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# Quantum graphs: what they are?

# \ertex coupling parametrizations

# The Neumann case: fat graphs and sleeve manifolds

# Scaled potentials on graphs: § coupling

#® The current knowledge about the Dirichlet case

# How to get stronger results — playing around threshold
resonances

#® The simplest nontrivial example: squeezing of a bent
Dirichlet tube

# Summary and outlook
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Quantum graph concept

-

The idea of investigating quantum particles confined to a T

graph was first suggested by L. Pauling and worked out by
Ruedenberg and Scherr in 1953 in a model of aromatic
hydrocarbons

-

The QMath 10 conference; Moeciu, September 10-15, 2007 — p. 3/




Quantum graph concept

-

The idea of investigating quantum particles confined to a
graph was first suggested by L. Pauling and worked out by
Ruedenberg and Scherr in 1953 in a model of aromatic
hydrocarbons

=

The concept extends, however, to graphs of arbitrary shape

Hamiltonian: _aa_xg + ()
on graph edges,
boundary conditions at vertices

and what is important, it became practically important after

experimentalists learned in the last two decades to fabricate
LWtiny graph-like structure for which this is a good model J
L=
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f #® Most often one deals with semiconductor graphs T
produced by combination of ion litography and chemical
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Remarks

Most often one deals with semiconductor graphs T
produced by combination of ion litography and chemical
itching. In a similar way metallic graphs are prepared

Recently carbon nanotubes became a building material,
after branchings were fabricated several years ago: see
[Papadopoulos et al.’00], [Andriotis et al.’01], etc.

Moreover, from the stationary point of view a quantum
graph is also equivalent to a microwave network built of
optical cables — see [Hul et al.’04]

In addition one can consider generalized graphs which
consist of components of different dimensions

Now when the microstructures reach molecular size
guantum graphs “return” in a sense to their origin!
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More remarks

f #® The vertex coupling is chosen to make the Hamiltonian T
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved by the method
based on s-a extensions which everybody in this
audience knows
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More remarks

The vertex coupling is chosen to make the Hamiltonian T
self-adjoint, or in physical terms, to ensure probability
current conservation. This is achieved by the method
based on s-a extensions which everybody in this

audience knows

Here we consider Schrodinger operators on graphs,
most often free, v; = 0. Naturally one can external
electric and magnetic fields, spin, etc.

Graphs can support also Dirac operators, see
[Bulla-Trenckler’90], [Bolte-Harrison’03], and also
recent applications to graphene and its derivates

The graph literature is extensive; recall just a review
IKuchment’04], proceedings of Snowbird’05 conference,

and the recent AGA Programme at INI Cambridge J
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Vertex coupling

f The most simple example Is a T
star graph with the state Hilbert

space H = @, L*(R;) and
the particle Hamiltonian acting
on ‘H as ¢ — —
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Vertex coupling

f The most simple example Is a T
star graph with the state Hilbert

space H = @)_, L*(Ry) and
the particle Hamiltonian acting
on ‘H as ¢ — —

Since it is second-order, the boundary condition involve
W(0) := {¢;(0)} and ¥'(0) := {}(0)} being of the form

AT(0) + BY'(0) = 0;

by [Kostrykin-Schrader'99] the n x n matrices A, B give rise
to a self-adjoint operator if they satisfy the conditions

® rank(A,B)=n

-
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Unique boundary conditions

fThe non-uniqueness of the above b.c. can be removed: T

Proposition [Harmer'00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n x n matrices U such that

A=U—1, B=iU+1)
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Unique boundary conditions

fThe non-uniqueness of the above b.c. can be removed: T

Proposition [Harmer'00, K-S’00]: Vertex couplings are
uniquely characterized by unitary n x n matrices U such that

A=U—1, B=iU+1)

One can derive them modifying the argument used in
[FUlop-Tsutsui’00] for generalized point interactions, n = 2

Self-adjointness requires vanishing of the boundary form,

> (W — ;) (0) =0,

j=1
which occurs iff the norms || ¥(0) 4 i/¥'(0)||c» With a fixed
¢ # 0 coincide, so the vectors must be related by an n x n
%unitary matrix; this gives (U — I)¥(0) +i((U + )¥'(0) =0
ADEE

@ —
Pzl MAODI
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Remarks

f #® The length parameter is not important because matricesT
corresponding to two different values are related by

(C+ U +¢—-1

(—0U+ L0+ 1

The choice ¢ = 1 just fixes the length scale

U =

-

The QMath 10 conference; Moeciu, September 10-15, 2007 — p. 8/




Remarks

f #® The length parameter is not important because matricesT
corresponding to two different values are related by

I — (C+ U +¢—-1
U =0U +04 0
The choice ¢ = 1 just fixes the length scale

# The unique b.c. help to simplify the analysis done In
[Kostrykin-Schrader’'99], [Kuchment’04] and other
previous work. It concerns, for instance, the null
spaces of the matrices A, B

