Reflections on Zeno and anti-Zeno

Pavel Exner,
in part together with Takashi Ichinose and Sylwia Kondej
exner@ujf.cas.cz
Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

Talk overview

- Motivation: frequent non-decay measurements on unstable systems

Talk overview

- Motivation: frequent non-decay measurements on unstable systems
- Zeno dynamics: existence, form of the generator

Talk overview

- Motivation: frequent non-decay measurements on unstable systems
- Zeno dynamics: existence, form of the generator
- Solvable model: a caricature description of a system of a quantum wire and dots

Talk overview

- Motivation: frequent non-decay measurements on unstable systems
- Zeno dynamics: existence, form of the generator
- Solvable model: a caricature description of a system of a quantum wire and dots
- Comparison: relations between the stable and Zeno dynamics in the model

Talk overview

- Motivation: frequent non-decay measurements on unstable systems
- Zeno dynamics: existence, form of the generator
- Solvable model: a caricature description of a system of a quantum wire and dots
- Comparison: relations between the stable and Zeno dynamics in the model
- Anti-Zeno effect: what is it?

Talk overview

- Motivation: frequent non-decay measurements on unstable systems
- Zeno dynamics: existence, form of the generator
- Solvable model: a caricature description of a system of a quantum wire and dots
- Comparison: relations between the stable and Zeno dynamics in the model
- Anti-Zeno effect: what is it?
- Sufficient conditions for anti-Zeno effect

Quantum kinematics of decays

Three objects are needed:

- the state space \mathcal{H} of an isolated system
- projection P to subspace $P \mathcal{H} \subset \mathcal{H}$ of unstable system
- time evolution $\mathrm{e}^{-i H t}$ on \mathcal{H}, not reduced by P for $t>0$

Quantum kinematics of decays

Three objects are needed:

- the state space \mathcal{H} of an isolated system
- projection P to subspace $P \mathcal{H} \subset \mathcal{H}$ of unstable system
- time evolution $\mathrm{e}^{-i H t}$ on \mathcal{H}, not reduced by P for $t>0$

Suppose that evolution starts at $t=0$ from a state $\psi \in P \mathcal{H}$ and we perform a non-decay measurement at some $t>0$ The non-decay probabilities define in this situation the decay law, i.e. the function $P: \mathbb{R}_{+} \rightarrow[0,1]$ defined by

$$
P(t):=\left\|P \mathrm{e}^{-i H t} \psi\right\|^{2} ;
$$

we may also denote it as $P_{\psi}(t)$ to indicate the initial state

Repeated measurements

Suppose we perform non-decay measurements at times $t / n, 2 t / n \ldots, t$, all with the positive outcome, then the resulting non-decay probability is

$$
M_{n}(t)=P_{\psi}(t / n) P_{\psi_{1}}(t / n) \cdots P_{\psi_{n-1}}(t / n),
$$

where ψ_{j+1} is the normalized projection of $\mathrm{e}^{-i H t / n} \psi_{j}$ on $P \mathcal{H}$ and $\psi_{0}:=\psi$, in particular, for $\operatorname{dim} P=1$ we have

$$
M_{n}(t)=\left(P_{\psi}(t / n)\right)^{n}
$$

Repeated measurements

Suppose we perform non-decay measurements at times $t / n, 2 t / n \ldots, t$, all with the positive outcome, then the resulting non-decay probability is

$$
M_{n}(t)=P_{\psi}(t / n) P_{\psi_{1}}(t / n) \cdots P_{\psi_{n-1}}(t / n),
$$

where ψ_{j+1} is the normalized projection of $\mathrm{e}^{-i H t / n} \psi_{j}$ on $P \mathcal{H}$ and $\psi_{0}:=\psi$, in particular, for $\operatorname{dim} P=1$ we have

$$
M_{n}(t)=\left(P_{\psi}(t / n)\right)^{n}
$$

Consider the limit of permanent measurement, $n \rightarrow \infty$. If $\operatorname{dim} P=1$ and the one-sided derivative $\dot{P}(0+)$ vanishes, we find $M(t):=\lim _{n \rightarrow \infty} M_{n}(t)=1$ for all $t>0$, or Zeno effect. The same is true if $\operatorname{dim} P>1$ provided the derivative $\dot{P}_{\psi}(0+)$ has such a property for any $\psi \in P \mathcal{H}$.

When does Zeno effect occur?

Recall first a simple old result:
Theorem [E.-Havlíček, 1973]: $\dot{P}_{\psi}(0+)=0$ holds whenever $\psi \in \mathcal{Q}(H)$

When does Zeno effect occur?

Recall first a simple old result:
Theorem [E.-Havlíček, 1973]: $\dot{P}_{\psi}(0+)=0$ holds whenever $\psi \in \mathcal{Q}(H)$

Remarks:

- Naturally, $M(t)=P(t)$ if the undisturbed decay law is exponential, i.e. $P(t)=\mathrm{e}^{-\Gamma t}$
- However, $P(t)=\mathrm{e}^{-\Gamma t}$ correspond to a state not belonging to $\mathcal{Q}(H)$. And what is worse, decay law exponentiality requires $\sigma(H)=\mathbb{R}$!

A bit of history

- The effect first recognized in [Beskow-Nilsson'67], at least in the non-decay measurement context

A bit of history

- The effect first recognized in [Beskow-Nilsson'67], at least in the non-decay measurement context
- Mathematically first established by Friedmann and Chernoff in the beginning of the 70's

A bit of history

- The effect first recognized in [Beskow-Nilsson'67], at least in the non-decay measurement context
- Mathematically first established by Friedmann and Chernoff in the beginning of the 70's
- Its popularity followed the paper [Misra-Sudarshan'77] where the name quantum Zeno effect was coined

A bit of history

- The effect first recognized in [Beskow-Nilsson'67], at least in the non-decay measurement context
- Mathematically first established by Friedmann and Chernoff in the beginning of the 70's
- Its popularity followed the paper [Misra-Sudarshan'77] where the name quantum Zeno effect was coined
- New interest in recent years, in particular, because the effect becomes experimentally accessible in its non-ideal form: lifetime enhancement by measurement

A bit of history

- The effect first recognized in [Beskow-Nilsson'67], at least in the non-decay measurement context
- Mathematically first established by Friedmann and Chernoff in the beginning of the 70's
- Its popularity followed the paper [Misra-Sudarshan'77] where the name quantum Zeno effect was coined
- New interest in recent years, in particular, because the effect becomes experimentally accessible in its non-ideal form: lifetime enhancement by measurement
- New mathematical questions, in particular, about Zeno dynamics: what is the time evolution in $P \mathcal{H}$ generated by permanent observation?

