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Motivation
Relations between geometry and principal eigenvalue are a
traditional question in mathematical physics. Recall, e.g.,
the Faber-Krahn inequality for the Dirichlet Laplacian −∆M

D

in a compact M ⊂ R
2: among all regions with a fixed area

the ground state is uniquely minimized by the circle,

inf σ(−∆M
D ) ≥ π j20,1 |M |−1;

similarly a ball is a minimizer for a compact M ⊂ R
d, d ≥ 3
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Relations between geometry and principal eigenvalue are a
traditional question in mathematical physics. Recall, e.g.,
the Faber-Krahn inequality for the Dirichlet Laplacian −∆M

D

in a compact M ⊂ R
2: among all regions with a fixed area

the ground state is uniquely minimized by the circle,

inf σ(−∆M
D ) ≥ π j20,1 |M |−1;

similarly a ball is a minimizer for a compact M ⊂ R
d, d ≥ 3

Another classical example is the PPW conjecture proved
by Ashbaugh and Benguria: in the 2D situation we have

λ2(M)

λ1(M)
≤

(

j1,1

j0,1

)2

Workshop Boundary value Problems and Spectral Geometry; Oberwolfach, January 3, 2012 – p. 2/51



Motivation, continued
Symmetry of M may correspond also to the maximum of
the principal eigenvalue; for instance for a strip of fixed
length and width [E.-Harrell-Loss’99] we have

�� 	
� �

����
� �

! ��
��

&%
'$

ground state of ground state of<

whenever the strip is not a circular annulus
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Motivation, continued
Symmetry of M may correspond also to the maximum of
the principal eigenvalue; for instance for a strip of fixed
length and width [E.-Harrell-Loss’99] we have
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ground state of ground state of<

whenever the strip is not a circular annulus
Another example is a circular obstacle in circular cavity
[Harrell-Kröger-Kurata’01]
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ground state of ground state of<

whenever the obstacle is off center; the minimum is
reached when the obstacle is touching the boundary
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Motivation, continued

In other cases the geometry concerns rather a potential
configuration. Recall, for instance, a recent result result of
[Baker-Loss-Stolz’08] on the spectral minimum of −∆ + V

in L2(Rd) where the potential Vω(x) =
∑

i∈Zd q(x− i− ωi)
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Motivation, continued

In other cases the geometry concerns rather a potential
configuration. Recall, for instance, a recent result result of
[Baker-Loss-Stolz’08] on the spectral minimum of −∆ + V

in L2(Rd) where the potential Vω(x) =
∑

i∈Zd q(x− i− ωi)

In this case the minimizing configuration is shown to be
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What we are going to do

The subject of this talk will be several problems of the
above type for solvable models of quantum systems, that
is, Hamiltonians with point- or contact-type interactions.

Specifically, we will consider

An isoperimetric problem for polymer loops in R
2 and R

3
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Quantum graphs with attractive δ coupling at the
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What we are going to do

The subject of this talk will be several problems of the
above type for solvable models of quantum systems, that
is, Hamiltonians with point- or contact-type interactions.

Specifically, we will consider

An isoperimetric problem for polymer loops in R
2 and R

3

Principal eigenvalue optimization for a single point
interaction in a bounded domain of R

d, d = 2, 3

One dimension: attractive point interactions on the line

Quantum graphs with attractive δ coupling at the
vertices – dependence on edge lengths

Finally, point interactions in R
2 and R

3 again

Workshop Boundary value Problems and Spectral Geometry; Oberwolfach, January 3, 2012 – p. 5/51



Polymer loops

We ask about ground-state optimization for point
interactions under a geometric constraint: inspired by
[AGHH’88, 05] we can call it a problem polymer loop
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Polymer loops

We ask about ground-state optimization for point
interactions under a geometric constraint: inspired by
[AGHH’88, 05] we can call it a problem polymer loop

The question is the following: we take a closed loop Γ
– parametrized in the standard way by its arc length –
and consider a class of singular Schrödinger operators
in L2(Rd), d = 2, 3, given formally by the expression

HN
α,Γ = −∆ + α̃

N−1
∑

j=0

δ

(

x− Γ

(

jL

N

))

We are interested in the shape of Γ which maximizes
the ground state energy provided, of course, that the
discrete spectrum of HN

α,Γ is non-empty.
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A reminder: 2D point interactions
Fixing the site yj and “coupling constant” α we define them
by b.c. which change locally the domain of −∆: we require

ψ(x) = − 1

2π
log |x− yj|L0(ψ, yj) + L1(ψ, yj) +O(|x− yj|) ,

where the generalized b.v. L0(ψ, yj) and L1(ψ, yj) satisfy

L1(ψ, yj)− αL0(ψ, yj) = 0 , α ∈ R

Workshop Boundary value Problems and Spectral Geometry; Oberwolfach, January 3, 2012 – p. 7/51



A reminder: 2D point interactions
Fixing the site yj and “coupling constant” α we define them
by b.c. which change locally the domain of −∆: we require

ψ(x) = − 1

2π
log |x− yj|L0(ψ, yj) + L1(ψ, yj) +O(|x− yj|) ,

where the generalized b.v. L0(ψ, yj) and L1(ψ, yj) satisfy

L1(ψ, yj)− αL0(ψ, yj) = 0 , α ∈ R

For YΓ := {yj := Γ
(

jL
N

)

: j = 0, . . . , N − 1} we define in this

way −∆α,YΓ
in L2(R2). It holds σdisc

(

−∆α,YΓ

)

6= ∅, i.e.

ǫ1 ≡ ǫ1(α, YΓ) := inf σ
(

−∆α,YΓ

)

< 0 ,

which is always true in two dimensions – cf. [AGHH’88, 05]
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A reminder: 3D point interactions
Similarly, for yj and “coupling” α we define them by b.c.
which change locally the domain of −∆: we require

ψ(x) =
1

4π|x− yj|
L0(ψ, yj) + L1(ψ, yj) +O(|x− yj|) ,

where the b.v. L0(ψ, yj) and L1(ψ, yj) satisfy again

L1(ψ, yj)− αL0(ψ, yj) = 0 , α ∈ R,
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A reminder: 3D point interactions
Similarly, for yj and “coupling” α we define them by b.c.
which change locally the domain of −∆: we require

ψ(x) =
1

4π|x− yj|
L0(ψ, yj) + L1(ψ, yj) +O(|x− yj|) ,

where the b.v. L0(ψ, yj) and L1(ψ, yj) satisfy again

L1(ψ, yj)− αL0(ψ, yj) = 0 , α ∈ R,

giving −∆α,YΓ
in L2(R3). However, σdisc

(

−∆α,YΓ

)

6= ∅, i.e.