-

The QMath 10 conference; Moeciu, September 10-15, 2007 — p. 8/




Remarks

f #® The length parameter is not important because matricesT
corresponding to two different values are related by

Uu_@+fmj+€—”
U =0U +04 0
The choice ¢ = 1 just fixes the length scale

# The unique b.c. help to simplify the analysis done In
[Kostrykin-Schrader’'99], [Kuchment’04] and other
previous work. It concerns, for instance, the null
spaces of the matrices A, B

# or the on-shell scattering matrix for a star graph of n
halflines with the considered coupling which equals

(k—DI+(k+1)U
(k+ 11+ (k—1)U J
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Examples of vertex coupling

f # Denote by 7 the n x n matrix whose all entries are T
equal to one; then U = —2—7 — I corresponds to the

n+io
standard ¢ coupling,

1;(0) = ¥ (0) = ¥(0), j,k=1,...,m, Zw;<0> = a1)(0)

with “coupling strength” o« € R; aa = oo gives U = —1
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Examples of vertex coupling

f #® Denote by 7 then xn matrix whose all entries are T

equal to one; then U = J — I corresponds to the

standard ¢ coupling,

03(0) = a(0) = (0), ok =1, on, D" i(0) =

with “coupling strength” o« € R; aa = oo gives U = —1

n—l—zoz

« = 0 corresponds to the “free motion”, the so-called
free boundary conditions

Similarly, U = I — —j describes the ¢’ coupling

%(0) — %(O) —- W(O)a Jk=1,...,n, ij(()) —

i
with G € R; for 5 = oo we get Neumann decoupling J
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Why are vertices interesting?

prart of a general mathematical interest, there are specific T
reasons related to various use of such models, e.g.

# A nontrivial vertex coupling can lead to number
theoretic properties of graph spectrum [E’96]
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Why are vertices interesting?

prart of a general mathematical interest, there are specific T
reasons related to various use of such models, e.g.

# A nontrivial vertex coupling can lead to number
theoretic properties of graph spectrum [E’96]

# On more practical side, the conductivity of graph
nanostructures is controlled typically by external
flelds, vertex coupling can serve the same purpose

# In particular, the generalized point interaction
has been proposed as a way to realize a qubit
[Cheon-Tsutsui-Fulop’04]; vertices with n > 2 can
similarly model gudits, etc.

Clearly, understanding of vertex couplings is needed to
model physical systems by graphs and to make use of

%such models J
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A natural approach: “fat graphs”

fTake a more “realistic” situation without ambiguities, such T
as a network of branching tubes and analyze its squeezing

S

Looking simple, it is a nontrivial problem. What is known?
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A natural approach: “fat graphs”

fTake a more “realistic” situation without ambiguities, such T
as a network of branching tubes and analyze its squeezing

S

Looking simple, it is a nontrivial problem. What is known?

# after a long effort the Neumann-like case is understood,
see [Freidlin-Wentzell’93], [Freidlin’96], [Saito’01],
[Kuchment-Zeng’01], [Rubinstein-Schatzmann’01],
|[E.-Post’05, 07], [Post’06], giving basically free b.c. only

# recently a progress achieve in the Dirichlet case
[Post’'05], [Molchanov-Vainberg’'07], [Griesser'07unpub]

-
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A “cheaper” alternative

fOne can employ approximation on the graph itself: T

# ¢ on a star I' through potentials with a shrinking
component, W, ; := 1 W; (£). If they belong to L(R)
we have

H()(V + Wg) — Ha(V)

as ¢ — 0+ In the norm resolvent sense, with the
parameter , see [E'96]
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# ¢’ coupling using additional ¢’s scaled in a nonlinear
way — CS technique, see [Cheon-E’04] — with extension
to 2n-parameter families [E-Turek’07]

-

The QMath 10 conference; Moeciu, September 10-15, 2007 — p. 12/




A “cheaper” alternative

fOne can employ approximation on the graph itself: T

# ¢ on a star I' through potentials with a shrinking
component, We; :== 2 W; (£). If they belong to L' (R.)
we have

H()(V + Wg) — Ha(V)

as ¢ — 0+ In the norm resolvent sense, with the
parameter , see [E'96]

# ¢’ coupling using additional ¢’s scaled in a nonlinear
way — CS technique, see [Cheon-E’04] — with extension
to 2n-parameter families [E-Turek’07]

® using extra edges and vertices properly scaled, see
[E-Turek'07], one can get the ("")-parameter family of
| tlme reversal-invariant couplings
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Neumann case survey: first, the graph:

fThe simplest situation in [KZ'01, EP’05] (weights left out) T

Let M, be a finite connected graph with vertices v, kK € K
and edges e; ~ [; := |0,¢;], j € J; the state Hilbert space Is

