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Quantum graph concept

The idea of investigating quantum particles confined to a
graph was first suggested by L. Pauling and worked out by
Ruedenberg and Scherr in 1953 in a model of aromatic
hydrocarbons
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Quantum graph concept

The idea of investigating quantum particles confined to a
graph was first suggested by L. Pauling and worked out by
Ruedenberg and Scherr in 1953 in a model of aromatic
hydrocarbons

The concept extends, however, to graphs of arbitrary shape
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on graph edges,
boundary conditions at vertices

and what is important, it became practically important after
experimentalists learned in the last two decades to fabricate
tiny graph-like structure for which this is a good model
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Remarks

Most often one deals with semiconductor graphs
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Remarks

Most often one deals with semiconductor graphs
produced by combination of ion litography and chemical
itching. In a similar way metallic graphs are prepared

Recently carbon nanotubes became a building material,
after branchings were fabricated several years ago: see
[Papadopoulos et al.’00], [Andriotis et al.’01], etc.

Moreover, from the stationary point of view a quantum
graph is also equivalent to a microwave network built of
optical cables – see [Hul et al.’04]

In addition one can consider generalized graphs which
consist of components of different dimensions

Now when the microstructures reach molecular size
quantum graphs “return” in a sense to their origin!
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More remarks

The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved by the method
based on s-a extensions which everybody in this
audience knows (at least I suppose so)

The QMath 10 conference; Moeciu, September 10-15, 2007 – p. 5/40



More remarks

The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved by the method
based on s-a extensions which everybody in this
audience knows (at least I suppose so)

Here we consider Schrödinger operators on graphs,
most often free, vj = 0. Naturally one can external
electric and magnetic fields, spin, etc.

The QMath 10 conference; Moeciu, September 10-15, 2007 – p. 5/40



More remarks

The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved by the method
based on s-a extensions which everybody in this
audience knows (at least I suppose so)

Here we consider Schrödinger operators on graphs,
most often free, vj = 0. Naturally one can external
electric and magnetic fields, spin, etc.

Graphs can support also Dirac operators, see
[Bulla-Trenckler’90], [Bolte-Harrison’03], and also
recent applications to graphene and its derivates

The QMath 10 conference; Moeciu, September 10-15, 2007 – p. 5/40
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The vertex coupling is chosen to make the Hamiltonian
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved by the method
based on s-a extensions which everybody in this
audience knows (at least I suppose so)

Here we consider Schrödinger operators on graphs,
most often free, vj = 0. Naturally one can external
electric and magnetic fields, spin, etc.

Graphs can support also Dirac operators, see
[Bulla-Trenckler’90], [Bolte-Harrison’03], and also
recent applications to graphene and its derivates

The graph literature is extensive; recall just a review
[Kuchment’04], proceedings of Snowbird’05 conference,
and the recent AGA Programme at INI Cambridge
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Vertex coupling
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The most simple example is a
star graph with the state Hilbert
space H =

⊕n
j=1 L

2(R+) and
the particle Hamiltonian acting
on H as ψj 7→ −ψ′′

j
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The most simple example is a
star graph with the state Hilbert
space H =

⊕n
j=1 L

2(R+) and
the particle Hamiltonian acting
on H as ψj 7→ −ψ′′

j

Since it is second-order, the boundary condition involve
Ψ(0) := {ψj(0)} and Ψ′(0) := {ψ′

j(0)} being of the form

AΨ(0) +BΨ′(0) = 0 ;

by [Kostrykin-Schrader’99] the n× n matrices A,B give rise
to a self-adjoint operator if they satisfy the conditions

rank (A,B) = n

AB∗ is self-adjoint
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Unique boundary conditions
The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer’00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n×n matrices U such that

A = U − I , B = i(U + I)
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Unique boundary conditions
The non-uniqueness of the above b.c. can be removed:
Proposition [Harmer’00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n×n matrices U such that

A = U − I , B = i(U + I)

One can derive them modifying the argument used in
[Fülöp-Tsutsui’00] for generalized point interactions, n = 2

Self-adjointness requires vanishing of the boundary form,
n∑

j=1

(ψ̄jψ
′
j − ψ̄′

jψj)(0) = 0 ,

which occurs iff the norms ‖Ψ(0) ± iℓΨ′(0)‖Cn with a fixed
ℓ 6= 0 coincide, so the vectors must be related by an n× n
unitary matrix; this gives (U − I)Ψ(0) + iℓ(U + I)Ψ′(0) = 0
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Remarks
The length parameter is not important because matrices
corresponding to two different values are related by

U ′ =
(ℓ+ ℓ′)U + ℓ− ℓ′

(ℓ− ℓ′)U + ℓ+ ℓ′

The choice ℓ = 1 just fixes the length scale
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Remarks
The length parameter is not important because matrices
corresponding to two different values are related by

