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Motivation

Among many ideas we owe to Hermann Weyl semiclassical method is of
the most successful as hundred years of its use demonstrates.

Nevertheless, it is not universal: there are systems with discrete spectrum
for which the classically allowed phase-space volume is infinite. A classical
example due to [Simon’83] is a 2D Schrödinger operator with the potential

V (x , y) = x2y2

or more generally, V (x , y) = |xy |p with p ≥ 1.

Similar behavior one can observe for Dirichlet Laplacians in regions with
hyperbolic cusps – see [Geisinger-Weidl’11] for recent results and a survey.
Moreover, using the dimensional-reduction technique of Laptev and Weidl
one can prove spectral estimates for such operators.
A common feature of these models is that the particle motion is confined
into channels narrowing towards infinity.

P. Exner: Operators with narrow channels ... LATP, Technopôle Château-Gombert October 7, 2013 3/55



Potentials unbounded from below – a model

Our first aim in this talk is to show that similar behavior may occur even
for Schrödinger operators with potential unbounded from below in which a
classical particle can escape to infinity with an increasing velocity.

We are going to analyze the following class of operators:

Lp(λ) : Lp(λ)ψ = −∆ψ +
(
|xy |p − λ(x2 + y2)p/(p+2)

)
ψ , p ≥ 1

on L2(R2), where (x , y) are the standard Cartesian coordinates in R2 and
the parameter λ in the second term of the potential is non-negative; unless
the value of λ is important we write it simply as Lp.

Note that 2p
p+2 < 2 so the operator is e.s.a. on C∞0 (R2) by Faris-Lavine

theorem; the symbol Lp or Lp(λ) will always mean its closure.
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The subcritical case

Our first aim is to demonstrate that spectral properties of Lp(λ) depend
crucially on the value of the parameter λ and there a transition between
different regimes as λ changes.

Let us start with the subcritical case which occurs for small values of λ.
To characterize the smallness quantitatively we need an auxiliary operator
which will be an (an)harmonic oscillator Hamiltonian on line,

H̃p : H̃pu = −u′′ + |t|pu

on L2(R) with the standard domain. Let γp be the minimal eigenvalue of
this operator; in view of the potential symmetry we have γp = inf σ(Hp),
where

Hp : Hpu = −u′′ + tpu

on L2(R+) with Neumann condition at t = 0.
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The subcritical case – continued
The eigenvalue γp = inf σ(Hp) equals one for p = 2; for p →∞ where
the potential becomes an infinitely deep rectangular it becomes γ∞ = 1

4π
2;

it smoothly interpolates between the two values.

Since xp ≥ 1− χ[0,1](x) it follows from the minimax principle that
γp ≥ ε0 ≈ 0.546, where ε0 is the ground-state energy is the corresponding
rectangular potential well of depth one.

In fact, a numerical solution gives true minimum γp ≈ 0.998995 attained
at p ≈ 1.788; in the semilogarithmic scale the plot is as follows:
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The subcritical case – continued

The spectrum is naturally bounded from below and discrete if λ = 0; our
aim is to show that this remains to be the case provided λ is small enough.

Theorem (E-Barseghyan’12)

For any λ ∈ [0, λcrit], where λcrit := γp, the operator Lp(λ) is bounded
from below for p ≥ 1; if λ < γp its spectrum is purely discrete.

Idea of the proof: Let λ < γp. By minimax we need to estimate Lp from
below by a s-a operator with a purely discrete spectrum. To construct it
we employ bracketing imposing additional Neumann conditions at
concentric circles of radii n = 1, 2, . . . .

In the estimating operators the variables decouple asymptotically and the
spectral behavior is determined by the angular part of the operators.
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Subcritical behavior – the proof
Specifically, in polar coordinates we get direct sum of operators acting as

L
(1)
n,pψ = −1

r

∂

∂r

(
r
∂ψ

∂r

)
− 1

n2

∂2ψ

∂ϕ2
+

(
r2p

2p
| sin 2ϕ|p − λr2p/(p+2)

)
ψ

on the annuli Gn := {(r , ϕ) : n − 1 ≤ r < n, 0 ≤ ϕ < 2π}, n = 1, 2, . . .
with Neumann conditions imposed on ∂Gn.

Obviously σ(L
(1)
n,p) is purely discrete for each n = 1, 2, . . . , hence it is

sufficient to check that inf σ(L
(1)
n,p)→∞ holds as n→∞.

We estimate L
(1)
n,p from below by an operator with separating variables,

note that the radial part does not contribute and use the symmetry of the
problem; for ε ∈ (0, 1) the question is then to analyze

L
(2)
n,p : L

(2)
n,pu = −u′′ +

(
n2p+2

2p
sinp 2x − λ

1− ε
n(4p+4)/(p+2)

)
u

on L2(0, π/4) with Neumann conditions, u′(0) = u′(π/4) = 0.
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Subcritical behavior – proof continued

We have n2 inf σ(L
(1)
n,p) ≥ inf σ(L

(2)
n−1,p) if n is large enough, specifically for

n >
(
1− (1− ε)(p+2)/(4p+4)

)−1
, hence it is sufficient to investigate the

spectral threshold µn,p of L
(2)
n,p as n→∞.