ǫ1 ≡ ǫ1(α, YΓ) := inf σ
(

−∆α,YΓ

)

< 0 ,

is now a nontrivial requirement; it holds only for α below
some critical value α0 – cf. [AGHH’88, 05]
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A geometric reformulation
By Krein’s formula, the spectral condition is reduced to an
algebraic problem. Using k = iκ with κ > 0, we find the ev’s
−κ2 of our operator from

det Γk = 0 with (Γk)ij := (α− ξk)δij − (1− δij)gk
ij ,

where the off-diagonal elements are gk
ij := Gk(yi − yj), or

equivalently

gk
ij =

1

2π
K0(κ|yi − yj |)

and the regularized Green’s function at the interaction site is

ξk = − 1

2π

(

ln
κ

2
+ γE

)
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Geometric reformulation, continued
The ground state refers to the point where the lowest ev
of Γiκ vanishes. Using smoothness and monotonicity
of the κ-dependence we have to check that

min σ(Γiκ̃1
) < min σ(Γ̃iκ̃1

)

holds locally for Γ 6= P̃N , where −κ̃2
1 := ǫ1(α, P̃N )
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Geometric reformulation, continued
The ground state refers to the point where the lowest ev
of Γiκ vanishes. Using smoothness and monotonicity
of the κ-dependence we have to check that

min σ(Γiκ̃1
) < min σ(Γ̃iκ̃1

)

holds locally for Γ 6= P̃N , where −κ̃2
1 := ǫ1(α, P̃N )

There is a one-to-one relation between an ef c = (c1, . . . , cN )
of Γiκ at that point and the corresponding ef of −∆α,Γ given

by c↔∑N
j=1 cjGiκ(· − yj), up to normalization. In particular,

the lowest ev of Γ̃iκ̃1
corresponds to the eigenvector

φ̃1 = N−1/2(1, . . . , 1); hence the spectral threshold is

min σ(Γ̃iκ̃1
) = (φ̃1, Γ̃iκ̃1

φ̃1) = α− ξiκ̃1 − 2

N

∑

i<j

g̃iκ̃1

ij
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Geometric reformulation, continued

On the other hand, we have min σ(Γiκ̃1
) ≤ (φ̃1,Γiκ̃1

φ̃1), and
therefore it is sufficient to check that

∑

i<j

Giκ(yi − yj) >
∑

i<j

Giκ(ỹi − ỹj)

holds for all κ > 0 and Γ 6= P̃N .
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Geometric reformulation, continued

On the other hand, we have min σ(Γiκ̃1
) ≤ (φ̃1,Γiκ̃1

φ̃1), and
therefore it is sufficient to check that

∑

i<j

Giκ(yi − yj) >
∑

i<j

Giκ(ỹi − ỹj)

holds for all κ > 0 and Γ 6= P̃N . Call ℓij := |yi − yj| and
ℓ̃ij := |ỹi − ỹj | and define F : (R+)N(N−3)/2 → R by

F ({ℓij}) :=

[N/2]
∑

m=2

∑

|i−j|=m

[

Giκ(ℓij)−Giκ(ℓ̃ij)
]

;

Using the convexity of Giκ(·) for a fixed κ > 0 we get

F ({ℓij}) ≥
[N/2]
∑

m=2

νm



Giκ





1

νm

∑

|i−j|=m

ℓij



−Giκ(ℓ̃1,1+m)



 ,

where νn is the number of the appropriate chords
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Geometric reformulation, continued

It is easy to see that

νm :=

{

N . . . m = 1, . . . ,
[

1
2(N − 1)

]

1
2N . . . m = 1

2N for N even

since for an even N one has to prevent double counting
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Geometric reformulation, continued

It is easy to see that

νm :=

{

N . . . m = 1, . . . ,
[

1
2(N − 1)

]

1
2N . . . m = 1

2N for N even

since for an even N one has to prevent double counting

Since Giκ(·) is also monotonously decreasing in (0,∞),
we thus need only to demonstrate that

ℓ̃1,m+1 ≥
1

νn

∑

|i−j|=m

ℓij

with the sharp inequality for at least one m if PN 6= P̃N .
In this way the problem becomes again purely geometric
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Chord inequalities

Recall that for Γ : [0, L]→ R
d we have used the notation

yj := Γ

(

jL

N

)

, j = 0, 1, . . . , N − 1 ;
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Chord inequalities

Recall that for Γ : [0, L]→ R
d we have used the notation

yj := Γ

(

jL

N

)

, j = 0, 1, . . . , N − 1 ;

For fixed L > 0, N and m = 1, . . . , [12N ] we consider the
following inequalities for ℓp norms related to the chord

lengths, that is, the quantities Γ
(

·+ jL
N

)

− Γ(·)

Dp
L,N (m) :

∑N
n=1 |yn+m − yn|p ≤ N1−pLp sinp πm

N

sinp π
N

, p > 0 ,

D−p
L,N (m) :

∑N
n=1 |yn+m − yn|−p ≥ N1+p sinp π

N

Lp sinp πm
N

, p > 0 .

The rhs’s correspond to regular planar polygon P̃N
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More on the inequalities

In general, the inequalities are not valid for p > 2 as the
example of a rhomboid shows: Dp

L,4(2) is equivalent to

sinp φ+ cosp φ ≤ 21−(p/2) for 0 < φ < π which obviously holds
for p ≤ 2 only
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More on the inequalities

In general, the inequalities are not valid for p > 2 as the
example of a rhomboid shows: Dp

L,4(2) is equivalent to

sinp φ+ cosp φ ≤ 21−(p/2) for 0 < φ < π which obviously holds
for p ≤ 2 only

Proposition : Dp
L,N (m)⇒ Dp′

L,N (m) if p > p′ > 0 and

Dp
L,N (m)⇒ D−p

L,N (m) for any p > 0
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More on the inequalities

In general, the inequalities are not valid for p > 2 as the
example of a rhomboid shows: Dp

L,4(2) is equivalent to

sinp φ+ cosp φ ≤ 21−(p/2) for 0 < φ < π which obviously holds
for p ≤ 2 only

Proposition : Dp
L,N (m)⇒ Dp′

L,N (m) if p > p′ > 0 and

Dp
L,N (m)⇒ D−p

L,N (m) for any p > 0

Theorem [E’05b]: The inequality D2
L,N (m) is valid
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More on the inequalities

In general, the inequalities are not valid for p > 2 as the
example of a rhomboid shows: Dp

L,4(2) is equivalent to

sinp φ+ cosp φ ≤ 21−(p/2) for 0 < φ < π which obviously holds
for p ≤ 2 only

Proposition : Dp
L,N (m)⇒ Dp′

L,N (m) if p > p′ > 0 and

Dp
L,N (m)⇒ D−p

L,N (m) for any p > 0

Theorem [E’05b]: The inequality D2
L,N (m) is valid

Remark: The inequalities have “continuous” analogues
[E-Harrell-Loss’05] with the summation replaced by
integration; the rhs’s are in this case L1±pπ∓p sinp πu

L

referring to a circle
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Proof of D2
L,N(m)

It is clear that one has to deal with case p = 2 only. We
put L = 2π and express Γ through its Fourier series,