U ′ =
(ℓ+ ℓ′)U + ℓ− ℓ′

(ℓ− ℓ′)U + ℓ+ ℓ′

The choice ℓ = 1 just fixes the length scale

The unique b.c. help to simplify the analysis done in
[Kostrykin-Schrader’99], [Kuchment’04] and other
previous work. It concerns, for instance, the null
spaces of the matrices A,B

or the on-shell scattering matrix for a star graph of n
halflines with the considered coupling which equals

SU (k) =
(k − 1)I + (k + 1)U

(k + 1)I + (k − 1)U
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Examples of vertex coupling

Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n∑

j=1

ψ′

j(0) = αψ(0)

with “coupling strength” α ∈ R; α = ∞ gives U = −I
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Examples of vertex coupling

Denote by J the n× n matrix whose all entries are
equal to one; then U = 2

n+iαJ − I corresponds to the
standard δ coupling,

ψj(0) = ψk(0) =: ψ(0) , j, k = 1, . . . , n ,
n∑

j=1

ψ′

j(0) = αψ(0)

with “coupling strength” α ∈ R; α = ∞ gives U = −I

α = 0 corresponds to the “free motion”, the so-called
free boundary conditions (better name than Kirchhoff)

Similarly, U = I − 2
n−iβJ describes the δ′s coupling

ψ′

j(0) = ψ′

k(0) =: ψ′(0) , j, k = 1, . . . , n ,
n∑

j=1

ψj(0) = βψ′(0)

with β ∈ R; for β = ∞ we get Neumann decoupling
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Why are vertices interesting?
Apart of a general mathematical interest, there are specific
reasons related to various use of such models, e.g.

A nontrivial vertex coupling can lead to number
theoretic properties of graph spectrum [E’96]
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Why are vertices interesting?
Apart of a general mathematical interest, there are specific
reasons related to various use of such models, e.g.

A nontrivial vertex coupling can lead to number
theoretic properties of graph spectrum [E’96]

On more practical side, the conductivity of graph
nanostructures is controlled typically by external
fields, vertex coupling can serve the same purpose

In particular, the generalized point interaction
has been proposed as a way to realize a qubit
[Cheon-Tsutsui-Fülöp’04]; vertices with n > 2 can
similarly model qudits, etc.

Clearly, understanding of vertex couplings is needed to
model physical systems by graphs and to make use of
such models
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A natural approach: “fat graphs”
Take a more “realistic” situation without ambiguities, such
as a network of branching tubes and analyze its squeezing
limit :
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Looking simple, it is a nontrivial problem. What is known?
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as a network of branching tubes and analyze its squeezing
limit :
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Looking simple, it is a nontrivial problem. What is known?

after a long effort the Neumann-like case is understood,
see [Freidlin-Wentzell’93], [Freidlin’96], [Saito’01],
[Kuchment-Zeng’01], [Rubinstein-Schatzmann’01],
[E.-Post’05, 07], [Post’06], giving basically free b.c. only

recently a progress achieve in the Dirichlet case
[Post’05], [Molchanov-Vainberg’07], [Griesser’07unpub].
This is our main topic here
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A “cheaper” alternative
One can employ approximation on the graph itself:

δ on a star Γ through potentials with a shrinking
component , Wε,j := 1

ε Wj

(
x
ε

)
. If they belong to L1(R+)

we have
H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the
parameter α :=

∑n
j=1

∫∞
0
Wj(x) dx, see [E’96]
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we have
H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the
parameter α :=

∑n
j=1

∫∞
0
Wj(x) dx, see [E’96]

δ′s coupling using additional δ’s scaled in a nonlinear
way – CS technique, see [Cheon-E’04] – with extension
to 2n-parameter families [E-Turek’07]
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A “cheaper” alternative
One can employ approximation on the graph itself:

δ on a star Γ through potentials with a shrinking
component , Wε,j := 1

ε Wj

(
x
ε

)
. If they belong to L1(R+)

we have
H0(V +Wε) −→ Hα(V )

as ε→ 0+ in the norm resolvent sense, with the
parameter α :=

∑n
j=1

∫∞
0
Wj(x) dx, see [E’96]

δ′s coupling using additional δ’s scaled in a nonlinear
way – CS technique, see [Cheon-E’04] – with extension
to 2n-parameter families [E-Turek’07]

using extra edges and vertices properly scaled, see
[E-Turek’07], one can get the

(n+1
2

)
-parameter family of

time-reversal-invariant couplings
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Neumann case survey: first, the graphs

The simplest situation in [KZ’01, EP’05] (weights left out)

Let M0 be a finite connected graph with vertices vk, k ∈ K
and edges ej ≃ Ij := [0, ℓj ], j ∈ J ; the state Hilbert space is

L2(M0) :=
⊕

j∈J

L2(Ij)

and in a similar way Sobolev spaces on M0 are introduced
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Neumann case survey: first, the graphs

The simplest situation in [KZ’01, EP’05] (weights left out)

Let M0 be a finite connected graph with vertices vk, k ∈ K
and edges ej ≃ Ij := [0, ℓj ], j ∈ J ; the state Hilbert space is