The trigonometric potential can be estimated by a powerlike one with the
similar behavior around the minimum introducing, e.g.

L(3)
n,p := − d2

dx2
+ n2p+2xp

(
χ(0,δ(ε)](x) +

(
2

π

)p

χ[δ(ε),π/4)(x)

)
− λ′ε n(4p+4)/(p+2)

for small enough δ(ε) with Neumann boundary conditions at x = 0, 1
4π,

where we have denoted λ′ε := λ(1− ε)−p−1.

We have L
(2)
n,p ≥ (1− ε)pL

(3)
n,p. To estimate the rhs by comparing the

indicated potential contributions it is useful to pass to the rescaled
variable x = t · n−(2p+2)/(p+2).
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Subcritical behavior – proof concluded

In this way we find that µ′n,p := inf σ(L
(3)
n,p) satisfies

µ′n,p
n2
→∞ as n→∞

Through the chain of inequalities we come to conclusion that

inf σ(L
(1)
n,p)→∞ holds as n→∞ which proves discreteness of the

spectrum for λ < γp.

If λ = γp the sequence of spectral thresholds no longer diverges but it
remains bounded from below and the same is by minimax principle true for
the operator Lp(λ). �

Remark

It is natural to conjecture that σ(Lp(γp)) ⊃ R+. It is less clear whether
the critical operator can have also a negative discrete spectrum.
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The supercritical case

The situation is different for large values of λ:

Theorem (E-Barseghyan’12)

The spectrum of Lp(λ), p ≥ 1 , is unbounded below from if λ > λcrit.

Idea of the proof: Similar as above with a few differences:

now we seek an upper bound to Lp(λ) by a below unbounded
operator, hence we impose Dirichlet conditions on concentric circles

the estimating operators have now a nonzero contribution from the
radial part, however, it is bounded by π2 independently of n

the estimate of the angular part is simpler; the negative λ-dependent
term now outweights the anharmonic oscillator part so that

inf σ(L
(1,D)
n,p )→ −∞ holds as n→∞ �
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Lower bounds to eigenvalue sums
To state the result we introduce the following quantity:

α :=
1

2

(
1 +
√

5
)2
≈ 5.236 > γ−1

p

We denote by {λj ,p}∞j=1 the eigenvalues of Lp(λ) arranged in the
ascending order; then we can make the following claim.

Theorem (E-Barseghyan’12)

To any nonnegative λ < α−1 ≈ 0.19 there exists a positive constant Cp

depending on p only such that the following estimate is valid,

N∑
j=1

λj ,p ≥ Cp(1− αλ)
N(2p+1)/(p+1)

(lnp N + 1)1/(p+1)
− cλN, N = 1, 2, . . .,

where c = 2
(
α2

4 + 1
)
≈ 15.7.
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Proof outline

Proof is technically demanding, we just review the main steps. We denote
by {ψj ,p}∞j=1 normalized eigenfunctions corresponding to {λj ,p}∞j=1, i.e.

−∆ψj ,p + (|xy |p − λ(x2 + y2)p)/(p+2))ψj ,p = λj ,pψj ,p, j = 1, 2, . . . ;

without loss of generality we may suppose that they are real-valued.

Our potential forms hyperbolic-shaped “valleys” and we have to estimate
eigenfunction integrals in them. Specifically, we check that for any natural
j and δ > 0 one has

∫ ∞
1

∫ (1+δ)y−p/(p+2)

0
y2p/(p+2)ψ2

j,p(x , y) dx dy ≤ 2(1 + δ)2
∫ ∞

1

∫ ∞
0

(
∂ψj,p

∂x

)2

(x , y) dx dy

+2
1 + δ

δ

∫ ∞
1

∫ (1+δ)y−p/(p+2)

0
xpypψ2

j,p(x , y) dx dy
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Proof outline – continued
and that for any ε > 0 there is a number 1 ≤ θ(ε) ≤ 1 + δ such that

∫ ∞
1

yp/(p+2)ψ2
j,p

(
θ(ε)

yp/(p+2)
, y

)
dy <

1

δ

∫ ∞
1

∫ (1+δ)y−p/(p+2)

y−p/(p+2)
xpypψ2

j,p(x , y) dx dy + ε ,

together with the symmetry counterparts of these relations.

In combination with ‖ψj ,p‖ = 1 this allows us to estimate the modulus of
the attractive term by a combination of the kinetic and repulsive ones:

∫
R2

(x2 + y2)
p

p+2ψ2
j,p(x , y) dx dy

≤ 2(1 + δ) max

{
(1 + δ),

1

δ

}(∫
R2

|∇ψj,p|2 (x , y) dx dy

+

∫
R2

|xy |pψ2
j,p(x , y) dx dy + (1 + δ)2

)
+ 2
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Proof outline – continued

We choose δ = −1+
√

5
2 and put c := α(1 + δ)2 + 2 = 2

(
α2

4 + 1
)

; using

then the fact that λj ,p is the eigenvalue corresponding to ψj ,p we get

∫
R2

|∇ψj,p|2 dx dy +

∫
R2

|xy |pψ2
j,p dx dy ≤ 1

1− αλ
(λj,p + cλ) , j = 1, 2, . . . .