L*(My) = P L*(1)
jeJ
and in a similar way Sobolev spaces on M are introduced

-
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Neumann case survey:. first, the graphs

fThe simplest situation in [KZ'01, EP’05] (weights left out) T

Let M, be a finite connected graph with vertices v, kK € K
and edges e; ~ [; := |0,¢;], j € J; the state Hilbert space Is

L*(My) := € L*(I;)
jeJ
and in a similar way Sobolev spaces on M are introduced
The form u — [[u/||3;, = 227 [|W/]|7, with u € H' (M) is
associated with the operator which acts as — Ay u = —uf
and satisfies free b.c.,

> ujlup) =0
J, €; meets vy J
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on the other hand, Laplacian on manifolc

fConsider a Riemannian manifold X of dimension 4 > 2 and T
the corresponding space L?(X) w.r.t. volume dX equal to

(det ¢)/2dz in a fixed chart. For v € C2°_ (X) we set

comp
www—mw%—/

. dul?dX , |dul® = Zgij(%u o;u
1,

The closure of this form is associated with the s-a operator
A x which acts In fixed chart coordinates as

Axu = —(det g)" /2 " 9;((det 9)"/?g" d;u)
i

-
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on the other hand, Laplacian on manifolc

fConsider a Riemannian manifold X of dimension 4 > 2 and T
the corresponding space L?(X) w.r.t. volume dX equal to

(det ¢)/2dz in a fixed chart. For v € C2°_ (X) we set

comp
www—mwé—/

. dul?dX , |dul* = Zgij(%u o;u
1,

The closure of this form is associated with the s-a operator
A x which acts In fixed chart coordinates as

Axu = —(det g)" /2 " 9;((det 9)"/?g" d;u)
1,]
If X Is compact with piecewise smooth boundary, one starts

from the form defined on C*°(X). This yields Ax as the
Neumann Laplacian on X and allows us to treat “fat graphs”

and “sleeves” on the same footing J
@ ' B &)
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Relating the two together

-

We associate with the graph M, a family of manifolds M.

M

We suppose that M. is a union of compact edge and vertex
components U, ; and V, ; such that their interiors are

utually disjoint for all possible j € Jand k£ € K J
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Manifold building blocks




Manifold building blocks

However, M. need not be embedded in some R<.

It is convenient to assume that U ; and V, ; depend on ¢
only through their metric:

o for edge regions we assume that U, ; Is diffeomorphic to
[; x Fwhere F'Is a compact and connected manifold
(with or without a boundary) of dimension m :=d — 1

o for vertex regions we assume that the manifold V_ ;, Is

diffeomorphic to an s-independent manifold V},

A ()
Pzl MNODI
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Eigenvalue convergence

fLet thus U = I; x F with metric g., where cross section F T
IS a compact connected Riemannian manifold of dimension
m = d — 1 with metric h; we assume that vol F = 1. We
define another metric g. on U; ; by

Jc 1= da? + 52h(y) ;

the two metrics coincide up to an O(e) error

This property allows us to treat manifolds embedded in R
(with metric g.) using product metric g. on the edges

i_ ;‘\ ; MNODI
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Eigenvalue convergence

fLet thus U = I; x F with metric g., where cross section F T

IS a compact connected Riemannian manifold of dimension
m = d — 1 with metric h; we assume that vol F = 1. We
define another metric g. on U; ; by

Jc 1= da? + 52h(y) ;

the two metrics coincide up to an O(e) error

This property allows us to treat manifolds embedded in R
(with metric g.) using product metric g. on the edges

The sought result now looks as follows.

Theorem [KZ'01, EP’05]: Under the stated assumptions
)\k(Ms) — )\k(MO) as ¢ — 0

o
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A stronger convergence

fThe b.c. are not the only problem. The ev convergence for T
finite graphs is rather weak. Fortunately, one can do better.

Theorem [Post’06]: Let M. be graphlike manifolds
associated with a metric graph M, not necessarily finite.
Under some natural uniformity conditions, A, — Ay, as
e — 04+ In the norm-resolvent sense (with suitable
identification), in particular, the o4 and oess CONVErge
uniformly in an bounded interval, and ef’s converge as well.

-
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A stronger convergence

fThe b.c. are not the only problem. The ev convergence for T
finite graphs is rather weak. Fortunately, one can do better.

Theorem [Post’06]: Let M. be graphlike manifolds
associated with a metric graph M, not necessarily finite.
Under some natural uniformity conditions, A, — Ay, as
e — 04+ In the norm-resolvent sense (with suitable
identification), in particular, the o4 and oess CONVErge
uniformly in an bounded interval, and ef’s converge as well.

The natural uniformity conditions mean (i) existence of
nontrivial bounds on vertex degrees and volumes, edge
lengths, and the second Neumann eigenvalues at vertices,
(i) appropriate scaling (analogous to the described above)
of the metrics at the edges and vertices.

