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Whom we commemorate

A great mathematicians whose books influenced many people, and also
a member of a generation whose life was no rosy garden walk indeed
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Geometrically induced bound states
I am going to a topic which might sound familiar to you, at least some
heard me speaking about related problems here and in other places, so
there is no need for an extensive introduction

As a warm-up, just a brief reminder: let −∆Ω
D be the Dirichlet Laplacian

in L2(Ω), where Ω ⊂ R2 is a strip of the width 2a built over an infinite
curve Γ without self-intersections

If Γ is straight line the spectrum is found by separation of variables,
σ(−∆Ω

D) =
[(

π
2a

)2
,∞
)
, and it is absolutely continuous

If, on the other hand, the curve Γ is not straight, but it is asymptotically
straight – expressed in terms of suitable technical assumptions – then
there are curvature-induced bound states, i.e. σdisc(−∆Ω

D) 6= ∅

There is a huge number of related results involving systems in other
dimensions and different geometric perturbations; for a survey and
bibliography we refer to

P.E., H. Kovǎŕık: Quantum Waveguides, Springer, Cham 2015
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The interest in related models

Apart from a purely mathematical interest – new solutions to one of the
most studied equations! – such geometrically induced bound states are
of practical importance as models of various waveguide effects, mainly in
quantum theory, but also in electromagnetism or acoustics

J.T. Londergan, J.P. Carini, D.P. Murdock: Binding and Scattering in Two-Dimensional Systems. Applications to
Quantum Wires, Waveguides and Photonic Crystals, Springer LNP m60, Berlin 1999

E.B. Davies, L. Parnovski: Trapped modes in acoustic waveguides, Quart. J. Mech. Appl. Math. 51 (1998), 477–492.

From that point if view the Dirichlet boundary as a hard wall is naturally
an idealization; in the language of quantum theory it means that the
tunneling between different parts of the structure is forbidden

This motivated an alternative approach through ‘leaky quantum wires’
which works with singular Schrödinger operators formally written as
−∆−αδ(x − Γ) with α > 0, Γ being is a curve, a graph, or more generally,
a complex of lower dimensionality, cf. Chapter 10 in [EK15, loc.cit.] and

P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A: Math. Gen. 34 (2001), 1439–1450.
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Curvature-induced states in leaky wires

We have a similar effect here; using the generalized Birman-Schwinger
principle the following result was demonstrated in the indicated paper:
consider a non-straight, piecewise C 1-smooth curve Γ : R→ R2

parameterized by its arc length, |Γ(s)− Γ(s ′)| ≤ |s − s ′|, assuming that

|Γ(s)− Γ(s ′)| ≥ c |s − s ′| holds for some c ∈ (0, 1)

Γ is asymptotically straight: there are d > 0, µ > 1
2

and ω ∈ (0, 1) such that

1− |Γ(s)− Γ(s ′)|
|s − s ′|

≤ d
[
1 + |s + s ′|2µ

]−1/2

in the sector Sω :=
{

(s, s ′) : ω < s
s′ < ω−1

}
Theorem

Under these assumptions, σess(−∆δ,α) = [−1
4α

2,∞) and −∆δ,α has at
least one eigenvalue below the threshold −1

4α
2.
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Soft quantum waveguides

The leaky wire model is also an idealization assuming the zero width
of the guide; to get a more realistic model we replace the δ function by
a finite potential well

We address the question in the simplest two-dimensional setting. Let us
formulate the problem stating first the assumptions:

Let Γ : R→ R2 be an infinite and smooth planar curve without
self-intersections, parametrized by its arc length s. We introduce the
signed curvature γ : γ(s) = (Γ̇2Γ̈1 − Γ̇1Γ̈2)(s) and assume that

a Γ is C 2-smooth so, in particular, γ(s) makes sense,

b γ is either of compact support, supp γ ⊂ [−s0, s0] for some s0 > 0, or
Γ is C 4-smooth and γ(s) together with its first and second derivatives
tend to zero as |s| → ∞,

c |Γ(s)− Γ(s ′)| → ∞ holds as |s − s ′| → ∞.

excluding thus U-shaped curves and their various modifications
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The interaction support

We can reconstruct the curve from γ, up to Euclidean transformations:
putting β(s2, s1) :=

