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Talk overview
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# Motivation: frequent non-decay measurements on
unstable systems
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Talk overview

-

Motivation: frequent non-decay measurements on
unstable systems

Zeno dynamics: existence, form of the generator

Solvable model: a caricature description of a system
of a qguantum wire and dots

Comparison: relations between the stable and Zeno
dynamics in the model

Anti-Zeno effect: what is 1t?
Sufficient conditions for anti-Zeno effect
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Quantum kinematics of decays

. .

# the state space 7 of an isolated system

hree objects are needed:

#® projection P to subspace PH C H of unstable system
# time evolution ¢! on H, not reduced by P for ¢t > 0
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Quantum kinematics of decays

. .

# the state space 7 of an isolated system

hree objects are needed:

#® projection P to subspace PH C H of unstable system
# time evolution ¢! on H, not reduced by P for ¢t > 0

Suppose that evolution starts at ¢t = 0 from a state ¢ € PH
and we perform a non-decay measurement at some ¢ > 0

The non-decay probabilities define In this situation the
decay law, I.e. the function P : R, — [0, 1] defined by

P(t) = | Pe™ )%

we may also denote it as Py () to indicate the initial state J

S
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Repeated measurements

fSuppose we perform non-decay measurements at times T
t/n, 2t/n ..., t, all with the positive outcome, then the
resulting non-decay probability is

My (t) = Py(t/n) Py, (t/n) - Py, ,(t/n),

where v 1 is the normalized projection of e=#t/"y. on PH
and v := 1, In particular, for dim P = 1 we have

My (t) = (Py(t/n))"
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Repeated measurements

fSuppose we perform non-decay measurements at times T
t/n, 2t/n ..., t, all with the positive outcome, then the
resulting non-decay probability is

My (t) = Py(t/n) Py, (t/n) - Py, ,(t/n),

where v 1 is the normalized projection of e=#t/"y. on PH
and v := 1, In particular, for dim P = 1 we have

My (t) = (Py(t/n))"

Consider the limit of permanent measurement, n — oo. If

dim P = 1 and the one-sided derivative P(0+) vanishes, we
find M(t) := lim,, .o M, (t) = 1 for all t > 0, or Zeno effect.

The same is true if dim P > 1 provided the derivative P, (0+)
%has such a property for any ¢ € PH. J
)
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When does Zeno effect occur?

-

Recall first a simple old result:

Theorem [E.-Havlicek, 1973]: P,(04) = 0 holds
whenever ¢ € Q(H)

-
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When does Zeno effect occur?

- .

Recall first a simple old result:

Theorem [E.-Havlicek, 1973]: P,(04) = 0 holds
whenever ¢ € Q(H)

Remarks:
o Naturally, M(t) = P(¢) If the undisturbed decay law
is exponential, i.e. P(t) = e !?

® However, P(t) = e~ correspond to a state not
belonging to O(H). And what Is worse, decay law
exponentiality requires o(H) = R!
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A bit of history

- .

#® The effect first recognized in [Beskow-Nilsson’67], at
least in the non-decay measurement context
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Mathematically first established by Friedmann and
Chernoff in the beginning of the 70’s

Its popularity followed the paper [Misra-Sudarshan’77]
where the name quantum Zeno effect was coined

New interest in recent years, in particular, because the
effect becomes experimentally accessible in its
non-ideal form: lifetime enhancement by measurement
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A bit of history
-

The effect first recognized in [Beskow-Nilsson'67], at
least in the non-decay measurement context

Mathematically first established by Friedmann and
Chernoff in the beginning of the 70’s

Its popularity followed the paper [Misra-Sudarshan’77]
where the name quantum Zeno effect was coined

New interest in recent years, in particular, because the
effect becomes experimentally accessible in its
non-ideal form: lifetime enhancement by measurement

New mathematical questions, in particular, about Zeno
dynamics: what is the time evolution in PH generated
by permanent observation?

-
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Zeno dynamics

fAssume that 4 1s bounded from below and consider the T
non-trivial situation, dim ’H > 1. We ask: does the limit

(Pe—th/nP)n __, o—iHpt

hold as n — oo, In which sense, and what is then Zeno
dynamics generator, i.e. the operator Hp?
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Zeno dynamics

fAssume that 4 1s bounded from below and consider the T
non-trivial situation, dim ’H > 1. We ask: does the limit

(Pe—th/nP)n __, o—iHpt

hold as n — oo, In which sense, and what is then Zeno
dynamics generator, i.e. the operator Hp?