L2(M0) :=
⊕

j∈J

L2(Ij)

and in a similar way Sobolev spaces on M0 are introduced

The form u 7→ ‖u′‖2
M0

:=
∑

j∈J ‖u′‖2
Ij

with u ∈ H1(M0) is
associated with the operator which acts as −∆M0

u = −u′′j
and satisfies free b.c.,

∑

j, ej meets vk

u′j(vk) = 0
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On the other hand, Laplacian on manifolds
Consider a Riemannian manifold X of dimension d ≥ 2 and
the corresponding space L2(X) w.r.t. volume dX equal to
(det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2
X =

∫

X
|du|2dX , |du|2 =

∑

i,j

gij∂iu ∂ju

The closure of this form is associated with the s-a operator
∆X which acts in fixed chart coordinates as

∆Xu = −(det g)−1/2
∑

i,j

∂i((det g)1/2gij ∂ju)
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(det g)1/2dx in a fixed chart. For u ∈ C∞

comp(X) we set

qX(u) := ‖du‖2
X =

∫

X
|du|2dX , |du|2 =

∑

i,j

gij∂iu ∂ju

The closure of this form is associated with the s-a operator
∆X which acts in fixed chart coordinates as

∆Xu = −(det g)−1/2
∑

i,j

∂i((det g)1/2gij ∂ju)

If X is compact with piecewise smooth boundary, one starts
from the form defined on C∞(X). This yields ∆X as the
Neumann Laplacian on X and allows us to treat “fat graphs”
and “sleeves” on the same footing

The QMath 10 conference; Moeciu, September 10-15, 2007 – p. 14/40



Relating the two together

We associate with the graph M0 a family of manifolds Mε

M0 Mε

ej

vk

Uε,j

Vε,k

We suppose that Mε is a union of compact edge and vertex
components Uε,j and Vε,k such that their interiors are
mutually disjoint for all possible j ∈ J and k ∈ K
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Manifold building blocks

ε

ε

ej vk

Uε,j

Vε,k
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Manifold building blocks

ε

ε

ej vk

Uε,j

Vε,k

However, Mε need not be embedded in some R
d.

It is convenient to assume that Uε,j and Vε,k depend on ε
only through their metric:

for edge regions we assume that Uε,j is diffeomorphic to
Ij × F where F is a compact and connected manifold
(with or without a boundary) of dimension m := d− 1

for vertex regions we assume that the manifold Vε,k is
diffeomorphic to an ε-independent manifold Vk
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Eigenvalue convergence

Let thus U = Ij × F with metric gε, where cross section F
is a compact connected Riemannian manifold of dimension
m = d− 1 with metric h; we assume that volF = 1. We
define another metric g̃ε on Uε,j by

g̃ε := dx2 + ε2h(y) ;

the two metrics coincide up to an O(ε) error

This property allows us to treat manifolds embedded in R
d

(with metric g̃ε) using product metric gε on the edges
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Eigenvalue convergence

Let thus U = Ij × F with metric gε, where cross section F
is a compact connected Riemannian manifold of dimension
m = d− 1 with metric h; we assume that volF = 1. We
define another metric g̃ε on Uε,j by

g̃ε := dx2 + ε2h(y) ;

the two metrics coincide up to an O(ε) error

This property allows us to treat manifolds embedded in R
d

(with metric g̃ε) using product metric gε on the edges

The sought result now looks as follows.

Theorem [KZ’01, EP’05]: Under the stated assumptions
λk(Mε) → λk(M0) as ε→ 0 (giving thus free b.c.!)
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A stronger convergence
The b.c. are not the only problem. The ev convergence for
finite graphs is rather weak. Fortunately, one can do better.

Theorem [Post’06]: Let Mε be graphlike manifolds
associated with a metric graph M0, not necessarily finite.
Under some natural uniformity conditions, ∆Mε

→ ∆M0
as

ε→ 0+ in the norm-resolvent sense (with suitable
identification), in particular, the σdisc and σess converge
uniformly in an bounded interval, and ef’s converge as well.
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A stronger convergence
The b.c. are not the only problem. The ev convergence for
finite graphs is rather weak. Fortunately, one can do better.

Theorem [Post’06]: Let Mε be graphlike manifolds
associated with a metric graph M0, not necessarily finite.
Under some natural uniformity conditions, ∆Mε

→ ∆M0
as

ε→ 0+ in the norm-resolvent sense (with suitable
identification), in particular, the σdisc and σess converge
uniformly in an bounded interval, and ef’s converge as well.

The natural uniformity conditions mean (i) existence of
nontrivial bounds on vertex degrees and volumes, edge
lengths, and the second Neumann eigenvalues at vertices,
(ii) appropriate scaling (analogous to the described above)
of the metrics at the edges and vertices.