Zeno dynamics

Assume that H is bounded from below and consider the non-trivial situation, $\operatorname{dim} \mathcal{H}>1$. We ask: does the limit

$$
\left(P \mathrm{e}^{-i H t / n} P\right)^{n} \longrightarrow \mathrm{e}^{-i H_{P} t}
$$

hold as $n \rightarrow \infty$, in which sense, and what is then Zeno dynamics generator, i.e. the operator H_{P} ?

Zeno dynamics

Assume that H is bounded from below and consider the non-trivial situation, $\operatorname{dim} \mathcal{H}>1$. We ask: does the limit

$$
\left(P \mathrm{e}^{-i H t / n} P\right)^{n} \longrightarrow \mathrm{e}^{-i H_{P} t}
$$

hold as $n \rightarrow \infty$, in which sense, and what is then Zeno dynamics generator, i.e. the operator H_{P} ?
Consider quadratic form $u \mapsto\left\|H^{1 / 2} \mathrm{Pu}\right\|^{2}$ with the form domain $D\left(H^{1 / 2} P\right)$ which is closed. By [Chernoff'74] the associated s-a operator, $\left(H^{1 / 2} P\right)^{*}\left(H^{1 / 2} P\right)$, is a natural candidate for H_{P} (while, in general, PHP is not!)
Counterexamples in [E.'85] and [Matolcsi-Shvidkoy'03] show, however, that it is necessary to assume that H_{P} is densely defined

Zeno dynamics, continued

Proposition: Let H be a self-adjoint operator in a separable \mathcal{H}, bounded from below, and let P be a finite-dimensional orthogonal projection on \mathcal{H}. If $P \mathcal{H} \subset \mathcal{Q}(H)$, then for any $\psi \in \mathcal{H}$ and $t \geq 0$ we have

$$
\lim _{n \rightarrow \infty}\left(P \mathrm{e}^{-i H t / n} P\right)^{n} \psi=\mathrm{e}^{-i H_{P} t} \psi,
$$

uniformly on any compact interval of the variable t

Zeno dynamics, continued

Proposition: Let H be a self-adjoint operator in a separable \mathcal{H}, bounded from below, and let P be a finite-dimensional orthogonal projection on \mathcal{H}. If $P \mathcal{H} \subset \mathcal{Q}(H)$, then for any $\psi \in \mathcal{H}$ and $t \geq 0$ we have

$$
\lim _{n \rightarrow \infty}\left(P \mathrm{e}^{-i H t / n} P\right)^{n} \psi=\mathrm{e}^{-i H_{P} t} \psi,
$$

uniformly on any compact interval of the variable t
Without restriction on $\operatorname{dim} \mathcal{H}$, the formula still holds but

- convergence in a weaker topology (time averaging)
- strong convergence with added spectral projection cf. talks by T. Ichinose and H. Neidhardt

A caricature model

An idealized description of a quantum wire and a family of quantum dots. Formally Hamiltonian acts in $L^{2}\left(\mathbb{R}^{2}\right)$ as

$$
H_{\alpha, \beta}=-\Delta-\alpha \delta(x-\Sigma)+\sum_{i=1}^{n} \tilde{\beta}_{i} \delta\left(x-y^{(i)}\right), \alpha>0,
$$

where $\Sigma:=\left\{\left(x_{1}, 0\right) ; x_{1} \in \mathbb{R}^{2}\right\}$ and $\Pi:=\left\{y^{(i)}\right\}_{i=1}^{n} \subset \mathbb{R}^{2} \backslash \Sigma$

A caricature model

An idealized description of a quantum wire and a family of quantum dots. Formally Hamiltonian acts in $L^{2}\left(\mathbb{R}^{2}\right)$ as

$$
H_{\alpha, \beta}=-\Delta-\alpha \delta(x-\Sigma)+\sum_{i=1}^{n} \tilde{\beta}_{i} \delta\left(x-y^{(i)}\right), \alpha>0
$$

where $\Sigma:=\left\{\left(x_{1}, 0\right) ; x_{1} \in \mathbb{R}^{2}\right\}$ and $\Pi:=\left\{y^{(i)}\right\}_{i=1}^{n} \subset \mathbb{R}^{2} \backslash \Sigma$
Singular interactions defined conventionally through b.c.: we have $\partial_{x_{2}} \psi\left(x_{1}, 0+\right)-\partial_{x_{2}} \psi\left(x_{1}, 0-\right)=-\alpha \psi\left(x_{1}, 0\right)$ for the line; around $y^{(i)}$ the wave functions have to behave as $\psi(x)=-\frac{1}{2 \pi} \log \left|x-y^{(i)}\right| L_{0}\left(\psi, y^{(i)}\right)+L_{1}\left(\psi, y^{(i)}\right)+\mathcal{O}\left(\left|x-y^{(i)}\right|\right)$, where the generalized b.v. $L_{j}\left(\psi, y^{(i)}\right), j=0,1$, satisfy

$$
L_{1}\left(\psi, y^{(i)}\right)+2 \pi \beta_{i} L_{0}\left(\psi, y^{(i)}\right)=0, \quad \beta_{i} \in \mathbb{R}
$$

Resolvent by Krein-type formula

- We introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,

Resolvent by Krein-type formula

- We introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,
- canonical embeddings of free resolvent $\mathbf{R}(z)$ to \mathcal{H}_{i} by $\mathbf{R}_{i, L}(z):=\tau_{i} R(z): L^{2} \rightarrow \mathcal{H}_{i}, \mathbf{R}_{L, i}(z):=\left[\mathbf{R}_{i, L}(z)\right]^{*}$, and $\mathbf{R}_{j, i}(z):=\tau_{j} \mathbf{R}_{L, i}(z): \mathcal{H}_{i} \rightarrow \mathcal{H}_{j}$, and

