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Talk overview

Motivation: frequent non-decay measurements on
unstable systems

Zeno dynamics: existence, form of the generator

Solvable model: a caricature description of a system
of a quantum wire and dots

Comparison: relations between the stable and Zeno
dynamics in the model

Anti-Zeno effect: what is it?

Sufficient conditions for anti-Zeno effect
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Quantum kinematics of decays

Three objects are needed:

the state space H of an isolated system

projection P to subspace PH ⊂ H of unstable system

time evolution e−iHt on H, not reduced by P for t > 0
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Quantum kinematics of decays

Three objects are needed:

the state space H of an isolated system

projection P to subspace PH ⊂ H of unstable system

time evolution e−iHt on H, not reduced by P for t > 0

Suppose that evolution starts at t = 0 from a state ψ ∈ PH
and we perform a non-decay measurement at some t > 0

The non-decay probabilities define in this situation the
decay law , i.e. the function P : R+ → [0, 1] defined by

P (t) := ‖P e−iHtψ‖2 ;

we may also denote it as Pψ(t) to indicate the initial state
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Repeated measurements
Suppose we perform non-decay measurements at times
t/n, 2t/n . . . , t, all with the positive outcome, then the
resulting non-decay probability is

Mn(t) = Pψ(t/n)Pψ1
(t/n) · · ·Pψn−1

(t/n) ,

where ψj+1 is the normalized projection of e−iHt/nψj on PH
and ψ0 := ψ, in particular, for dimP = 1 we have

Mn(t) = (Pψ(t/n))n
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Repeated measurements
Suppose we perform non-decay measurements at times
t/n, 2t/n . . . , t, all with the positive outcome, then the
resulting non-decay probability is

Mn(t) = Pψ(t/n)Pψ1
(t/n) · · ·Pψn−1

(t/n) ,

where ψj+1 is the normalized projection of e−iHt/nψj on PH
and ψ0 := ψ, in particular, for dimP = 1 we have

Mn(t) = (Pψ(t/n))n

Consider the limit of permanent measurement , n→ ∞. If
dimP = 1 and the one-sided derivative Ṗ (0+) vanishes, we
find M(t) := limn→∞Mn(t) = 1 for all t > 0, or Zeno effect .
The same is true if dimP > 1 provided the derivative Ṗψ(0+)

has such a property for any ψ ∈ PH.
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When does Zeno effect occur?

Recall first a simple old result:

Theorem [E.-Havlíček, 1973]: Ṗψ(0+) = 0 holds
whenever ψ ∈ Q(H)
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When does Zeno effect occur?

Recall first a simple old result:

Theorem [E.-Havlíček, 1973]: Ṗψ(0+) = 0 holds
whenever ψ ∈ Q(H)

Remarks:

Naturally, M(t) = P (t) if the undisturbed decay law
is exponential, i.e. P (t) = e−Γt

However, P (t) = e−Γt correspond to a state not
belonging to Q(H). And what is worse, decay law
exponentiality requires σ(H) = R!

The conference Operator Semigroups, Evolution Equations and Spectral Theory in Mathematical Physics; Luminy, October 5, 2005 – p.5/29



A bit of history

The effect first recognized in [Beskow-Nilsson’67], at
least in the non-decay measurement context
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A bit of history

The effect first recognized in [Beskow-Nilsson’67], at
least in the non-decay measurement context

Mathematically first established by Friedmann and
Chernoff in the beginning of the 70’s

Its popularity followed the paper [Misra-Sudarshan’77]
where the name quantum Zeno effect was coined

New interest in recent years, in particular, because the
effect becomes experimentally accessible in its
non-ideal form: lifetime enhancement by measurement

New mathematical questions, in particular, about Zeno
dynamics: what is the time evolution in PH generated
by permanent observation?
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Zeno dynamics

Assume that H is bounded from below and consider the
non-trivial situation, dimH > 1. We ask: does the limit

(P e−iHt/nP )n −→ e−iHP t

hold as n→ ∞, in which sense, and what is then Zeno
dynamics generator, i.e. the operator HP?
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Zeno dynamics

Assume that H is bounded from below and consider the
non-trivial situation, dimH > 1. We ask: does the limit

(P e−iHt/nP )n −→ e−iHP t

hold as n→ ∞, in which sense, and what is then Zeno
dynamics generator, i.e. the operator HP?

