—iV — A)? is defined on
the magnetic Sobolev space. The integer part of o can be removed by a
gauge transformation, hence we consider v € (0, 1) only.
The radial symmetry allows us to use the partial wave decomposition. As
usual we introduce U : L?(Ry, rdr) — L?(Ry) acting as Uf(r) = r'/2f(r)
to get

PR)=PUrPR)eS,

IeZ
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110 ODI
7/,

Welsh eigenvalues vs. Aharonov & Bohm, contd.®
Ha,O = @ U_lHa,O,/U 2 II )
i

where /) is the identity operator on S; and the radial part is
2

Ha 0,1 =

1 1
+ rjca,la Co,l = _Z + (/ + a’)za

Co,l
D(Hao,) :={f € *(Ry) : —F" + %f € L2(Ry),
lim r*"Y2f(r)=0 if /=0,
r—0t
lim rA="Y2f(r) =0 if | = —1}.
r—0t
Note that this is a ‘pure’ Aharonov-Bohm operator without an additional
singular interaction at the origin

ﬁ R. Adami, A. Teta: On the Aharonov-Bohm Hamiltonian, Lett. Math. Phys. 43 (1998), 43-54.

ﬁ L. Dabrowski, P. Stovitek: Aharonov-Bohm effect with & type interaction, J. Math. Phys. 39 (1998), 47-72.
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Welsh eigenvalues vs. Aharonov & Bohm, contd.®

Now we add the 0-interactions at the points r =r,, n=1,2,..., and
find easily the following elementary properties of H, g:

Proposition

Suppose that 3 # 0, then
ﬂadisc(HO;ﬂ) =00

° Udisc(H%;lg) = (Z)

o Udisc(Ha,ﬁ) = Udisc(Hl—a,B)
o if odisc(Ha,p) # 0, then eigenvalues of H, g are nondecreasing in the
interval [0, 3] and \j(a/) > \j(«) holds for a fixed j if o/ > «

The question is now: How 0gisc(Hq,g) looks like for o € (0, %) ?

To this aim one can use oscillation theory tools adapting the results of the
paper [Schmidt'00, loc.cit.] to our singular interactions.
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Welsh eigenvalues vs. Aharonov & Bohm, contd.©

The discrete spectrum comes from the partial wave component H, 3¢
2 1
-1
Let u be the d-periodic real-valued solution of the 1D comparison problem,

being determined by c, o =

hgu = Egu,
corresponding to the threshold Eg. Then we make the following claim:
Theorem
Suppose that a € (0, %) and put
1

1/1 /91 N\ /19, 0\
Cerit ::—4 <d/0 u2dx> <d/0 udx) ,

then Eg is an accumulation point of oqisc(Hq,g,0) provided - Ca’o > 1, while

for Co“z < 1 the operator has at most finite number of e/genvalues below
Eg with the multiplicity taken into account.

B P.E., S. Kondej: : Aharonov and Bohm versus Welsh eigenvalues, Lett. Math. Phys. 108 (2018), 2153-2167.
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Note that in case of regular potentials the number c.i; is sometimes
called Knesser constant in the literature.

Welsh eigenvalues vs. Aharonov & Bohm, contd.©

Since cuit > —% by Schwartz inequality, we get

Corollary

There exists an oeit(8) = et € (0, %) such that for a € (0, aerit) the
operator Hy, g has infinitely many eigenvalues accumulating at the
threshold Ey, the multiplicity taken into account, while for o € [Cverit, %)
the cardinality of the discrete spectrum is finite.

Moreover, since in our case u is known (quasi)explicitly, we find easily that
aerit(B) = O(B?) holds as 3 — 0 and
1
Qeit(B)= 5t O(B2e1P19/2) as B — —oc0,

acrit(ﬁ): % + O(,B_l) as fB — o00;

note that the sign of 7 shows up only in the error term.
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Emptiness of 04.(H, 3) for weak interactions

)

The next claim comes from properties of the quadratic form of the
operator Hy 3.0 — Eg. Any f € D(H, 5,0) can be written as uy with
X € Hg’z(RJr), and

[e's) [es) 2X2 )
Gayp.0lux] = — / ux(ux)”dr + cap / u™"5 dr — Egljux||
0 0

Examining the right-hand side, one can prove that the form is
non-negative for small enough |B|, and consequently, referring again
to the paper [E-Kondej'18, loc.cit.|, we have

Theorem

Given v € (0, 3), there exists a Bo > 0 such that for any |3| < f3y the
operator Hy.3 has empty discrete spectrum.
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Soft quantum waveguides =\
Let us turn to the second topic mentioned in the opening. The leaky @'
wire model with its zero width is also an idealization; to get something
more realistic we replace the § function by a finite potential well