Subtracting a number % from both sides and rewriting the first integral
using Fourier-Plancherel image of ψj ,p we get

−
N∑
j=1

∫
R2

[%− x2 − y2]+|ψ̂j,p |2 dx dy +
N∑
j=1

∫
R2
|xy |pψ2

j,p dx dy ≤
1

1− αλ

N∑
j=1

(λj,p + cλ)− N% .
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Proof outline – continued

Lemma (Barseghyan’09)

There is a constant C ′p such that for any orthonormal system of

real-valued functions, Φ = {ϕj}Nj=1 ⊂ L2(R2), N = 1, 2, . . . , the inequality

∫
R2

ρp+1
Φ dx dy ≤ C ′p(lnp N + 1)

N∑
j=1

∫
R2

|ξη|p|ϕ̂j |2 dξ dη ,

holds true, where ρΦ :=
∑N

j=1 ϕ
2
j .

We use it to estimate the second integral on the lhs. To the first one we
apply Hölder inequality and find the minimum of the obtained expression

with respect to the variable z =
(∫

R2 ρ
p+1
Φ dx dy

)1/(p+1)
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Proof outline – concluded

After a short computation we get in this way

C ′′p (1 + lnp N)1/p%(2p+1)/p ≥ N%− 1

1− αλ

N∑
j=1

(λj ,p + cλ)

with the new constant being an explicit function of C ′p.

Hence we have to find g̃(N) = sup%≥0

(
N%− C ′′p %

(2p+1)/p(1 + lnp N)1/p
)
,

in other words, the Legendre transformation of the lhs of the last
inequality. It is straightforward to check that

g̃(N) = Cp
N(2p+1)/(p+1)

(1 + lnp N)1/(p+1)

with the constant given by Cp :=
(

p
(2p+1)C ′′p

)p/(p+1)
p+1

2p+1 . This is

equivalent to the sought bound concluding thus the proof. �
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Other eigenvalue moments

We can use the result also to derive – by far not optimal – bounds to other
eigenvalue moments. Assuming λ1,p ≤ λ2,p ≤ . . . of operator Lp(λ) we
have the inequality

K+N∑
j=K

λj ,p ≥
1

2
Cp(1− αλ)

N(2p+1)/(p+1)

(1 + lnp N)1/(p+1)
, K = 1, 2, . . . .

Using it for K = N we get a lower bound for λ2N,p which further implies

Corollary

N∑
j=1

λσj ,p ≥ C̃p,σ(1− αλ)σ
N(p(σ+1)+1)/(p+1)

(1 + lnp N)σ/(p+1)

holds any σ > 0 with some positive constant C̃p,σ.
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Upper bound to eigenvalue sums

Theorem (E-Barseghyan’12)

To any p ≥ 1 there is a constant C̃p such that

N∑
j=1

λj ,p ≤ C̃p
N(2p+1)/(p+1)

(1 + lnp N)1/(p+1)
, N = 1, 2, . . .

holds for any 0 ≤ λ < γp.

We note two things:

Not surprisingly, the upper bound is valid for any subcritical value of λ
In the case λ = 0 the asymptotics is exact up to the value of the
constant while for 0 < λ < α−1 the two bounds differs also by the
lower-order term −cλN
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Proof outline

The argument is easier than in the lower-bound case and follows the idea
used in [Barseghyan’09], specifically:

we discard the negative term in the potential,

we estimate Lp from above by the operator Ĥp = −∆ + Q in L2(R2)
with the potential Q(x , y) = |xy |p + |x |p + |y |p + 1,

we estimate the spectrum of the latter semiclassically.
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Cusp-shaped regions

The above bounds are valid for any p ≥ 1, hence it is natural to ask
about the limit p →∞ describing the particle confined in a region with
four hyperbolic ‘horns’, D = {(x , y) ∈ R2 : |xy | ≤ 1}, described by the
Schrödinger operator

HD(λ) : HD(λ)ψ = −∆ψ − λ(x2 + y2)ψ

with a parameter λ ≥ 0 and Dirichlet condition on the boundary ∂D.

Theorem (E-Barseghyan’12)

The spectrum of HD(λ) is discrete for any λ ∈ [0, 1) and the spectral
estimate

N∑
j=1

λj ≥ C (1− λ)
N2

1 + ln N
, N = 1, 2, . . .

holds true with a positive constant C .
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Proof outline

One can check that for any u ∈ H1 satisfying the condition u|∂D = 0 the
inequality ∫

D
(x2 + y2)u2(x , y) dx dy ≤

∫
D
|(∇ u) (x , y)|2 dx dy

is valid which in turn implies

HD(λ) ≥ −(1− λ)∆D ,

where ∆D is the Dirichlet Laplacian on the region D.

The result then follows from the eigenvalue estimates on ∆D known from
[Simon’83], [Jakšić-Molchanov-Simon’92].
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Smilansky model

The model was proposed in [Smilansky’04] to describe two simple
subsystems interacting in a way which exhibits a spectral transition.

Mathematical properties of the model were analyzed in [Solomyak’04],
[Evans-Solomyak’05], [Naboko-Solomyak’06]. Recently in [Guarneri’11]
time evolution in such a (slightly modified) model was analyzed.