%Proof IS based on an abstract convergence result. J
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Convergence of resonances

fln a similar way we can treat convergence of resonances. T
As a motivating example one can think of a “fat lasso”
graph, with the s-squeezing setting the same as before:

-
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Convergence of resonances

fln a similar way we can treat convergence of resonances. T
As a motivating example one can think of a “fat lasso”
graph, with the s-squeezing setting the same as before:

Us,int
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Convergence of resonances, continuet

fLet Hy, with free b.c., and H. will be as above. We use an T
exterior complex scaling extending to complex 6 the map

U? f = (det DBY)V/2(f o 0Y)
where @Y () := ¢’z on external edges, and (det D®?)1/2
equals one and ¢?/2, respectively, on Xo,int @Nd Xq ext.

-
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Convergence of resonances, continue

fLet Hy, with free b.c., and H. will be as above. We use an T
exterior complex scaling extending to complex 6 the map
U? f .= (det DBV (f o ®Y)
where @%(z) := ¢’z on external edges, and (det D®?)1/2
equals one and ¢?/2, respectively, on Xo,int @aNd X ext.

Theorem [E.-Post’07]: Let A\(0) be a resonance of H, of
multiplicity m > 0, then for small enough ¢ > 0 there is m
resonances \i(e), ..., A\n(e) of H., not necessarily distinct,
which all converge to A\(0) as € — 0. The same is true for
embedded ev’s of Hy, when Im A;(e) < 0 holds in general.

-
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Convergence of resonances, continue

fLet Hy, with free b.c., and H. will be as above. We use an T
exterior complex scaling extending to complex 6 the map

U? f = (det DBY)V/2(f o 0Y)
where @Y () := ¢’z on external edges, and (det D®?)1/2
equals one and ¢?/2, respectively, on Xo,int @aNd X ext.

Theorem [E.-Post’07]: Let A\(0) be a resonance of H, of
multiplicity m > 0, then for small enough ¢ > 0 there is m
resonances \i(e), ..., A\n(e) of H., not necessarily distinct,
which all converge to A\(0) as € — 0. The same is true for
embedded ev’s of Hy, when Im A;(e) < 0 holds in general.

Remarks: (i) The above &’ can have a shifted discontinuity,
or be replaced by a smooth flow, with the same result
(i) The result persists if a magnetic field is added J
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Back to the Dirichlet case

f.o Generically it is expected that that the limit with the T
energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases

LW— YVIE €
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Back to the Dirichlet case

f.o Generically it is expected that that the limit with the T
energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases

» If the vertex regions squeeze faster than the “tubes”
one gets Dirichlet decoupling [Post’05]
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Back to the Dirichlet case

f.o Generically it is expected that that the limit with the T

energy around the threshold gives Dirichlet decoupling,
but there may be exceptional cases

If the vertex regions squeeze faster than the “tubes”
one gets Dirichlet decoupling [Post’05]

on the other hand, if you blow up the spectrum for a
fixed point separated from thresholds, i.e.

0 )\1 A )\2

one gets a nontrivial limit with b.c. fixed by scattering
on the “fat star” [Molchanov-Vainberg'07] J
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More on the threshold case

fAs sald above, generically the squeezing limit with T
renormalization w.r.t. the spectral threshold leads to
Dirichlet decoupled graph — see [Molchanov-Vainberg'07]
or [Dell’Antonio-Tenuta’07] for a particular case of a broken
line — which Is not very interesting

-
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More on the threshold case

fAs sald above, generically the squeezing limit with T
renormalization w.r.t. the spectral threshold leads to
Dirichlet decoupled graph — see [Molchanov-Vainberg'07]
or [Dell’Antonio-Tenuta’07] for a particular case of a broken
line — which Is not very interesting

A nontrivial limit may arise in the (non-generic) case when
the system has a threshold resonance. On a general level,
the claim was made by [Grieser'07], however, details are
not available at the moment

On the other hand, [Albeverio-Cacciapuoti-Finco’07]
provide a worked out example, the star graph with n = 2.
In the limit they get the family of scale-invariant point
iInteractions on the line satisfying the b.c.

f(0+) = af(0-), [f/(04+)=a ' f(0-), a#0 B
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How to get more general results?

fOur main point is to show how one can get squeezing IimitsT
able to produce nonvoid discrete spectrum or resonances.
The procedure we propose consists of two steps:

-
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How to get more general results?

fOur main point is to show how one can get squeezing IimitsT
able to produce nonvoid discrete spectrum or resonances.
The procedure we propose consists of two steps:

# choose a network collapsing to a graph in such a way
that the limit Hamiltonian has a threshold resonance

# change the scaling properties of the vertex region
slightly, typically by adding higher order terms in the
scaling parameter

-
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How to get more general results?

fOur main point is to show how one can get squeezing IimitsT
able to produce nonvoid discrete spectrum or resonances.
The procedure we propose consists of two steps:

# choose a network collapsing to a graph in such a way
that the limit Hamiltonian has a threshold resonance

# change the scaling properties of the vertex region
slightly, typically by adding higher order terms in the
scaling parameter

Remarks: (i) The original network Hamiltonian at that may

or may not have such a resonance, depending on the

limiting procedure used. (ii) The approximation follows the

scheme which one uses interpreting pseudopotentials, or
%point Interactions in dimensions two and three J
L=

% MNODI
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How to Implement the programme?

fThe modification of scaling properties can be achieved in T
various ways, e.d., one can “wiggle” the edges angles or
scale the vertex region at a rate which differs from that of

the “edge tubes” by a higher order term, a combination of
such perturbations, etc.