Γ(s) =
∑

0 6=n∈Z

cn eins

with cn ∈ C
d; since Γ(s) ∈ R

d one has to require c−n = c̄n.
We are free to choose c0 = 0 and the normalization
condition

∑

0 6=n∈Z
n2|cn|2 = 1 follows from |Γ̇(s)| = 1
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Proof of D2
L,N(m)

It is clear that one has to deal with case p = 2 only. We
put L = 2π and express Γ through its Fourier series,

Γ(s) =
∑

0 6=n∈Z

cn eins

with cn ∈ C
d; since Γ(s) ∈ R

d one has to require c−n = c̄n.
We are free to choose c0 = 0 and the normalization
condition

∑

0 6=n∈Z
n2|cn|2 = 1 follows from |Γ̇(s)| = 1

On the other hand, the left-hand side of D2
2π,N (m) equals

N
∑

n=1

∑

0 6=j,k∈Z

c∗j · ck
(

e−2πimj/N − 1
) (

e2πimk/N − 1
)

e2πin(k−j)/N

Workshop Boundary value Problems and Spectral Geometry; Oberwolfach, January 3, 2012 – p. 15/51



Proof of D2
L,N(m), continued

Next we change the order of summation and observe that
∑N

n=1 e2πin(k−j)/N = N if j = k (modN) and zero otherwise;
this allows us to write the last expression as

4N
∑

l∈Z

∑

0 6= j, k ∈ Z

j − k = lN

|j|c∗j · |k|ck
∣

∣

∣

∣

j−1 sin
πmj

N

∣

∣

∣

∣

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

.
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Proof of D2
L,N(m), continued

Next we change the order of summation and observe that
∑N

n=1 e2πin(k−j)/N = N if j = k (modN) and zero otherwise;
this allows us to write the last expression as

4N
∑

l∈Z

∑

0 6= j, k ∈ Z

j − k = lN

|j|c∗j · |k|ck
∣

∣

∣

∣

j−1 sin
πmj

N

∣

∣

∣

∣

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

.

Hence the sought inequality D2
2π,N (m) is equivalent to

(

d, (A(N,m) ⊗ I)d
)

≤
(

π sin πm
N

N sin π
N

)2
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Proof of D2
L,N(m), continued

Here the vector d ∈ ℓ2(Z)⊗ C
d has the components

dj := |j|cj and the operator A(N,m) on ℓ2(Z) is defined as

A
(N,m)
jk :=











∣

∣j−1 sin πmj
N

∣

∣

∣

∣k−1 sin πmk
N

∣

∣ if 0 6= j, k ∈ Z, j − k = lN

0 otherwise

A(N,m) is obviously bounded because its Hilbert-Schmidt
norm is finite; we have to estimate its norm
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Proof of D2
L,N(m), continued

Here the vector d ∈ ℓ2(Z)⊗ C
d has the components

dj := |j|cj and the operator A(N,m) on ℓ2(Z) is defined as

A
(N,m)
jk :=











∣

∣j−1 sin πmj
N

∣

∣

∣

∣k−1 sin πmk
N

∣

∣ if 0 6= j, k ∈ Z, j − k = lN

0 otherwise

A(N,m) is obviously bounded because its Hilbert-Schmidt
norm is finite; we have to estimate its norm

Remark: The “continuous” analogue corresponds formally
to N =∞. Then A(N,m) is a multiple of I and it is only
necessary to employ |sin jx| ≤ j sin x for any j ∈ N and
x ∈ (0, 1

2π]. Here due to infinitely many side diagonals such
a simple estimate yields an unbounded Toeplitz-type
operator, and one has use the matrix-element decay
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Proof of D2
L,N(m), continued

For a given j 6= 0 and d ∈ ℓ2(Z) we have
(

A(N,m)d
)

j
=

∣

∣

∣

∣

j−1 sin
πmj

N

∣

∣

∣

∣

∑

0 6= k ∈ Z

k = j(modN)

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

dk
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Proof of D2
L,N(m), continued

For a given j 6= 0 and d ∈ ℓ2(Z) we have
(

A(N,m)d
)

j
=

∣

∣

∣

∣

j−1 sin
πmj

N

∣

∣

∣

∣

∑

0 6= k ∈ Z

k = j(modN)

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

dk

The norm ‖A(N,m)d‖ is then easily estimated by means of
Schwarz inequality,

‖A(N,m)d‖2 =
∑

0 6=j∈Z

j−2 sin2 πmj

N

∣

∣

∣

∣

∣

∑

0 6= k ∈ Z

k = j(modN)

∣

∣

∣

∣

k−1 sin
πmk

N

∣

∣

∣

∣

dk

∣

∣

∣

∣

∣

2

≤
N−1
∑

n=0

sin4 πmn

N
S2

n

∑

n+ lN 6= 0
l ∈ Z

|dn+lN |2
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Proof of D2
L,N(m), concluded

Here we have introduced

Sn :=
∑

n+ lN 6= 0
l ∈ Z

1

(n+ lN)2
=

∞
∑

l=1

{

1

(lN − n)2
+

1

(lN −N + n)2

}

which is easily evaluated to be Sn =
(

π
N sin πn

N

)2
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Proof of D2
L,N(m), concluded

Here we have introduced

Sn :=
∑

n+ lN 6= 0
l ∈ Z

1

(n+ lN)2
=

∞
∑

l=1

{

1

(lN − n)2
+

1

(lN −N + n)2

}

which is easily evaluated to be Sn =
(

π
N sin πn

N

)2

The sought claim, the validity of D2
L,N (m), then follows from

sin
πm

N
sin

πr

N
>

∣

∣

∣
sin

π

N
sin

πmr

N

∣

∣

∣
, 2 ≤ r < m ≤

[

1

2
N

]

This can be also equivalently written as the inequalities
Um−1

(

cos π
N

)

>
∣

∣Um−1

(

cos πr
N

)∣

∣ for Chebyshev polynomials
of the second kind; they are verified directly �
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Remarks

Also the spectral result has continuous analogue:
consider the singular Schrödinger operator

Hα,Γ = −∆− αδ(x− Γ) , α > 0 ,

in L2(R2), where Γ is a loop of fixed length in the plane;
we suppose that it has no zero-angle self-intersections.
The the principal eigenvalue is maximized if Γ is a circle
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Remarks

Also the spectral result has continuous analogue:
consider the singular Schrödinger operator

Hα,Γ = −∆− αδ(x− Γ) , α > 0 ,

in L2(R2), where Γ is a loop of fixed length in the plane;
we suppose that it has no zero-angle self-intersections.
The the principal eigenvalue is maximized if Γ is a circle

The inequalities have also other applications. Consider
N equal point charges attached at equal distances to a
loop. By D−1

L,N (m) such a an electrostatic problem has

planar polygon P̃N as its unique minimizer
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Point interaction in a bounded region

