Geometric properties of point-interaction Hamiltonians ground state

Pavel Exner

in collaboration with Andrea Mantile and Michal Jex

exner@ujf.cas.cz

Doppler Institute
for Mathematical Physics and Applied Mathematics
Prague

Motivation

Relations between *geometry* and *principal eigenvalue* are a traditional question in mathematical physics. Recall, e.g., the *Faber-Krahn inequality* for the Dirichlet Laplacian $-\Delta_D^M$ in a compact $M \subset \mathbb{R}^2$: among all regions with a fixed area the ground state is *uniquely minimized by the circle*,

$$\inf \sigma(-\Delta_D^M) \ge \pi j_{0,1}^2 |M|^{-1};$$

similarly a ball is a minimizer for a compact $M \subset \mathbb{R}^d, \ d \geq 3$

Motivation

Relations between *geometry* and *principal eigenvalue* are a traditional question in mathematical physics. Recall, e.g., the *Faber-Krahn inequality* for the Dirichlet Laplacian $-\Delta_D^M$ in a compact $M \subset \mathbb{R}^2$: among all regions with a fixed area the ground state is *uniquely minimized by the circle*,

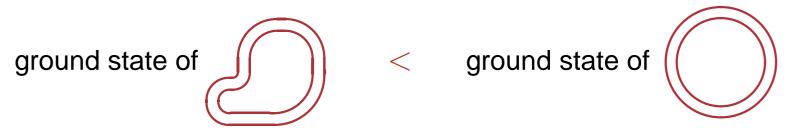
$$\inf \sigma(-\Delta_D^M) \ge \pi \, j_{0,1}^2 \, |M|^{-1};$$

similarly a ball is a minimizer for a compact $M \subset \mathbb{R}^d, \ d \geq 3$

Another classical example is the *PPW conjecture* proved by *Ashbaugh* and *Benguria*: in the 2D situation we have

$$\frac{\lambda_2(M)}{\lambda_1(M)} \le \left(\frac{j_{1,1}}{j_{0,1}}\right)^2$$

Symmetry of M may correspond also to the *maximum* of the principal eigenvalue; for instance for a strip of fixed length and width [E.-Harrell-Loss'99] we have



whenever the strip is not a circular annulus

Symmetry of M may correspond also to the *maximum* of the principal eigenvalue; for instance for a strip of fixed length and width [E.-Harrell-Loss'99] we have



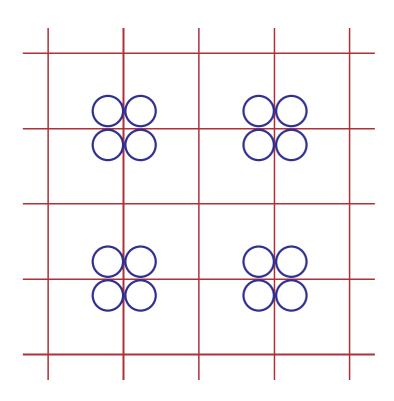
whenever the strip is not a circular annulus

Another example is a *circular obstacle in circular cavity*[Harrell-Kröger-Kurata'01]

whenever the obstacle is off center; the minimum is reached when the obstacle is touching the boundary

In other cases the geometry concerns rather a *potential* configuration. Recall, for instance, a recent result result of [Baker-Loss-Stolz'08] on the spectral minimum of $-\Delta + V$ in $L^2(\mathbb{R}^d)$ where the potential $V_{\omega}(x) = \sum_{i \in \mathbb{Z}^d} q(x-i-\omega_i)$

In other cases the geometry concerns rather a *potential* configuration. Recall, for instance, a recent result result of [Baker-Loss-Stolz'08] on the spectral minimum of $-\Delta + V$ in $L^2(\mathbb{R}^d)$ where the potential $V_{\omega}(x) = \sum_{i \in \mathbb{Z}^d} q(x-i-\omega_i)$ In this case the minimizing configuration is shown to be



The subject of this talk will be several problems of the above type for *solvable models* of quantum systems, that is, Hamiltonians with *point-* or *contact-type interactions*.