Resolvent by Krein-type formula

- We introduce auxiliary Hilbert spaces, $\mathcal{H}_{0}:=L^{2}(\mathbb{R})$ and $\mathcal{H}_{1}:=\mathbb{C}^{n}$, and trace maps $\tau_{j}: W^{2,2}\left(\mathbb{R}^{2}\right) \rightarrow \mathcal{H}_{j}$ defined by $\tau_{0} f:=f \upharpoonright_{\Sigma}$ and $\tau_{1} f:=f \upharpoonright_{\Pi}$,
- canonical embeddings of free resolvent $\mathbf{R}(z)$ to \mathcal{H}_{i} by $\mathbf{R}_{i, L}(z):=\tau_{i} R(z): L^{2} \rightarrow \mathcal{H}_{i}, \mathbf{R}_{L, i}(z):=\left[\mathbf{R}_{i, L}(z)\right]^{*}$, and $\mathbf{R}_{j, i}(z):=\tau_{j} \mathbf{R}_{L, i}(z): \mathcal{H}_{i} \rightarrow \mathcal{H}_{j}$, and
- operator-valued matrix $\Gamma(z): \mathcal{H}_{0} \oplus \mathcal{H}_{1} \rightarrow \mathcal{H}_{0} \oplus \mathcal{H}_{1}$ by

$$
\begin{aligned}
\Gamma_{i j}(z) g & :=-\mathbf{R}_{i, j}(z) g \text { for } i \neq j \text { and } g \in \mathcal{H}_{j}, \\
\Gamma_{00}(z) f & :=\left[\alpha^{-1}-\mathbf{R}_{0,0}(z)\right] f \text { if } f \in \mathcal{H}_{0}, \\
\Gamma_{11}(z) \varphi & :=\left(s_{\beta}(z) \delta_{k l}-G_{z}\left(y^{(k)}, y^{(l)}\right)\left(1-\delta_{k l}\right)\right) \varphi,
\end{aligned}
$$

with $s_{\beta}(z):=\beta+s(z):=\beta+\frac{1}{2 \pi}\left(\ln \frac{\sqrt{z}}{2 i}-\psi(1)\right)$

Resolvent by Krein-type formula

To invert it we define the "reduced determinant"

$$
D(z):=\Gamma_{11}(z)-\Gamma_{10}(z) \Gamma_{00}(z)^{-1} \Gamma_{01}(z): \mathcal{H}_{1} \rightarrow \mathcal{H}_{1},
$$

Resolvent by Krein-type formula

To invert it we define the "reduced determinant"

$$
D(z):=\Gamma_{11}(z)-\Gamma_{10}(z) \Gamma_{00}(z)^{-1} \Gamma_{01}(z): \mathcal{H}_{1} \rightarrow \mathcal{H}_{1},
$$

then an easy algebra yields expressions for "blocks" of $[\Gamma(z)]^{-1}$ in the form

$$
\begin{aligned}
& {[\Gamma(z)]_{11}^{-1}=D(z)^{-1},} \\
& {[\Gamma(z)]_{00}^{-1}=\Gamma_{00}(z)^{-1}+\Gamma_{00}(z)^{-1} \Gamma_{01}(z) D(z)^{-1} \Gamma_{10}(z) \Gamma_{00}(z)^{-1},} \\
& {[\Gamma(z)]_{01}^{-1}=-\Gamma_{00}(z)^{-1} \Gamma_{01}(z) D(z)^{-1},} \\
& {[\Gamma(z)]_{10}^{-1}=-D(z)^{-1} \Gamma_{10}(z) \Gamma_{00}(z)^{-1} ;}
\end{aligned}
$$

thus to determine singularities of $[\Gamma(z)]^{-1}$ one has to find the null space of $D(z)$

Resolvent by Krein-type formula

We can write $R_{\alpha, \beta}(z) \equiv\left(H_{\alpha, \beta}-z\right)^{-1}$ also as a perturbation of the "line only" Hamiltonian \tilde{H}_{α} with the resolvent

$$
R_{\alpha}(z)=R(z)+R_{L 0}(z) \Gamma_{00}^{-1} R_{0 L}(z)
$$

We define $\mathbf{R}_{\alpha ; L 1}(z): \mathcal{H}_{1} \rightarrow L^{2}$ by $\mathbf{R}_{\alpha ; 1 L}(z) \psi:=R_{\alpha}(z) \psi \upharpoonright_{\Pi}$ for $\psi \in L^{2}$ and $\mathbf{R}_{\alpha ; L 1}(z):=\mathbf{R}_{\alpha ; 1 L}^{*}(z)$. Then we have the result:

Resolvent by Krein-type formula

We can write $R_{\alpha, \beta}(z) \equiv\left(H_{\alpha, \beta}-z\right)^{-1}$ also as a perturbation of the "line only" Hamiltonian \tilde{H}_{α} with the resolvent

$$
R_{\alpha}(z)=R(z)+R_{L 0}(z) \Gamma_{00}^{-1} R_{0 L}(z)
$$

We define $\mathbf{R}_{\alpha ; L 1}(z): \mathcal{H}_{1} \rightarrow L^{2}$ by $\mathbf{R}_{\alpha ; 1 L}(z) \psi:=R_{\alpha}(z) \psi \upharpoonright_{\Pi}$ for $\psi \in L^{2}$ and $\mathbf{R}_{\alpha ; L 1}(z):=\mathbf{R}_{\alpha ; 1 L}^{*}(z)$. Then we have the result: Theorem [E.-Kondej, 2004]: For $z \in \rho\left(H_{\alpha, \beta}\right)$ with $\operatorname{Im} z>0$ the resolvent $R_{\alpha, \beta}(z):=\left(H_{\alpha, \beta}-z\right)^{-1}$ equals

$$
\begin{aligned}
R_{\alpha, \beta}(z) & =R(z)+\sum_{i, j=0}^{1} \mathbf{R}_{L, i}(z)[\Gamma(z)]_{i j}^{-1} \mathbf{R}_{j, L}(z) \\
& =R_{\alpha}(z)+\mathbf{R}_{\alpha ; L 1}(z) D(z)^{-1} \mathbf{R}_{\alpha ; 1 L}(z)
\end{aligned}
$$

Resonance poles

The decay is due to the tunneling between points and line. It is absent if the interaction is "switched off" (i.e., line "put to an infinite distance"); the corresponding free Hamiltonian is $\tilde{H}_{\beta}:=H_{0, \beta}$. It has m eigenvalues, $1 \leq m \leq n$; we assume that they satisfy the condition

$$
-\frac{1}{4} \alpha^{2}<\epsilon_{1}<\cdots<\epsilon_{m}<0 \quad \text { and } \quad m>1,
$$

i.e., the embedded spectrum is simple and non-trivial.