Consider quadratic form u — ||H1/2Pu||? with the form
domain D(H'/2P) which is closed. By [Chernoff'74] the
associated s-a operator, (H'/2P)*(H'/?P), is a natural
candidate for Hp

Counterexamples in [E.85] and [Matolcsi-Shvidkoy'03]
show, however, that it iIs necessary to assume that Hp Is

densely defined
@ Th ference Operator Semigroups, Evolution Equations
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Zeno dynamics, continued

-

Proposition: Let H be a self-adjoint operator in a
separable H, bounded from below, and let P be a
finite-dimensional orthogonal projection on H. If

PH C Q(H), then for any v € ‘H and ¢t > 0 we have

=

lim (Pe—th/nP)nw _ e_iHth,

n—aoo

uniformly on any compact interval of the variable ¢
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Zeno dynamics, continued

fPropos.ition: Let H be a self-adjoint operator in a T
separable H, bounded from below, and let P be a
finite-dimensional orthogonal projection on H. If
PH C Q(H), then for any v € ‘H and ¢t > 0 we have

lim (Pe—th/nP)nw _ e_iHPt@D,

n—aoo

uniformly on any compact interval of the variable ¢

Without restriction on dim H, the formula still holds but

# convergence in a weaker topology (time averaging)
# strong convergence with added spectral projection

%cf. talks by T. Ichinose and H. Neidhardt J
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A caricature model

fAn idealized description of a quantum wire and a family of T
quantum dots. Formally Hamiltonian acts in L?(R?) as

Hyp=—-A—-ad(zx—X +Zﬁz (x —y (%) ), a>0,

where ¥ := {(z1,0); 21 € R’} and IT := {y)}7_, c R?\ ¥
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A caricature model

fAn idealized description of a quantum wire and a family of T
quantum dots. Formally Hamiltonian acts in L?(R?) as

Hyp=—-A—-ad(zx—X +Zﬁz (x —y (%) ), a>0,

where ¥ := {(21,0); 1 € R?} and I1 := {yW}, c R?\ ¥

Singular interactions defined conventionally through b.c.:
we have 0,,¢(x1,04) — Oy, (21, 0—) = —ab(x1, 0) for the
line; around y(* the wave functions have to behave as
Y(2) = =5 loglo =y Lo(v, y") + Li (v, ) + O(lz — y)]),
where the generalized b.v. L;(y, y"), j = 0,1, satisfy

% Li(,y) + 278 Lo(, D) =0, B €R o
2
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Resolvent by Krein-type formula

f ® We introduce auxiliary Hilbert spaces, Hy := L*(R) and T
H; := C", and trace maps 7; : W2%(R?) — H; defined
by 70f == f Ivand 7 f := f [,

-
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Resolvent by Krein-type formula

f ® We introduce auxiliary Hilbert spaces, Hy := L*(R) and T
H; := C", and trace maps 7; : W2%(R?) — H; defined
by 7of := f [z and 71 f := f |1,
# canonical embeddings of free resolvent R(z) to ‘H; by
R;1(2) :=7R(z): L? — H;, Rp;(2) :== [R; r(2)]*, and
Rjﬂ;(z) = TjRL’fL’(Z) H; — Hj, and

" N
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Resolvent by Krein-type formula

f ® We introduce auxiliary Hilbert spaces, Hy := L*(R) and T
H; := C", and trace maps 7; : W2%(R?) — H; defined
by 7of := f [z and 71 f := f |1,
# canonical embeddings of free resolvent R(z) to ‘H; by
R;1(2) :=7R(z): L? — H;, Rp;(2) :== [R; r(2)]*, and
Rjﬂ;(z) = TjRL’fL‘(Z) H; — Hj, and

# operator-valued matrix I'(z) : Ho & H1 — Ho ® H1 by

[ii(2)g = —R;(z)g for ¢#j and g¢ge€H;,
Loo(2)f = [a ' =Rop(2)] f if f€Ho,
[i(2)p = (5[3(2)5kl —Gz(y(k),y(”)(l—%)) 0,