Specifically, we will consider

• An isoperimetric problem for *polymer loops* in \mathbb{R}^2 and \mathbb{R}^3

The subject of this talk will be several problems of the above type for *solvable models* of quantum systems, that is, Hamiltonians with *point-* or *contact-type interactions*.

- An isoperimetric problem for *polymer loops* in \mathbb{R}^2 and \mathbb{R}^3
- Principal eigenvalue optimization for a single point interaction in a bounded domain of \mathbb{R}^d , d=2,3

The subject of this talk will be several problems of the above type for *solvable models* of quantum systems, that is, Hamiltonians with *point-* or *contact-type interactions*.

- An isoperimetric problem for *polymer loops* in \mathbb{R}^2 and \mathbb{R}^3
- Principal eigenvalue optimization for a single point interaction in a bounded domain of \mathbb{R}^d , d=2,3
- One dimension: attractive point interactions on the line

The subject of this talk will be several problems of the above type for *solvable models* of quantum systems, that is, Hamiltonians with *point-* or *contact-type interactions*.

- An isoperimetric problem for *polymer loops* in \mathbb{R}^2 and \mathbb{R}^3
- Principal eigenvalue optimization for a single point interaction in a bounded domain of \mathbb{R}^d , d=2,3
- One dimension: attractive point interactions on the line
- Quantum graphs with attractive δ coupling at the vertices dependence on edge lengths

The subject of this talk will be several problems of the above type for *solvable models* of quantum systems, that is, Hamiltonians with *point-* or *contact-type interactions*.

- An isoperimetric problem for *polymer loops* in \mathbb{R}^2 and \mathbb{R}^3
- Principal eigenvalue optimization for a single point interaction in a bounded domain of \mathbb{R}^d , d=2,3
- One dimension: attractive point interactions on the line
- Quantum graphs with attractive δ coupling at the vertices dependence on edge lengths
- Finally, point interactions in \mathbb{R}^2 and \mathbb{R}^3 again

Polymer loops

We ask about ground-state optimization for point interactions under a geometric constraint: inspired by [AGHH'88, 05] we can call it a problem *polymer loop*

Polymer loops

We ask about ground-state optimization for point interactions under a geometric constraint: inspired by [AGHH'88, 05] we can call it a problem *polymer loop*

The question is the following: we take a closed loop Γ – parametrized in the standard way by its *arc length* – and consider a class of singular Schrödinger operators in $L^2(\mathbb{R}^d)$, d=2,3, given formally by the expression

$$H_{\alpha,\Gamma}^{N} = -\Delta + \tilde{\alpha} \sum_{j=0}^{N-1} \delta \left(x - \Gamma \left(\frac{jL}{N} \right) \right)$$

We are interested in the shape of Γ which *maximizes* the ground state energy provided, of course, that the discrete spectrum of $H_{\alpha,\Gamma}^N$ is non-empty.

A reminder: 2D point interactions

Fixing the site y_j and "coupling constant" α we define them by b.c. which change *locally* the domain of $-\Delta$: we require

$$\psi(x) = -\frac{1}{2\pi} \log|x - y_j| L_0(\psi, y_j) + L_1(\psi, y_j) + \mathcal{O}(|x - y_j|),$$

where the generalized b.v. $L_0(\psi, y_j)$ and $L_1(\psi, y_j)$ satisfy

$$L_1(\psi, y_j) - \alpha L_0(\psi, y_j) = 0, \quad \alpha \in \mathbb{R}$$

A reminder: 2D point interactions

Fixing the site y_j and "coupling constant" α we define them by b.c. which change *locally* the domain of $-\Delta$: we require

$$\psi(x) = -\frac{1}{2\pi} \log|x - y_j| L_0(\psi, y_j) + L_1(\psi, y_j) + \mathcal{O}(|x - y_j|),$$