One way to describe the model is through a 2D Schrödinger operator

HSm = − ∂2

∂x2
+

1

2

(
− ∂2

∂y2
+ y2

)
+ λyδ(x) ,

Smilansky argued in that the behavior of the system depends crucially on
the coupling parameter: if |λ| > 1 the particle can escape to infinity along
the singular ‘channel’ in the y direction. In spectral terms, it corresponds
to switch from a below bounded to below unbounded spectrum at |λ| = 1.
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A regular version of Smilansky model
A regular version requires a modification, in particular, the coupling
cannot be linear in y and the profile of the channel has to change with y .

The effect leans on effective variable decoupling far from the x-axis,
where the oscillator potential competes with the principal eigenvalue of
the ‘transverse’ part of the operator equal to 1

4λ
2y2.

We replacing the δ by a family of shrinking potentials whose mean
matches the δ coupling constant,

∫
U(x , y) dx ∼ y . This can be

achieved, e.g., by choosing U(x , y) = λy2V (xy) for a fixed function V .

This motivates us to investigate the following operator on L2(R2),

H = − ∂2

∂x2
− ∂2

∂y2
+ ω2y2 − λy2V (xy)χ{|x |≤a}(y),

where ω, a are positive constants, χ{|y |≤a} is the indicator function
of the interval (−a, a), and the potential V with suppV ⊂ [−a, a] is
a nonnegative function with bounded first derivative.
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A regular version of Smilansky model, continued

By Faris-Lavine theorem the operator is e.s.a. on C∞0 (R2) and the
same is true for its generalization,

H = − ∂2

∂x2
− ∂2

∂y2
+ ω2y2 −

N∑
j=1

λjy
2Vj(xy)χ{|x−bj |≤aj}(y)

with a finite number of channels, where functions Vj are positive with
bounded first derivative, with the supports contained in (bj − aj , bj + aj)
and such that suppVj ∩ suppVk = ∅ holds for j 6= k .

Remark

We note that the properties discussed below depend on the asymptotic
behavior of the potential channels and would not change if the potential
is modified in the vicinity of the x-axis, for instance, by replacing the
above cut-off functions with χ|y |≥a and χ|y |≥aj , respectively.
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Subcritical case

To state the result we employ a 1D comparison operator L = LV ,

L = − d2

dx2
+ ω2 − λV (x)

on L2(R) with the domain H2(R). What matters is the sign of its
spectral threshold; since V is supposed to be nonnegative, the latter
is a monotonous function of λ and there is a λcrit > 0 at which the
sign changes.

Theorem (Barseghyan-E’13)

Under the stated assumption, the spectrum of the operator H is bounded
from below provided the operator L is positive. In the multichannel case
the condition reads tV := minj inf σ(LVj

) ≥ 0.

Proof follows the same idea we have used for the previous model. �
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Supercritical case

Once the transverse channel principal dominates over the harmonic
oscillator contribution, the spectral behavior changes.

Theorem (Barseghyan-E’13)

Under our hypotheses, σ(H) = R holds if inf σ(L) < 0. In the
multichannel case the condition reads tV := minj inf σ(LVj

) < 0.

Proof relies on construction of an appropriate Weyl sequence. �
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Spectral estimates on non-straight cusps

The last result leads us naturally to the second main topic of this talk,
namely more general spectral estimates for Schrödinger type operators

HΩ = −∆Ω
D − V

on cusp-shaped regions Ω ⊂ Rd with Dirichlet boundary.

In distinction to the above considerations

we will not restrict ourselves now to the planar case assuming d ≥ 2,

we will suppose that V ≥ 0 is a bounded measurable potential,

on the other hand, we will assume that Ω can be geometrically
nontrivial, either bent or twisted, and investigate the role of geometry
in the spectral estimates

since estimates for complicated regions can be obtained by combining
various techniques and bracketing, we concentrate on a single
cusp-shaped region, one-sided or two-sided.
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A warm-up: curved planar cusps

Consider Ω ⊂ R2 with a smooth boundary which can described it by
specifying its axis and the cusp width. This will allow us to use natural
curvilinear coordinates to ‘straighten’ the cusp translating its geometric
properties into the coefficients of the resulting operator.

Specifically, we have three functions: smooth a, b : R→ R2 and a positive
continuous f : R→ R+ such that

Ω := {(a(s)− uḃ(s), b(s) + uȧ(s)) : s ∈ R, |u| < f (s) }

and lim|s|→∞ f (s) = 0. We will also consider Ω+ corresponding to s ≥ 0.

The strategy we are going to apply is first to ‘straighten’ Ω and then to
use the dimensional-reduction technique of Laptev and Weidl.
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Curved planar cusps

The reference curve Γ = {(a(s), b(s)) : s ∈ R} can be parametrized by its
arc length in which case ȧ(s)2 + ḃ(s)2 = 1. The signed curvature γ(s) of Γ
is given by γ(s) = ḃ(s)ä(s)− ȧ(s)b̈(s).

Note that Ω is determined by γ and f since{
a(s)

b(s)

}
=

{
a(s0)

b(s0)

}
+

∫ s

s0

{
cos

sin

}(∫ t

s0

γ(ξ) dξ

)
dt

with a fixed point s0, modulo Euclidean transformations of the plane.