Consider quadratic form u 7→ ‖H1/2Pu‖2 with the form
domain D(H1/2P ) which is closed. By [Chernoff’74] the
associated s-a operator, (H1/2P )∗(H1/2P ), is a natural
candidate for HP (while, in general, PHP is not!)

Counterexamples in [E.’85] and [Matolcsi-Shvidkoy’03]
show, however, that it is necessary to assume that HP is
densely defined
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Zeno dynamics, continued

Proposition: Let H be a self-adjoint operator in a
separable H, bounded from below, and let P be a
finite-dimensional orthogonal projection on H. If
PH ⊂ Q(H), then for any ψ ∈ H and t ≥ 0 we have

lim
n→∞

(P e−iHt/nP )nψ = e−iHP tψ ,

uniformly on any compact interval of the variable t
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Zeno dynamics, continued

Proposition: Let H be a self-adjoint operator in a
separable H, bounded from below, and let P be a
finite-dimensional orthogonal projection on H. If
PH ⊂ Q(H), then for any ψ ∈ H and t ≥ 0 we have

lim
n→∞

(P e−iHt/nP )nψ = e−iHP tψ ,

uniformly on any compact interval of the variable t

Without restriction on dimH, the formula still holds but

convergence in a weaker topology (time averaging)

strong convergence with added spectral projection

cf. talks by T. Ichinose and H. Neidhardt
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A caricature model
An idealized description of a quantum wire and a family of
quantum dots. Formally Hamiltonian acts in L2(R2) as

Hα,β = −∆ − αδ(x− Σ) +
n
∑

i=1

β̃iδ(x− y(i)) , α > 0 ,

where Σ := {(x1, 0); x1 ∈ R
2} and Π := {y(i)}ni=1 ⊂ R

2 \ Σ
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A caricature model
An idealized description of a quantum wire and a family of
quantum dots. Formally Hamiltonian acts in L2(R2) as

Hα,β = −∆ − αδ(x− Σ) +
n
∑

i=1

β̃iδ(x− y(i)) , α > 0 ,

where Σ := {(x1, 0); x1 ∈ R
2} and Π := {y(i)}ni=1 ⊂ R

2 \ Σ

Singular interactions defined conventionally through b.c.:
we have ∂x2

ψ(x1, 0+) − ∂x2
ψ(x1, 0−) = −αψ(x1, 0) for the

line; around y(i) the wave functions have to behave as
ψ(x) = − 1

2π log |x− y(i)|L0(ψ, y
(i)) + L1(ψ, y

(i)) + O(|x− y(i)|),
where the generalized b.v. Lj(ψ, y(i)), j = 0, 1, satisfy

L1(ψ, y
(i)) + 2πβiL0(ψ, y

(i)) = 0 , βi ∈ R
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Resolvent by Krein-type formula
We introduce auxiliary Hilbert spaces, H0 := L2(R) and
H1 := C

n, and trace maps τj : W 2,2(R2) → Hj defined
by τ0f := f ↾Σ and τ1f := f ↾Π,
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We introduce auxiliary Hilbert spaces, H0 := L2(R) and
H1 := C

n, and trace maps τj : W 2,2(R2) → Hj defined
by τ0f := f ↾Σ and τ1f := f ↾Π,

canonical embeddings of free resolvent R(z) to Hi by
Ri,L(z) := τiR(z) : L2 → Hi, RL,i(z) := [Ri,L(z)]∗, and
Rj,i(z) := τjRL,i(z) : Hi → Hj, and
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Resolvent by Krein-type formula
We introduce auxiliary Hilbert spaces, H0 := L2(R) and
H1 := C

n, and trace maps τj : W 2,2(R2) → Hj defined
by τ0f := f ↾Σ and τ1f := f ↾Π,

canonical embeddings of free resolvent R(z) to Hi by
Ri,L(z) := τiR(z) : L2 → Hi, RL,i(z) := [Ri,L(z)]∗, and
Rj,i(z) := τjRL,i(z) : Hi → Hj, and

operator-valued matrix Γ(z) : H0 ⊕H1 → H0 ⊕H1 by

Γij(z)g := −Ri,j(z)g for i 6= j and g ∈ Hj ,

Γ00(z)f :=
[

α−1 − R0,0(z)
]

f if f ∈ H0 ,

Γ11(z)ϕ :=
(

sβ(z)δkl −Gz(y
(k), y(l))(1−δkl)