where the generalized b.v. $L_0(\psi, y_j)$ and $L_1(\psi, y_j)$ satisfy

$$L_1(\psi, y_j) - \alpha L_0(\psi, y_j) = 0, \quad \alpha \in \mathbb{R}$$

For $Y_{\Gamma} := \{y_j := \Gamma\left(\frac{jL}{N}\right) : j = 0, \dots, N-1\}$ we define in this way $-\Delta_{\alpha, Y_{\Gamma}}$ in $L^2(\mathbb{R}^2)$. It holds $\sigma_{\mathrm{disc}}\left(-\Delta_{\alpha, Y_{\Gamma}}\right) \neq \emptyset$, i.e.

$$\epsilon_1 \equiv \epsilon_1(\alpha, Y_{\Gamma}) := \inf \sigma \left(-\Delta_{\alpha, Y_{\Gamma}} \right) < 0,$$

which is always true in two dimensions – cf. [AGHH'88, 05]

A reminder: 3D point interactions

Similarly, for y_j and "coupling" α we define them by b.c. which change locally the domain of $-\Delta$: we require

$$\psi(x) = \frac{1}{4\pi|x - y_j|} L_0(\psi, y_j) + L_1(\psi, y_j) + \mathcal{O}(|x - y_j|),$$

where the b.v. $L_0(\psi, y_j)$ and $L_1(\psi, y_j)$ satisfy again

$$L_1(\psi, y_i) - \alpha L_0(\psi, y_i) = 0, \quad \alpha \in \mathbb{R},$$

A reminder: 3D point interactions

Similarly, for y_j and "coupling" α we define them by b.c. which change locally the domain of $-\Delta$: we require

$$\psi(x) = \frac{1}{4\pi|x - y_j|} L_0(\psi, y_j) + L_1(\psi, y_j) + \mathcal{O}(|x - y_j|),$$

where the b.v. $L_0(\psi, y_j)$ and $L_1(\psi, y_j)$ satisfy again

$$L_1(\psi, y_i) - \alpha L_0(\psi, y_i) = 0, \quad \alpha \in \mathbb{R},$$

giving $-\Delta_{\alpha,Y_{\Gamma}}$ in $L^2(\mathbb{R}^3)$. However, $\sigma_{\mathrm{disc}}\left(-\Delta_{\alpha,Y_{\Gamma}}\right) \neq \emptyset$, i.e.

$$\epsilon_1 \equiv \epsilon_1(\alpha, Y_{\Gamma}) := \inf \sigma \left(-\Delta_{\alpha, Y_{\Gamma}} \right) < 0,$$

is now a nontrivial requirement; it holds only for α below some critical value α_0 – cf. [AGHH'88, 05]

A geometric reformulation

By Krein's formula, the spectral condition is reduced to an algebraic problem. Using $k=i\kappa$ with $\kappa>0$, we find the ev's $-\kappa^2$ of our operator from

$$\det \Gamma_k = 0 \quad \text{with} \quad (\Gamma_k)_{ij} := (\alpha - \xi^k) \delta_{ij} - (1 - \delta_{ij}) g_{ij}^k,$$

where the off-diagonal elements are $g_{ij}^k := G_k(y_i - y_j)$, or equivalently

$$g_{ij}^k = \frac{1}{2\pi} K_0(\kappa |y_i - y_j|)$$

and the regularized Green's function at the interaction site is

$$\xi^k = -\frac{1}{2\pi} \left(\ln \frac{\kappa}{2} + \gamma_{\rm E} \right)$$

The ground state refers to the point where the *lowest* ev of $\Gamma_{i\kappa}$ vanishes. Using smoothness and monotonicity of the κ -dependence we have to check that

$$\min \sigma(\Gamma_{i\tilde{\kappa}_1}) < \min \sigma(\tilde{\Gamma}_{i\tilde{\kappa}_1})$$

holds locally for $\Gamma \neq \tilde{\mathcal{P}}_N$, where $-\tilde{\kappa}_1^2 := \epsilon_1(\alpha, \tilde{\mathcal{P}}_N)$