Our next question concerns the operator written
formally as

−∆Ω
D + α̃δ(x− x0)

where Ω ⊂ R
d is a precompact set; we ask about

optimization of the principal eigenvalue w.r.t. the
point-interaction site x0
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Point interaction in a bounded region

Our next question concerns the operator written
formally as

−∆Ω
D + α̃δ(x− x0)

where Ω ⊂ R
d is a precompact set; we ask about

optimization of the principal eigenvalue w.r.t. the
point-interaction site x0

For the moment we consider d = 2, 3 leaving out the
one-dimensional situation which has its specifics

variation of Ω has a different character

the answer may depend on the coupling sign

More about that a little later
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Green’s function
We assume that Ω is bounded and connected with
piecewise C1 boundary, then −∆Ω

D has a purely discrete
spectrum which allows us to write the Green function

Gz
0(~x, ~x′) =

∑

n∈N0, k≤Nn

ψn,k(~x
′)ψn,k(~x)

λn + z

where Nn is the multiplicity of the n-th eigenvalue
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Green’s function
We assume that Ω is bounded and connected with
piecewise C1 boundary, then −∆Ω

D has a purely discrete
spectrum which allows us to write the Green function

Gz
0(~x, ~x′) =

∑

n∈N0, k≤Nn

ψn,k(~x
′)ψn,k(~x)

λn + z

where Nn is the multiplicity of the n-th eigenvalue
Note that it has the same diagonal singularity as the
corresponding Green’s function in the whole R

d,

Gz(~x, ~x′) =
1

2π
K0(
√
z

∣

∣~x− ~x′
∣

∣) and e−
√

z|~x−~x′|4π
∣

∣~x− ~x′
∣

∣

for d = 2, 3, respectively. This motivates us to define
h(·, ·,√z) by Gz

0(~x, ~x′) = Gz(~x, ~x′)− h(~x, ~x′,√z)
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Spectral condition

The function h is regular and solves the b.v. problem






(−∆ + z)h(~x, ~x′,
√
z) = 0

h(~x, ~x′,
√
z)|~x∈∂Ω = Gz(~x, ~x′)|~x∈∂Ω

for any ~x′ ∈ Ω
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Spectral condition

The function h is regular and solves the b.v. problem






(−∆ + z)h(~x, ~x′,
√
z) = 0

h(~x, ~x′,
√
z)|~x∈∂Ω = Gz(~x, ~x′)|~x∈∂Ω

for any ~x′ ∈ Ω

The point perturbation is introduced by the same boundary
conditions as above. Spectral properties of the perturbed
operator are obtained by Krein’s formula
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Spectral condition

The function h is regular and solves the b.v. problem






(−∆ + z)h(~x, ~x′,
√
z) = 0

h(~x, ~x′,
√
z)|~x∈∂Ω = Gz(~x, ~x′)|~x∈∂Ω

for any ~x′ ∈ Ω

The point perturbation is introduced by the same boundary
conditions as above. Spectral properties of the perturbed
operator are obtained by Krein’s formula
Using it we can find principal ev ξ from the condition

α− ln
√−ξ − 2π h(~x0, ~x0,

√−ξ) = 0 , Ω ⊂ R
2

α +
√
−ξ

4π + h(~x0, ~x0,
√−ξ) = 0 , Ω ⊂ R

3
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Remarks
The above spectral condition determines all ev’s except
of those for which ψn̄(~x0) = 0 which, however, cannot
happen in the ground state
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Remarks
The above spectral condition determines all ev’s except
of those for which ψn̄(~x0) = 0 which, however, cannot
happen in the ground state

Lemma : Let λ0 be the first ev of −∆D
Ω corresponding to a

domain Ω ⊂ R
3. For any α ∈ R, the equation

α +

√−ξ
4π

+ h(~x0, ~x0,
√

−ξ) = 0 , ξ ∈ (−∞, λ0)

admits a unique solution ξ(α) such that

lim
α→−∞

ξ(α) = −∞ , ξ(−h(~x0, ~x0, 0)) = 0 , lim
α→+∞

ξ(α) = λ0

The same is true for Ω ⊂ R
2 except for the middle condition

replaced now by ξ(f(~x0, ~x0, 0)) = 0 where

f(~x, ~x0,
√

−ξ) = 2π h(~x, ~x0,
√

−ξ) + ln
√

−ξ I0(
√

−ξ |~x− ~x0|) , ξ < λ0
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Interior reflection property

Definition : Consider a hyperplane P of dimension d− 1 in
R

d and denote by SP the mirror image of a set S ⊂ R
d w.r.t.

P provided S ∩ P = ∅. The domain Ω is said to have the
interior reflection property w.r.t. P if P ∩ Ω 6= ∅ and there is
an open connected component Ωs ⊂ Ω\P such that ΩP

s is a
proper subset of Ω\Ω̄s. We call Ωs the smaller side of Ω and
P an interior reflection hyperplane.

Workshop Boundary value Problems and Spectral Geometry; Oberwolfach, January 3, 2012 – p. 25/51



Interior reflection property

Definition : Consider a hyperplane P of dimension d− 1 in
R

d and denote by SP the mirror image of a set S ⊂ R
d w.r.t.

P provided S ∩ P = ∅. The domain Ω is said to have the
interior reflection property w.r.t. P if P ∩ Ω 6= ∅ and there is
an open connected component Ωs ⊂ Ω\P such that ΩP

s is a
proper subset of Ω\Ω̄s. We call Ωs the smaller side of Ω and
P an interior reflection hyperplane.

�
�

��

A
A

AA

B
B
B
B
B
B
B

A
A
AA

�
�
��

Ωs ΩP
s

Ω

P
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Principal eigenvalue monotonicity

Theorem [E-Mantile’08]: Let P be an interior reflection
hyperplane for Ω and ~n the normal vector to P pointing
towards Ωs. Assume that ~x0 ∈ Ω ∩ (∂Ωs ∩ P ); then the
principal eigenvalue ξ of Hα with perturbation placed
at ~x0 satisfies

~n · ∇~x0
ξ > 0
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Principal eigenvalue monotonicity

Theorem [E-Mantile’08]: Let P be an interior reflection
hyperplane for Ω and ~n the normal vector to P pointing
towards Ωs. Assume that ~x0 ∈ Ω ∩ (∂Ωs ∩ P ); then the
principal eigenvalue ξ of Hα with perturbation placed
at ~x0 satisfies

~n · ∇~x0
ξ > 0

�
�

��

A
A

AA

B
B
B
B
B
B
B

A
A
AA

�
�
��

Ωs ΩP
s

Ω

P

~n
~x0a←−
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Proof idea

The spectral condition is an implicit equation for ξ; the
derivative sign is related to gradient of the function h(·, ·, y).
The problem can be reduced to analysis of the function u
defined on Ωs by

u(~x, ~x0, y) := h(~x, ~x0, y)− h(~xP , ~x0, y), ~x ∈ Ωs ,

where ~xP denotes the mirror image of ~x ∈ Ωs through the
plane P . The function u solves the problem