∫ s2

s1
γ(s) ds, we have

Γ(s) =
(
x1 +

∫ s

s0

cosβ(s1, s0)ds1, x2 −
∫ s

s0

sinβ(s1, s0)ds1

)
for some s0 ∈ R and x = (x1, x2) ∈ R2. Next we define the strip Ωa by

Ωa := {x ∈ R2 : dist(x , Γ) < a},
in particular, Ωa

0 := R× (−a, a) corresponds to a straight line for which
we use the symbol Γ0. We assume that

d Ωa does not intersect itself, in particular, a‖γ‖∞ < 1 holds for the
strip halfwidth of Γ

which ensures that the points of Ωa can be uniquely parametrized as
follows,

x(s, u) =
(
Γ1(s)− uΓ̇2(s), Γ2(s) + uΓ̇1(s)

)
,

where N(s) = (−Γ̇2(s), Γ̇1(s)) is the unit normal vector to Γ at the point s.
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The potential ‘ditch’
We will deal with Schrödinger operators having an attractive potential
supported in Ωa. To this aim, we consider

e a nonnegative V ∈ L∞(R) with suppV ⊂ [−a, a]

(where V ≥ 0 is assumed for convenience only) and to define

Ṽ : Ωa → R+, Ṽ (x(s, u)) = V (u), and HΓ,V = −∆− Ṽ (x);

in view of assumption (e) the operator domain is D(−∆) = H2(R2)

It is also useful to introduce the comparison operator on L2(R),

hV = −∂2
x − V (x)

with the domain H2(R) which has in accordance with (e) a nonempty
and finite discrete spectrum such that

ε0 := inf σdisc(hV ) = inf σ(hV ) ∈
(
− ‖V ‖∞, 0

)
,

where the ground-state eigenvalue ε0 is simple and the associated
eigenfunction φ0 ∈ H2(R) can be chosen strictly positive
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The essential spectrum
The spectrum of HΓ,V is easily found when Γ is straight:

σ(HΓ0,V ) = σess(HΓ0,V ) = [ε0,∞)

If the ditch is straight outside a compact, or at least asymptotically
straight in the sense of (b), the essential spectrum is preserved:

Proposition

Under assumptions (a)–(e) we have σess(HΓ,V ) = [ε0,∞)

Proof idea: If Γ is straight outside a compact, the result is obtained by
combination of Weyl’s criterion and bracketing. In the other case, one
brackets using strip neighborhoods of the ‘tails’ on Ωa and passes to the
unitarily equivalent operator

H
(j)
± = hNV (u1)⊗ (−∂2

s )N + Vγ(s, u)

Vγ(s, u) := −
γ(s)2

4(1 + uγ(s))2
+

uγ̈(s)

2(1 + uγ(s))3
−

5

4

u2γ̇(s)2

(1 + uγ(s))4

with the effective potential satisfying Vγ(s, u)→ 0 as |s| → ∞. �
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Asymptotic results
The ‘hard-wall’ and ‘leaky-wire’ results mentioned in the introduction
provide some insight. For instance, −∆− αδ(x − Γ) can be obtained as
a limit of Schrödinger operators with suitably scaled regular potentials,

Vε : Vε(u) = 1
εV
(
u
ε

)
obtained by scaling of a given V satisfying assumption (e). This was
shown in [E-Ichinose’01, loc.cit.] and, in much greater generality, in

J. Behrndt, P. Exner, M. Holzmann, V. Lotoreichik: Approximation of Schrödinger operators with δ-interactions
supported on hypersurfaces, Math. Nachr. 290 (2017), 1215–1248.

Since this convergence is of norm-resolvent type we arrive easily at

Proposition

Consider a non-straight C 2-smooth curve Γ : R→ R2 such that
|Γ(s)− Γ(s ′)| < c |s − s ′| holds for some c ∈ (0, 1). If the support of its
signed curvature γ is noncompact, assume, in addition to (b), that
γ(s) = O(|s|−β) with some β > 5

4 as |s| → ∞. Then σdisc(HΓ,Vε) 6= ∅
holds for all ε small enough
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Asymptotic results, continued

Consider now a flat-bottom waveguide referring to the potential

VJ,0(u) = V0χJ(u), V0 > 0,

where χJ is the indicator function of an interval J = [−a1, a2] ⊂ [−a0.a0].
Using the fact that Dirichlet condition is the limit of a high potential wall,