% With s5(2) := 8+ s(2) i= 5+ 5= (In L& — (1)) o
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Resolvent by Krein-type formula

-

To Invert it we define the “reduced determinant”

-

D(Z) = Fll(z) — Flo(z)FOO(z)_lFm(z) . Hi1 — Hy,

S
= |



Resolvent by Krein-type formula

-

To invert it we define the “reduced determinant” T

D(Z) = F11(Z> — Flo(z)FOO(z)_lFm(z) . Hi1 — Hy,

then an easy algebra yields expressions for “blocks” of
T'(2)]7! in the form

() = D(x)7",

T(2)lgp = Too(2)™" +Too(z) 'Tor(2)D(2) 'T10(z)Too(z) ",
T(2)]o = —Too(2) 'Tor(2)D(z) ",

T(2)lp = —D(2) 'Tio(2)Too(2) " ;

thus to determine singularities of [I'(z)] " one has to find
the null space of D(z)

)
w The conference Operator Semigroups, Evolution Equations and Spectral Theory in Mathematical Physics; Luminy, October 5, 2005 — p.11/2



Resolvent by Krein-type formula

fWe can write R, 3(z) = (H, 3 — 2)” ! also as a perturbation T
of the “line only” Hamiltonian H,, with the resolvent

RQ(Z) — R(Z) + RLQ(Z)FaolROL(Z)

We define Ra;Ll(Z) . Hy — L? by Ra;lL(Zﬁb = Ra(z)w 171 for
i € L7 and Ry,11(2) := R}, (2). Then we have the result:
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Resolvent by Krein-type formula

fWe can write R, 3(z) = (H, 3 — 2)” ! also as a perturbation T
of the “line only” Hamiltonian H,, with the resolvent

RQ(Z) = R(Z) + RLQ(Z)FaolROL(Z)
We define Ra;Ll(Z) . Hy — L? by Ra;lL(Zﬁb = Ra(z)w 171 for
i € L7 and Ry,11(2) := R}, (2). Then we have the result:

Theorem [E.-Kondej, 2004]: For z € p(H,,g) WithImz > 0
the resolvent R, 5(z) := (H, 5 — 2)~ ! equals

Rap(2) = Z RLi(2)[0(2)); Ry (2)
2,]=0

Ro(z) + Ra;L1(2>D(2)_1ROz;1L(2) J

- \‘i
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Resonance poles

fThe decay Is due to the tunneling between points and line. T
It is absent If the interaction is “switched off” (i.e., line “put
to an infinite distance”); the corresponding free Hamiltonian

is Hg := Hy g. It has m eigenvalues, 1 < m < n; we assume
that they satisfy the condition

L
_Z& <6< <ep<0 and m>1,

l.e., the embedded spectrum is simple and non-trivial.
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Resonance poles

fThe decay Is due to the tunneling between points and line. T
It is absent If the interaction is “switched off” (i.e., line “put
to an infinite distance”); the corresponding free Hamiltonian

is Hg := Hy g. It has m eigenvalues, 1 < m < n; we assume
that they satisfy the condition

1
—Z&2<€1<”'<€m<0 and m >1,

l.e., the embedded spectrum is simple and non-trivial.

Let us specify the interactions sites by their Cartesian
coordinates, y¥) = (¢;, a;). We also introduce the notations
a= (a1, ...,a,) and d;; = [y — yU)| for the distances in II

To find resonances in our model we rely on a BS-type
%argument; our aim is to find zeros of the function D(-)
o)
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Resonance poles, continued

fWe seek analytic continuation of D(-) across (—1a?,0) C R T
denoting it as D(-)(~1). The first component of I'; ()~ is
obtained easily. To find the second one let us introduce

(o f) = i (a0 — 2i(z — t)1/2) oi(z—t)"/2(Jai|+|a;]) e'l:tl/Q(Ci—Cj)
Hig\: ) = oa 1720z — 1)1/2 '

Then the matrix elements of (T'1oT5y To1) " () are

0
— - Mi'()‘vt)
(9?,1)()\):—/0 t—)f—a2/4 dt—29a7ij()\)

where

. e —a(lai|+la;])/2 Jilz+a? /0 (ei—c;) .
9ais (2) = o apyie © € ’