Incidentally, the same effect can also be obtained by
Introducing suitable potentials into the vertex region, but a
purely geometric way Is probably the most interesting

-
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How to implement the programme?

fThe modification of scaling properties can be achieved in T
various ways, e.d., one can “wiggle” the edges angles or
scale the vertex region at a rate which differs from that of
the “edge tubes” by a higher order term, a combination of
such perturbations, etc.

Incidentally, the same effect can also be obtained by
Introducing suitable potentials into the vertex region, but a
purely geometric way Is probably the most interesting

Of course, the above proposal just suggests how to
formulate a conjecture which can be subsequently
proved Iin each particular case.

We are going to do that in the simplest nontrivial case, i.e.
In the setting of the paper [Albeverio-Cacciapuoti-Finco’07]

mentioned above J
\g ' & (=)
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Bent waveqguide

fWe will consider a result of “fattening” a smooth curve T

C = {(x,y) € R?|z = v1(s), y = 72(s), s € R} parameterized
by its arc length, 7/ + 74* = 1. As usual denote by we
Introduce the signed curvature of C,

V() = 13(5)71 (5) = Y1(s5)12 (5) 5

we suppose that the curve C' Is not self-intersecting and ~ Is
compactly supported, so that C' consists of two straight half
lines joined by a smooth curve. In particular, the bending
angle of C'is 8 = [ v(s) ds.

-
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Bent waveqguide

fWe will consider a result of “fattening” a smooth curve T
C = {(x,y) € R?|z = v1(s), y = 72(s), s € R} parameterized
by its arc length, v}* + ~/* = 1. As usual denote by we
Introduce the signed curvature of C,

V() = 13(5)71 (5) = Y1(s5)12 (5) 5

we suppose that the curve C' Is not self-intersecting and ~ Is
compactly supported, so that C' consists of two straight half
lines joined by a smooth curve. In particular, the bending

angle of C'is 6 = [, v(s)ds. The strip 2 € R? is given by

() .= {(CE,y) c R2‘ r = 71(5)_u7§(5>7y — 72<8>—|—U’71<8),S cR,ue <_d7 d>}a

we assume that d||y||. < 1. The Dirichlet Laplacian —A{)
n Q with D(Lg) := C3°(1?) Is defined as usual J
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Scaling and “wiggling” of (2

fWe assume now that the strip changes its shape and width T
as a function of ¢ € (0, 1] according to

A
(g)v(f) . de =%, witha > 1,
3 3

where \(¢) is a fixed function to be specified; it replaces
A(e) = 1 used In [Albeverio-Cacciapuoti-Finco’07].

Ve(s) :=

-
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Scaling and “wiggling” of ()

fWe assume now that the strip changes its shape and width T
as a function of ¢ € (0, 1] according to

Ve(s) = A(g)v(s

—), de := %, witha > 1,
3 3

where \(¢) is a fixed function to be specified; it replaces
A(e) = 1 used In [Albeverio-Cacciapuoti-Finco’07]. We
choose it to be real, positive and analytic near the origin,
with the expansion

Ae) =14 Me+ O(%).

It means that the shape changes slightly with respect to &,
In particular, the bending angle of the strip €. Is

g — /R%(s) ds = 0/ A(2) = 9(1 + %Alg) +O(2). B
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“Straightening” of ().

fConventionally we pass to an operator on ' =R x (—d, d): T

Proposition: Let v be piecewise C? and compactly
supported with v/,~+” are bounded. Then —A§ s unitarily

equivalent to the closure of Hy. acting on L?()) as

0 1 9, 1 0% 1
Hoe = — — S T oa + < Ve(s,u)
0s (1 + ety /N(e)vy(s/e))20s € ou® €

with V.(s, ) in the effective potential given by

Nen(s/? et /AER (s/)
41 4 e lu/Ae)y(s/e))?  2(1 + e tu/A(e)v(s/e))3
5 22 2u)\(e)y/ (s/¢e)?

(L4 uy/Me)y(s/e))

Ve(s,u) = —
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More preliminaries

fWe will employ transverse modes, I.e. the normalized T
functions ¢, (u) solving —e=2*¢! (u) = Ex- ¢, (u) with the
boundary conditions ¢, (¢*d) = ¢,(—e“d) = 0. The
corresponding eigenvalues E. ,, are

nmw \ 2 _
Eepn = (nga) with n=1,2,....