M. Demuth, M. Krishna: Determining Spectra in Quantum Theory, Birkhäuser, Boston 2005

B. Simon: Functional Integration in Quantum Physics, 2nd edition, AMS Chelsea, Providence, R.I. 2005

we can easily prove the following result:

Proposition

Suppose that Γ is not straight and assumptions (a)–(d) are satisfied, then
the operator HΓ,VJ,0

referring to the flat-bottom potential has nonempty
discrete spectrum for all V0 large enough
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Birman-Schwinger analysis

This will be our main tool. Given a function V and z ∈ C \ R+ we put

KΓ,V (z) := Ṽ 1/2(−∆− z)−1Ṽ 1/2

with Ṽ defined above; we are particularly interested in the negative values
of the spectral parameter, z = −κ2 with κ > 0. In view of (e) it is a
bounded operator, L2(Ωa)→ L2(Ωa), positive for z = −κ2. By
Birman-Schwinger principle this operator can be used to determine the
discrete spectrum of HΓ,V :

Proposition

z ∈ σdisc(HΓ,V ) holds if and only if 1 ∈ σdisc(KΓ,V (z)). The function
κ 7→ KΓ,V (−κ2) is continuous and decreasing in (0,∞), tending to zero in
the norm topology, that is, ‖KΓ,V (−κ2)‖ → 0 holds as κ→∞
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Birman-Schwinger analysis, continued

Note that if g is an eigenfunction of KΓ,V (−κ2) with eigenvalue one,
the corresponding eigenfunction of HΓ,V is given by

φ(x) =

∫
supp Ṽ

Gκ(x , x ′) Ṽ (x ′)1/2g(x ′)dx ′,

where Gκ is the integral kernel of (−∆ + κ2)−1.

Using the knowledge of the Laplacian resolvent we can write the action
of KΓ,V (−κ2) explicitly: it is an integral operator with the kernel

KΓ,V (x , x ′;−κ2) =
1

2π
Ṽ 1/2(x)K0(κ|x − x ′|)Ṽ 1/2(x ′),

where K0 is the Macdonald function, mapping L2(Ωa) to itself.

In analogy with [E-Ichinose’01, loc.cit.] the idea is to treat the geometry
of Ωa as a perturbation of the straight case
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Straightening the strip
First we ‘straighten’ strip as one does it for the ‘hard-wall’ waveguides.
Passing from the Cartesian coordinates to s, u amounts to a unitary map
L2(Ωa)→ L2(Ωa

0, (1 + uγ(s))1/2dsdu); to get rid of the Jacobian, we use
the unitary operator

L2(Ωa)→ L2(Ωa
0), (Uψ)(s, u) = (1 + uγ(s))1/2ψ(x(s, u))

The operator KΓ,V (−κ2) transforms to the unitarily equivalent one,
RκΓ,V := UKΓ,V (−κ2)U−1, which is an integral operator on L2(Ωa

0)
with the kernel

RκΓ,V (s, u; s ′, u′) =
1

2π
W (s, u)1/2K0(κ|x − x ′|)W (s ′, u′)1/2,

where x = x(s, u), x ′ = x(s ′, u′), and the modified potential is

W (s, u) := (1 + uγ(s))V (u)

P. Exner: Soft quantum waveguides Vladimirov Memorial 2020 November 26, 2020 - 14 -



The straight case
For the straight potential ditch we have

RκΓ0,V (s, u; s ′, u′) =
1

2π
V (u)1/2K0(κ|x0 − x ′0|)V (u′)1/2,

where |x0 − x ′0| =
[
(s − s ′)2 + (u − u′)2

]1/2
. In the s variable the operator

is of convolution type, thus we have

(F ⊗ I )RκΓ0,V (F ⊗ I )−1 =

∫ ⊕
R
RκΓ0,V (p) dp,

where the fibers are integral operator on L2(−a, a) with the kernels

RκΓ0,V (u, u′; p) = V (u)1/2 e−
√
κ2+p2|u−u′|

2
√
κ2 + p2

V (u′)1/2,

and RκΓ0,V
(p) is nothing but the Birman-Schwinger operator associated

with hV referring to the parameter z = −(κ2 + p2)

By assumption, ε0 = inf σ(hV ), and consequently, −κ2 = ε0 + p2 belongs
to the spectrum of HΓ0,V for any p ∈ R as we know already
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The straight case, continued
At the same time, the operator Rκ0