We adopt the following assumptions:

|f (s)γ(s)| < 1 must hold at any point of the curve,

the map (s, u) 7→ (a(s)− uḃ(s), b(s) + uȧ(s)) is injective
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LT-type inequalities: 2D case

The spectrum of HΩ is discrete [Berger-Schechter’72]; our aim is to
prove Lieb-Thirring-type inequalities.

Theorem (E-Barseghyan’12)

Consider the Schrödinger operator HΩ on the region Ω. Suppose that the
curvature γ ∈ C 4, the inequality ‖f (·)γ(·)‖L∞(R) < 1 holds true, and Ω
does not intersect itself. Then for any σ ≥ 3/2 we have the estimate

tr (HΩ)σ− ≤ ‖1 + f |γ|‖−2σ
∞ Lclσ,1

∫
R

∞∑
j=1

(
−
(

πj

2f (s)

)2

+ ‖1 + f |γ|‖2
∞W−(s)

+‖1 + f |γ|‖2
∞‖Ṽ (s, ·)‖∞

)σ+1/2

+

ds ,

where ‖ · ‖∞ := ‖ · ‖L∞(R) and Lclσ,1 in the above formula is the usual
semiclassical constant defined by
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LT-type inequalities: 2D case continued

Theorem (continued)

Lclσ,1 :=
Γ(σ + 1)√
4πΓ(σ + 3

2 )
,

and furthermore, we have introduced

W−(s) :=
γ(s)2

4 (1− f (s)|γ(s)|)2
+

f (s)|γ̈(s)|
2 (1− f (s)|γ(s)|)3

+
5f 2(s)γ̇(s)2

4 (1− f (s)|γ(s)|)4

and Ṽ (s, u) := V
(
a(s)− uḃ(s), b(s) + uȧ(s)

)
.

Note that the sum is finite; the estimate looks like 1D LT inequality with
potential consisting of three parts: the transverse energy together with
multiples of the potential Ṽ (·) and curvature-induced potential W−(·).
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Proof outline

Using the ‘straightening’ transformation we infer that HΩ is unitarily
equivalent to the operator H0 on L2(Ω0) acting as

(H0ψ)(s, u) = − ∂

∂s

(
1

(1 + uγ(s))2

∂ψ

∂s
(s, u)

)
− ∂2ψ

∂u2
(s, u) + ((W − Ṽ )ψ)(s, u)

and Dirichlet b.c. at u = ±f (s), where Ω0 = {(s, u) : s ∈ R, |u| < f (s)}.

We introduce the operator H−0 defined on the domain H2
0(Ω0) in L2(Ω0) by

H−0 = −∆Ω0
D − ‖1 + f |γ|‖2

∞ (W− + Ṽ ) ,

then by a simple minimax estimate we have

H0 ≥ ‖1 + f |γ|‖−2
∞ H−0 ,

and consequently, it is enough to establish an appropriate bound on the
trace of the (negative part of the) operator (H−0 )σ.
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Proof outline – continued

Next comes a dimensional reduction analogous to that in [Weidl’08].
We denote by H(s, Ṽ ,W−) the negative part of Sturm-Liouville operator

− d2

du2
− ‖1 + f |γ|‖2

∞

(
W− + Ṽ

)
defined on C∞0 (−f (s), f (s)) with Dirichlet b.c. at u = ±f (s).

Extending it to the whole line as an operator acting as zero outside
[−f (s), f (s)] we derive easily the inequality

‖∇ g‖2
L2(Ω0) + ‖∇ v‖2

L2(Ω̂0)
− ‖1 + f |γ|‖2

∞

∫
Ω0

(
W− + Ṽ

)
(s, u)|g(s, u)|2 ds du

≥
∫
R2

∣∣∣∣∂h∂s (s, u)

∣∣∣∣2 ds du +

∫
R

〈
H(s, Ṽ ,W−) h(s, ·), h(s, ·)

〉
L2(R)

ds .

which holds true for any function g ∈ C∞0
(
R2\∂Ω0

)
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Proof outline – continued

The lhs is the quadratic form corresponding to H−0 ⊕
(
−∆

Ωc
0

D

)
, while

the rhs is associated with − ∂2

∂ s2 ⊗ IL2(R) + H
(
s, Ṽ ,W−

)
defined on

H1
(
R, L2(R)

)
. By minimax we infer that

tr (H−0 )σ− ≤ tr

(
− ∂2

∂ s2
⊗ IL2(R) + H(s, Ṽ ,W−)

)σ
−
, σ > 0 .

Now we use the Lieb-Thirring inequality for operator-valued potentials
proved in [Laptev-Weidl’00] obtaining

tr (H−0 )σ− ≤ Lclσ,1

∫
R

tr
(
H
(
s, Ṽ ,W−

))σ+1/2

−
ds , σ ≥ 3/2

with the standard semiclassical constant Lclσ,1.
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Proof outline – concluded

Now we define Sturm-Liouville operator Lf (s) on L2 (−f (s), f (s)) acting as

L(s, Ṽ ,W−) = − d2

du2
− ‖1 + f |γ|‖2

∞

(
W−(s) + ‖Ṽ (s, ·)‖∞

)
with Dirichlet b.c. at u = ±f (s). By the last inequality and minimax
principle we infer that

tr (H−0 )σ− ≤ Lclσ,1

∫
R

tr
(
Lf

(
s, Ṽ ,W−

))σ+1/2

−

holds for any σ ≥ 3/2.