)

ϕ ,

with sβ(z) := β + s(z) := β + 1
2π (ln

√
z

2i − ψ(1))
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Resolvent by Krein-type formula

To invert it we define the “reduced determinant”

D(z) := Γ11(z) − Γ10(z)Γ00(z)
−1Γ01(z) : H1 → H1 ,
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Resolvent by Krein-type formula

To invert it we define the “reduced determinant”

D(z) := Γ11(z) − Γ10(z)Γ00(z)
−1Γ01(z) : H1 → H1 ,

then an easy algebra yields expressions for “blocks” of
[Γ(z)]−1 in the form

[Γ(z)]−1
11 = D(z)−1 ,

[Γ(z)]−1
00 = Γ00(z)

−1 + Γ00(z)
−1Γ01(z)D(z)−1Γ10(z)Γ00(z)

−1 ,

[Γ(z)]−1
01 = −Γ00(z)

−1Γ01(z)D(z)−1 ,

[Γ(z)]−1
10 = −D(z)−1Γ10(z)Γ00(z)

−1 ;

thus to determine singularities of [Γ(z)]−1 one has to find
the null space of D(z)
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Resolvent by Krein-type formula
We can write Rα,β(z) ≡ (Hα,β − z)−1 also as a perturbation
of the “line only” Hamiltonian H̃α with the resolvent

Rα(z) = R(z) +RL0(z)Γ
−1
00 R0L(z)

We define Rα;L1(z) : H1 → L2 by Rα;1L(z)ψ := Rα(z)ψ ↾Π for
ψ ∈ L2 and Rα;L1(z) := R

∗
α;1L(z). Then we have the result:
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Resolvent by Krein-type formula
We can write Rα,β(z) ≡ (Hα,β − z)−1 also as a perturbation
of the “line only” Hamiltonian H̃α with the resolvent

Rα(z) = R(z) +RL0(z)Γ
−1
00 R0L(z)

We define Rα;L1(z) : H1 → L2 by Rα;1L(z)ψ := Rα(z)ψ ↾Π for
ψ ∈ L2 and Rα;L1(z) := R

∗
α;1L(z). Then we have the result:

Theorem [E.-Kondej, 2004]: For z ∈ ρ(Hα,β) with Im z > 0

the resolvent Rα,β(z) := (Hα,β − z)−1 equals

Rα,β(z) = R(z) +
1
∑

i,j=0

RL,i(z)[Γ(z)]−1
ij Rj,L(z)

= Rα(z) + Rα;L1(z)D(z)−1
Rα;1L(z)
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Resonance poles
The decay is due to the tunneling between points and line.
It is absent if the interaction is “switched off” (i.e., line “put
to an infinite distance”); the corresponding free Hamiltonian
is H̃β := H0,β. It has m eigenvalues, 1 ≤ m ≤ n; we assume
that they satisfy the condition

−
1

4
α2 < ǫ1 < · · · < ǫm < 0 and m > 1 ,

i.e., the embedded spectrum is simple and non-trivial.
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Resonance poles
The decay is due to the tunneling between points and line.
It is absent if the interaction is “switched off” (i.e., line “put
to an infinite distance”); the corresponding free Hamiltonian
is H̃β := H0,β. It has m eigenvalues, 1 ≤ m ≤ n; we assume
that they satisfy the condition

−
1

4
α2 < ǫ1 < · · · < ǫm < 0 and m > 1 ,

i.e., the embedded spectrum is simple and non-trivial.

Let us specify the interactions sites by their Cartesian
coordinates, y(i) = (ci, ai). We also introduce the notations
a = (a1, ..., an) and dij = |y(i) − y(j)| for the distances in Π

To find resonances in our model we rely on a BS-type
argument; our aim is to find zeros of the function D(·)
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Resonance poles, continued

We seek analytic continuation of D(·) across (−1
4α

2, 0) ⊂ R

denoting it as D(·)(−1). The first component of Γ11(·)
(−1) is

obtained easily. To find the second one let us introduce

µij(z, t) :=
iα

25π

(α− 2i(z − t)1/2) ei(z−t)1/2(|ai|+|aj |)

t1/2(z − t)1/2
eit1/2(ci−cj) .