=

For simplicity we will work in the simplest two-dimensional setting. To
begin with, let us collect the hypotheses we will use:

Let I : R — R? be an infinite and smooth planar curve without self-

intersections, parametrized by its arc length s. We introduce again

the signed curvature v : y(s) = (l2l'1 — ['172)(s) and assume that

@ [ is C?-smooth so, in particular, (s) makes sense,

© ~ is either of compact support, supp~y C [—so, so] for some sg > 0, or
[is C*-smooth and 7(s) together with its first and second derivatives
tend to zero as |s| — oo,

Q@ [I(s)—T(s")] — oo holds as |s — s’| = oo (no U-shapes, etc.).
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The interaction support

C )
=/
Recall that one can reconstruct the curve from the knowledge of +, up
to Euclidean transformations: putting (s, s1) := fs'? v(s) ds, we have

M(s)= (x1+/ cos ((s1, so) dsi, x2 —/ sinﬁ(sl,so)dsl)

for some sp € R and x = (x1,x2) € R?. Next we define the strip Q? by
Q7 := {x € R?: dist(x,I) < a},

in particular, Qf := R x (—a, a) corresponds to a straight line for which
we use the symbol 5. We assume that

S S

@ Q° does not intersect itself, in particular, al|v||oc < 1 holds for the
strip halfwidth of T

which ensures that the points of Q7 can be uniquely parametrized as
follows, . .
x(s,u) = (rl(s) —ula(s),Ma(s) + url(s)),

where N(s) = (—Ia(s),T1(s)) is the unit normal vectorto T at the point s.
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The potential ‘ditch’

a8
We will deal with Schrodinger operators having an attractive potentia
supported in Q2. To this aim, we consider

—~
@ a nonnegative V € L*°(R) with supp V' C [—a, 4]
(where V' > 0 is assumed for convenience only) and to define

V:Q? =Ry, V(x(s,u) = V(u), and Hry = —A — V(x);

in view of assumption (e) the operator domain is D(—A) = H?(R?)
It is also useful to introduce the channel-profile operator on L?(R),
hy = —02 — V(x)
with the domain H?(RR) which has in accordance with (e) a nonempty
and finite discrete spectrum such that
€0 := inf ogise(hv) = infa(hy) € (= ||V],0)

where the ground-state eigenvalue ¢g is simple and the associated
eigenfunction ¢o € H2(R) can be chosen strictly positive.
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Spectrum of Hr y =\
If the strip axis [ is straight, the spectrum is easily found using @

separation of variables; it is o0(Hr, v) = 0ess(Hry,v) = [€0, 20).

On the other hand, if the ditch is curved but straight outside a compact,
or at least asymptotically straight in the sense of (b), one can use Weyl's
criterion to prove the essential spectrum is preserved:

Proposition

Under assumptions (a)—(e) we have oess(Hr v) = [€0, 00)

As is the case of hard-wall waveguides or leaky wires, the question is
whether the curvature would give rise to bound states.

It is not clear at this moment whether there is a universal existence result
similar to those we were able to demonstrate in the indicated cases, but
we have at least some partial answers:

@ asymptotic results based on our previous knowledge

@ a quantitative criterion based on Birman-Schwinger principle
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Asymptotic results =
We know from Lecture IV that —A — ad(x — I') can be approximated @'
in the norm-resolvent sense by Schrodinger operators with potentials

transversally scaled, Vi Ve(u) = 1V(¥). This allows us to prove:

Proposition

Consider a non-straight C?-smooth curve T : R — R? such that

IT(s) = T(s")| > c|s — §'| holds for some c € (0,1). If the support of its
signed curvature vy is noncompact, assume, in addition to (b), that
v(s) = O(|s|7?) with some 3 > 2 as |s| — co. Then oaisc(Hr,v.) # 0
holds for all € small enough.

v

Consider, on the other hand, a flat-bottom waveguide, V, o(u) = Voxu(u),
where x refers to an interval J C [—ag, ag]. Using the high potential wall
limit and the existence result from Lecture | we can conclude:

Proposition

Let T be non-straight and assume that assumptions (a)—(d) are satisfied,
then oqisc(Hr v.) # 0 holds for all Vi large enough.
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A quantitative criterion

G@>)
We have met Birman-Schwinger principle, standard and generalized, i @
Lecture IV. Since the potential is supported in Q@ only, we may apply it,