It remains to find the negative eigenvalues −µj(s), j = 1, 2, . . ., of

Lf (s, Ṽ ,W−) which is easy because the potential is independent of u;
this concludes the proof. �
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One-sided and ‘thick’ cusps

By Dirichlet bracketing the above result easily implies

Corollary

Consider the operator HΩ+ on the one-sided cusp Ω+. The inequality
holds again with integration variable running now over the interval (0,∞).

Remark

Note that we have not used the condition lim|s|→∞ f (s) = 0. If it is not
satisfied, the spectrum of HΩ may not be purely discrete; the proved
inequality remains valid as long as we stay below inf σess(HΩ).
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Comparison with phase space estimate

While Berezin-Lieb-Yau inequalities for Dirichlet Laplacians correctly
describe semiclassical behavior of the spectrum at high energies, we want
to show now that if the region has ‘thin’ parts there may exist an
intermediate interval of energies where the above estimates are
considerably stronger than the BLY bound.

The standard way to study spectra of Dirichlet Laplacians below a fixed
value of energy is to consider −∆Ω

D − V with a constant V (s, u) = Λ > 0
and to investigate its negative spectrum.

Consider the cusp-shaped region Ω satisfying the conditions

‖f γ‖∞ < c <
−π − 1 +

√
(π + 1)2 + 4π

2
≈ 0.655

and max{‖f γ̇‖∞, ‖f γ̈‖∞} < 1 as an example.
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Comparison with phase space estimate – cont’d

The theorem proved above implies

tr (HΩ)σ− ≤
8

π

(
c2

4(1− c)2α2
c

+ 1

)σ+1

Lclσ,1 Λσ+1

∫
f (s)≥αcΛ−1/2

f (s) ds

with α2
c := π2−c2(1+c)2/(1−c)2

4(1+c)2 ; note that the curvature is present in this

estimate through the constant c only.

Our aim is to show that such an estimate can be stronger than the
phase-space bound mentioned above ,

tr (HΩ′)
σ
− ≤ Lclσ,1Λσ+1 vol (Ω′) , σ ≥ 1 .

We will construct a straight cusp example, c = 0, starting from an
unbounded cusped region Ω and passing subsequently to cut-off regions
Ω′ ⊂ Ω such that tr (H ′Ω)σ− ≤ tr (HΩ)σ− holds for σ ≥ 0.
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Comparison with phase space estimate – cont’d
We choose an arbitrary α > 0 and a natural number N and set

fα,N(x) :=

{
π
2 x−1−α for |x | > N
π
2 N−1−α for |x | ≤ N

Consider now the finite region Ω′α,N := {|x | < 21/αN, |y | < fα,N(x)}.
Using our result in combination with Dirichlet bracketing we get

tr(HΩ′α,N
)σ− ≤ 4 Lclσ,1Λσ+1 N−α for σ ≥ 3/2 .

On the other hand, the phase-space estimate gives

tr (HΩ′)
σ
− ≤ 2π Lclσ,1 N

−α Λσ+1

(
1

2α
+ 1

)
for σ ≥ 1 .

Given σ ≥ 3/2, this can be made much larger than the rhs of the first
inequality by choosing α small; for N large the difference between the two
estimates persists over a large energy interval.
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Curved circular cusps in Rd

Now we generalize the above result to cusps in Rd , d ≥ 3, of a circular
cross-section. The main trick is again to choose suitable curvilinear
coordinates which would allow us to ‘straighten’ such a region; we shall
follow the argument of [Chenaud-Duclos-Freitas-Krejčǐŕık’05]

We suppose that the region axis is a unit-speed Cd+2-smooth curve
Γ : R→ Rd which possesses a positively oriented Frenet frame, i.e. a
d-tuple {e1, . . . , ed} of functions such that

(i) e1 = Γ̇,

(ii) ei ∈ C 1(R,Rd) holds for any j = 1, . . . , d ,

(iii) ėi (s) lies in the span of e1(s), . . . , ei+1(s) for any j = 1, . . . , d − 1.

A sufficient condition for existence of such a frame is that the vector
values of the derivatives Γ̇(s), Γ̈(s), . . . , Γ(d−1)(s) are linearly independent
for all s ∈ R; note that this is always satisfied if d = 2.
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Coordinates in curved circular cusps
We have Frenet-Serret formulæ, ėi =

∑d−1
j=1 Kijej , where

K =


0 κ1 . . . 0

−κ1 . . . . . . 0

. . . . . . . . . κd−1

0 . . . −κd−1 0

,
where κi : R→ R is the i-th curvature of Γ. Under (i)–(iii) these
curvatures are continuous functions of the arc-length parameter s ∈ R.