Γ0,V
satisfies

supσ(Rκ0
Γ0,V

) = 1,

where κ0 =
√
−ε0, because otherwise there would be a κ̃ > κ0 such that

1 ∈ σ(Rκ̃Γ0,V
), and consequently, −κ̃2 ∈ σ(HΓ0,V ), however, this would

contradict to the already established fact that σ(HΓ0,V ) = [ε0,∞)

One can relate relate the eigenfunction φ0 of hV to the eigenfunction g0 of
RκΓ0,V

(0) corresponding to the unit eigenvalue. On the one hand, we have

g0(u) = V 1/2(u)φ0(u),

on the other hand, one can write the generalized eigenfunction associated
with inf σ(HΓ0,V ) as

f0(s, u) = φ0(u) =

∫ a

−a

e−κ0|u−u′|

2κ0
V (u′)1/2 g0(u′) du′
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Existence of bound states

Theorem

Let assumptions (a)–(e) be valid and set

CκΓ,V (s, u; s ′, u′)

=
1

2π
φ0(u)V (u)

[
(1 + uγ(s))K0(κ|x(s, u)− x(s ′, u′)|) (1 + u′γ(s ′))

−K0(κ|x0(s, u)− x0(s ′, u′)|)
]
V (u′)φ0(u′)

for all (s, u), (s ′, u′) ∈ Ωa
0, then we have σdisc(HΓ,V ) 6= ∅ provided∫

R2

dsds ′
∫ a

−a

∫ a

−a
dudu′ Cκ0

Γ,V (s, u; s ′, u′) > 0

holds for κ0 =
√
−ε0.

P.E.: Spectral properties of soft quantum waveguides, J. Phys. A: Math. Theor. 53 (2020), 355302.

In contrast to the asymptotic results above, this one has a quantitative character
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Bound state existence, proof sketch

The idea is to treat the geometry of the system, translated into the
coefficients of the operator, as a perturbation of the straight case. As the
essential spectrum is preserved, it is enough to find ψη ∈ L2(Ωa

0) such that

(ψ,Rκ0
Γ,Vψ)− ‖ψ‖2 > 0. (1)

A trial function combines the generalized eigenfunction, associated with
the edge of the spectrum, with a mollifier which makes it an element of
the Hilbert space. Inspect first the effect of the mollifier for Γ = Γ0:

Lemma

Let ψη ∈ L2(Ωa
0) be of the form ψη(s, u) = hη(s)g0(u) with hη(s) = h(ηs),

where h ∈ C∞0 (R) and h(s) = 1 in the vicinity of s = 0. Then

(ψη,Rκ0
Γ0,V

ψη)− ‖ψη‖2 = O(η) as η → 0.
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Bound state existence, proof sketch

We can rewrite the expression to be estimated into the form∫ a

−a

∫ a

−a
g0(u)V (u)1/2

[ ∫
R
|ĥη(p)|2 e−

√
κ2

0+p2|u−u′|

2
√
κ2

0 + p2
dp − ‖hη‖2 e

−κ0|u−u′|

2κ0

]

×V (u′)1/2g0(u′)dudu′,

and it is enough to check that the square bracket is O(η) as η → 0.

We have ĥη(p) = 1
η ĥ
(p
η

)
, which allows us to rewrite the first term as

1

η

∫
R
|ĥ(ζ)|2 e−

√
κ2

0+η2ζ2|u−u′|

2
√
κ2

0 + η2ζ2
dζ ==

1

η

(e−κ0|u−u′|

2κ0
+O(η2)

)
,

and using further the relation ‖hη‖2 = 1
η ‖h‖

2 we prove the lemma.
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Bound state existence, proof concluded
Consider now the difference of the Birman-Schwinger operators

DκΓ,V := RκΓ,V −RκΓ0,V

which is an integral operator with the kernel

DκΓ,V (s, u; s ′, u′) =
1

2π

(
W (s, u)1/2K0(κ|x(s, u)− x(s ′, u′)|)W (s ′, u′)1/2

−V (u)1/2K0(κ|x0(s, u)− x0(s ′, u′)|)V (u′)1/2
)

By BS principle, a bound state existence requires supσ(Rκ0
Γ0,V

) > 1, and
that happens if

lim
η→0

(ψη,Dκ0
Γ,Vψη) > 0.