-
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More preliminaries

fWe will employ transverse modes, I.e. the normalized T
functions ¢, (u) solving —e=2*¢! (u) = Ex- ¢, (u) with the
boundary conditions ¢, (¢*d) = ¢,(—e“d) = 0. The
corresponding eigenvalues E. ,, are

nmw \ 2 _
Eepn = (nga) with n=1,2,....

The resolvent of H. admits an integral representation with
the kernel (H, — 2)~!(s,u, s’,u’) for every z € p(H.). We
define the projection on the normal-modes eigenspaces as

d

Ei)m(kQ, s,8) = / du du' ¢ (u)(Ho—k*—E. )" (5,1, 8", 0" ) (0
—d

The operators E;)m(/#) are bounded operator-valued

%analytic functions of £ for all k¥ € C\R and Im k& > 0. J
L=

3 MNODI
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Threshold resonances

fWe say that a 1D Schrédinger operator H = —j—; +V(s) T
has a zero energy resonance If there is a function
Y. € L>®(R) \ L?(R) solving Hv, = 0 in the sense of
distributions. In particular, if

/ V(s)ds#0 and eV e LYR)
R

for some a > 0, then exactly one of the following situations
can occur [Bolle-Gesztesy-Wilk’85]:

-
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Threshold resonances

fWe say that a 1D Schrédinger operator H = —j—; +V(s) T
has a zero energy resonance If there is a function
Y. € L>®(R) \ L?(R) solving Hv, = 0 in the sense of
distributions. In particular, if

/ V(s)ds#0 and eV e LYR)
R
for some a > 0, then exactly one of the following situations
can occur [Bolle-Gesztesy-Wilk’85]:
Case |: H has no zero energy resonance

Case Il: there Is such a resonance; then 1, can be chosen
real and the numbers ¢, = —3 ( ) (s)ds and

o] [ [

o C nnot not vanish S|multaneously J
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Point interactions

fLet us list the generalized point interactions we need to T
state the result. The first is the Dirichlet-decoupled operator

T with D(A") .= {f € H2(R\ 0) N H(R)| £(0) = 0O}.

-
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Point interactions

fLet us list the generalized point interactions we need to T
state the result The first is the Dirichlet-decoupled operator

A with D(E?) = {f € H2(R\ 0) 0 HY(R)| £(0) = 0}.

The other is a point-interaction Hamiltonian H acting again
as H f = —f" but on the domain

—-—=T

D) = {f e H2(R\ 0| (e1 + e2) f(07) = (1 — e2) (07,
5
C1 + C2
DH') = {f c H*(R\0)| f(07) =0, f(0") = 12 f(0+)} for co = —cy,
where we put

(c1 —c2) f(07) = (c1 +c2) f'(07) +

f(O)} for co # —cq ;

A\ = A1/RV(3)(¢T(S))2dS. o
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Point interactions, continued

fThe family H obviously depends on two real parameters. T
We can write the b.c. involved in the standard form
(U — DW(0) +i(U + 1W'(0) = 0 with ¥ := (f(0F), £(07))?,
¥ = (f(07),—f'(07))! and the 2 x 2 unitary matrix

o 1 ( —Aeqey — i 2((:% — (322 > |

2(c% + ¢5) + i\ 2(c% —c2)  4cieg —iA

-
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Point interactions, continued

fThe family H obviously depends on two real parameters. T
We can write the b.c. involved in the standard form
(U — DW(0) +i(U + 1W'(0) = 0 with ¥ := (f(0F), £(07))?,
¥ = (f(07),—f'(07))! and the 2 x 2 unitary matrix

o 1 ( —derey —ix 2(c — c3) > |

2(c2 + c2) + i\ )

2(c% —c2)  4cieg —iA

The spectral and scattering properties of these interactions
are easily found [AGHHE’05]. In particular, for \; = 0 these
boundary conditions define the “scale invariant” point
Interaction Hamiltonian mentioned above. On the other
hand, we have here also the standard ¢ interaction of

%coupling strength \ correspondingto ¢; =1 and ¢ = 0 J
@ ] (D
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The resolvents

fThey can be expressed through free resolvent kernel, T

Gir(s —s') = ;—keik‘3_8,| . ke C\RT, Imk > 0.