Proof is based on an abstract convergence result.
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Convergence of resonances

In a similar way we can treat convergence of resonances.
As a motivating example one can think of a “fat lasso”
graph, with the ε-squeezing setting the same as before:
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Convergence of resonances

In a similar way we can treat convergence of resonances.
As a motivating example one can think of a “fat lasso”
graph, with the ε-squeezing setting the same as before:

Uε,int

v

eint

eε

Uε,ext

Uε,v

X0

Xε

ε
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Convergence of resonances, continued

Let H0, with free b.c., and Hε will be as above. We use an
exterior complex scaling extending to complex θ the map

Uθf := (detDΦθ)1/2(f ◦ Φθ)

where Φθ
e(x) := eθx on external edges, and (detDΦθ)1/2

equals one and eθ/2, respectively, on X0,int and X0,ext.
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Convergence of resonances, continued

Let H0, with free b.c., and Hε will be as above. We use an
exterior complex scaling extending to complex θ the map

Uθf := (detDΦθ)1/2(f ◦ Φθ)

where Φθ
e(x) := eθx on external edges, and (detDΦθ)1/2

equals one and eθ/2, respectively, on X0,int and X0,ext.

Theorem [E.-Post’07]: Let λ(0) be a resonance of H0 of
multiplicity m > 0, then for small enough ε > 0 there is m
resonances λ1(ε), . . . , λm(ε) of Hε, not necessarily distinct,
which all converge to λ(0) as ε→ 0. The same is true for
embedded ev’s of H0, when Imλj(ε) ≤ 0 holds in general.
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Convergence of resonances, continued

Let H0, with free b.c., and Hε will be as above. We use an
exterior complex scaling extending to complex θ the map

Uθf := (detDΦθ)1/2(f ◦ Φθ)

where Φθ
e(x) := eθx on external edges, and (detDΦθ)1/2

equals one and eθ/2, respectively, on X0,int and X0,ext.

Theorem [E.-Post’07]: Let λ(0) be a resonance of H0 of
multiplicity m > 0, then for small enough ε > 0 there is m
resonances λ1(ε), . . . , λm(ε) of Hε, not necessarily distinct,
which all converge to λ(0) as ε→ 0. The same is true for
embedded ev’s of H0, when Imλj(ε) ≤ 0 holds in general.

Remarks: (i) The above Φθ can have a shifted discontinuity,
or be replaced by a smooth flow, with the same result
(ii) The result persists if a magnetic field is added
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Back to the Dirichlet case

Generically it is expected that that the limit with the
energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases
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Generically it is expected that that the limit with the
energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases

if the vertex regions squeeze faster than the “tubes”
one gets Dirichlet decoupling [Post’05]
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Back to the Dirichlet case

Generically it is expected that that the limit with the
energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases

if the vertex regions squeeze faster than the “tubes”
one gets Dirichlet decoupling [Post’05]

on the other hand, if you blow up the spectrum for a
fixed point separated from thresholds, i.e.

r r r��
�� r

0 λ1 λ λ2

one gets a nontrivial limit with b.c. fixed by scattering
on the “fat star” [Molchanov-Vainberg’07]
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More on the threshold case
As said above, generically the squeezing limit with
renormalization w.r.t. the spectral threshold leads to
Dirichlet decoupled graph – see [Molchanov-Vainberg’07]
or [Dell’Antonio-Tenuta’07] for a particular case of a broken
line – which is not very interesting
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More on the threshold case
As said above, generically the squeezing limit with
renormalization w.r.t. the spectral threshold leads to
Dirichlet decoupled graph – see [Molchanov-Vainberg’07]
or [Dell’Antonio-Tenuta’07] for a particular case of a broken
line – which is not very interesting

A nontrivial limit may arise in the (non-generic) case when
the system has a threshold resonance. On a general level,
the claim was made by [Grieser’07], however, details are
not available at the moment
On the other hand, [Albeverio-Cacciapuoti-Finco’07]
provide a worked out example, the star graph with n = 2.
In the limit they get the family of scale-invariant point
interactions on the line satisfying the b.c.

f(0+) = αf(0−) , f ′(0+) = α−1f(0−) , α 6= 0
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How to get more general results?

Our main point is to show how one can get squeezing limits
able to produce nonvoid discrete spectrum or resonances.
The procedure we propose consists of two steps:
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How to get more general results?

Our main point is to show how one can get squeezing limits
able to produce nonvoid discrete spectrum or resonances.
The procedure we propose consists of two steps:

choose a network collapsing to a graph in such a way
that the limit Hamiltonian has a threshold resonance

change the scaling properties of the vertex region
slightly, typically by adding higher order terms in the
scaling parameter
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How to get more general results?

Our main point is to show how one can get squeezing limits
able to produce nonvoid discrete spectrum or resonances.
The procedure we propose consists of two steps:

choose a network collapsing to a graph in such a way
that the limit Hamiltonian has a threshold resonance

change the scaling properties of the vertex region
slightly, typically by adding higher order terms in the
scaling parameter

Remarks: (i) The original network Hamiltonian at that may
or may not have such a resonance, depending on the
limiting procedure used. (ii) The approximation follows the
scheme which one uses interpreting pseudopotentials, or
point interactions in dimensions two and three
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How to implement the programme?