Resonance poles

The decay is due to the tunneling between points and line. It is absent if the interaction is "switched off" (i.e., line "put to an infinite distance"); the corresponding free Hamiltonian is $\tilde{H}_{\beta}:=H_{0, \beta}$. It has m eigenvalues, $1 \leq m \leq n$; we assume that they satisfy the condition

$$
-\frac{1}{4} \alpha^{2}<\epsilon_{1}<\cdots<\epsilon_{m}<0 \quad \text { and } \quad m>1,
$$

i.e., the embedded spectrum is simple and non-trivial.

Let us specify the interactions sites by their Cartesian coordinates, $y^{(i)}=\left(c_{i}, a_{i}\right)$. We also introduce the notations $a=\left(a_{1}, \ldots, a_{n}\right)$ and $d_{i j}=\left|y^{(i)}-y^{(j)}\right|$ for the distances in Π
To find resonances in our model we rely on a BS-type argument; our aim is to find zeros of the function $D(\cdot)$

Resonance poles, continued

We seek analytic continuation of $D(\cdot)$ across $\left(-\frac{1}{4} \alpha^{2}, 0\right) \subset \mathbb{R}$ denoting it as $D(\cdot)^{(-1)}$. The first component of $\Gamma_{11}(\cdot)^{(-1)}$ is obtained easily. To find the second one let us introduce

$$
\mu_{i j}(z, t):=\frac{i \alpha}{2^{5} \pi} \frac{\left(\alpha-2 i(z-t)^{1 / 2}\right) \mathrm{e}^{i(z-t)^{1 / 2}\left(\left|a_{i}\right|+\left|a_{j}\right|\right)}}{t^{1 / 2}(z-t)^{1 / 2}} \mathrm{e}^{i t^{1 / 2}\left(c_{i}-c_{j}\right)}
$$

Then the matrix elements of $\left(\Gamma_{10} \Gamma_{00}^{-1} \Gamma_{01}\right)^{(-1)}(\cdot)$ are

$$
\theta_{i j}^{(-1)}(\lambda)=-\int_{0}^{\infty} \frac{\mu_{i j}^{0}(\lambda, t)}{t-\lambda-\alpha^{2} / 4} \mathrm{~d} t-2 g_{\alpha, i j}(\lambda)
$$

where

$$
g_{\alpha, i j}(z):=\frac{i \alpha}{\left(z+\alpha^{2} / 4\right)^{1 / 2}} \mathrm{e}^{-\alpha\left(\left|a_{i}\right|+\left|a_{j}\right|\right) / 2} \mathrm{e}^{i\left(z+\alpha^{2} / 4\right)^{1 / 2}\left(c_{i}-c_{j}\right)} ;
$$

the values at the segment and in \mathbb{C}_{+}are expressed similarly

Resonance poles, continued

Then we can express $\operatorname{det} D^{(-1)}(z)$. To study weak-coupling asymptotics it is useful to introduce a reparametrization

$$
\tilde{b}(a) \equiv\left(b_{1}(a), \ldots, b_{n}(a)\right), \quad b_{i}(a)=\mathrm{e}^{-\left|a_{i}\right| \sqrt{-\epsilon_{i}}}
$$

denoting the quantity of interest as $\eta(\tilde{b}, z)=\operatorname{det} D^{(-1)}(a, z)$

Resonance poles, continued

Then we can express $\operatorname{det} D^{(-1)}(z)$. To study weak-coupling asymptotics it is useful to introduce a reparametrization

$$
\tilde{b}(a) \equiv\left(b_{1}(a), \ldots, b_{n}(a)\right), \quad b_{i}(a)=\mathrm{e}^{-\left|a_{a}\right| \sqrt{-\epsilon_{i}}}
$$

denoting the quantity of interest as $\eta(\tilde{b}, z)=\operatorname{det} D^{(-1)}(a, z)$
If $\tilde{b}=0$ the zeros are, of course, ev's of the point-interaction Hamiltonian \tilde{H}_{β}. Using implicit-function theorem we find the following weak-coupling asymptotic expansion,

$$
z_{i}(b)=\epsilon_{i}+\mathcal{O}(b)+i \mathcal{O}(b) \quad \text { where } \quad b:=\max _{1 \leq i \leq m} b_{i}
$$

Resonance poles, continued

Then we can express $\operatorname{det} D^{(-1)}(z)$. To study weak-coupling asymptotics it is useful to introduce a reparametrization

$$
\tilde{b}(a) \equiv\left(b_{1}(a), \ldots, b_{n}(a)\right), \quad b_{i}(a)=\mathrm{e}^{-\left|a_{a}\right| \sqrt{-\epsilon_{i}}}
$$

denoting the quantity of interest as $\eta(\tilde{b}, z)=\operatorname{det} D^{(-1)}(a, z)$
If $\tilde{b}=0$ the zeros are, of course, ev's of the point-interaction Hamiltonian \tilde{H}_{β}. Using implicit-function theorem we find the following weak-coupling asymptotic expansion,

$$
z_{i}(b)=\epsilon_{i}+\mathcal{O}(b)+i \mathcal{O}(b) \quad \text { where } \quad b:=\max _{1 \leq i \leq m} b_{i}
$$

Remark: This model can exhibit also other long-living resonances due to weakly violated mirror symmetry, however, we are not going to consider them here

Dot states

By assumption there is a nontrivial discrete spectrum of \tilde{H}_{β} embedded in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$. Let us denote the corresponding normalized eigenfunctions $\psi_{j}, j=1, \ldots, m$, given by

$$
\psi_{j}(x)=\sum_{i=1}^{m} d_{i}^{(j)} \phi_{i}^{(j)}(x), \quad \phi_{i}^{(j)}(x):=\sqrt{-\frac{\epsilon_{j}}{\pi}} K_{0}\left(\sqrt{-\epsilon_{j}}\left|x-y^{(i)}\right|\right),
$$

where vectors $d^{(j)} \in \mathbb{C}^{m}$ solve the equation $\Gamma_{11}\left(\epsilon_{j}\right) d^{(j)}=0$ and the normalization condition, $\left\|\phi_{i}^{(j)}\right\|=1$, reads

$$
\left|d^{(j)}\right|^{2}+2 \operatorname{Re} \sum_{i=2}^{m} \sum_{k=1}^{i-1} \overline{d_{i}^{(j)}} d_{k}^{(j)}\left(\phi_{i}^{(j)}, \phi_{k}^{(j)}\right)=1 .
$$

In particular, if the distances in Π are large (the natural length scale is given by $\left.\left(-\epsilon_{j}\right)^{-1 / 2}\right)$, the cross terms are small and each $\left|d^{(j)}\right|$ is close to one