@ use the curvilinear (Fermi, parallel) coordinates in Q7?,
@ straighten’the strip and treat Hr y as a perturbation of Hr, v
Theorem
Let assumptions (a)—(e) be valid and set
CEy(s,uis’,u') = % do() V() [(1 + uy(s))/? Ko(klx(s, u) = x(s', u')]) (1 + u'~+(s"))"/?
—Ko(rlxo(s, u) = xo(s’, ")) ] V(u")o(u")
for all (s, u), (s',u") € QF, then we have o4is.(Hr v) # () provided

/dsds/ / duduC v(s,u;s’ u') >0
R?2 —aJ—a

holds for kg = \/—¢€g

@ P.E.: Spectral properties of soft quantum waveguides, J. Phys. A: Math. Theor. 53 (2020), 355302.
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One more existence result

68
The integral kernel in the criterion involves the Euclidean distances @
between points of the curved strip:

Ix(s, u) — x(s', ") = |T(s) — ()% + v + u'? — 2uu’ cos B(s, s’) + 2(ucos B(s,s") — u) // sin B(¢, s') de

where the first term on the right-hand side of this formula, expressing
Euclidean distance of points on the strip ‘axis’, satisfies

() — T (s / /cosﬁﬁﬁ)dﬁdé < [Fo(s) — To(s)P = |s — &'

whenever the bend is nontrivial. This property was decisive in the leaky
wire case; using it we get from the above theorem the following claim:

Corollary

Let V., be the family of potentials V satisfying assumptions (d), (e), and
inf o(hy) = €o. Then to any ey > 0 there exists an ag = ag(eg) such that
odisc(Hr,v) # 0 holds for all V € V., with supp V C [—ag, ag].

P. Exner: Constrained quantum dynamics ISSAQM 2021 — Lecture VI September 4, 2021 -32-



Remarks
@ Birman-Schwinger principle is not the only tool available; a natur@
alternative is to employ a variational method. In this way the bound
state existence was proved for bookcover-shaped potential ditches

Source: the cited paper

a S. Kondej, D. Krejeitik, J. KFiz: Soft quantum waveguides with a explicit cut locus, arXiv:2007.10946

@ It is a particular example, but the bound state existence was proved
there for arbitrarily shallow channels; the question arises whether the
same could be true in other situations.

@ Moreover, these results open a plethora of questions about soft
waveguide properties in different dimensions, different geometries,
topological properties of such potential ditch networks, etc.

@ To quote a fresh result, if you have a family of soft quantum loops
of a fixed length |I'| and profile V, the ground state of the operator

Hr v is maximized by a circular shape.

ﬁ P.E., V. Lotoreichik: Optimization of the lowest eigenvalue of a soft quantum ring, Lett. Math. Phys. 111
(2021), 28.
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This is not the end, of course 6

If you tend to feel that these lectures have fully exhausted, fully or
almost fully, the title of this minicourse, better think twice. There is a
number of equally interesting problems to be treated, for instance

@ /nverse problems: to what extent we can reconstruct geometry of a
waveguide or a network from its spectral and scattering data? We
have seen, for instance, that in the limiting case when the effective

d2 1

Hamiltonian is — {5 — Zk(s)2 there is a sign ambiguity; the question

is whether it could be removed for finite guide width or well depth.
@ Absence of positive lower bound for graph edge lengths makes the
spectral analysis much more involved. Note that often we encounter

fractal structures for which such models could be useful.

P.E., A. Kostenko, M. Malamud, H. Neidhardt: Spectral theory of infinite quantum graphs, Ann. H. Poincaré
19 (2018), 3457-3510.

o Putting aside traditional electromagnetic waveguides there are other
interesting examples of guided dynamics. One recently popular relies
on Dirac equation (think of graphene ribbons!), other examples are
provided by the wave equation, elasticity, etc.
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This is not the end, of course

C )

@ The problems we discussed here had mostly one-body character, —

many-body analysis of waveguides and graphs is much less developed.

As in the atomic physics, a natural intermediary step is represented by
nonlinear one-body problems.

D. Noja: Nonlinear Schrédinger equation on graphs: recent results and open problems, Phil. Trans. Roy. Soc.
A372 (2014), 20130002

@ Quantum graphs with random parameters offer the opportunity to

study the effects of /ocalization and delocalization in this context.

ﬁ F. Klopp, K. Pankrashkin: Localization on quantum graphs with random vertex couplings, J. Stat. Phys. 131
(2008), 651-673.

M. Aizenman, R. Sims, S. Warzel: Absolutely continuous spectra of quantum tree graphs with weak disorder,
Commun. Math. Phys. 264 (2006), 371-389.