(

−∆ + y2
)

u = 0 in Ωs

u|P∩Ω = 0 , u|∂Ωs∩∂Ω = e−y|~x−~x0|

4π|~x−~x0|
− h(~xP , ~x0, y)

∣

∣

∣

~x∈∂Ωs∩∂Ω

; ~x0 ∈ Ω∩P

which allows us to apply Hopf boundary point lemma (about
superharmonic functions vanishing at a boundary point)
and to translate the conclusion back to h and ξ
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Optimization of ξ(~x0)

For simplicity, consider a convex Ω. Let Π be the set of all
the hyperplanes P of interior reflection for Ω; we denote by
Ωs,P the smaller part related to P ∈ Π, provided it exists,
and set

Σ :=
⋃

P∈Π

Ωs,P
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Optimization of ξ(~x0)

For simplicity, consider a convex Ω. Let Π be the set of all
the hyperplanes P of interior reflection for Ω; we denote by
Ωs,P the smaller part related to P ∈ Π, provided it exists,
and set

Σ :=
⋃

P∈Π

Ωs,P

Corollary : Let Ω ⊂ Rd, d = 2, 3, be an open convex domain,
and Hα as defined above with the perturbation at ~x0. The
principal eigenvalue of Hα takes its minimum value when ~x0

belongs to the set Ω \ Σ.
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Optimization of ξ(~x0)

For simplicity, consider a convex Ω. Let Π be the set of all
the hyperplanes P of interior reflection for Ω; we denote by
Ωs,P the smaller part related to P ∈ Π, provided it exists,
and set

Σ :=
⋃

P∈Π

Ωs,P

Corollary : Let Ω ⊂ Rd, d = 2, 3, be an open convex domain,
and Hα as defined above with the perturbation at ~x0. The
principal eigenvalue of Hα takes its minimum value when ~x0

belongs to the open set Ω \ Σ.

Examples: disc, elliptic disc, ball, ellipsoid — the minimum
is reached with the point interaction at the centre; with less
symmetry Ω \ Σ may be of nonzero dimension dΩ ≤ d
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Remarks

A similar result can be proved also for non-convex
domains where interior reflection may give rise to
more than one smaller part

Workshop Boundary value Problems and Spectral Geometry; Oberwolfach, January 3, 2012 – p. 29/51



Remarks

A similar result can be proved also for non-convex
domains where interior reflection may give rise to
more than one smaller part

Note that the result is independent of the point
interaction coupling parameter α
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Remarks

A similar result can be proved also for non-convex
domains where interior reflection may give rise to
more than one smaller part

Note that the result is independent of the point
interaction coupling parameter α

One can compare with [Harrell-Kröger-Kurata’01
who proved that for a hard-wall obstacle the principal
eigenvalue decreases as it moves towards the
boundary. The difference is in the different boundary
conditions: the hard obstacle is characterized by
Dirichlet b.c., while Hα can be obtained as the
norm-resolvent limit of a family of sphere interactions
Hamiltonians Hα(r) with the b.c. of a mixed type as
the radius r → 0
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One dimension: attractiveδ’s on the line
Consider Hamiltonian of the form − d2

dx2 +
∑n

j=1 αjδ(x− yj).
Defined rigorously [AGHH’08] it is denoted as −∆α,Y where
α := {α1, . . . , αn} and Y := {y1, . . . , yn}.
We suppose that all yj ’s are mutually distinct and the
interactions are attractive, αj < 0, j = 1, . . . , n. Then
σcont(−∆α,Y ) = R+ and σdisc(−∆α,Y ) ⊂ R− is non-empty.
In particular, there is a ground-state eigenvalue λ0 < 0
with a strictly positive eigenfunction ψ0; we ask how
does λ0 depend on the geometry of the set Y .
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One dimension: attractiveδ’s on the line
Consider Hamiltonian of the form − d2

dx2 +
∑n

j=1 αjδ(x− yj).
Defined rigorously [AGHH’08] it is denoted as −∆α,Y where
α := {α1, . . . , αn} and Y := {y1, . . . , yn}.
We suppose that all yj ’s are mutually distinct and the
interactions are attractive, αj < 0, j = 1, . . . , n. Then
σcont(−∆α,Y ) = R+ and σdisc(−∆α,Y ) ⊂ R− is non-empty.
In particular, there is a ground-state eigenvalue λ0 < 0
with a strictly positive eigenfunction ψ0; we ask how
does λ0 depend on the geometry of the set Y .

Proposition : Let ♯Y1 = ♯Y2 and yj,1 < yj,2 < . . . < yj,n.
Suppose there is an i such that y2,j = y1,j for j = 1, . . . , i

and y2,j = y1,j + η for j = i+ 1, . . . , n. Assume further
that ψ′

0(yi+) < 0 and ψ′
0(yi+1−) > 0. Then we have

minσ(−∆α,Y1
) ≤ minσ(−∆α,Y2

) for any η > 0.
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Proof by bracketing
Since ψ0 > 0 and ψ′′ = −λ0ψ between the points yj , the
function is convex; by assumption there is x0 ∈ (yi, yi+1)

such that ψ′
0(x0) = 0. Consider the operator −∆̃α,Y1

which
acts as −∆α,Y1

with the additional Neumann condition at x0

We have −∆̃α,Y1
= −∆̃l

α,Y1
⊕−∆̃r

α,Y1
and the two operators

have obviously the same ground state. Consider now the
operator −∆̂α,Y2

:= −∆̃l
α,Y1
⊕−∆N ⊕−∆̃r

α,Y1
where the

added operator is the Neumann Laplacian on L2(0, η); it is
clear that the latter does not contribute to the negative
spectrum, hence min σ(−∆̂α,Y2

) = minσ(−∆̃α,Y1
)

Furthermore, −∆̂α,Y2
is obviously unitarily equivalent to

−∆̃α,Y2
with added Neumann conditions at x = x0, x0 + η,

hence the result follows by Neumann bracketing �
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A stronger result
It is easy to see that the derivative-sign assumption is
satisfied if −αi,−αi+1 are large enough or, which is the
same by scaling, the distance yi+1 − yi is large enough.
However, we can make a stronger claim

Workshop Boundary value Problems and Spectral Geometry; Oberwolfach, January 3, 2012 – p. 32/51



A stronger result
It is easy to see that the derivative-sign assumption is
satisfied if −αi,−αi+1 are large enough or, which is the
same by scaling, the distance yi+1 − yi is large enough.
However, we can make a stronger claim

Theorem [E-Jex’12]: Suppose again ♯Y1 = ♯Y2 and αj < 0

for all j. Let further y1,i − y1,j ≤ y2,i − y2,j hold for all i, j and
y1,i − y1,j < y2,i − y2,j for at least one pair of i, j, then we
have min σ(−∆α,Y1