Then the matrix elements of (Γ10Γ
−1
00 Γ01)

(−1)(·) are

θ
(−1)
ij (λ) = −

∫ ∞

0

µ0
ij(λ, t)

t− λ− α2/4
dt− 2gα,ij(λ)

where

gα,ij(z) :=
iα

(z + α2/4)1/2
e−α(|ai|+|aj |)/2 ei(z+α2/4)1/2(ci−cj) ;

the values at the segment and in C+ are expressed similarly
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Resonance poles, continued

Then we can express detD(−1)(z). To study weak-coupling
asymptotics it is useful to introduce a reparametrization

b̃(a) ≡ (b1(a), . . . , bn(a)), bi(a) = e−|ai|
√−ǫi

denoting the quantity of interest as η(b̃, z) = detD(−1)(a, z)
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Resonance poles, continued

Then we can express detD(−1)(z). To study weak-coupling
asymptotics it is useful to introduce a reparametrization

b̃(a) ≡ (b1(a), . . . , bn(a)), bi(a) = e−|ai|
√−ǫi

denoting the quantity of interest as η(b̃, z) = detD(−1)(a, z)

If b̃ = 0 the zeros are, of course, ev’s of the point-interaction
Hamiltonian H̃β. Using implicit-function theorem we find the
following weak-coupling asymptotic expansion,

zi(b) = ǫi + O(b) + iO(b) where b := max
1≤i≤m

bi
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Resonance poles, continued

Then we can express detD(−1)(z). To study weak-coupling
asymptotics it is useful to introduce a reparametrization

b̃(a) ≡ (b1(a), . . . , bn(a)), bi(a) = e−|ai|
√−ǫi

denoting the quantity of interest as η(b̃, z) = detD(−1)(a, z)

If b̃ = 0 the zeros are, of course, ev’s of the point-interaction
Hamiltonian H̃β. Using implicit-function theorem we find the
following weak-coupling asymptotic expansion,

zi(b) = ǫi + O(b) + iO(b) where b := max
1≤i≤m

bi

Remark: This model can exhibit also other long-living
resonances due to weakly violated mirror symmetry ,
however, we are not going to consider them here
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Dot states
By assumption there is a nontrivial discrete spectrum of H̃β

embedded in (−1
4α

2, 0). Let us denote the corresponding
normalized eigenfunctions ψj , j = 1, . . . ,m, given by

ψj(x) =

m
∑

i=1

d
(j)
i φ

(j)
i (x) , φ

(j)
i (x) :=

√

−
ǫj
π
K0(

√

−ǫj |x− y(i)|),

where vectors d(j) ∈ C
m solve the equation Γ11(ǫj)d

(j) = 0

and the normalization condition, ‖φ(j)
i ‖ = 1, reads

|d(j)|2 + 2Re

m
∑

i=2

i−1
∑

k=1

d
(j)
i d

(j)
k (φ

(j)
i , φ

(j)
k ) = 1 .

In particular, if the distances in Π are large (the natural
length scale is given by (−ǫj)

−1/2), the cross terms are
small and each |d(j)| is close to one
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Decay of the dot states
Now we specify the unstable system identifying its Hilbert
space PH with the span of ψ1, . . . , ψm. If it is prepared at
t = 0 in a state ψ ∈ PH, then the undisturbed decay law is

Pψ(t) = ‖P e−iHα,βtψ‖2
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Decay of the dot states
Now we specify the unstable system identifying its Hilbert
space PH with the span of ψ1, . . . , ψm. If it is prepared at
t = 0 in a state ψ ∈ PH, then the undisturbed decay law is

Pψ(t) = ‖P e−iHα,βtψ‖2

Our model is similar to (multidimensional) Friedrichs model ,
therefore modifying the standard argument [Demuth’76], cf.
[E.-Ichinose-Kondej’05], one can check that in the
weak-coupling situation the leading term in Pψ(t) will come
from the appropriate semigroup evolution on PH, in
particular, for the basis states ψj we will have a dominantly
exponential decay, Pψj

(t) ≈ e−Γjt with Γj = 2 Im zj(b)
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Decay of the dot states
Now we specify the unstable system identifying its Hilbert
space PH with the span of ψ1, . . . , ψm. If it is prepared at
t = 0 in a state ψ ∈ PH, then the undisturbed decay law is