@ Quantum graphs are natural laboratory to study quantum chaos and
ergodic properties of such dynamics.

ﬁ T. Kottos, U. Smilansky: Quantum chaos on graphs, Phys. Rev. Lett. 79 (1997), 4794-4797.
ﬁ S. Gnutzmann, J.P. Keating, F. Piotet: Eigenfunction statistics on quantum graphs, Ann. Phys. 25 (2010),
2595-2640.

@ And this, again, is by far not all.
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Instead of a summary ©

Maybe the best moral to draw from this minicourse is that quantum
physics, in particular, that of waveguides, graphs, and networks is still full
of and to mention, as a parting gift to you, a few of them.

Claims with the potential to make your night sleepless are of two sorts.
With some of them you have no doubt they are right, but they defy efforts
to be proven. Mathematics offers famous examples such as

(proved by Andrew Wiles after 356 years) or the equally
celebrated (open since 1859),

or several others for which the Clay Institute is ready to make you a rich
man (or lady). But this may not be their most attractive feature — recall

who famously said: " Do you really need million dollars
when you proved Poincaré conjecture?”

Quantum theory is not that old but it also has, or had, its longstanding
open questions of this type, some resolved, some still open.
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Instead of a summary

@)
As examples one can mention the Bethe-Sommerfeld conjecture that @
appeared in Lecture Ill: it was stated 1933, the first rigorous result is due

to M. Skriganov in 1987, a rather general one due to L. Parnovski in 2008,

or the Ten Martini Problem arising for the work of M. Azbel in 1964 and
D. Hofstadter in 1976, resolved by A. Avila and S. Jitomirskaya in 2009,

as well as other, sometimes still open questions for which we can refer to

B. Simon: Schrédinger operators in the twenty-first century, in Mathematical Physics 2000, Imperial College London;
pp. 283-288.

Let us mention one such open problem in the area we have discussed here
concerning the absolute continuity of the spectrum of periodic waveguides.

Let —A% refer to a periodically curved tube in RY, d = 2,3. One expects
that J(—A%) is purely a.c. but for d = 3 we only know that to any E >0
there is ag > 0 such that the claim holds in [0, a=2k2 + E] for all tube

radii a < ag. A similar question for d = 2,3 concerns periodic leaky wires.

@ F. Bentosela, P. Duclos, P. Exner: Absolute continuity in periodic thin tubes and strongly coupled leaky wires, Lett.
Math. Phys. 65 (2003), 75-82.

@ A. Sobolev, J. Walthoe: Absolute continuity in periodic waveguides, Proc. London Math. Soc. 85 (2002), 717-741.
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Instead of a summary =
e

However, in other open problems we do not know the answer, for inst

@ The Bethe-Sommerfeld conjecture again, now in waveguides. We

know that for —Ago + Vin a straight strip with a bounded and
periodic perturbation V only a finite number of gaps is open if

period
<0.20242
width ™~

ﬁ D.l. Borisov: Bethe-Sommerfeld conjecture for periodic Schrodinger operators in strip, J. Math.Anal.Appl. 479
(2019), 260-282.

@ On the other hand, there are ‘exotic’ examples where such a claim is
not valid, thus the question arises: Under which conditions periodic

waveguides have the BS property?
We have solved the ground shape optimization
problem for loop-shaped waweguides or leaky wires

@ assuming their trivial topology. What would be the
answer if such a loop is a trefoil or a more compli-

cated knot?
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Instead of a summary ©

@ We know that a bent waveguide or a leaky wire has a nonempty
discrete spectrum. Let us expose it to a homogeneous magnetic
field. If will change both the eigenvalues and the essential spectrum,
however, by a continuity argument, for a weak field the discrete
spectrum is still there. One asks: Will it survive a strong field?

@ Or one more seemingly simple problem, the Wannier-Stark

O-interaction system, that is, the one with the Hamiltonian
2

d
—@—&—QZ(S(X—na)—FX

n€zZ
on L?(R) with some nonzero o and F and an a > 0. If the periodic

Kroning-Penney potential is replaced by a regu/ar one, the spectrum
is absolutely continuous, for a strongly singular one such as ¢’ it is
pure point, dense or not depending on the properties of F.

@ A transition from pure point spectrum for small |F| to continuous one
for strong field was conjectured, but reality may be more complicated

R.L. Frank, S. Larson: On the spectrum of the Kronig-Penney model in a constant electric field,
arXiv:2104.10256

@ And this list could continue for a long time ...
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However, | think time came to say 6

Thank you for your attention!

ISSAQM 2021 — Lecture VI