-
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The resolvents

fThey can be expressed through free resolvent kernel, T

Gir(s —s') = ;—keik‘s_8/| . ke C\RT, Imk > 0.
By Krein’s formula the Dirichlet-decoupled resolvent kernel
IS Ed(k2, s,8") = Gr(s — &)+ 2ikG(s)GE(s") for Im k > 0 and
k2 € C\RT, while the kernel of B (k?) := (H — k*)~! equals

. 2k + i\

R (k*:s,5') = Gp(s — ') + 2ik ()G (s
426% 4k6162
T =G(5)Gr(s") + ~1Gr(s)G5.(s") + G.(s)G

for k2 € p(H' ), Imk > 0. B
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The main result

fTheorem [Cacciapuoti-E’07]: Suppose that for € € (0, &¢] T

the curve C. has no self-intersections, ~ is piecewise C*
with a compact support, and +’,+” are bounded. Assuming
a > 5/2, we have:

. 2 1,

(1) If —o3 (s) has no zero energy resonance, then

S
we have in the operator-norm sense

u—lim R, (k) = 6umB (K2, k€ C\R, Tmk > 0.

e—0

(i) On the other hand, If there Is such a resonance, then

u—lim R, (k%) = 0,mR (k*), k> €p(H), Imk >0,

e—0
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Sketch of the proof

fThe key element is the scaling analysis of 1D Hamiltonians,T

— > MNe)—/s
H&«::—@—Fg—QV(g), seR,

as ¢ — 0, analogous to [Bolle-Gesztesy-Wilk’85] but with
modifications due to threshold resonances (notice that

¢’-type interactions do not belong to this class)

-
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Sketch of the proof

fThe key element is the scaling analysis of 1D Hamiltonians,T

2
.=+ 2v(%), ser,

ds g2 3

as ¢ — 0, analogous to [Bolle-Gesztesy-Wilk’85] but with
modifications due to threshold resonances (notice that
¢’-type interactions do not belong to this class)

We suppose that \(s) = 1+ > ", \,e" near the origin and

factorize conventionally, u(s) := sgn [V (s)][V(s)|"/? and
v(s) = [V(s)|"/2, which allows us to write

(A~ 1) = G~ "D AW ()C (k)

with 7-(k) = [1 + A(e)uG.,v] ' for appropriate values of £,
Ac(k; s, s') = Gi(s —es)u(s') and Ce(k; s, ") = u(s)Gr(es — S/)J
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Sketch of the proof, continued

-

To find the behaviour of 7..(k) as € — 0 we introduce the
projections P, of dimension one, and @ by

(U,')U, QZI—P,

recall that (v, u) = [ V(s)ds # 0 holds by assumption

-
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Sketch of the proof, continued

-

To find the behaviour of 7..(k) as € — 0 we introduce the
projections P, of dimension one, and @ by

=

Q=1—PFP;

recall that (v, u) = [ V(s)ds # 0 holds by assumption
Then the operator 7. (k) can be written as

To(k) = [1 ;!

where the regular part M. (k) € B(L2, L?) expresses, after
some computation, as an explicit power series in ¢

-
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Sketch of the proof, continued

fPresence of a zero-energy resonance is equivalent to the T

existence of a function ¢ € L?(R) which satisfies the
relation ¢y + QMyQpy = 0 where M, Is the absolute term In
the series. If such a ¢ exists, it can be chosen real, then

the parameters ¢, co and )\ are related to ¢, by

A

(U,m()gp()) 1 ~
— = —((- @, A=A L0, P

with ¢g(s) := sgn [V (
the relation u(s)y, (s

s)po and mg(s, s’) == u(s)|s — s'|v(s');
) = —o(s) holds a.e.

-
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Sketch of the proof, continued

fPresence of a zero-energy resonance is equivalent to the T
existence of a function ¢ € L?(R) which satisfies the
relation ¢y + QMyQpy = 0 where M, Is the absolute term In
the series. If such a ¢ exists, it can be chosen real, then

the parameters ¢, co and )\ are related to ¢, by
(v, mowo) 1 :
((°)/U7 900) 3

_ - N = )\ (G
o) c2 =3 1(%0, o)

Cl —

with @g(s) := sgn [V (s)]po and my(s, s’) == u(s)|s — s'|v(s');
the relation u(s)y,(s) = —po(s) holds a.e.
Using these notions and results of [BGW’'85] we get after

straightforward but tedious computations the following
asymptotic expansion for T (k):

a\__ ;‘. ; % MNODI
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Sketch of the proof, continued

fLemma: Suppose in addition that k # —i\/(2(¢? + ¢3)) hO|dST
In the case Il. Then for all ¢ small enough the operator 7. (k)
has the following norm-convergent series expansions

To(k) =) e'tn(k),

where p = 0 In the case | and p = —1 In the case II.
Moreover, we have (v, tou) =0, ((+)v,tou) = (v,to(-)u) = 0,
and (v,tju) = —2ik In case |, while in case Il it holds
4ic3
2k(c2 + c2) 4+ i\
4kcqco
2k(c2 + c2) + i\

2kc2 + i\
(v, t1u) = —2ik Q!
\vii " ‘/‘ MNODI

t_qu=1t"v=0; ((-)v,t_l(-)u) = —

(th()u) =0; ((')U7t0u> = (U,t0(°)u) —

2k(c2 + 2) 4+ i\
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Sketch of the proof, conclusion

fNow one can proceed as in [ACF'07]. The above lemma T
and the explicit formulee for the point-interaction Green

function allow us to verify that (2. — k*)~! converges in the
norm resolvent sense to Ed(kz) and R’ (k2), respectively