Consider a (d − 1)× (d − 1) matrix function R = (Rµ,ν) determined by

Ṙµν +
d∑
ρ=2

Rµ,ρKρ,ν = 0 , µ, ν = 2, . . . , d ,

with an initial conditions at s0 ∈ R such that R(s0) is a rotation matrix in
Rd−1, i.e. detR(s0) = 1 and

∑d
ρ=2Rµ,ρ(s0)Rν,ρ(s0) = δµ,ν .
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Coordinates in curved circular cusps – cont’d
Next we associate with R(·) a d × d matrix function given by

(Rij(s)) :=

(
1 0

0 (Rµ,ν(s))

)
and define the moving frame {ẽ1, . . . , ẽd} ⊂ Rd along the curve Γ by

ẽi :=
d∑

j=1

Rijej ;

we call it the Tang frame (relative to the given Frenet frame).

Given the Tang frame we can characterize points in the vicinity of Γ by
means of the corresponding Cartesian coordinates u2, . . . , ud in the normal
plane to Γ at each point of the curve,

x(s, u2, . . . , ud) := Γ(s) +
d∑
ν=2

ẽµ(s)uµ ,

in particular, |u| =
(∑d

ν=2 u2
ν

)1/2
measures the radial distance from Γ.
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Unitary equivalence

Given a function f : R→ R+ satisfying lim|s|→∞ f (s) = 0 we define

Ω := {x(s, u2, . . . , ud) : s ∈ R, |u| < f (s) } ;

we again assume that (s, u2, . . . , ud) 7→ x(s, u2, . . . , ud) is injective.

Consider again HΩ = −∆Ω
D − V on L2(Ω) with a bounded measurable

V ≥ 0. Using the described coordinates one can check that HΩ is unitarily
equivalent to the operator on L2(Ω0), where Ω0 is the straightened region,
Ω0 = {(s, u1, . . . , ud−1) : s ∈ R, |u| < f (s)}, acting as

H0 = −∂1
1

h2
∂1 −

d∑
µ=2

∂2
µ + W − Ṽ

with Dirichlet b.c. at the boundary of the disc, |u| = f (s). Here ∂1, ∂µ are
the usual shorthands for ∂

∂s and ∂
∂uµ

, respectively.
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Unitary equivalence – continued
Furthermore, Ṽ (s, u1, . . . , ud−1) := V (x(s, u1, . . . , ud−1)) and the
curvature-induced part of the potential equals

W := −1

4

κ2
1

h2
+

1

2

h11

h3
− 5

4

h2
1

h4
,

where h(s, u2, . . . , ud) := 1− κ1(s)
∑d

µ=2Rµ2(s)uµ.

The derivatives with respect to s are given explicitly by

h1(·, u) =
d∑

µ,α=2

uµRµ,αK̇α,1 −
∑

µ,α=2,...,d
β=1,...,d

uµRµ,αKα,βKβ,1 ,

h11(·, u) =
d∑

µ,α=2

uµRµ,αK̈α,1 −
∑

µ,α=2,...,d
β=1,...,d

uµRµ,α
(
K̇α,βKβ,1 + 2Kα,βK̇β,1

)

+
∑

µ,α=2,...,d
β,γ=1,...,d

uµRµ,αKα,βKβ,γKγ,1 .
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Spectral estimate

Theorem (E-Barseghyan’12)

Consider HΩ = −∆Ω
D − v with a bounded measurable V ≥ 0

corresponding to Ω which is not self-intersecting; we assume that it is
determined by a Cd+2-smooth curve Γ and a function f satisfying the
condition ‖κ1(·)f (·)‖∞ < 1, where κ1 is the first curvature of Γ. Then
for the negative spectrum of HΩ the following inequality holds true,

tr (HΩ)σ− ≤ ‖1 + f |κ1|‖−2σ
∞ Lclσ,1

∫
R

∑
k,m=0,1,...

(
−
(
jk+(d−3)/2,m

f (s)

)2

+ ‖1 + f |κ1|‖2
∞

(
W−(s) + ‖Ṽ (s, ·)‖∞

))σ+1/2

+

ds ,

where Lclσ,1 is the LT constant, W− is the (explicit) s-dependent bound

to W (s, u)−, Ṽ (s, ·) is defined above, and jl ,m is the m-th positive zero
of the first-kind Bessel function Jl .
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Proof outline
The scheme is the same as for d = 2. We introduce the operator

H−0 = −
d∑
µ=1

∂2
µ − ‖1 + f |κ1|‖2

∞

(
W− + Ṽ

)
and prove the inequality

H0 ≥ ‖1 + f |κ1|‖−2
∞ H−0 ;

then we apply again the dimension reduction technique, which gives

tr (H−0 )σ− ≤ Lclσ,1

∫
R

tr
(
L
(
s, Ṽ ,W−

))σ+1/2

−
ds

for σ ≥ 3/2, where the operator in L2(Df (s)) at the rhs is given by

L
(
s, Ṽ ,W−

)
:= −∆

Df (s)

D − ‖1 + f |κ1|‖2
∞

(
W−(s) + ‖Ṽ (s, ·)‖∞

)
. �
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Twisted cusps in R3

Consider now another type of nontrivial cusp geometry: the axis will
be straight but the cross section will be non-circular. Having an open
connected set ω0 ⊂ R2 and a function f : R→ R+ satisfying
lim|s|→∞ f (s) = 0, we set

ωs := f (s)ω0 ;

it is used to define a straight cusped region determined by ω0, f as
Ω0 := {(s, x , y) : s ∈ R, (x , y) ∈ ωs}.