Pψ(t) = ‖P e−iHα,βtψ‖2

Our model is similar to (multidimensional) Friedrichs model ,
therefore modifying the standard argument [Demuth’76], cf.
[E.-Ichinose-Kondej’05], one can check that in the
weak-coupling situation the leading term in Pψ(t) will come
from the appropriate semigroup evolution on PH, in
particular, for the basis states ψj we will have a dominantly
exponential decay, Pψj

(t) ≈ e−Γjt with Γj = 2 Im zj(b)

Remark: The long-time behaviour of Pψj
(t) is different from

Friedrichs model, but this is not important here
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Stable and Zeno dynamics
Suppose now that we perform the Zeno measurement at
our system. We have dimP <∞ and PH ⊂ Q(Hα,β), so
HP = PHα,βP with the following matrix representation

(ψj , HPψk) = δjkǫj − α

∫

Σ
ψ̄j(x1, 0)ψk(x1, 0) dx1 ,

where the first term corresponds, of course, to H̃β
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Stable and Zeno dynamics
Suppose now that we perform the Zeno measurement at
our system. We have dimP <∞ and PH ⊂ Q(Hα,β), so
HP = PHα,βP with the following matrix representation

(ψj , HPψk) = δjkǫj − α

∫

Σ
ψ̄j(x1, 0)ψk(x1, 0) dx1 ,

where the first term corresponds, of course, to H̃β

Theorem [E.-Ichinose-Kondej’05]: The two dynamics do
not differ significantly for times satisfying

t≪ C e2
√
−ǫ|ã| ,

where C is a positive number and |ã| = mini |ai|, ǫ = maxi ǫi
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Stable and Zeno dynamics
Suppose now that we perform the Zeno measurement at
our system. We have dimP <∞ and PH ⊂ Q(Hα,β), so
HP = PHα,βP with the following matrix representation

(ψj , HPψk) = δjkǫj − α

∫

Σ
ψ̄j(x1, 0)ψk(x1, 0) dx1 ,

where the first term corresponds, of course, to H̃β

Theorem [E.-Ichinose-Kondej’05]: The two dynamics do
not differ significantly for times satisfying

t≪ C e2
√
−ǫ|ã| ,

where C is a positive number and |ã| = mini |ai|, ǫ = maxi ǫi

Proof: The norm of Ut := (e−iH̃βt − e−iHP t)P is small as long
as t‖(H̃β −HP )P‖ ≪ 1; to see when this is true one has to
estimate contribution of the cross-terms. �
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Now, what about anti-Zeno?
Let us now return to “Zeno-type” non-decay probability,
Mn(t) = Pψ(t/n)Pψ1

(t/n) · · ·Pψn−1
(t/n), where ψj+1 are as

before, in particular, to the formula

Mn(t) = (Pψ(t/n))n

for dimP = 1.
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Now, what about anti-Zeno?
Let us now return to “Zeno-type” non-decay probability,
Mn(t) = Pψ(t/n)Pψ1

(t/n) · · ·Pψn−1
(t/n), where ψj+1 are as

before, in particular, to the formula

Mn(t) = (Pψ(t/n))n

for dimP = 1. Since limn→∞(f(t/n)n = exp{−ḟ(0+)t} if
f(0) = 1 and the one-sided derivative ḟ(0+) exists we see
that M(t) := limn→∞Mn(t) = 0 for ∀t > 0 if Ṗ (0+) = −∞,
and the same is true if dimP > 1 provided the derivative
Ṗψ(0+) has such a property for any ψ ∈ PH.
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Now, what about anti-Zeno?
Let us now return to “Zeno-type” non-decay probability,
Mn(t) = Pψ(t/n)Pψ1

(t/n) · · ·Pψn−1
(t/n), where ψj+1 are as

before, in particular, to the formula

Mn(t) = (Pψ(t/n))n

for dimP = 1. Since limn→∞(f(t/n)n = exp{−ḟ(0+)t} if
f(0) = 1 and the one-sided derivative ḟ(0+) exists we see
that M(t) := limn→∞Mn(t) = 0 for ∀t > 0 if Ṗ (0+) = −∞,
and the same is true if dimP > 1 provided the derivative
Ṗψ(0+) has such a property for any ψ ∈ PH.