) < min σ(−∆α,Y2
)
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A stronger result
It is easy to see that the derivative-sign assumption is
satisfied if −αi,−αi+1 are large enough or, which is the
same by scaling, the distance yi+1 − yi is large enough.
However, we can make a stronger claim

Theorem [E-Jex’12]: Suppose again ♯Y1 = ♯Y2 and αj < 0

for all j. Let further y1,i − y1,j ≤ y2,i − y2,j hold for all i, j and
y1,i − y1,j < y2,i − y2,j for at least one pair of i, j, then we
have min σ(−∆α,Y1

) < min σ(−∆α,Y2
)

Proof: We employ Krein’s formula which makes it possible
to reduce the spectral problem at energy k2 to solution of
the secular equation, det Γα,Y (κ) = 0, where

[Γα,Y (k)]jj′ = −[α−1
j δjj′ +Gk(yj − yj′)]

N
j,j′=1

and Gk(yj − yj′) = i
2keik|yj−yj′| is the free resolvent kernel
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Proof by Krein’s formula
Writing k = iκ with κ > 0, we have to investigate the lowest
eigenvalue of Γα,Y (κ) which is, of course, given by

µ0(α, Y ;κ) = min
|c|=1

(

c,Γα,Y (κ)c
)

;

the ground state energy −κ2 corresponds to κ such that
µ0(α, Y ;κ) = 0. We set ℓij := |yi − yj |, then the quantity to
be minimized is explicitly

(

c,Γα,Y (κ)c
)

=

n
∑

i=1

|ci|2
(

− 1

αi
− 1

2κ

)

− 2

n
∑

i=1

i−1
∑

j=1

Re c̄icj
e−κℓij

2κ
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Proof by Krein’s formula
Writing k = iκ with κ > 0, we have to investigate the lowest
eigenvalue of Γα,Y (κ) which is, of course, given by

µ0(α, Y ;κ) = min
|c|=1

(

c,Γα,Y (κ)c
)

;

the ground state energy −κ2 corresponds to κ such that
µ0(α, Y ;κ) = 0. We set ℓij := |yi − yj |, then the quantity to
be minimized is explicitly

(

c,Γα,Y (κ)c
)

=

n
∑

i=1

|ci|2
(

− 1

αi
− 1

2κ

)

− 2

n
∑

i=1

i−1
∑

j=1

Re c̄icj
e−κℓij

2κ

The eigenfunction corresponding to the ground state, i.e. c
for which the minimum is reached can be chosen strictly
positive; this follows from the fact that the semigroup
{e−tΓα,Y (κ) : t ≥ 0} is positivity improving
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Proof by Krein’s formula, continued

This means, in particular, that we have

µ0(α, Y ;κ) = min
|c|=1,c>0

(

c,Γα,Y (κ)c
)
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Proof by Krein’s formula, continued

This means, in particular, that we have

µ0(α, Y ;κ) = min
|c|=1,c>0

(

c,Γα,Y (κ)c
)

Take now two configurations, (α, Y ) and (α, Ỹ ) such that
ℓij ≤ ℓ̃ij and the inequality is strict for at least one pair (i, j).

For a fixed c > 0 we have
(

c,Γα,Y (κ)c
)

<
(

c,Γα,Ỹ (κ)c
)

, and

consequently, taking a minimum overs all such c’s we get

µ0(α, Y ;κ) < µ0(α, Ỹ ;κ)

for all κ with the obvious implication for the ground state of
−∆α,Y ; the sharp inequality holds due to the fact that there
is a c for which the minimum is attained. �
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Quantum graphs
More complicated “1D” problems one can find in quantum
graphs. Consider such a graph Γ consisting of vertices,
V = {Xj : j ∈ I}, and edges of two categories, finite,
L = {Ljn : (Xj ,Xn) with (j, n) ∈ IL ⊂ I × I}, and infinite,
L∞ = {Lk∞ : k ∈ IC}. We regard Γ as a configuration space
of a quantum system with the Hilbert space

H =
⊕

j∈IL

L2([0, lj ])⊕
⊕

k∈IC

L2([0,∞))

with columns ψ = (fj : Lj ∈ L, gj : Lj∞ ∈ L∞)T as elements
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Quantum graphs
More complicated “1D” problems one can find in quantum
graphs. Consider such a graph Γ consisting of vertices,
V = {Xj : j ∈ I}, and edges of two categories, finite,
L = {Ljn : (Xj ,Xn) with (j, n) ∈ IL ⊂ I × I}, and infinite,
L∞ = {Lk∞ : k ∈ IC}. We regard Γ as a configuration space
of a quantum system with the Hilbert space

H =
⊕

j∈IL

L2([0, lj ])⊕
⊕

k∈IC

L2([0,∞))

with columns ψ = (fj : Lj ∈ L, gj : Lj∞ ∈ L∞)T as elements

The Hamiltonian acts as −d2/dx2 on each edge; to make it
self-adjoint s-a, general boundary conditions

(Uj − I)Ψj + i(Uj + I)Ψ′
j = 0

with unitary matrices Uj have to be imposed at the vertices
Xj, where Ψj and Ψ′

j are vectors of boundary values
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Assumptions
We will be interested in the following particular situation:

the internal part of the graphs is finite and so is the
number of external edges, #IL <∞ and #IC <∞
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Assumptions
We will be interested in the following particular situation:

the internal part of the graphs is finite and so is the
number of external edges, #IL <∞ and #IC <∞
vertex couplings are of δ-type which means they
correspond to Uj = 2

n+iαj
J − I, or explicitly

ψj,i(0) = ψj,k(0) =: ψj(0) , j, k = 1, . . . , nj ,

nj
∑

i=1

ψ′
j,i(0) = αjψj(0) ,

where nj = degXj and edges are parametrized so that
x = 0 corresponds to the vertex. In particular, we have
Robin condition, ψ′

j(lj) +αjψj(lj) = 0, at “free endpoints”
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Assumptions
We will be interested in the following particular situation:

the internal part of the graphs is finite and so is the
number of external edges, #IL <∞ and #IC <∞
vertex couplings are of δ-type which means they
correspond to Uj = 2

n+iαj
J − I, or explicitly

ψj,i(0) = ψj,k(0) =: ψj(0) , j, k = 1, . . . , nj ,

nj
∑

i=1

ψ′
j,i(0) = αjψj(0) ,

where nj = degXj and edges are parametrized so that
x = 0 corresponds to the vertex. In particular, we have
Robin condition, ψ′

j(lj) +αjψj(lj) = 0, at “free endpoints”

all the couplings involved are non-repulsive, αj ≤ 0 for
all j ∈ I, and at least one of them is attractive, αj0 < 0

for some j0 ∈ I

Workshop Boundary value Problems and Spectral Geometry; Oberwolfach, January 3, 2012 – p. 36/51