Using the choice of the function hη, this is equivalent to∫
R2

dsds ′
∫ a

−a

∫ a

−a
dudu′ g0(u)Dκ0

Γ,V (s, u; s ′, u′) g0(u′) > 0,

which is nothing else than the condition stated in the theorem. �
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Distances involved

To use the theorem one has to compare point distances in the straight
strip,

|x0(s, u)− x0(s ′, u′)| =
[
(s − s ′)2 + (u − u′)2

]1/2

with those is the curved one,

|x(s, u)− x(s′, u′)|2

= |Γ(s)− Γ(s′)|2 + u2 + u′2 − 2uu′ cosβ(s, s′) + 2(u cosβ(s, s′)− u′)

∫ s

s′
sinβ(ξ, s′)dξ,

where the first term on the right-hand side equals

|Γ(s)− Γ(s ′)|2 =

∫ s

s′

∫ s

s′
cosβ(ξ, ξ′) dξ dξ′.

Note that |Γ(s)− Γ(s ′)| < |Γ0(s)− Γ0(s ′)| = |s − s ′| holds if the bend is
nontrivial

This property was decisive in the leaky wire case, [E-Ichinose’01, loc.cit.].
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One more existence result

Proposition

Let Vε0 be the family of potentials V satisfying assumptions (d), (e), and
inf σ(hV ) ≤ ε0. Then to any ε0 > 0 there exists an a0 = a0(ε0) such that
σdisc(HΓ,V ) 6= ∅ holds for all V ∈ Vε0 with suppV ⊂ [−a0, a0].

It is sufficient to consider inf σ(hV ) = ε0 since the family {hλV : λ > 0} is
monotonous with the same essential spectrum. σdisc(HΓ,V ) 6= ∅ hold if

1

2π

∫ a

−a

∫ a

−a
φ0(u)V (u)F (u, u′)V (u′)φ0(u)dudu′ > 0,

where

F (u, u′) :=

∫
R2

[
(1 + uγ(s)) K0(κ0|x(s, u)− x(s′, u′)|) (1 + u′γ(s′))− K0(κ0|x0(s, u)− x0(s′, u′)|)

]
dsds′

The function F (·, ·) is well defined, continuous, and we have

F (0, 0) =

∫
R2

[
K0(κ0|Γ(s)− Γ(s′)|)− K0(κ0|s − s′|)

]
dsds′ > 0.

By continuity there is a neighborhood (−a0, a0)× (−a0, a0) of (0, 0) on
which F (u, u′) is positive, and that in combination with the positivity of
φ0V concludes the proof. �
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Comments

Birman-Schwinger principle is not the only tool available; a natural
alternative is to employ a variational method. In this way the bound
state existence was proved for bookcover-shaped potential ditches

 

Source: the cited paper

S. Kondej, D. Krejčǐŕık, J. Kř́ıž: Soft quantum waveguides with a explicit cut locus, arXiv:2007.10946

This is not the end of the story, many questions remain open, for instance

The existence of bound states in polygonal channels. There is such a
result obtained variationally for crossed channels but this fact alone
does not allow us to make conclusions about a single broken channel.

S. Egger, J. Kerner, K. Pankrashkin: Bound states of a pair of particles on the half-line with a general
interaction potential, J. Spect. Theory, to appear; arXiv:1812.06500
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More problems
Tubular potential channels in three dimensions. One expects the
validity of asymptotic results similar to those discussed above. If the
channel profile lacks the rotational symmetry with respect to its axis
Γ, one expects additional effects coming from the channel torsion
giving rise repulsion in analogy with

T. Ekholm, H. Kovǎŕık, D. Krejčǐŕık: A Hardy inequality in twisted waveguides, Arch. Rat. Mech. Anal.
188(2008), 245–264.

Local perturbations of potential channels, coming from variation
either of their depth or width. This is easy if such a perturbation is
‘sign-definite’, in general it may be harder.

Potential channels of a more complicated geometry, in first place
branched ones built over a metric graph. Of course, to have the
problem well defined one must specify the potential in the vicinity
of the graph vertices because the spectrum would depend on it.

One can ask about the number of eigenvalues and their properties in
dependence on the system geometry. Of particular interest are the
weakly bound states corresponding to mild geometric perturbations.
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More problems

Another question concerns scattering in a bent or locally perturbed
potential channel including possible resonance effects in narrow and
sufficiently deep channels.