%the values at the segment and in C,. are expressed similarIyJ
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Resonance poles, continued

" Then we can express det D(~V(z). To study weak-coupling -
asymptotics it is useful to introduce a reparametrization

b(a) = (bi(a), ..., bn(a)), bila) =e lulV=e

denoting the quantity of interest as (b, z) = det D1 (a, 2)
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Resonance poles, continued

" Then we can express det D~V (z). To study weak-coupling -
asymptotics it is useful to introduce a reparametrization

b(a) = (bi(a), ..., bn(a)), bila) =e lulV=e

denoting the quantity of interest as (b, z) = det D1 (a, 2)

If » = 0 the zeros are, of course, ev’s of the point-interaction

Hamiltonian F]g. Using implicit-function theorem we find the
following weak-coupling asymptotic expansion,

zi(b) = €, + O(b) +10(b) where b:= max b;

1<i<m

" N
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Resonance poles, continued

" Then we can express det D~V (z). To study weak-coupling -
asymptotics it is useful to introduce a reparametrization

b(a) = (bi(a), ..., bn(a)), bila) =e lulV=e

denoting the quantity of interest as (b, z) = det D1 (a, 2)

If » = 0 the zeros are, of course, ev’s of the point-interaction
Hamiltonian F]g. Using implicit-function theorem we find the

following weak-coupling asymptotic expansion,
zi(b) = €, + O(b) +10(b) where b:= max b;

1<i<m

Remark: This model can exhibit also other long-living
resonances due to weakly violated mirror symmetry,
however, we are not going to consider them here J

The con

S
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Dot states

fo assumption there is a nontrivial discrete spectrum of Hy T

embedded in (—1a?,0). Let us denote the corresponding
normalized eigenfunctions ¢, , j = 1,...,m, given by

bi(@) =3 dP e (@), o () =\ [~ Koly/=¢jla —y ),
1=1

where vectors dV) ¢ C™ solve the equation T'y1(¢;)d) = 0

and the normalization condition, |gb§j)H = 1, reads

m 1—1

4912 +2Re 33 dDdD (60, 6) = 1.
1=2 k=1

In particular, if the distances in II are large (the natural
length scale is given by (—¢;)~1/2), the cross terms are

small and each |d\/)| is close to one .
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Decay of the dot states

fNow we specify the unstable system identifying its Hilbert T
space PH with the span of ¢, ..., 1,,. If it is prepared at
t = 0 In a state ¢y € PH, then the undisturbed decay law Is

Py(t) = [|[Pe™ sty
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Decay of the dot states

fNow we specify the unstable system identifying its Hilbert T
space PH with the span of ¢, ..., 1,,. If it is prepared at
t = 0 In a state ¢y € PH, then the undisturbed decay law Is

Py(t) = [|[Pe™ sty

Our model is similar to (multidimensional) Friedrichs model,
therefore modifying the standard argument [Demuth’/76], cf.
|[E.-lchinose-Konde)'05], one can check that in the
weak-coupling situation the leading term in P (¢) will come
from the appropriate semigroup evolution on PH, in
particular, for the basis states v; we will have a dominantly

exponential decay, Py (¢) ~ e "' with I'; = 2Im z;(b)
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Decay of the dot states

fNow we specify the unstable system identifying its Hilbert T
space PH with the span of ¢, ..., 1,,. If it is prepared at
t = 0 In a state ¢y € PH, then the undisturbed decay law Is

Py(t) = [|[Pe™ sty

Our model is similar to (multidimensional) Friedrichs model,
therefore modifying the standard argument [Demuth’/76], cf.
|[E.-lchinose-Konde)'05], one can check that in the
weak-coupling situation the leading term in P (¢) will come

from the appropriate semigroup evolution on PH, in
particular, for the basis states v; we will have a dominantly

exponential decay, Py (¢) ~ e "' with I'; = 2Im z;(b)

Remark: The long-time behaviour of P, (¢) is different from
%Friedrichs model, but this is not important here J
A
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Stable and Zeno dynamics

Suppose now that we perform the Zeno measurement at T
our system. We have dim P < co and PH C Q(H, ), SO