It is idealization, of course, but validity of such idealizations
is the heart and soul of theoretical physics and has the
same fundamental significance as the reproducibility of
experimental data [Bratteli-Robinson’79]
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Decay probability estimate
We need to estimate the quantity 1 − P (t), in other words
(ψ, Pψ) − (ψ, eiHtP e−iHtψ). We rewrite it as

1−P (t) = 2 Re (ψ, P (I−e−iHt)ψ) − ‖P (I−e−iHt)ψ‖2
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Decay probability estimate
We need to estimate the quantity 1 − P (t), in other words
(ψ, Pψ) − (ψ, eiHtP e−iHtψ). We rewrite it as

1−P (t) = 2 Re (ψ, P (I−e−iHt)ψ) − ‖P (I−e−iHt)ψ‖2

In terms of the spectral measure EH of H the r.h.s. equals

4

∫ ∞

−∞
sin2 λt

2
d‖EHλ ψ‖

2 − 4

∥

∥

∥

∥

∫ ∞

−∞
e−iλt/2 sin

λt

2
dPEHλ ψ

∥

∥

∥

∥

2

By Schwarz it is non-negative; our aim is to find tighter
upper and lower bounds. In particular, for dimP = 1 we
denote dω(λ) := d(ψ,EHλ ψ) obtaining

4

∫ ∞

−∞
sin2 λt

2
dω(λ) − 4

∣

∣

∣

∣

∫ ∞

−∞
e−iλt/2 sin

λt

2
dω(λ)

∣

∣

∣

∣

2
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The one-dimensional case

Let first dimP = 1. One can employ the spectral-measure
normalization,

∫∞
−∞ dω(λ) = 1, to rewrite the decay

probability in the following way

2

∫ ∞

−∞

∫ ∞

−∞

(

sin2 λt

2
+ sin2 µt

2

)

dω(λ)dω(µ)

−4

∫ ∞

−∞

∫ ∞

−∞
cos

(λ− µ)t

2
sin

λt

2
sin

µt

2
dω(λ)dω(µ) ,

or equivalently

1−P (t) = 2

∫ ∞

−∞

∫ ∞

−∞
sin2 (λ− µ)t

2
dω(λ)dω(µ)

We can thus try to estimate the integrated function
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An estimate from above
Take α ∈ (0, 2]. Using |x|α ≥ | sin x|α ≥ sin2 x together with
|λ− µ|α ≤ 2α(|λ|α + |µ|α) we infer from the above formula

1 − P (t)

tα
≤ 21−α

∫ ∞

−∞

∫ ∞

−∞
|λ− µ|αdω(λ)dω(µ)

≤ 2

∫ ∞

−∞

∫ ∞

−∞
(|λ|α + |µ|α)dω(λ)dω(µ) ≤ 4〈|H|α〉ψ
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An estimate from above
Take α ∈ (0, 2]. Using |x|α ≥ | sin x|α ≥ sin2 x together with
|λ− µ|α ≤ 2α(|λ|α + |µ|α) we infer from the above formula

1 − P (t)

tα
≤ 21−α

∫ ∞

−∞

∫ ∞

−∞
|λ− µ|αdω(λ)dω(µ)

≤ 2

∫ ∞

−∞

∫ ∞

−∞
(|λ|α + |µ|α)dω(λ)dω(µ) ≤ 4〈|H|α〉ψ

Hence 1 − P (t) = O(tα) if ψ ∈ D(|H|α/2). If this is true for
some α > 1 we have Zeno effect – which is a slightly
weaker sufficient condition than the earlier stated one
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An estimate from above
Take α ∈ (0, 2]. Using |x|α ≥ | sin x|α ≥ sin2 x together with
|λ− µ|α ≤ 2α(|λ|α + |µ|α) we infer from the above formula

1 − P (t)

tα
≤ 21−α

∫ ∞

−∞

∫ ∞

−∞
|λ− µ|αdω(λ)dω(µ)