Another extension to three dimensions concerns potential layers, that
is potentials of a fixed transverse profile built over an infinite surface
Σ in R3. One can again establish the discrete spectrum existence for
potential layers with the profile deep enough, while in the regime
different from the asymptotic one, the question is open.

For layers the spectrum may depend on the global geometry of the
interaction support. An example of a conical potential layer was
found recently, properties of more general layers are of interest.

S. Egger, J. Kerner, K. Pankrashkin: Discrete spectrum of Schrödinger operators with potentials concentrated
near conical surfaces, Lett. Math. Phys. 110 (2020), 945–968.
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More problems

Another question concerns the influence of external fields. In a
two-dimensional hard-wall tube we have a Hardy-type inequality
that prevents the existence of weakly bound states; the question is
whether this extends to soft waveguides. On the other hand, with a
homogeneous magnetic field, the question is about stability of edge
currents with respect to various perturbations.

T. Ekholm, H. Kovǎŕık: Stability of the magnetic Schrödinger operator in a waveguide, Comm. PDE 30
(2005), 539–565.

In periodic waveguides one is interested primarily in the absolute
continuity of the spectrum and the existence of spectral gaps. The
latter would be for sure true with profiles deep an narrow enough,
the former remain an open problem even for periodic leaky wires.

A completely new area opens when we consider a system of many
particles interacting mutually, for instance, due the charges they
carry, confined in a soft waveguide.
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One more problem

Another question one may pose concerns the spectral optimization in
analogy with what is known in Dirichlet and δ potential cases

P.E., E.M. Harrell, M. Loss: Optimal eigenvalues for some Laplacians and Schrödinger operators depending on curvature,
in Mathematical Results in Quantum Mechanics, Birkhäuser, Basel 1999; pp. 47–53.

P.E., E.M. Harrell, M. Loss: Inequalities for means of chords, with application to isoperimetric problems, Lett. Math.
Phys. 75 (2006), 225–233; addendum 77 (2006), 219.

Let Γ be a C 2-smooth loop without self-intersections of a fixed length L.
For small enough positive d± the map [0, L)× J 3 (s, u) 7→ Γ(s) + uν(s),
where J = [−d−, d+] and ν = (−Γ̇2, Γ̇1) is the normal to Γ, is bijective.

We consider operators Hγ,µ corresponding the measure-type interaction

µ(M) :=

∫ L

0

∫ d+

−d−
χM

(
Γ(s) + uν(s)

)
(1 + uγ(s))dµ⊥(t)ds,

where the positive transverse measure µ⊥ describes either a regular
attractive potential channel, µ⊥(u) = V (u)du, or a δ potential.
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Shape optimization

We define HΓ,µ as the self-adjoint operator associated with the form

hΓ,µ[ψ] := ‖∇ψ‖2 −
∫
R2

|ψ|2dµ, dom hΓ,µ = H1(R2).

It is not difficult to check that the essential spectrum of HΓ,µ is [0,∞)
and σdisc(HΓ,µ) 6= ∅. Let C be a circle of radius L

2π . By µ◦ we denote the
corresponding measure generated by µ⊥ and giving rise to operator HΓ,µ◦ .

Theorem

The lowest eigenvalues λ1(µ) and λ1(µ◦), respectively, of HΓ,µ and of
HΓ,µ◦ satisfy the inequality

λ1(µ) ≤ λ1(µ◦).

We conjecture that the inequality is strict unless Γ and C are congruent.
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Another optimization result

The claim follows by a simple variational argument: the appropriate
trial function is obtained using the lowest eigenfunction of HΓ,µ◦ and
‘transplanting’ it to the parallel coordinates.

P.E., V. Lotoreichik: Optimization of the lowest eigenvalue of a soft quantum ring, arXiv:2011.02257 [math-ph]

One can also optimize with respect to the channel profile:

Theorem

Put α := µ⊥(J ) and consider Schrödinger operators HΓ,αδu , then the
lowest eigenvalues λ1(µ) and λ1(αδu) of HΓ,µ and of HΓ,αδu , respectively,
satisfy the inequality

λ1(µ) ≥ min
u∈J

λ1(αδu).

This is again easy to prove variationally; one has to check that the
function J 3 t 7→ ‖ψ|u‖2 is continuous so that it attains its maximum
value at some t? = t?(µ) ∈ J .
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It remains to say

P. Exner: Soft quantum waveguides Vladimirov Memorial 2020 November 26, 2020 - 30 -