Decay of the dot states

Now we specify the unstable system identifying its Hilbert space $P \mathcal{H}$ with the span of $\psi_{1}, \ldots, \psi_{m}$. If it is prepared at $t=0$ in a state $\psi \in P \mathcal{H}$, then the undisturbed decay law is

$$
P_{\psi}(t)=\left\|P \mathrm{e}^{-i H_{\alpha, \beta} t} \psi\right\|^{2}
$$

Decay of the dot states

Now we specify the unstable system identifying its Hilbert space $P \mathcal{H}$ with the span of $\psi_{1}, \ldots, \psi_{m}$. If it is prepared at $t=0$ in a state $\psi \in P \mathcal{H}$, then the undisturbed decay law is

$$
P_{\psi}(t)=\left\|P \mathrm{e}^{-i H_{\alpha, \beta} t} \psi\right\|^{2}
$$

Our model is similar to (multidimensional) Friedrichs model, therefore modifying the standard argument [Demuth'76], cf. [E.-Ichinose-Kondej'05], one can check that in the weak-coupling situation the leading term in $P_{\psi}(t)$ will come from the appropriate semigroup evolution on $P \mathcal{H}$, in particular, for the basis states ψ_{j} we will have a dominantly exponential decay, $P_{\psi_{j}}(t) \approx \mathrm{e}^{-\Gamma_{j} t}$ with $\Gamma_{j}=2 \operatorname{Im} z_{j}(b)$

Decay of the dot states

Now we specify the unstable system identifying its Hilbert space $P \mathcal{H}$ with the span of $\psi_{1}, \ldots, \psi_{m}$. If it is prepared at $t=0$ in a state $\psi \in P \mathcal{H}$, then the undisturbed decay law is

$$
P_{\psi}(t)=\left\|P \mathrm{e}^{-i H_{\alpha, \beta} t} \psi\right\|^{2}
$$

Our model is similar to (multidimensional) Friedrichs model, therefore modifying the standard argument [Demuth'76], cf. [E.-Ichinose-Kondej'05], one can check that in the weak-coupling situation the leading term in $P_{\psi}(t)$ will come from the appropriate semigroup evolution on $P \mathcal{H}$, in particular, for the basis states ψ_{j} we will have a dominantly exponential decay, $P_{\psi_{j}}(t) \approx \mathrm{e}^{-\Gamma_{j} t}$ with $\Gamma_{j}=2 \operatorname{Im} z_{j}(b)$
Remark: The long-time behaviour of $P_{\psi_{j}}(t)$ is different from Friedrichs model, but this is not important here

Stable and Zeno dynamics

Suppose now that we perform the Zeno measurement at our system. We have $\operatorname{dim} P<\infty$ and $P \mathcal{H} \subset \mathcal{Q}\left(H_{\alpha, \beta}\right)$, so $H_{P}=P H_{\alpha, \beta} P$ with the following matrix representation

$$
\left(\psi_{j}, H_{P} \psi_{k}\right)=\delta_{j k} \epsilon_{j}-\alpha \int_{\Sigma} \bar{\psi}_{j}\left(x_{1}, 0\right) \psi_{k}\left(x_{1}, 0\right) \mathrm{d} x_{1}
$$

where the first term corresponds, of course, to \tilde{H}_{β}

Stable and Zeno dynamics

Suppose now that we perform the Zeno measurement at our system. We have $\operatorname{dim} P<\infty$ and $P \mathcal{H} \subset \mathcal{Q}\left(H_{\alpha, \beta}\right)$, so $H_{P}=P H_{\alpha, \beta} P$ with the following matrix representation

$$
\left(\psi_{j}, H_{P} \psi_{k}\right)=\delta_{j k} \epsilon_{j}-\alpha \int_{\Sigma} \bar{\psi}_{j}\left(x_{1}, 0\right) \psi_{k}\left(x_{1}, 0\right) \mathrm{d} x_{1}
$$

where the first term corresponds, of course, to \tilde{H}_{β}
Theorem [E.-Ichinose-Kondej'05]: The two dynamics do not differ significantly for times satisfying

$$
t \ll C \mathrm{e}^{2 \sqrt{-\epsilon}|\tilde{a}|},
$$

where C is a positive number and $|\tilde{a}|=\min _{i}\left|a_{i}\right|, \epsilon=\max _{i} \epsilon_{i}$

Stable and Zeno dynamics

Suppose now that we perform the Zeno measurement at our system. We have $\operatorname{dim} P<\infty$ and $P \mathcal{H} \subset \mathcal{Q}\left(H_{\alpha, \beta}\right)$, so $H_{P}=P H_{\alpha, \beta} P$ with the following matrix representation

$$
\left(\psi_{j}, H_{P} \psi_{k}\right)=\delta_{j k} \epsilon_{j}-\alpha \int_{\Sigma} \bar{\psi}_{j}\left(x_{1}, 0\right) \psi_{k}\left(x_{1}, 0\right) \mathrm{d} x_{1},
$$

where the first term corresponds, of course, to \tilde{H}_{β}
Theorem [E.-Ichinose-Kondej'05]: The two dynamics do not differ significantly for times satisfying

$$
t \ll C \mathrm{e}^{2 \sqrt{-\epsilon}|\tilde{a}|},
$$

where C is a positive number and $|\tilde{a}|=\min _{i}\left|a_{i}\right|, \epsilon=\max _{i} \epsilon_{i}$ Proof: The norm of $\mathcal{U}_{t}:=\left(\mathrm{e}^{-i \tilde{H}_{\beta} t}-\mathrm{e}^{-i H_{P} t}\right) P$ is small as long as $t\left\|\left(\tilde{H}_{\beta}-H_{P}\right) P\right\| \ll 1$; to see when this is true one has to estimate contribution of the cross-terms.

Now, what about anti-Zeno?

Let us now return to "Zeno-type" non-decay probability, $M_{n}(t)=P_{\psi}(t / n) P_{\psi_{1}}(t / n) \cdots P_{\psi_{n-1}}(t / n)$, where ψ_{j+1} are as before, in particular, to the formula

$$
M_{n}(t)=\left(P_{\psi}(t / n)\right)^{n}
$$

for $\operatorname{dim} P=1$.

Now, what about anti-Zeno?