≤ 2

∫ ∞

−∞

∫ ∞

−∞
(|λ|α + |µ|α)dω(λ)dω(µ) ≤ 4〈|H|α〉ψ

Hence 1 − P (t) = O(tα) if ψ ∈ D(|H|α/2). If this is true for
some α > 1 we have Zeno effect – which is a slightly
weaker sufficient condition than the earlier stated one.
By negation, ψ 6∈ D(|H|1/2) is a necessary condition for the
anti-Zeno effect. Notice that in case ψ ∈ Hac(H) the same
follows from Lipschitz regularity, since P (t) = |ω̂(t)|2 and ω̂
is bd and uniformly α-Lipschitz iff

∫

R
ω(λ)(1 + |λ|α) dλ <∞
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An estimate from below
To find a sufficient condition note that for λ, µ ∈ [−1/t, 1/t]
there is a positive C independent of t such that

∣

∣

∣

∣

sin
(λ− µ)t

2

∣

∣

∣

∣

≥ C|λ− µ|t ;

one can make the constant explicit but it is not necessary.
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An estimate from below
To find a sufficient condition note that for λ, µ ∈ [−1/t, 1/t]
there is a positive C independent of t such that

∣

∣

∣

∣

sin
(λ− µ)t

2

∣

∣

∣

∣

≥ C|λ− µ|t ;

one can make the constant explicit but it is not necessary.
Consequently, we have the estimate

1 − P (t) ≥ 2C2t2
∫ 1/t

−1/t

dω(λ)

∫ 1/t

−1/t

dω(µ)(λ− µ)2

which in turn implies

1 − P (t)

t
≥ 4C2t







∫ 1/t

−1/t

λ2 dω(λ)

∫ 1/t

−1/t

dω(λ) −

(

∫ 1/t

−1/t

λ dω(λ)

)2





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Sufficient conditions

The AZ effect occurs if the r.h.s. diverges as t→ 0, e.g., if

∫ N

−N
λ2 dω(λ)

∫ N

−N
dω(λ) −

(

∫ N

−N
λ dω(λ)

)2

≥ cNα

holds for any N and some c > 0, α > 1
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Sufficient conditions

The AZ effect occurs if the r.h.s. diverges as t→ 0, e.g., if

∫ N

−N
λ2 dω(λ)

∫ N

−N
dω(λ) −

(

∫ N

−N
λ dω(λ)

)2

≥ cNα

holds for any N and some c > 0, α > 1

We can also write it in a more compact form: introduce
Hβ
N := HβEH(∆N ) with the spectral cut-off to the interval

∆N := (−N,N), in particular, denote IN := EH(−N,N).
The sufficient condition then reads

(

〈H2
N 〉ψ〈IN 〉ψ − 〈HN 〉

2
ψ

)−1
= o(N) as N → ∞
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More on the one-dimensional case
Remark: Notice that the condition does not require the
Hamiltonian H to be below unbounded, in contrast to
exponential exponential decay; it is enough that the spectral
distribution has a slow decay in one direction only
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More on the one-dimensional case
Remark: Notice that the condition does not require the
Hamiltonian H to be below unbounded, in contrast to
exponential exponential decay; it is enough that the spectral
distribution has a slow decay in one direction only
Example: Consider H bd from below and ψ from Hac(H) s.t.
ω(λ) ≈ cλ−β as λ→ +∞ for some c > 0 and β ∈ (1, 2). While
∫ N
−N ω(λ) dλ→ 1, the other two integrals diverge giving

cN3−β − c2N4−2β

as the asymptotic behavior of the l.h.s., where the first term
is dominating; it gives Ṗ (0+) = −∞ so AZ effect occurs.
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More on the one-dimensional case
Remark: Notice that the condition does not require the
Hamiltonian H to be below unbounded, in contrast to
exponential exponential decay; it is enough that the spectral
distribution has a slow decay in one direction only
Example: Consider H bd from below and ψ from Hac(H) s.t.
ω(λ) ≈ cλ−β as λ→ +∞ for some c > 0 and β ∈ (1, 2). While
∫ N
−N ω(λ) dλ→ 1, the other two integrals diverge giving

cN2−β − c2N4−2β

as the asymptotic behavior of the l.h.s., where the first term
is dominating; it gives Ṗ (0+) = −∞ so AZ effect occurs

Remarks: For β > 2 we have Zeno effect, so the Z-AZ gap
is rather narrow! Also, β = 2 with a cut-off may give rapid
oscillations around t = 0 obscuring existence of Zeno limit
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Multiple degrees of freedom
Let dimP > 1 and denote by {χj} an orthonormal basis in
PH. The second term in the decay-probability formula is