Hp = PH, gP with the following matrix representation

(V5, Hpy,) = djpej — 04/2%(1131,0)%(3?1,0) dzy,

where the first term corresponds, of course, to Hy
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Stable and Zeno dynamics

fSuppose now that we perform the Zeno measurement at T
our system. We have dim P < co and PH C Q(H, ), SO

Hp = PH, gP with the following matrix representation

(V5, Hpy,) = djpej — @L¢j($170)¢k($170) dzy,

where the first term corresponds, of course, to Hy

Theorem [E.-Ichinose-Kondej'05]: The two dynamics do
not differ significantly for times satisfying

t < Ce2V—ela :

where C'is a positive number and |a| = min; |a;
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Stable and Zeno dynamics

fSuppose now that we perform the Zeno measurement at T
our system. We have dim P < co and PH C Q(H, ), SO

Hp = PH, gP with the following matrix representation

(V5, Hpy,) = djpej — 04/2%(1131,0)%(3?1,0) dzy,

where the first term corresponds, of course, to Hy

Theorem [E.-Ichinose-Kondej'05]: The two dynamics do
not differ significantly for times satisfying

t < Ce2V—ela :

where C'is a positive number and |a| = min; |a;|, € = max; €;
Proof: The norm of i, := (e~*Hst — ¢=1r!) P js small as long

as t|(Hg — Hp)P| < 1; to see when this is true one has to
%estimate contribution of the cross-terms. [ J
)
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Now, what about anti-Zeno?

fLet us now return to “Zeno-type” non-decay probability, T
M, (t) = Py(t/n)Py, (t/n)--- Py, (t/n), where 1,1 are as
before, in particular, to the formula

fordim P = 1.

- ii
w The con

My (t) = (Py(t/n))"

-
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Now, what about anti-Zeno?

fLet us now return to “Zeno-type” non-decay probability, T
M, (t) = Py(t/n)Py, (t/n)--- Py, (t/n), where 1,1 are as
before, in particular, to the formula

My (t) = (Py(t/n))"

for dim P = 1. Since limy, oo (f(t/n)" = exp{—f(0+)t} if
£(0) = 1 and the one-sided derivative f(0+) exists we see
that M () := lim,, .o M, (t) = 0 for V¢ > 0 if P(0+) = —o0,
and the same is true if dim P > 1 provided the derivative
P¢(0+) has such a property for any ¢ € PH.
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Now, what about anti-Zeno?

fLet us now return to “Zeno-type” non-decay probability, T
M, (t) = Py(t/n)Py, (t/n)--- Py, (t/n), where 1,1 are as
before, in particular, to the formula

My (t) = (Py(t/n))"

for dim P = 1. Since lim,_oo(f(t/n)" = exp{—f(0+)t} if
£(0) = 1 and the one-sided derivative f(0+) exists we see
that M () := lim,, .o M, (t) = 0 for V¢ > 0 if P(0+) = —o0,
and the same is true if dim P > 1 provided the derivative
P¢(0+) has such a property for any ¢ € PH.

It IS idealization, of course, but

% [Bratteli-Robinson’79] J
4
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Decay probability estimate

fWe need to estimate the quantity 1 — P(t), in other words T
(1, PY) — (¥, et Pe~iHty,) \We rewrite it as

1—P(t) =2Re (¢, P(I—e ")) — | P(I—e"*")y||?
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Decay probability estimate

fWe need to estimate the quantity 1 — P(t), in other words T
(1, PY) — (¥, et Pe~iHty,) \We rewrite it as

1—P(t) =2Re (¢, P(I—e ")) — | P(I—e"*")y||?