Let us now return to "Zeno-type" non-decay probability, $M_{n}(t)=P_{\psi}(t / n) P_{\psi_{1}}(t / n) \cdots P_{\psi_{n-1}}(t / n)$, where ψ_{j+1} are as before, in particular, to the formula

$$
M_{n}(t)=\left(P_{\psi}(t / n)\right)^{n}
$$

for $\operatorname{dim} P=1$. Since $\lim _{n \rightarrow \infty}\left(f(t / n)^{n}=\exp \{-\dot{f}(0+) t\}\right.$ if $f(0)=1$ and the one-sided derivative $\dot{f}(0+)$ exists we see that $M(t):=\lim _{n \rightarrow \infty} M_{n}(t)=0$ for $\forall t>0$ if $\dot{P}(0+)=-\infty$, and the same is true if $\operatorname{dim} P>1$ provided the derivative $\dot{P}_{\psi}(0+)$ has such a property for any $\psi \in P \mathcal{H}$.

Now, what about anti-Zeno?

Let us now return to "Zeno-type" non-decay probability, $M_{n}(t)=P_{\psi}(t / n) P_{\psi_{1}}(t / n) \cdots P_{\psi_{n-1}}(t / n)$, where ψ_{j+1} are as before, in particular, to the formula

$$
M_{n}(t)=\left(P_{\psi}(t / n)\right)^{n}
$$

for $\operatorname{dim} P=1$. Since $\lim _{n \rightarrow \infty}\left(f(t / n)^{n}=\exp \{-\dot{f}(0+) t\}\right.$ if $f(0)=1$ and the one-sided derivative $\dot{f}(0+)$ exists we see that $M(t):=\lim _{n \rightarrow \infty} M_{n}(t)=0$ for $\forall t>0$ if $\dot{P}(0+)=-\infty$, and the same is true if $\operatorname{dim} P>1$ provided the derivative $\dot{P}_{\psi}(0+)$ has such a property for any $\psi \in P \mathcal{H}$.
It is idealization, of course, but validity of such idealizations is the heart and soul of theoretical physics and has the same fundamental significance as the reproducibility of experimental data [Bratteli-Robinson'79]

Decay probability estimate

We need to estimate the quantity $1-P(t)$, in other words $(\psi, P \psi)-\left(\psi, \mathrm{e}^{i H t} P \mathrm{e}^{-i H t} \psi\right)$. We rewrite it as

$$
1-P(t)=2 \operatorname{Re}\left(\psi, P\left(I-e^{-i H t}\right) \psi\right)-\left\|P\left(I-e^{-i H t}\right) \psi\right\|^{2}
$$

Decay probability estimate

We need to estimate the quantity $1-P(t)$, in other words $(\psi, P \psi)-\left(\psi, \mathrm{e}^{i H t} P \mathrm{e}^{-i H t} \psi\right)$. We rewrite it as

$$
1-P(t)=2 \operatorname{Re}\left(\psi, P\left(I-e^{-i H t}\right) \psi\right)-\left\|P\left(I-e^{-i H t}\right) \psi\right\|^{2}
$$

In terms of the spectral measure E_{H} of H the r.h.s. equals

$$
4 \int_{-\infty}^{\infty} \sin ^{2} \frac{\lambda t}{2} d\left\|E_{\lambda}^{H} \psi\right\|^{2}-4\left\|\int_{-\infty}^{\infty} \mathrm{e}^{-i \lambda t / 2} \sin \frac{\lambda t}{2} d P E_{\lambda}^{H} \psi\right\|^{2}
$$

By Schwarz it is non-negative; our aim is to find tighter upper and lower bounds. In particular, for $\operatorname{dim} P=1$ we denote $d \omega(\lambda):=d\left(\psi, E_{\lambda}^{H} \psi\right)$ obtaining

$$
4 \int_{-\infty}^{\infty} \sin ^{2} \frac{\lambda t}{2} d \omega(\lambda)-4\left|\int_{-\infty}^{\infty} e^{-i \lambda t / 2} \sin \frac{\lambda t}{2} d \omega(\lambda)\right|^{2}
$$

The one-dimensional case

Let first $\operatorname{dim} P=1$. One can employ the spectral-measure normalization, $\int_{-\infty}^{\infty} d \omega(\lambda)=1$, to rewrite the decay probability in the following way

$$
\begin{aligned}
& 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(\sin ^{2} \frac{\lambda t}{2}+\sin ^{2} \frac{\mu t}{2}\right) d \omega(\lambda) d \omega(\mu) \\
& \quad-4 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cos \frac{(\lambda-\mu) t}{2} \sin \frac{\lambda t}{2} \sin \frac{\mu t}{2} d \omega(\lambda) d \omega(\mu),
\end{aligned}
$$

or equivalently

$$
1-P(t)=2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2} \frac{(\lambda-\mu) t}{2} d \omega(\lambda) d \omega(\mu)
$$

We can thus try to estimate the integrated function

An estimate from above

Take $\alpha \in(0,2]$. Using $|x|^{\alpha} \geq|\sin x|^{\alpha} \geq \sin ^{2} x$ together with $|\lambda-\mu|^{\alpha} \leq 2^{\alpha}\left(|\lambda|^{\alpha}+|\mu|^{\alpha}\right)$ we infer from the above formula

$$
\begin{aligned}
\frac{1-P(t)}{t^{\alpha}} & \leq 2^{1-\alpha} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\lambda-\mu|^{\alpha} d \omega(\lambda) d \omega(\mu) \\
& \left.\leq 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(|\lambda|^{\alpha}+|\mu|^{\alpha}\right) d \omega(\lambda) d \omega(\mu) \leq\left. 4\langle | H\right|^{\alpha}\right\rangle_{\psi}
\end{aligned}
$$

An estimate from above

Take $\alpha \in(0,2]$. Using $|x|^{\alpha} \geq|\sin x|^{\alpha} \geq \sin ^{2} x$ together with $|\lambda-\mu|^{\alpha} \leq 2^{\alpha}\left(|\lambda|^{\alpha}+|\mu|^{\alpha}\right)$ we infer from the above formula

$$
\begin{aligned}
\frac{1-P(t)}{t^{\alpha}} & \leq 2^{1-\alpha} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\lambda-\mu|^{\alpha} d \omega(\lambda) d \omega(\mu) \\
& \left.\leq 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(|\lambda|^{\alpha}+|\mu|^{\alpha}\right) d \omega(\lambda) d \omega(\mu) \leq\left. 4\langle | H\right|^{\alpha}\right\rangle_{\psi}
\end{aligned}
$$

Hence $1-P(t)=\mathcal{O}\left(t^{\alpha}\right)$ if $\psi \in D\left(|H|^{\alpha / 2}\right)$. If this is true for some $\alpha>1$ we have Zeno effect - which is a slightly weaker sufficient condition than the earlier stated one