Next we twist the region. We fix a C 1-smooth function θ : R→ R with
bounded derivative, ‖θ̇‖∞ <∞, and introduce the region Ωθ as the image

Ωθ := Lθ(Ω0) ,

where the map Lθ : R3 → R3 is given by

Lθ(s, x , y) := (s, x cos θ(s) + y sin θ(s),−x sin θ(s) + y cos θ(s)) .
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Twisted cusps in R3 – continued

We are interested in the situation nontrivial twist situation, i.e.

(i) the function θ is not constant ,

(ii) ω0 is not rotationally symmetric w.r.t. the origin in R2.

We need a few more preliminaries. Define % := sup(x ,y)∈ω0

√
x2 + y2

and assume
%‖f θ̇‖∞ < 1 .

Next we set Ṽ (s, x , y) := V (Lθ(s, x , y)) and finally, we introduce the
operator

Ltrans := −i
(
x
∂

∂y
− y

∂

∂x

)
, Dom

(
Ltrans

)
= H1

0(ω0) ,

of angular momentum component canonically associated with rotations
in the transverse plane.
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Spectral estimate

Theorem (E-Barseghyan’12)

Consider HΩθ = −∆Ωθ
D −V referring to the region Ωθ defined above with a

potential V ≥ 0 which is bounded and measurable. Under the assumption
%‖f θ̇‖∞ < 1 the negative spectrum of HΩθ satisfies the inequality

tr
(
HΩθ
D

)σ
− ≤ Lclσ,1

(
1− %‖f θ̇‖∞

)σ ∫
R

∞∑
j=1

(
−
λ0,j(s)

f 2(s)
+
‖Ṽ (s, ·)‖∞
1− %‖f θ̇‖∞

)σ+1/2

+

ds

for σ ≥ 3/2, where Lclσ,1 is the LT constant and λ0,j(s), j = 1, 2, . . . , are
the eigenvalues of the operator

Hf ,θ(s) := −∆ω0
D + f 2(s)θ̇2(s)L2

trans

defined on the domain (H2 ∩H1
0)(ω0) in L2(ω0).
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Proof outline

Similar as above: we pass to unitarily equivalent operator H0 on L2(Ω0)
using Uθψ := ψ ◦ Lθ and employ the inequality H0 ≥

(
1− %‖f θ̇‖∞

)
H−0 ,

where

H−0 = −∆Ω0
D + θ̇2(s)L2

trans −
1

1− %‖f θ̇‖∞
‖Ṽ (s, ·)‖∞

with the domain H2
0(Ω0).

Denoting by H(s, Ṽ ) the negative part of 2D Schrödinger operator

−∆ωs
D + θ̇2(s)L2

trans −
1

1− %‖f θ̇‖∞
‖Ṽ (s, ·)‖∞

defined on H2
0(ωs), we prove the inequality

tr
(
H−0
)σ
− ≤ Lclσ,1

∫
R

trH(s, Ṽ )
σ+1/2
− ds , σ ≥ 3/2

and find the spectrum of the subintegral operator. �
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Summary

We have investigated spectral behavior of Schrödinger operators and
Dirichlet Laplacians confining the particle to ‘thin channels’, specifically

We have demonstrated occurrence of different spectral regime for
the operator −∆ +

(
|xy |p − λ(x2 + y2)p/(p+2)

)
in L2(R2)

in the subcritical case we proved a spectral estimate for small
enough value of the parameter λ

the analogous result was obtained in the hard-wall case, p =∞

a similar spectral transition has been demonstrated in a regular
version of Smilansky model

spectral estimates have been derived for Schrödinger operators in
bent circular cusp-shaped regions in Rd

analogous spectral estimates have been obtained for twisted
non-circular cusps in R3
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Some open questions

Are there eigenvalue-sum estimates for λ between α−1 ≈ 0.19 and
γp & 0.999 ?

Find better estimates for other eigenvalue moments

One expects that R+ ⊂ σ(Lp(λcrit). Are there negative eigenvalues?

Prove that σ(Lp(λcrit)) = R for λ > λcrit

Analyze the negative discrete spectrum for subcritical regular
Smilansky model

Find the time evolution in this model, in particular, its change
when we pass from subcritical to supercritical regime

Spectral estimates for cusps which are both bent and twisted

P. Exner: Operators with narrow channels ... LATP, Technopôle Château-Gombert October 7, 2013 53/55



The talk was based on

[EB12a] P.E., D. Barseghyan: Spectral estimates for a class of
Schrödinger operators with infinite phase space and potential unbounded
from below, J. Phys. A: Math. Theor. A45 (2012), 075204.

[EB12b] P.E., D. Barseghyan: Spectral estimates for Dirichlet Laplacians
and Schrödinger operators on geometrically nontrivial cusps, J. Spectral
Theory, to appear; arXiv: 1203.2098 [math-ph].

[EB13] D. Barseghyan, P.E.: A regular version of Smilansky model,
submitted; arXiv: 1308.4249 [math-ph].

P. Exner: Operators with narrow channels ... LATP, Technopôle Château-Gombert October 7, 2013 54/55



It remains to say

Merci pour votre attention!
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