The modification of scaling properties can be achieved in
various ways, e.g., one can “wiggle” the edges angles or
scale the vertex region at a rate which differs from that of
the “edge tubes” by a higher order term, a combination of
such perturbations, etc.
Incidentally, the same effect can also be obtained by
introducing suitable potentials into the vertex region, but a
purely geometric way is probably the most interesting
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How to implement the programme?

The modification of scaling properties can be achieved in
various ways, e.g., one can “wiggle” the edges angles or
scale the vertex region at a rate which differs from that of
the “edge tubes” by a higher order term, a combination of
such perturbations, etc.
Incidentally, the same effect can also be obtained by
introducing suitable potentials into the vertex region, but a
purely geometric way is probably the most interesting

Of course, the above proposal just suggests how to
formulate a conjecture which can be subsequently
proved in each particular case.
We are going to do that in the simplest nontrivial case, i.e.
in the setting of the paper [Albeverio-Cacciapuoti-Finco’07]
mentioned above
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Bent waveguide
We will consider a result of “fattening” a smooth curve
C := {(x, y) ∈ R

2|x = γ1(s), y = γ2(s), s ∈ R} parameterized
by its arc length, γ′21 + γ′22 = 1. As usual denote by we
introduce the signed curvature of C,

γ(s) := γ′2(s)γ
′′
1 (s) − γ′1(s)γ

′′
2 (s) ;

we suppose that the curve C is not self-intersecting and γ is
compactly supported, so that C consists of two straight half
lines joined by a smooth curve. In particular, the bending
angle of C is θ =

∫
R
γ(s) ds.
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Bent waveguide
We will consider a result of “fattening” a smooth curve
C := {(x, y) ∈ R

2|x = γ1(s), y = γ2(s), s ∈ R} parameterized
by its arc length, γ′21 + γ′22 = 1. As usual denote by we
introduce the signed curvature of C,

γ(s) := γ′2(s)γ
′′
1 (s) − γ′1(s)γ

′′
2 (s) ;

we suppose that the curve C is not self-intersecting and γ is
compactly supported, so that C consists of two straight half
lines joined by a smooth curve. In particular, the bending
angle of C is θ =

∫
R
γ(s) ds. The strip Ω ∈ R

2 is given by

Ω := {(x, y) ∈ R
2|x = γ1(s)−uγ

′

2(s), y = γ2(s)+uγ
′

1(s), s ∈ R, u ∈ (−d, d)} ;

we assume that d‖γ‖∞ < 1. The Dirichlet Laplacian −∆D
Ω

on Ω with D(L0) := C∞
0 (Ω) is defined as usual
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Scaling and “wiggling” of Ω

We assume now that the strip changes its shape and width
as a function of ε ∈ (0, 1] according to

γε(s) :=

√
λ(ε)

ε
γ
(s
ε

)
, dε := εαd , with α > 1 ,

where λ(ε) is a fixed function to be specified; it replaces
λ(ε) = 1 used in [Albeverio-Cacciapuoti-Finco’07].
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Scaling and “wiggling” of Ω

We assume now that the strip changes its shape and width
as a function of ε ∈ (0, 1] according to

γε(s) :=

√
λ(ε)

ε
γ
(s
ε

)
, dε := εαd , with α > 1 ,

where λ(ε) is a fixed function to be specified; it replaces
λ(ε) = 1 used in [Albeverio-Cacciapuoti-Finco’07]. We
choose it to be real, positive and analytic near the origin,
with the expansion

λ(ε) = 1 + λ1ε+ O(ε2) .

It means that the shape changes slightly with respect to ε,
in particular, the bending angle of the strip Ωε is

θε =

∫

R

γε(s) ds = θ
√
λ(ε) = θ

(
1 +

1

2
λ1ε
)

+ O(ε2) .
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“Straightening” of Ωε

Conventionally we pass to an operator on Ω′ = R × (−d, d):

Proposition: Let γ be piecewise C2 and compactly
supported with γ′, γ′′ are bounded. Then −∆D

Ωε
is unitarily

equivalent to the closure of H0ε acting on L2(Ω′) as

H0ε = −
∂

∂s

1

(1 + εα−1u
√
λ(ε)γ(s/ε))2

∂

∂s
−

1

ε2α

∂2

∂u2
+

1

ε2
Vε(s, u)

with Vε(s, u) in the effective potential given by

Vε(s, u) = −
λ(ε)γ(s/ε)2

4(1 + εα−1u
√
λ(ε)γ(s/ε))2

+
εα−1u

√
λ(ε)γ′′(s/ε)