In terms of the spectral measure £y of H the r.h.s. equals

00 A\ 2
4/ sin® = dHEA e H/ —iAL/2 SlIl—dPEA Y

— O

By Schwarz it Is non-negative; our aim is to find tighter
upper and lower bounds. In particular, for dim P = 1 we

denote dw()) := d(v, Fi4)) obtaining

e
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The one-dimensional case

fLet first dim P = 1. One can employ the spectral-measure T
normalization, [~ dw(\) = 1, to rewrite the decay

probability in the following way

/ / <sm2ﬁ+sm2 %) dw(N)dew()

A—pu)t . At
—4/ / COS( Q,u) sin; sin—dw()\)dw(,u),

or equivalently

_P(t) =2 / / ! (N de(p)

%We can thus try to estimate the integrated function J
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An estimate from above

fTake o € (0,2]. Using |z|* > |sinz|® > sin” 2 together with T
A — p]® < 29(A|* + |u]|¥) we infer from the above formula

| — P(t)
toz

<2 [ [ (e

<2 [ N / TN Ll dw (N dw(p) < A(HI
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An estimate from above

fTake o € (0,2]. Using |z|* > |sinz|® > sin” 2 together with T
A — p]® < 29(A|* + |u]|¥) we infer from the above formula

| — P(t)
toz

<2 [ [ ey det
<2 [ N / TN+ L) dw (N () < A(H|,

Hence 1 — P(t) = O(t%) if ¥ € D(|H|*/?). If this is true for
some « > 1 we have Zeno effect — which is a slightly
weaker sufficient condition than the earlier stated one
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An estimate from above

fTake o € (0,2]. Using |z|* > |sinz|® > sin” 2 together with T
A — p|® < 2%\ + |u]¥) we infer from the above formula

| — P(t)
toz

Sy ) / T Ih (N de(p)
<2 [ N / TN+ L) dw (N () < A(H|,

Hence 1 — P(t) = O(t%) if ¥ € D(|H|*/?). If this is true for
some « > 1 we have Zeno effect — which is a slightly
weaker sufficient condition than the earlier stated one.

By negation, v ¢ D(|H|'/?) is a necessary condition for the

anti-Zeno effect. Notice that in case ¢ € H,.(H) the same

follows from Lipschitz regularity, since P(t) = |&(t)|? and ©
L}Tis bd and uniformly a-Lipschitz iff [, w(X)(1+ |A]%) dX < oo J
o)
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An estimate from below

fTo find a sufficient condition note that for \, u € [—1/t,1/t] T
there is a positive C' independent of ¢ such that

(A—Mﬂ
2

sin

> CIA — plt;

one can make the constant explicit but it Is not necessary.
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An estimate from below

fTo find a sufficient condition note that for \, u € [—1/t,1/t] T
there is a positive C' independent of ¢ such that

<A—mw
2

sin

> CIA — plt;

one can make the constant explicit but it Is not necessary.
Consequently, we have the estimate

1/t 1/t
1— P(t) > 202752/ dw()\)/ dw(p) (X — p)?

—1/t —1/t
which in turn implies

1— tP(t) > 402 { / 11//tt A2 dw(N) / 11//1 dw(A) = </11//ttkdw()\)> }
o

)
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Sufficient conditions

fThe AZ effect occurs if the r.n.s. diverges as ¢t — 0, e.g., If T

/_ ]]VV A2 dw(\) /_ ]]VV dw(\) — ( /_ ]]VV Adw(A))z > cN®

holds for any N and somec¢ >0, a > 1
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Sufficient conditions

fThe AZ effect occurs if the r.n.s. diverges as ¢t — 0, e.g., If T

/_ ]]VV A2 dw(\) /_ ]]VV dw(\) — < /_ ]]VV Adw(A))z > cN®

holds for any N and somec¢ >0, a > 1

We can also write it in a more compact form: introduce

HY = HPEp(Ay) with the spectral cut-off to the interval
Apn = (=N, N), In particular, denote I := Ey(—N, N).
The sufficient condition then reads

(H3)ulnbs — (HN)3) =o(N) as N —oc
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More on the one-dimensional case

fRemark: Notice that the condition does not require the T
Hamiltonian H to be below unbounded, in contrast to
exponential exponential decay; it is enough that the spectral
distribution has a slow decay in one direction only
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More on the one-dimensional case

fRemark: Notice that the condition does not require the T
Hamiltonian H to be below unbounded, in contrast to
exponential exponential decay; it is enough that the spectral
distribution has a slow decay in one direction only