Existence of negative spectrum
The quadratic form of H can be then written as

q[Ψ] =
∑

j∈IL

∫ lj

0
|ψ′

j(x)|2 dx+
∑

k∈IC

∫

+

|ψ′
k(x)|2 dx+

∑

i∈I

αi|ψi(0)|2

being defined on L2 functions which are W 1,2 on the graph
edges and continuous at the vertices
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Existence of negative spectrum
The quadratic form of H can be then written as

q[Ψ] =
∑

j∈IL

∫ lj

0
|ψ′

j(x)|2 dx+
∑

k∈IC

∫

+

|ψ′
k(x)|2 dx+

∑

i∈I

αi|ψi(0)|2

being defined on L2 functions which are W 1,2 on the graph
edges and continuous at the vertices

Proposition : inf σ(H) < 0 holds under our assumptions
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Existence of negative spectrum
The quadratic form of H can be then written as

q[Ψ] =
∑

j∈IL

∫ lj

0
|ψ′

j(x)|2 dx+
∑

k∈IC

∫

+

|ψ′
k(x)|2 dx+

∑

i∈I

αi|ψi(0)|2

being defined on L2 functions which are W 1,2 on the graph
edges and continuous at the vertices

Proposition : inf σ(H) < 0 holds under our assumptions

Proof: If IC = ∅ we take Ψ = c on Γ which belongs to Dom[q]

because |Γ| <∞; we get q[Ψ] ≤ αj0|c|2. If IC 6= ∅, we take
Ψ = c on the internal part of the graph and ψk(x) = c e−κx

on each external semiinfinite edge, obtaining

q[Ψ] ≤
(

αj0 +
1

2
κ♯IC

)

|c|2

which can be made < 0 by choosing κ small enough. �
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Existence of ground state

Theorem [E-Jex’12]: In addition, let Γ be connected, then
λ0 = inf σ(H) is a simple isolated eigenvalue. The
corresponding eigenfunction Ψ(0) can be chosen strictly
positive on Γ being convex on each edge
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Existence of ground state

Theorem [E-Jex’12]: In addition, let Γ be connected, then
λ0 = inf σ(H) is a simple isolated eigenvalue. The
corresponding eigenfunction Ψ(0) can be chosen strictly
positive on Γ being convex on each edge

Proof: σ(H) is discrete if IC = ∅, otherwise one checks
easily using Krein’s formula that σess(H) = R+ and
σdisc(H) ⊂ R− is finite; by the previous result it is non-empty.

The ground state positivity follows, for instance, from a
quantum-graph modification of Courant theorem [Band et

al.’11]. The ef being positive and its component ψ(0)
j at the

jth edge twice differentiable away of the vertices, we have

(ψ
(0)
j )′′ = −λ0ψ

(0)
j > 0, which means the convexity. �
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Ground state edge indices
In fact, we know more. Writing λ0 = −κ2 we see that the ef
component on each edge is a linear combination of eκx and
e−κx. Since we are free to choose the edge orientation,
each component has one of the following three forms,

ψ
(0)
j (x) =











cj coshκ(x+ dj) . . . dj ∈ R

cj e
±κ(x+dj) . . . dj ∈ R

cj sinhκ(x+ dj) . . . x+ dj > 0

where cj is a positive constant.
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Ground state edge indices
In fact, we know more. Writing λ0 = −κ2 we see that the ef
component on each edge is a linear combination of eκx and
e−κx. Since we are free to choose the edge orientation,
each component has one of the following three forms,

ψ
(0)
j (x) =











cj coshκ(x+ dj) . . . dj ∈ R

cj e
±κ(x+dj) . . . dj ∈ R

cj sinhκ(x+ dj) . . . x+ dj > 0

where cj is a positive constant. For further purposes we
introduce edge index

σj :=















+1 . . . ψ
(0)
j (x) = cj coshκ(x+ dj)

0 . . . ψ
(0)
j (x) = cj e

±κ(x+dj)

−1 . . . ψ
(0)
j (x) = cj sinh κ(x+ dj)
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Ground state monotonicity

Given Γ and Γ̃ with the same topology differing possibly by
inner edge lengths, we say they belong to the same
ground-state class in the indices are the same for them and
all interpolating graphs.

For connected graphs we have then the following result:

Theorem [E-Jex’12]: Under the stated assumptions,
consider graphs Γ and Γ̃ of the same ground-state class.
Let H and H̃ be the corresponding Hamiltonians with the
same couplings in the respective vertices, and λ0 and λ̃0

the corresponding ground-state eigenvalues. Suppose that
σj l̃j ≤ σjlj holds all j ∈ IL such that |σj | = 1 and l̃j = lj if
σj = 0, then λ̃0 ≤ λ0; the inequality is sharp if σj l̃j < σjlj
holds for at least one j ∈ IL.
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Proof by a scaling argument

It is sufficient to consider length change of a single edge
and prove the claim locally . We pick a segment in the
interior of the a fixed edge and scale it by factor ξ being less
than one in case of shrinking and larger than one otherwise
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Proof by a scaling argument

It is sufficient to consider length change of a single edge
and prove the claim locally . We pick a segment in the
interior of the a fixed edge and scale it by factor ξ being less
than one in case of shrinking and larger than one otherwise

We have to find Ψ ∈ L2(Γ̃) such that the Rayleigh quotient
on Γ̃ satisfies

q̃[Ψ]

‖Ψ‖2 < λ0

for ξ < 1 if σj = 1 and ξ > 1 if σj = −1. We construct such a
trial function Ψ̃(0) putting Ψ̃(0)(x) = Ψ(0)(x) for x ∈ ΓJ , while
the jth component on J̃ is obtained by scaling

ψ̃
(0)
j (ã+ ξy) = ψ

(0)
j (a+ y) for 0 ≤ y ≤ |J |
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Proof by a scaling argument, continued

The Rayleigh quotient can be then easily rewritten as

q̃[Ψ̃(0)]

‖Ψ̃(0)‖2
=
a+ bξ−1

c+ dξ
=: f(ξ) ,

where

a := qΓJ
[Ψ(0)] , b :=

∫

J
|(ψ(0)

j )′(x)|2 dx

and c, d are the parts of the squared norm of Ψ(0)

corresponding to Γ \ J and J , respectively
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Proof by a scaling argument, continued

The Rayleigh quotient can be then easily rewritten as

q̃[Ψ̃(0)]

‖Ψ̃(0)‖2
=
a+ bξ−1

c+ dξ
=: f(ξ) ,

where

a := qΓJ
[Ψ(0)] , b :=

∫

J
|(ψ(0)

j )′(x)|2 dx

and c, d are the parts of the squared norm of Ψ(0)

corresponding to Γ \ J and J , respectively

Check that σjf
′(1) = −σj(bc+ 2bd+ ad)(c+ d)−2 > 0.