2(1 + εα−1u
√
λ(ε)γ(s/ε))3

−
5

4

ε2α−2u2λ(ε)γ′(s/ε)2

(1 + εα−1u
√
λ(ε)γ(s/ε))4

and D(H0,ε) = {ψ ∈ L2(Ω′)|ψ ∈ C∞(Ω′) , ψ(s,±d) = 0 , H0εψ ∈ L2(Ω′)}.
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More preliminaries
We will employ transverse modes, i.e. the normalized
functions φn(u) solving −ε−2αφ′′n(u) = Eε,nφn(u) with the
boundary conditions φn(εαd) = φn(−εαd) = 0. The
corresponding eigenvalues Eε,n are

Eε,n =
( nπ

2dεα

)2

with n = 1, 2, . . . .
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More preliminaries
We will employ transverse modes, i.e. the normalized
functions φn(u) solving −ε−2αφ′′n(u) = Eε,nφn(u) with the
boundary conditions φn(εαd) = φn(−εαd) = 0. The
corresponding eigenvalues Eε,n are

Eε,n =
( nπ

2dεα

)2

with n = 1, 2, . . . .

The resolvent of Hε admits an integral representation with
the kernel (Hε − z)−1(s, u, s′, u′) for every z ∈ ρ(Hε). We
define the projection on the normal-modes eigenspaces as

R
ε

n,m(k2, s, s′) :=

∫ d

−d

du du′ φn(u)(Hε−k
2−Eε,m)−1(s, u, s′, u′)φm(u′)

The operators R
ε
n,m(k2) are bounded operator-valued

analytic functions of k2 for all k2 ∈ C\R and Im k > 0.
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Threshold resonances
We say that a 1D Schrödinger operator H = − d2

ds2 + V (s)

has a zero energy resonance if there is a function
ψr ∈ L∞(R) \ L2(R) solving Hψr = 0 in the sense of
distributions. In particular, if

∫

R

V (s) ds 6= 0 and ea|·|V ∈ L1(R)

for some a > 0, then exactly one of the following situations
can occur [Bolle-Gesztesy-Wilk’85]:
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Threshold resonances
We say that a 1D Schrödinger operator H = − d2

ds2 + V (s)

has a zero energy resonance if there is a function
ψr ∈ L∞(R) \ L2(R) solving Hψr = 0 in the sense of
distributions. In particular, if

∫

R

V (s) ds 6= 0 and ea|·|V ∈ L1(R)

for some a > 0, then exactly one of the following situations
can occur [Bolle-Gesztesy-Wilk’85]:
Case I: H has no zero energy resonance
Case II: there is such a resonance; then ψr can be chosen

real and the numbers c2 = −1
2

∫
R
s V (s)ψr(s) ds and

c1 =

[ ∫

R

V (s)ds

]
−1 ∫

R

∫

R

V (s)
|s− s′|

2
V (s′)ψr(s

′) ds ds′

cannot not vanish simultaneously
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Point interactions
Let us list the generalized point interactions we need to
state the result. The first is the Dirichlet-decoupled operator

H
d

with D(H
d
) := {f ∈ H2(R \ 0) ∩H1(R)| f(0) = 0}.
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Point interactions
Let us list the generalized point interactions we need to
state the result. The first is the Dirichlet-decoupled operator

H
d

with D(H
d
) := {f ∈ H2(R \ 0) ∩H1(R)| f(0) = 0}.

The other is a point-interaction Hamiltonian H
r

acting again
as H

r
f = −f ′′ but on the domain

D(H
r
) :=

{
f ∈ H2(R \ 0)| (c1 + c2)f(0+) = (c1 − c2)f(0−) ,

(c1 − c2)f
′(0+) = (c1 + c2)f

′(0−) +
λ̂

c1 + c2
f(0−)

}
for c2 6= −c1 ;

D(H
r
) :=

{
f ∈ H2(R \ 0)| f(0−) = 0 , f ′(0+) =

λ̂

4c21
f(0+)

}
for c2 = −c1 ,

where we put

λ̂ := λ1

∫

R

V (s)(ψr(s))
2 ds .
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Point interactions, continued

The family H
r

obviously depends on two real parameters.
We can write the b.c. involved in the standard form
(U − I)Ψ(0) + i(U + I)Ψ′(0) = 0 with Ψ := (f(0+), f(0−))T ,
Ψ′ := (f ′(0+),−f ′(0−))T and the 2 × 2 unitary matrix

U :=
1

2(c21 + c22) + iλ̂

(
−4c1c2 − iλ̂ 2(c21 − c22)

2(c21 − c22) 4c1c2 − iλ̂

)
.
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Point interactions, continued

The family H
r

obviously depends on two real parameters.
We can write the b.c. involved in the standard form
(U − I)Ψ(0) + i(U + I)Ψ′(0) = 0 with Ψ := (f(0+), f(0−))T ,
Ψ′ := (f ′(0+),−f ′(0−))T and the 2 × 2 unitary matrix

U :=
1

2(c21 + c22) + iλ̂

(
−4c1c2 − iλ̂ 2(c21 − c22)

2(c21 − c22) 4c1c2 − iλ̂

)
.