The ground state refers to the point where the *lowest* ev of $\Gamma_{i\kappa}$ vanishes. Using smoothness and monotonicity of the κ -dependence we have to check that

$$\min \sigma(\Gamma_{i\tilde{\kappa}_1}) < \min \sigma(\tilde{\Gamma}_{i\tilde{\kappa}_1})$$

holds locally for $\Gamma \neq \tilde{\mathcal{P}}_N$, where $-\tilde{\kappa}_1^2 := \epsilon_1(\alpha, \tilde{\mathcal{P}}_N)$

There is a *one-to-one relation* between an ef $c=(c_1,\ldots,c_N)$ of $\Gamma_{i\kappa}$ at that point and the corresponding ef of $-\Delta_{\alpha,\Gamma}$ given by $c \leftrightarrow \sum_{j=1}^N c_j G_{i\kappa}(\cdot - y_j)$, up to normalization. In particular, the lowest ev of $\tilde{\Gamma}_{i\tilde{\kappa}_1}$ corresponds to the eigenvector $\tilde{\phi}_1 = N^{-1/2}(1,\ldots,1)$; hence the spectral threshold is

$$\min \sigma(\tilde{\Gamma}_{i\tilde{\kappa}_1}) = (\tilde{\phi}_1, \tilde{\Gamma}_{i\tilde{\kappa}_1} \tilde{\phi}_1) = \alpha - \xi^{i\tilde{\kappa}_1} - \frac{2}{N} \sum_{i < j} \tilde{g}_{ij}^{i\tilde{\kappa}_1}$$

On the other hand, we have $\min \sigma(\Gamma_{i\tilde{\kappa}_1}) \leq (\tilde{\phi}_1, \Gamma_{i\tilde{\kappa}_1}\tilde{\phi}_1)$, and therefore it is sufficient to check that

$$\sum_{i < j} G_{i\kappa}(y_i - y_j) > \sum_{i < j} G_{i\kappa}(\tilde{y}_i - \tilde{y}_j)$$
 holds for all $\kappa > 0$ and $\Gamma \neq \tilde{\mathcal{P}}_N$.

On the other hand, we have $\min \sigma(\Gamma_{i\tilde{\kappa}_1}) \leq (\tilde{\phi}_1, \Gamma_{i\tilde{\kappa}_1}\tilde{\phi}_1)$, and therefore it is sufficient to check that

$$\sum_{i < j} G_{i\kappa}(y_i - y_j) > \sum_{i < j} G_{i\kappa}(\tilde{y}_i - \tilde{y}_j)$$

holds for all $\kappa > 0$ and $\Gamma \neq \tilde{\mathcal{P}}_N$. Call $\ell_{ij} := |y_i - y_j|$ and $\tilde{\ell}_{ij} := |\tilde{y}_i - \tilde{y}_j|$ and define $F: (\mathbb{R}_+)^{N(N-3)/2} \to \mathbb{R}$ by

$$F(\{\ell_{ij}\}) := \sum_{m=2}^{[N/2]} \sum_{|i-j|=m} \left[G_{i\kappa}(\ell_{ij}) - G_{i\kappa}(\tilde{\ell}_{ij}) \right] ;$$