-
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Sketch of the proof, conclusion

fNow one can proceed as in [ACF'07]. The above lemma T
and the explicit formulee for the point-interaction Green

function allow us to verify that (2. — k*)~! converges in the

norm resolvent sense to Ed(kz) and R’ (k2), respectively

In the final step we compare the “straightened” operator
with its leading term w.r.t. the transverse variable,

oY _8_2_ 1 02 ~Ae) v(s/e)?
Ve 0s? g2 Jy? g2 4

with the appropriate domain; their resolvents satisfy

u— lim (R, (k%) — R)5, (k%) =0, k*€ C\R, Imk > 0;

e—0
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Summary and outlook

f # We have reviewed the concept of quantum graphs T
and in particular, boundary conditions coupling wave
functions at the vertices

-
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Summary and outlook

f # We have reviewed the concept of quantum graphs T

and in particular, boundary conditions coupling wave
functions at the vertices

# Approximating a guantum graph by a family of “fat
graphs” the result depends on the boundary conditions
on the latter; the Neumann case is reasonably well
understood leading generically to free b.c.

-

The QMath 10 conference; Moeciu, September 10-15, 2007 — p. 39/




Summary and outlook

f # We have reviewed the concept of quantum graphs T

and in particular, boundary conditions coupling wave
functions at the vertices

# Approximating a guantum graph by a family of “fat
graphs” the result depends on the boundary conditions
on the latter; the Neumann case is reasonably well
understood leading generically to free b.c.

# the Dirichlet case yields generically decoupled graph,;

Interesting exceptional cases are related to presence of
threshold resonances

-
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Summary and outlook

We have reviewed the concept of quantum graphs T
and in particular, boundary conditions coupling wave
functions at the vertices

Approximating a quantum graph by a family of “fat
graphs” the result depends on the boundary conditions
on the latter; the Neumann case is reasonably well
understood leading generically to free b.c.

the Dirichlet case yields generically decoupled graph;
Interesting exceptional cases are related to presence of
threshold resonances

We formulated a proposal how to get in the limit
guantum graphs with nontrivial spectral properties and
llustrated it in a nontrivial case, coupling of two edges

-
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Summary and outlook

We have reviewed the concept of quantum graphs T
and in particular, boundary conditions coupling wave
functions at the vertices

Approximating a quantum graph by a family of “fat
graphs” the result depends on the boundary conditions
on the latter; the Neumann case is reasonably well
understood leading generically to free b.c.

the Dirichlet case yields generically decoupled graph;
Interesting exceptional cases are related to presence of
threshold resonances

We formulated a proposal how to get in the limit
guantum graphs with nontrivial spectral properties and
llustrated it in a nontrivial case, coupling of two edges

% # A lot of work remains to be done in these problems J
)
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The talk was based on

[CEOQ7] C. Cacciapuoti, P.E.: Nontrivial edge coupling from a Dirichlet network squeezing:
the case of a bent waveguide, J. Phys. A: Math. Theor. A40 (2007), F511-F523

see also, e.g.

[CEO4] P. Kuchment: Quantum graphs I. Some basic structures, Waves in Random media
14 (2004), S107-S128

[MVO7] S. Molchanov, B. Vainberg: Scattering solutions in a network of thin fibers: small
diameter asymptotics, Commun. Math. Phys. 273 (2007), 533-559

[GrO7] D. Grieser: Spectral asymptotics of the Dirichlet Laplacian on fat graphs, a talk at
INI AGA workshop, April 2007, and a paper in preparation

[EPO7] P.E., O. Post: Quantum networks modelled by graphs, Proceedings of the Joint
Physics/Mathematics Workshop on “Few-Body Quantum System” (Aarhus 2007);
ar Xi v: 0706. 0481v1

[ETO7] P.E., O. Turek: Approximations of singular vertex couplings in quantum graphs,
Rev. Math. Phys., to appear; mat h- ph/ 070305

-
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see also, e.g.

[CEO4] P. Kuchment: Quantum graphs I. Some basic structures, Waves in Random media
14 (2004), S107-S128

[MVO7] S. Molchanov, B. Vainberg: Scattering solutions in a network of thin fibers: small
diameter asymptotics, Commun. Math. Phys. 273 (2007), 533-559

[GrO7] D. Grieser: Spectral asymptotics of the Dirichlet Laplacian on fat graphs, a talk at
INI AGA workshop, April 2007, and a paper in preparation

[EPO7] P.E., O. Post: Quantum networks modelled by graphs, Proceedings of the Joint
Physics/Mathematics Workshop on “Few-Body Quantum System” (Aarhus 2007);
ar Xi v: 0706. 0481v1

[ETO7] P.E., O. Turek: Approximations of singular vertex couplings in quantum graphs,
Rev. Math. Phys., to appear; mat h- ph/ 070305

and for more information http://www.ujf.cas.cz/ exner
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