The spectral and scattering properties of these interactions
are easily found [AGHHE’05]. In particular, for λ1 = 0 these
boundary conditions define the “scale invariant” point
interaction Hamiltonian mentioned above. On the other
hand, we have here also the standard δ interaction of
coupling strength λ̂ corresponding to c1 = 1 and c2 = 0
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The resolvents

They can be expressed through free resolvent kernel,

Gk(s− s′) =
i

2k
eik|s−s′| , k2 ∈ C\R

+, Im k > 0 .
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The resolvents

They can be expressed through free resolvent kernel,

Gk(s− s′) =
i

2k
eik|s−s′| , k2 ∈ C\R

+, Im k > 0 .

By Krein’s formula the Dirichlet-decoupled resolvent kernel

is R
d
(k2, s, s′) = Gk(s− s′) + 2ikGk(s)Gk(s

′) for Im k > 0 and
k2 ∈ C\R

+, while the kernel of R
r
(k2) := (H

r
− k2)−1 equals

R
r
(k2; s, s′) = Gk(s− s′) + 2ik

2kc22 + iλ̂

2k(c21 + c22) + iλ̂
Gk(s)Gk(s′)

+
4ic22

2k(c21 + c22) + iλ̂
G′

k(s)G′

k(s′) +
4kc1c2

2k(c21 + c22) + iλ̂

[
Gk(s)G′

k(s′) +G′

k(s)Gk(

for k2 ∈ ρ(H
r
) , Im k > 0.
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The main result
Theorem [Cacciapuoti-E’07]: Suppose that for ε ∈ (0, ε0]

the curve Cε has no self-intersections, γ is piecewise C2

with a compact support, and γ′, γ′′ are bounded. Assuming
α > 5/2, we have:

(i) If −
d2

ds2
−

1

4
γ2(s) has no zero energy resonance, then

we have in the operator-norm sense

u − lim
ε→0

R
ε
n,m(k2) = δn,mR

d
(k2) , k2 ∈ C\R, Im k > 0 .

(ii) On the other hand, if there is such a resonance, then

u − lim
ε→0

R
ε
n,m(k2) = δn,mR

r
(k2) , k2 ∈ ρ(H

r
), Im k > 0 ,

where c1, c2 and λ̂ are defined as above with V := −1
4
γ2
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Sketch of the proof
The key element is the scaling analysis of 1D Hamiltonians,

Hε := −
d2

ds2
+
λ(ε)

ε2
V
(s
ε

)
, s ∈ R ,

as ε→ 0, analogous to [Bolle-Gesztesy-Wilk’85] but with
modifications due to threshold resonances (notice that
δ′-type interactions do not belong to this class)
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Sketch of the proof
The key element is the scaling analysis of 1D Hamiltonians,

Hε := −
d2

ds2
+
λ(ε)

ε2
V
(s
ε

)
, s ∈ R ,

as ε→ 0, analogous to [Bolle-Gesztesy-Wilk’85] but with
modifications due to threshold resonances (notice that
δ′-type interactions do not belong to this class)

We suppose that λ(ε) = 1 +
∑∞

n=1 λnε
n near the origin and

factorize conventionally, u(s) := sgn [V (s)]|V (s)|1/2 and
v(s) := |V (s)|1/2, which allows us to write

(Hε − k2)−1 = Gk −
λ(ε)

ε
Aε(k)Tε(k)Cε(k)

with Tε(k) = [1 + λ(ε)uGεkv]
−1 for appropriate values of k,

Aε(k; s, s
′) = Gk(s− εs′)v(s′) and Cε(k; s, s

′) = u(s)Gk(εs− s′)
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Sketch of the proof, continued

To find the behaviour of Tε(k) as ε→ 0 we introduce the
projections P , of dimension one, and Q by

P :=
1

(v, u)
(v, · )u , Q := 1 − P ;

recall that (v, u) =
∫

R
V (s)ds 6= 0 holds by assumption
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Sketch of the proof, continued

To find the behaviour of Tε(k) as ε→ 0 we introduce the
projections P , of dimension one, and Q by

P :=
1

(v, u)
(v, · )u , Q := 1 − P ;

recall that (v, u) =
∫

R
V (s)ds 6= 0 holds by assumption

Then the operator Tε(k) can be written as

Tε(k) =
[
1 +

i(v, u)

2εk
P + M̃ε(k)

]−1

where the regular part M̃ε(k) ∈ B(L2, L2) expresses, after
some computation, as an explicit power series in ε
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Sketch of the proof, continued

Presence of a zero-energy resonance is equivalent to the
existence of a function ϕ0 ∈ L2(R) which satisfies the
relation ϕ0 +QM0Qϕ0 = 0 where M0 is the absolute term in
the series. If such a ϕ0 exists, it can be chosen real, then
the parameters c1, c2 and λ̂ are related to ϕ0 by

c1 =
(v,m0ϕ0)