Using the *convexity* of $G_{i\kappa}(\cdot)$ for a fixed $\kappa > 0$ we get

$$F(\{\ell_{ij}\}) \ge \sum_{m=2}^{[N/2]} \nu_m \left[G_{i\kappa} \left(\frac{1}{\nu_m} \sum_{|i-j|=m} \ell_{ij} \right) - G_{i\kappa}(\tilde{\ell}_{1,1+m}) \right],$$

where ν_n is the number of the appropriate chords

It is easy to see that

$$\nu_m := \begin{cases} N & \dots & m = 1, \dots, \left[\frac{1}{2}(N-1)\right] \\ \frac{1}{2}N & \dots & m = \frac{1}{2}N & \text{for } N \text{ even} \end{cases}$$

since for an even N one has to prevent double counting

It is easy to see that

$$\nu_m := \begin{cases} N & \dots & m = 1, \dots, \left[\frac{1}{2}(N-1)\right] \\ \frac{1}{2}N & \dots & m = \frac{1}{2}N & \text{for } N \text{ even} \end{cases}$$

since for an even N one has to prevent double counting

Since $G_{i\kappa}(\cdot)$ is also monotonously decreasing in $(0, \infty)$, we thus need only to demonstrate that

$$\tilde{\ell}_{1,m+1} \ge \frac{1}{\nu_n} \sum_{|i-j|=m} \ell_{ij}$$

with the sharp inequality for at least one m if $\mathcal{P}_N \neq \mathcal{P}_N$. In this way the problem becomes again purely geometric

Chord inequalities

Recall that for $\Gamma: [0, L] \to \mathbb{R}^d$ we have used the notation

$$y_j := \Gamma\left(\frac{jL}{N}\right), \quad j = 0, 1, \dots, N-1;$$

Chord inequalities

Recall that for $\Gamma: [0, L] \to \mathbb{R}^d$ we have used the notation

$$y_j := \Gamma\left(\frac{jL}{N}\right), \quad j = 0, 1, \dots, N-1;$$

For fixed L>0, N and $m=1,\ldots, [\frac{1}{2}N]$ we consider the following inequalities for ℓ^p norms related to the chord lengths, that is, the quantities $\Gamma\left(\cdot+\frac{jL}{N}\right)-\Gamma(\cdot)$

$$D_{L,N}^p(m): \sum_{n=1}^N |y_{n+m} - y_n|^p \le \frac{N^{1-p}L^p \sin^p \frac{\pi m}{N}}{\sin^p \frac{\pi}{N}}, \quad p > 0,$$

$$D_{L,N}^{-p}(m): \sum_{n=1}^{N} |y_{n+m} - y_n|^{-p} \ge \frac{N^{1+p} \sin^p \frac{\pi}{N}}{L^p \sin^p \frac{\pi m}{N}}, \quad p > 0.$$

The *rhs*'s correspond to regular planar polygon $\tilde{\mathcal{P}}_N$

In general, the inequalities *are not valid for* p>2 as the example of a rhomboid shows: $D_{L,4}^p(2)$ is equivalent to $\sin^p\phi+\cos^p\phi\leq 2^{1-(p/2)}$ for $0<\phi<\pi$ which obviously holds for p<2 only

In general, the inequalities *are not valid for* p>2 as the example of a rhomboid shows: $D_{L,4}^p(2)$ is equivalent to $\sin^p\phi + \cos^p\phi \leq 2^{1-(p/2)}$ for $0<\phi<\pi$ which obviously holds for p<2 only

Proposition: $D_{L,N}^p(m)\Rightarrow D_{L,N}^{p'}(m)$ if p>p'>0 and $D_{L,N}^p(m)\Rightarrow D_{L,N}^{-p}(m)$ for any p>0

In general, the inequalities *are not valid for* p>2 as the example of a rhomboid shows: $D_{L,4}^p(2)$ is equivalent to $\sin^p\phi + \cos^p\phi \leq 2^{1-(p/2)}$ for $0<\phi<\pi$ which obviously holds for $p\leq 2$ only

Proposition: $D_{L,N}^p(m)\Rightarrow D_{L,N}^{p'}(m)$ if p>p'>0 and $D_{L,N}^p(m)\Rightarrow D_{L,N}^{-p}(m)$ for any p>0