An estimate from above

Take $\alpha \in(0,2]$. Using $|x|^{\alpha} \geq|\sin x|^{\alpha} \geq \sin ^{2} x$ together with $|\lambda-\mu|^{\alpha} \leq 2^{\alpha}\left(|\lambda|^{\alpha}+|\mu|^{\alpha}\right)$ we infer from the above formula

$$
\begin{aligned}
\frac{1-P(t)}{t^{\alpha}} & \leq 2^{1-\alpha} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}|\lambda-\mu|^{\alpha} d \omega(\lambda) d \omega(\mu) \\
& \left.\leq 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left(|\lambda|^{\alpha}+|\mu|^{\alpha}\right) d \omega(\lambda) d \omega(\mu) \leq\left. 4\langle | H\right|^{\alpha}\right\rangle_{\psi}
\end{aligned}
$$

Hence $1-P(t)=\mathcal{O}\left(t^{\alpha}\right)$ if $\psi \in D\left(|H|^{\alpha / 2}\right)$. If this is true for some $\alpha>1$ we have Zeno effect - which is a slightly weaker sufficient condition than the earlier stated one.
By negation, $\psi \notin D\left(|H|^{1 / 2}\right)$ is a necessary condition for the anti-Zeno effect. Notice that in case $\psi \in \mathcal{H}_{\mathrm{ac}}(H)$ the same follows from Lipschitz regularity, since $P(t)=|\hat{\omega}(t)|^{2}$ and $\hat{\omega}$ is bd and uniformly α-Lipschitz iff $\int_{\mathbb{R}} \omega(\lambda)\left(1+|\lambda|^{\alpha}\right) d \lambda<\infty$

An estimate from below

To find a sufficient condition note that for $\lambda, \mu \in[-1 / t, 1 / t]$ there is a positive C independent of t such that

$$
\left|\sin \frac{(\lambda-\mu) t}{2}\right| \geq C|\lambda-\mu| t ;
$$

one can make the constant explicit but it is not necessary.

An estimate from below

To find a sufficient condition note that for $\lambda, \mu \in[-1 / t, 1 / t]$ there is a positive C independent of t such that

$$
\left|\sin \frac{(\lambda-\mu) t}{2}\right| \geq C|\lambda-\mu| t ;
$$

one can make the constant explicit but it is not necessary. Consequently, we have the estimate

$$
1-P(t) \geq 2 C^{2} t^{2} \int_{-1 / t}^{1 / t} d \omega(\lambda) \int_{-1 / t}^{1 / t} d \omega(\mu)(\lambda-\mu)^{2}
$$

which in turn implies

$$
\frac{1-P(t)}{t} \geq 4 C^{2} t\left\{\int_{-1 / t}^{1 / t} \lambda^{2} d \omega(\lambda) \int_{-1 / t}^{1 / t} d \omega(\lambda)-\left(\int_{-1 / t}^{1 / t} \lambda d \omega(\lambda)\right)^{2}\right\}
$$

Sufficient conditions

The AZ effect occurs if the r.h.s. diverges as $t \rightarrow 0$, e.g., if

$$
\int_{-N}^{N} \lambda^{2} d \omega(\lambda) \int_{-N}^{N} d \omega(\lambda)-\left(\int_{-N}^{N} \lambda d \omega(\lambda)\right)^{2} \geq c N^{\alpha}
$$

holds for any N and some $c>0, \alpha>1$

Sufficient conditions

The $A Z$ effect occurs if the r.h.s. diverges as $t \rightarrow 0$, e.g., if

$$
\int_{-N}^{N} \lambda^{2} d \omega(\lambda) \int_{-N}^{N} d \omega(\lambda)-\left(\int_{-N}^{N} \lambda d \omega(\lambda)\right)^{2} \geq c N^{\alpha}
$$

holds for any N and some $c>0, \alpha>1$
We can also write it in a more compact form: introduce $H_{N}^{\beta}:=H^{\beta} E_{H}\left(\Delta_{N}\right)$ with the spectral cut-off to the interval $\Delta_{N}:=(-N, N)$, in particular, denote $I_{N}:=E_{H}(-N, N)$. The sufficient condition then reads

$$
\left(\left\langle H_{N}^{2}\right\rangle_{\psi}\left\langle I_{N}\right\rangle_{\psi}-\left\langle H_{N}\right\rangle_{\psi}^{2}\right)^{-1}=o(N) \quad \text { as } \quad N \rightarrow \infty
$$

More on the one-dimensional case

Remark: Notice that the condition does not require the Hamiltonian H to be below unbounded, in contrast to exponential exponential decay; it is enough that the spectral distribution has a slow decay in one direction only

More on the one-dimensional case

Remark: Notice that the condition does not require the Hamiltonian H to be below unbounded, in contrast to exponential exponential decay; it is enough that the spectral distribution has a slow decay in one direction only
Example: Consider H bd from below and ψ from $\mathcal{H}_{\text {ac }}(H)$ s.t. $\omega(\lambda) \approx c \lambda^{-\beta}$ as $\lambda \rightarrow+\infty$ for some $c>0$ and $\beta \in(1,2)$. While $\int_{-N}^{N} \omega(\lambda) d \lambda \rightarrow 1$, the other two integrals diverge giving

$$
c N^{3-\beta}-c^{2} N^{4-2 \beta}
$$

as the asymptotic behavior of the I.h.s., where the first term is dominating; it gives $\dot{P}(0+)=-\infty$ so AZ effect occurs.

More on the one-dimensional case

Remark: Notice that the condition does not require the Hamiltonian H to be below unbounded, in contrast to exponential exponential decay; it is enough that the spectral distribution has a slow decay in one direction only
Example: Consider H bd from below and ψ from $\mathcal{H}_{\text {ac }}(H)$ s.t. $\omega(\lambda) \approx c \lambda^{-\beta}$ as $\lambda \rightarrow+\infty$ for some $c>0$ and $\beta \in(1,2)$. While $\int_{-N}^{N} \omega(\lambda) d \lambda \rightarrow 1$, the other two integrals diverge giving

$$
c N^{2-\beta}-c^{2} N^{4-2 \beta}
$$

as the asymptotic behavior of the I.h.s., where the first term is dominating; it gives $\dot{P}(0+)=-\infty$ so AZ effect occurs
Remarks: For $\beta>2$ we have Zeno effect, so the Z-AZ gap is rather narrow! Also, $\beta=2$ with a cut-off may give rapid oscillations around $t=0$ obscuring existence of Zeno limit