Choosing ‖Ψ(0)‖ = 1, we have c+ d = 1 and a+ b = λ0,
hence the property to be checked is −σj(λ0d+ b) > 0, or
more explicitly

−σj

(

λ0‖ψ(0)
j ‖2J + ‖(ψ(0)

j )′‖2J
)

> 0
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Proof by a scaling argument, continued

Using λ0 = −κ2 we find for σj = 1

∫

J
|(ψ(0)

j )′(x)|2 dx = c2jκ
2

∫

J
(sinhκx)2 dx < c2jκ

2

∫

J
(coshκx)2 dx

= −λ0

∫

J
|ψ(0)

j (x)|2 dx

and the opposite inequality for σj = −1 where the roles of
hyperbolic sine and cosine are interchanged, which is what
we have set out to prove. �

Workshop Boundary value Problems and Spectral Geometry; Oberwolfach, January 3, 2012 – p. 43/51



Chain graphs

Corollary : Under our assumptions, suppose that graph Γ
has no branchings, i.e. the degree of no vertex exceeds
two. Then the index of any edge is non-negative being
equal to one for any internal edge, hence a length increase
of any internal edge moves the ground-state energy up.
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Chain graphs

Corollary : Under our assumptions, suppose that graph Γ
has no branchings, i.e. the degree of no vertex exceeds
two. Then the index of any edge is non-negative being
equal to one for any internal edge, hence a length increase
of any internal edge moves the ground-state energy up.

Proof: By assumption Γ is a chain, either a loop or an
open chain. Consider the latter possibility; the former can
be dealt with using Krein’s formula similarly as above

Obviously it is impossible to have all the indices negative;
the question is whether one can have a sinh-type solution
at some position within the chain
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Proof, continued

Then wavefunction components with different indices have
to match somewhere. Parametrize the chain by a single
variable x choosing x = 0 for the vertex in question. Let the
ground-state eigenfunction be ψj(x) = coshκ(d1 − x) for
x < 0 and ψj+1(x) = c sinhκ(d2 ∓ x) for x > 0. They are
coupled by an attractive δ interaction, hence c is determined
by the continuity requirement and ψ′

j+1(0+)− ψ′
j(0−) must

be negative; recall that ψj(0−) = ψj+1(0+) > 0
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Proof, continued

Then wavefunction components with different indices have
to match somewhere. Parametrize the chain by a single
variable x choosing x = 0 for the vertex in question. Let the
ground-state eigenfunction be ψj(x) = coshκ(d1 − x) for
x < 0 and ψj+1(x) = c sinhκ(d2 ∓ x) for x > 0. They are
coupled by an attractive δ interaction, hence c is determined
by the continuity requirement and ψ′

j+1(0+)− ψ′
j(0−) must

be negative; recall that ψj(0−) = ψj+1(0+) > 0

However, this expression equals ∓κ cosh κ(d1 ± d2)/ sinhκd2,
hence the needed match is impossible for a sinh solution
decreasing towards the vertex. The same is true for the
opposite order of the two solutions, and in a similar way one
can check that a negative-index edge cannot neighbour
with a semiinfinite one. �
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Branched graphs

This is no longer true for graphs with branchings as one can
illustrate on a simple example
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Branched graphs

This is no longer true for graphs with branchings as one can
illustrate on a simple example
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α1 α1 = −1.5

α2 = −2

L2

L1 L1 = 1

We see different regimes with transition at αcrit ≈ −1.09088
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Point interactions in Rd, d = 2, 3

Consider the Hamiltonians −∆α,Y1
mentioned in the

introduction with a finite set Y . The problem is dimension
dependent: the ground state exists for all α ∈ R

N if d = 2
while for d = 3 we have to assume that αj ’s are below a
critical value. In analogy with the 1D case we have
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Point interactions in Rd, d = 2, 3

Consider the Hamiltonians −∆α,Y1
mentioned in the

introduction with a finite set Y . The problem is dimension
dependent: the ground state exists for all α ∈ R

N if d = 2
while for d = 3 we have to assume that αj ’s are below a
critical value. In analogy with the 1D case we have

Theorem : Let ♯Y1 = ♯Y2 and y1,i − y1,j ≤ y2,i − y2,j for all i, j
with y1,i − y1,j < y2,i − y2,j holding for at least one pair of i, j,
then we have min σ(−∆α,Y1

) < min σ(−∆α,Y2
)
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Point interactions in Rd, d = 2, 3

Consider the Hamiltonians −∆α,Y1
mentioned in the

introduction with a finite set Y . The problem is dimension
dependent: the ground state exists for all α ∈ R

N if d = 2
while for d = 3 we have to assume that αj ’s are below a
critical value. In analogy with the 1D case we have

Theorem : Let ♯Y1 = ♯Y2 and y1,i − y1,j ≤ y2,i − y2,j for all i, j
with y1,i − y1,j < y2,i − y2,j holding for at least one pair of i, j,
then we have min σ(−∆α,Y1

) < min σ(−∆α,Y2
)

Proof: We employ Krein’s formula approach again. The
above proof was based on the fact that Green’s function is
decreasing with the distance between the points. This is
true in d = 2, 3 too, hence the argument can be modified to
the present case �
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Remarks

An alternative way to prove the result is through
convexity and bracketing as in the 1D case. This
time there no derivative restrictions, since ψ0 has
poles at the point-interaction sites
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Remarks

An alternative way to prove the result is through
convexity and bracketing as in the 1D case. This
time there no derivative restrictions, since ψ0 has
poles at the point-interaction sites

A caveat: these results tell you nothing about the
situation when some distances grow and some
decrease. Consequently, we cannot deduce from
here the answer to the isoperimetric problem
discussed above — as an example consider a
rhomboid of varying angle
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Open questions

The above results inspire a host of questions, e.g.

What can one say about point-interaction isoperimetric
problems with bias or various types?
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Open questions

The above results inspire a host of questions, e.g.

What can one say about point-interaction isoperimetric
problems with bias or various types?

optimization problem for more than one point interaction
in a region Ω ⊂ R

d
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Open questions

The above results inspire a host of questions, e.g.

What can one say about point-interaction isoperimetric
problems with bias or various types?

optimization problem for more than one point interaction
in a region Ω ⊂ R

d

Can there be different ground-state classes for a fixed
topology of the graph?
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The above results inspire a host of questions, e.g.

What can one say about point-interaction isoperimetric
problems with bias or various types?

optimization problem for more than one point interaction
in a region Ω ⊂ R

d

Can there be different ground-state classes for a fixed
topology of the graph?

Is there a general criterion to determine type of the
quantum graph ground state?
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Open questions

The above results inspire a host of questions, e.g.

What can one say about point-interaction isoperimetric
problems with bias or various types?

optimization problem for more than one point interaction
in a region Ω ⊂ R

d

Can there be different ground-state classes for a fixed
topology of the graph?

Is there a general criterion to determine type of the
quantum graph ground state?

Regular-potential analogues of the results described
here, etc., etc.
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R.I., 2003; pp. 141–149.
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[EM08] P.E., A. Mantile: On the optimization of the principal eigenvalue for single-centre
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Thank you for your attention!
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