Theorem [E'05b]: The inequality $D_{L,N}^2(m)$ is valid

In general, the inequalities *are not valid for* p>2 as the example of a rhomboid shows: $D_{L,4}^p(2)$ is equivalent to $\sin^p\phi + \cos^p\phi \leq 2^{1-(p/2)}$ for $0<\phi<\pi$ which obviously holds for $p\leq 2$ only

Proposition: $D_{L,N}^p(m)\Rightarrow D_{L,N}^{p'}(m)$ if p>p'>0 and $D_{L,N}^p(m)\Rightarrow D_{L,N}^{-p}(m)$ for any p>0

Theorem [E'05b]: The inequality $D_{L,N}^2(m)$ is valid

Remark: The inequalities have "continuous" analogues [E-Harrell-Loss'05] with the summation replaced by integration; the *rhs*'s are in this case $L^{1\pm p}\pi^{\mp p}\sin^p\frac{\pi u}{L}$ referring to a circle

Proof of $D_{L,N}^2(m)$

It is clear that one has to deal with case p=2 only. We put $L=2\pi$ and express Γ through its Fourier series,

$$\Gamma(s) = \sum_{0 \neq n \in \mathbb{Z}} c_n e^{ins}$$

with $c_n \in \mathbb{C}^d$; since $\Gamma(s) \in \mathbb{R}^d$ one has to require $c_{-n} = \bar{c}_n$. We are free to choose $c_0 = 0$ and the normalization condition $\sum_{0 \neq n \in \mathbb{Z}} n^2 |c_n|^2 = 1$ follows from $|\dot{\Gamma}(s)| = 1$

Proof of $D_{L,N}^2(m)$

It is clear that one has to deal with case p=2 only. We put $L=2\pi$ and express Γ through its Fourier series,

$$\Gamma(s) = \sum_{0 \neq n \in \mathbb{Z}} c_n e^{ins}$$

with $c_n \in \mathbb{C}^d$; since $\Gamma(s) \in \mathbb{R}^d$ one has to require $c_{-n} = \bar{c}_n$. We are free to choose $c_0 = 0$ and the normalization condition $\sum_{0 \neq n \in \mathbb{Z}} n^2 |c_n|^2 = 1$ follows from $|\dot{\Gamma}(s)| = 1$

On the other hand, the left-hand side of $D^2_{2\pi,N}(m)$ equals

$$\sum_{n=1}^{N} \sum_{0 \neq i, k \in \mathbb{Z}} c_j^* \cdot c_k \left(e^{-2\pi i m j/N} - 1 \right) \left(e^{2\pi i m k/N} - 1 \right) e^{2\pi i n (k-j)/N}$$

Proof of $D_{L,N}^2(m)$, continued

Next we change the order of summation and observe that $\sum_{n=1}^{N} e^{2\pi i n(k-j)/N} = N$ if $j = k \pmod{N}$ and zero otherwise; this allows us to write the last expression as

$$4N\sum_{l\in\mathbb{Z}} \sum_{\substack{0\neq j,k\in\mathbb{Z}\\j-k=lN}} |j|c_j^*\cdot |k|c_k \left|j^{-1}\sin\frac{\pi mj}{N}\right| \left|k^{-1}\sin\frac{\pi mk}{N}\right|.$$

Proof of $D_{L,N}^2(m)$, continued

Next we change the order of summation and observe that $\sum_{n=1}^{N} \mathrm{e}^{2\pi i n(k-j)/N} = N$ if $j = k \pmod{N}$ and zero otherwise; this allows us to write the last expression as

$$4N\sum_{l\in\mathbb{Z}} \sum_{\substack{0\neq j,k\in\mathbb{Z}\\j-k=lN}} |j|c_j^*\cdot |k|c_k \left|j^{-1}\sin\frac{\pi mj}{N}\right| \left|k^{-1}\sin\frac{\pi mk}{N}\right|.$$