−4
∑

m

∣

∣

∣

∣

∫ ∞

−∞

e−iλt/2 sin
λt

2
d(χm, E

H
λ ψ)

∣

∣

∣

∣

2
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Multiple degrees of freedom
Let dimP > 1 and denote by {χj} an orthonormal basis in
PH. The second term in the decay-probability formula is

−4
∑

m

∣

∣

∣

∣

∫ ∞

−∞

e−iλt/2 sin
λt

2
d(χm, E

H
λ ψ)

∣

∣

∣

∣

2

We also expand ψ =
∑

j cjχj with
∑

j |cj |
2 = 1 and denote

dωjk(λ) := d(χj , E
H
λ χk), which is real-valued and symmetric

w.r.t. index interchange. Using d‖EHλ ψ‖
2 =

∑

jk c̄jckdωjk(λ)

we can cast the decay-probability into the form

1 − P (t) = 4
∑

jk

c̄jck

{
∫ ∞

−∞

sin2 λt

2
dωjk(λ)

−
∑

m

∫ ∞

−∞

e−iλt/2 sin
λt

2
dωjm(λ)

∫ ∞

−∞

eiµt/2 sin
µt

2
dωkm(µ)

}

(-6)
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Multiple degrees of freedom, contd

If dimP = ∞ one has to check convergence of the series
and correctness of interchanging of the summation and
integration; it is done by means of Parseval relation
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Multiple degrees of freedom, contd

If dimP = ∞ one has to check convergence of the series
and correctness of interchanging of the summation and
integration; it is done by means of Parseval relation

Next we employ normalization,
∫∞
−∞ dωjk(λ) = δjk, to derive

1 − P (t) = 2
∑

jkm

c̄jck

∫ ∞

−∞

∫ ∞

−∞
sin2 (λ− µ)t

2
dωjm(λ)dωkm(µ)

which can be also written concisely as

1 − P (t) = 2

∫ ∞

−∞

∫ ∞

−∞
sin2 (λ− µ)t

2
(ψ, dEHλ PdE

H
µ ψ)
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General sufficient condition
Since

∣

∣

∣
sin (λ−µ)t

2

∣

∣

∣
≥ C|λ− µ|t holds for |µt|, |λt| < 1 we get

1 − P (t) ≥ 2C2t2
∫ 1/t

−1/t

∫ 1/t

−1/t

(λ− µ)2 (ψ, dEH
λ PdE

H
µ ψ)

= 4C2t2
∫ 1/t

−1/t

∫ 1/t

−1/t

(λ2 − λµ) (ψ, dEH
λ PdE

H
µ ψ)

= 4C2t2
{

(ψ,H2
1/tPI1/tψ) − ‖PH1/tψ‖

2
}
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General sufficient condition
Since

∣

∣

∣
sin (λ−µ)t

2

∣

∣

∣
≥ C|λ− µ|t holds for |µt|, |λt| < 1 we get

1 − P (t) ≥ 2C2t2
∫ 1/t

−1/t

∫ 1/t

−1/t

(λ− µ)2 (ψ, dEH
λ PdE

H
µ ψ)

= 4C2t2
∫ 1/t

−1/t

∫ 1/t

−1/t

(λ2 − λµ) (ψ, dEH
λ PdE

H
µ ψ)

= 4C2t2
{

(ψ,H2
1/tPI1/tψ) − ‖PH1/tψ‖

2
}

Let us summarize the results:
Theorem [E.’05]: In the above notation, suppose that

(

〈H2
NPIN 〉ψ − ‖PHNψ‖

2
)−1

= o(N)

holds as N → ∞ uniformly w.r.t. ψ ∈ PH, then the
permanent observation causes anti-Zeno effect
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The talk was based on

[EIK05] P.E., T. Ichinose, S. Kondej: On relations between stable and Zeno dynamics in a
leaky graph decay model, to appear in Proceedings of the OTAMP 2004 Conference
(Bedlewo 2004); quant-ph/0504060

[E05] P.E.: Sufficient conditions for the anti-Zeno effect, J. Phys. A: Math. Gen. 38 (2005),
L449-454.
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for more information see http://www.ujf.cas.cz/ ẽxner
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