Multiple degrees of freedom

Let $\operatorname{dim} P>1$ and denote by $\left\{\chi_{j}\right\}$ an orthonormal basis in $P \mathcal{H}$. The second term in the decay-probability formula is

$$
-4 \sum_{m}\left|\int_{-\infty}^{\infty} e^{-i \lambda t / 2} \sin \frac{\lambda t}{2} d\left(\chi_{m}, E_{\lambda}^{H} \psi\right)\right|^{2}
$$

Multiple degrees of freedom

Let $\operatorname{dim} P>1$ and denote by $\left\{\chi_{j}\right\}$ an orthonormal basis in $P \mathcal{H}$. The second term in the decay-probability formula is

$$
-4 \sum_{m}\left|\int_{-\infty}^{\infty} e^{-i \lambda t / 2} \sin \frac{\lambda t}{2} d\left(\chi_{m}, E_{\lambda}^{H} \psi\right)\right|^{2}
$$

We also expand $\psi=\sum_{j} c_{j} \chi_{j}$ with $\sum_{j}\left|c_{j}\right|^{2}=1$ and denote $d \omega_{j k}(\lambda):=d\left(\chi_{j}, E_{\lambda}^{H} \chi_{k}\right)$, which is real-valued and symmetric w.r.t. index interchange. Using $d\left\|E_{\lambda}^{H} \psi\right\|^{2}=\sum_{j k} \bar{c}_{j} c_{k} d \omega_{j k}(\lambda)$ we can cast the decay-probability into the form

$$
\begin{align*}
& 1-P(t)=4 \sum_{j k} \bar{c}_{j} c_{k}\left\{\int_{-\infty}^{\infty} \sin ^{2} \frac{\lambda t}{2} d \omega_{j k}(\lambda)\right. \\
& \left.\quad-\sum_{m} \int_{-\infty}^{\infty} e^{-i \lambda t / 2} \sin \frac{\lambda t}{2} d \omega_{j m}(\lambda) \int_{-\infty}^{\infty} e^{i \mu t / 2} \sin \frac{\mu t}{2} d \omega_{k m}(\mu)\right\} \tag{-6}
\end{align*}
$$

Multiple degrees of freedom, contd

If $\operatorname{dim} P=\infty$ one has to check convergence of the series and correctness of interchanging of the summation and integration; it is done by means of Parseval relation

Multiple degrees of freedom, contd

If $\operatorname{dim} P=\infty$ one has to check convergence of the series and correctness of interchanging of the summation and integration; it is done by means of Parseval relation
Next we employ normalization, $\int_{-\infty}^{\infty} d \omega_{j k}(\lambda)=\delta_{j k}$, to derive

$$
1-P(t)=2 \sum_{j k m} \bar{c}_{j} c_{k} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2} \frac{(\lambda-\mu) t}{2} d \omega_{j m}(\lambda) d \omega_{k m}(\mu)
$$

which can be also written concisely as

$$
1-P(t)=2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \sin ^{2} \frac{(\lambda-\mu) t}{2}\left(\psi, d E_{\lambda}^{H} P d E_{\mu}^{H} \psi\right)
$$

General sufficient condition

Since $\left|\sin \frac{(\lambda-\mu) t}{2}\right| \geq C|\lambda-\mu| t$ holds for $|\mu t|,|\lambda t|<1$ we get

$$
\begin{aligned}
1- & P(t) \geq 2 C^{2} t^{2} \int_{-1 / t}^{1 / t} \int_{-1 / t}^{1 / t}(\lambda-\mu)^{2}\left(\psi, d E_{\lambda}^{H} P d E_{\mu}^{H} \psi\right) \\
= & 4 C^{2} t^{2} \int_{-1 / t}^{1 / t} \int_{-1 / t}^{1 / t}\left(\lambda^{2}-\lambda \mu\right)\left(\psi, d E_{\lambda}^{H} P d E_{\mu}^{H} \psi\right) \\
& =4 C^{2} t^{2}\left\{\left(\psi, H_{1 / t}^{2} P I_{1 / t} \psi\right)-\left\|P H_{1 / t} \psi\right\|^{2}\right\}
\end{aligned}
$$

General sufficient condition

Since $\left|\sin \frac{(\lambda-\mu) t}{2}\right| \geq C|\lambda-\mu| t$ holds for $|\mu t|,|\lambda t|<1$ we get

$$
\begin{aligned}
1- & P(t) \geq 2 C^{2} t^{2} \int_{-1 / t}^{1 / t} \int_{-1 / t}^{1 / t}(\lambda-\mu)^{2}\left(\psi, d E_{\lambda}^{H} P d E_{\mu}^{H} \psi\right) \\
& =4 C^{2} t^{2} \int_{-1 / t}^{1 / t} \int_{-1 / t}^{1 / t}\left(\lambda^{2}-\lambda \mu\right)\left(\psi, d E_{\lambda}^{H} P d E_{\mu}^{H} \psi\right) \\
& =4 C^{2} t^{2}\left\{\left(\psi, H_{1 / t}^{2} P I_{1 / t} \psi\right)-\left\|P H_{1 / t} \psi\right\|^{2}\right\}
\end{aligned}
$$

Let us summarize the results:
Theorem [E.'05]: In the above notation, suppose that

$$
\left(\left\langle H_{N}^{2} P I_{N}\right\rangle_{\psi}-\left\|P H_{N} \psi\right\|^{2}\right)^{-1}=o(N)
$$

holds as $N \rightarrow \infty$ uniformly w.r.t. $\psi \in P \mathcal{H}$, then the permanent observation causes anti-Zeno effect

The talk was based on

[EIK05] P.E., T. Ichinose, S. Kondej: On relations between stable and Zeno dynamics in a leaky graph decay model, to appear in Proceedings of the OTAMP 2004 Conference (Bedlewo 2004); quant-ph / 0504060
[E05] P.E.: Sufficient conditions for the anti-Zeno effect, J. Phys. A: Math. Gen. 38 (2005), L449-454.

The talk was based on

[EIK05] P.E., T. Ichinose, S. Kondej: On relations between stable and Zeno dynamics in a leaky graph decay model, to appear in Proceedings of the OTAMP 2004 Conference (Bedlewo 2004); quant -ph / 0504060
[E05] P.E.: Sufficient conditions for the anti-Zeno effect, J. Phys. A: Math. Gen. 38 (2005), L449-454.
for more information see http://www.ujf.cas.cz/~exner