Hence the sought inequality $D^2_{2\pi,N}(m)$ is equivalent to

$$\left(d, (A^{(N,m)} \otimes I)d\right) \le \left(\frac{\pi \sin \frac{\pi m}{N}}{N \sin \frac{\pi}{N}}\right)^2$$

Proof of $D_{L,N}^2(m)$, continued

Here the vector $d \in \ell^2(\mathbb{Z}) \otimes \mathbb{C}^d$ has the components $d_j := |j| c_j$ and the operator $A^{(N,m)}$ on $\ell^2(\mathbb{Z})$ is defined as

$$A_{jk}^{(N,m)} := \begin{cases} |j^{-1} \sin \frac{\pi m j}{N}| & \text{if } 0 \neq j, k \in \mathbb{Z}, \ j - k = lN \\ 0 & \text{otherwise} \end{cases}$$

 $A^{(N,m)}$ is obviously bounded because its Hilbert-Schmidt norm is finite; we have to estimate its norm

Proof of $D_{L.N}^2(m)$, continued

Here the vector $d \in \ell^2(\mathbb{Z}) \otimes \mathbb{C}^d$ has the components $d_j := |j| c_j$ and the operator $A^{(N,m)}$ on $\ell^2(\mathbb{Z})$ is defined as

$$A_{jk}^{(N,m)} := \begin{cases} |j^{-1} \sin \frac{\pi m j}{N}| & \text{if } 0 \neq j, k \in \mathbb{Z}, \ j - k = lN \\ 0 & \text{otherwise} \end{cases}$$

 $A^{(N,m)}$ is obviously bounded because its Hilbert-Schmidt norm is finite; we have to estimate its norm

Remark: The "continuous" analogue corresponds formally to $N=\infty$. Then $A^{(N,m)}$ is a multiple of I and it is only necessary to employ $|\sin jx| \leq j \sin x$ for any $j \in \mathbb{N}$ and $x \in (0, \frac{1}{2}\pi]$. Here due to infinitely many side diagonals such a simple estimate yields an unbounded Toeplitz-type operator, and one has use the matrix-element decay

Proof of $D_{L,N}^2(m)$, continued

For a given $j \neq 0$ and $d \in \ell^2(\mathbb{Z})$ we have

$$\left(A^{(N,m)}d\right)_{j} = \left|j^{-1}\sin\frac{\pi mj}{N}\right| \qquad \sum_{\substack{0 \neq k \in \mathbb{Z} \\ k = j \pmod{N}}} \left|k^{-1}\sin\frac{\pi mk}{N}\right| d_{k}$$

Proof of $D_{L.N}^2(m)$, continued

For a given $j \neq 0$ and $d \in \ell^2(\mathbb{Z})$ we have

$$\left(A^{(N,m)}d\right)_{j} = \left|j^{-1}\sin\frac{\pi mj}{N}\right| \qquad \sum \qquad \left|k^{-1}\sin\frac{\pi mk}{N}\right| d_{k}$$

$$0 \neq k \in \mathbb{Z}$$

$$k = j \pmod{N}$$

The norm $||A^{(N,m)}d||$ is then easily estimated by means of Schwarz inequality,

$$||A^{(N,m)}d||^{2} = \sum_{0 \neq j \in \mathbb{Z}} j^{-2} \sin^{2} \frac{\pi m j}{N} \left| \sum_{\substack{0 \neq k \in \mathbb{Z} \\ k = j \pmod{N}}} |k^{-1} \sin \frac{\pi m k}{N}| d_{k} \right|^{2}$$

$$\leq \sum_{n=0}^{N-1} \sin^{4} \frac{\pi m n}{N} S_{n}^{2} \sum_{\substack{1 \leq n \leq N \\ l \in \mathbb{Z}}} |d_{n+lN}|^{2}$$