(v, u)
, c2 =

1

2
((·)v, ϕ0) , λ̂ = λ1(ϕ̃0, ϕ0)

with ϕ̃0(s) := sgn [V (s)]ϕ0 and m0(s, s
′) == u(s)|s− s′|v(s′);

the relation u(s)ψr(s) = −ϕ0(s) holds a.e.
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Sketch of the proof, continued

Presence of a zero-energy resonance is equivalent to the
existence of a function ϕ0 ∈ L2(R) which satisfies the
relation ϕ0 +QM0Qϕ0 = 0 where M0 is the absolute term in
the series. If such a ϕ0 exists, it can be chosen real, then
the parameters c1, c2 and λ̂ are related to ϕ0 by

c1 =
(v,m0ϕ0)

(v, u)
, c2 =

1

2
((·)v, ϕ0) , λ̂ = λ1(ϕ̃0, ϕ0)

with ϕ̃0(s) := sgn [V (s)]ϕ0 and m0(s, s
′) == u(s)|s− s′|v(s′);

the relation u(s)ψr(s) = −ϕ0(s) holds a.e.

Using these notions and results of [BGW’85] we get after
straightforward but tedious computations the following
asymptotic expansion for Tε(k):
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Sketch of the proof, continued

Lemma: Suppose in addition that k 6= −iλ̂/(2(c21 + c22)) holds
in the case II. Then for all ε small enough the operator Tε(k)
has the following norm-convergent series expansions

Tε(k) =
∞∑

n=p

εntn(k) ,

where p = 0 in the case I and p = −1 in the case II.
Moreover, we have (v, t0u) = 0, ((·)v, t0u) = (v, t0(·)u) = 0,
and (v, t1u) = −2ik in case I, while in case II it holds

t−1u = t∗
−1v = 0 ;

(
(·)v, t−1(·)u

)
= −

4ic22

2k(c21 + c22) + iλ̂
,

(v, t0u) = 0 ;
(
(·)v, t0u

)
=
(
v, t0(·)u

)
=

4kc1c2

2k(c21 + c22) + iλ̂
,

(v, t1u) = −2ik
2kc22 + iλ̂

2k(c21 + c22) + iλ̂
.
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Sketch of the proof, conclusion
Now one can proceed as in [ACF’07]. The above lemma
and the explicit formulæ for the point-interaction Green
function allow us to verify that (Hε − k2)−1 converges in the

norm resolvent sense to R
d
(k2) and R

r
(k2), respectively
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Sketch of the proof, conclusion
Now one can proceed as in [ACF’07]. The above lemma
and the explicit formulæ for the point-interaction Green
function allow us to verify that (Hε − k2)−1 converges in the

norm resolvent sense to R
d
(k2) and R

r
(k2), respectively

In the final step we compare the “straightened” operator
with its leading term w.r.t. the transverse variable,

Hγ
0ε := −

∂2

∂s2
−

1

ε2α

∂2

∂u2
−
λ(ε)

ε2
γ(s/ε)2

4

with the appropriate domain; their resolvents satisfy

u − lim
ε→0

(Rε
n,m(k2) −Rγ,ε

n,m(k2)) = 0 , k2 ∈ C\R, Im k > 0 ;

putting these claims together we get the sought result. �
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Summary and outlook

We have reviewed the concept of quantum graphs
and in particular, boundary conditions coupling wave
functions at the vertices
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Approximating a quantum graph by a family of “fat
graphs” the result depends on the boundary conditions
on the latter; the Neumann case is reasonably well
understood leading generically to free b.c.
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and in particular, boundary conditions coupling wave
functions at the vertices
Approximating a quantum graph by a family of “fat
graphs” the result depends on the boundary conditions
on the latter; the Neumann case is reasonably well
understood leading generically to free b.c.
the Dirichlet case yields generically decoupled graph;
interesting exceptional cases are related to presence of
threshold resonances
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Summary and outlook

We have reviewed the concept of quantum graphs
and in particular, boundary conditions coupling wave
functions at the vertices
Approximating a quantum graph by a family of “fat
graphs” the result depends on the boundary conditions
on the latter; the Neumann case is reasonably well
understood leading generically to free b.c.
the Dirichlet case yields generically decoupled graph;
interesting exceptional cases are related to presence of
threshold resonances
We formulated a proposal how to get in the limit
quantum graphs with nontrivial spectral properties and
illustrated it in a nontrivial case, coupling of two edges
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We have reviewed the concept of quantum graphs
and in particular, boundary conditions coupling wave
functions at the vertices
Approximating a quantum graph by a family of “fat
graphs” the result depends on the boundary conditions
on the latter; the Neumann case is reasonably well
understood leading generically to free b.c.
the Dirichlet case yields generically decoupled graph;
interesting exceptional cases are related to presence of
threshold resonances
We formulated a proposal how to get in the limit
quantum graphs with nontrivial spectral properties and
illustrated it in a nontrivial case, coupling of two edges
A lot of work remains to be done in these problems
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