Example: Consider H bd from below and v from H,.(H) s.t.
w(\) ~ cA~ 7 as A — +oo for some ¢ > 0 and 3 € (1,2). While

ffVNw(A) d\ — 1, the other two integrals diverge giving

CNg_ﬁ - CZN4—25

as the asymptotic behavior of the l.h.s., where the first term
is dominating; it gives P(0+) = —oco so AZ effect occurs.
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More on the one-dimensional case

fRemark: Notice that the condition does not require the T
Hamiltonian H to be below unbounded, in contrast to
exponential exponential decay; it is enough that the spectral
distribution has a slow decay in one direction only
Example: Consider H bd from below and v from H,.(H) s.t.

w(\) ~ cA~ 7 as A — +oo for some ¢ > 0 and 3 € (1,2). While
ffVNw(A) d\ — 1, the other two integrals diverge giving

cN?=P _ 2 NA—20

as the asymptotic behavior of the l.h.s., where the first term
is dominating; it gives P(0+) = —co so AZ effect occurs
Remarks: For g > 2 we have Zeno effect, so the Z-AZ gap

Is rather narrow! Also, 3 = 2 with a cut-off may give rapid
%oscillations around ¢ = 0 obscuring existence of Zeno limit
)
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Multiple degrees of freedom

fLet dim P > 1 and denote by {x;} an orthonormal basis In T
PH. The second term in the decay-probability formula is

2
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Multiple degrees of freedom

fLet dim P > 1 and denote by {x;} an orthonormal basis In T
PH. The second term in the decay-probability formula is

2

We also expand ¢ = > . ¢;jx; with » c;|* = 1 and denote
dwir(N) := d(x;, Es! xx), which is real-valued and symmetric
w.r.t. index interchange. Using d||E{'¢|* = 3 ;. ¢jcrdwir(N)
we can cast the decay-probability into the form

NP
1—P(t):4Zchk{/ sin” Ed%k()\)
—1A - ? 1 ’ut
&)
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Multiple degrees of freedom, contd

-

If dim P = oo one has to check convergence of the series
and correctness of interchanging of the summation and
Integration; it is done by means of Parseval relation

=
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Multiple degrees of freedom, contd

-

If dim P = oo one has to check convergence of the series
and correctness of interchanging of the summation and
Integration; it is done by means of Parseval relation

=

Next we employ normalization, ffooo dwir(\) = 41, to derive

1= =2 oy / / )t dwjm()‘)dwkm(ﬂ)

7km

which can be also written concisely as

| p —2/ / ! (. B PAET )
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General sufficient condition
fSince

sin %‘ > C|A — ult holds for ||, |M| < 1 we get

1/t 1/t
) > 2C?t* / / )? (¢, dEY PAE )
1/t J—1/t
1/t 1/t
= 4C?t? / / — ) (¢, dEX! PAE[T )
1/t J—1/t

= 402t2 {(¢,H1/tpll/t¢) o HPHl/th2}
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General sufficient condition
fSince

sm%‘ > C|A — ult holds for ||, |M| < 1 we get

1/t 1/t
) > 20%¢t* / / )? (¢, dEY PAE )
1/t J—1/t
1/t 1/t
= 4C?t? / / — ) (¢, dEX! PAE[T )
1/t J—1/t

=402 { (4, H}, P ) — | PHy 0

Let us summarize the results:
Theorem [E/O5]: In the above notation, suppose that

(H%PIx)y — | PHxY[?) ' = o(V)

holds as N — oo uniformly w.r.t. v € PH, then the
ermanent observation causes anti-Zeno effect J
WZEI
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The talk was based on

[EIKO5] P.E., T. Ichinose, S. Kondej: On relations between stable and Zeno dynamics in a
leaky graph decay model, to appear in Proceedings of the OTAMP 2004 Conference
(Bedlewo 2004); quant - ph/ 0504060

[EO5] P.E.: Sufficient conditions for the anti-Zeno effect, J. Phys. A: Math. Gen. 38 (2005),
L449-454.
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The talk was based on

[EIKO5] P.E., T. Ichinose, S. Kondej: On relations between stable and Zeno dynamics in a
leaky graph decay model, to appear in Proceedings of the OTAMP 2004 Conference
(Bedlewo 2004); quant - ph/ 0504060

[EO5] P.E.: Sufficient conditions for the anti-Zeno effect, J. Phys. A: Math. Gen. 38 (2005),
L449-454.

for more information see http://www.ujf.cas.cz/ exner
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