Proof of $D_{L,N}^2(m)$, concluded

Here we have introduced

$$S_n := \sum_{\substack{n+lN \neq 0 \\ l \in \mathbb{Z}}} \frac{1}{(n+lN)^2} = \sum_{l=1}^{\infty} \left\{ \frac{1}{(lN-n)^2} + \frac{1}{(lN-N+n)^2} \right\}$$

which is easily evaluated to be $S_n = \left(\frac{\pi}{N \sin \frac{\pi n}{N}}\right)^2$

Proof of $D_{L,N}^2(m)$, concluded

Here we have introduced

$$S_n := \sum_{\substack{n+lN \neq 0 \\ l \in \mathbb{Z}}} \frac{1}{(n+lN)^2} = \sum_{l=1}^{\infty} \left\{ \frac{1}{(lN-n)^2} + \frac{1}{(lN-N+n)^2} \right\}$$

which is easily evaluated to be $S_n = \left(\frac{\pi}{N \sin \frac{\pi n}{N}}\right)^2$

The sought claim, the validity of ${\cal D}^2_{L,N}(m)$, then follows from

$$\sin\frac{\pi m}{N}\sin\frac{\pi r}{N} > \left|\sin\frac{\pi}{N}\sin\frac{\pi mr}{N}\right|, \quad 2 \le r < m \le \left\lfloor \frac{1}{2}N \right\rfloor$$

This can be also equivalently written as the inequalities $U_{m-1}\left(\cos\frac{\pi}{N}\right)>\left|U_{m-1}\left(\cos\frac{\pi r}{N}\right)\right|$ for Chebyshev polynomials of the second kind; they are verified directly \square

Also the spectral result has continuous analogue: consider the singular Schrödinger operator

$$H_{\alpha,\Gamma} = -\Delta - \alpha\delta(x - \Gamma), \quad \alpha > 0,$$

in $L^2(\mathbb{R}^2)$, where Γ is a loop of fixed length in the plane; we suppose that it has no zero-angle self-intersections. The the principal eigenvalue is maximized if Γ is a circle

Also the spectral result has continuous analogue: consider the singular Schrödinger operator

$$H_{\alpha,\Gamma} = -\Delta - \alpha\delta(x - \Gamma), \quad \alpha > 0,$$

in $L^2(\mathbb{R}^2)$, where Γ is a loop of fixed length in the plane; we suppose that it has no *zero-angle* self-intersections. The the *principal eigenvalue is maximized if* Γ *is a circle*

• The inequalities have also other applications. Consider N equal point charges attached at equal distances to a loop. By $D_{L,N}^{-1}(m)$ such a an electrostatic problem has planar polygon $\tilde{\mathcal{P}}_N$ as its *unique minimizer*

Point interaction in a bounded region

Our next question concerns the operator written formally as

$$-\Delta_D^{\Omega} + \tilde{\alpha}\delta(x - x_0)$$

where $\Omega \subset \mathbb{R}^d$ is a precompact set; we ask about optimization of the principal eigenvalue w.r.t. the point-interaction site x_0

Point interaction in a bounded region

Our next question concerns the operator written formally as

$$-\Delta_D^{\Omega} + \tilde{\alpha}\delta(x - x_0)$$

where $\Omega \subset \mathbb{R}^d$ is a precompact set; we ask about optimization of the principal eigenvalue w.r.t. the point-interaction site x_0

For the moment we consider d=2,3 leaving out the one-dimensional situation which has its specifics

- ullet variation of Ω has a different character
- the answer may depend on the coupling sign

More about that a little later

Green's function

We assume that Ω is bounded and connected with piecewise C^1 boundary, then $-\Delta_D^\Omega$ has a purely discrete spectrum which allows us to write the Green function

$$\mathcal{G}_0^z(\vec{x}, \vec{x}') = \sum_{n \in \mathbb{N}_0, k \le N_n} \frac{\psi_{n,k}(\vec{x}') \, \psi_{n,k}(\vec{x})}{\lambda_n + z}$$

where N_n is the multiplicity of the n-th eigenvalue

Green's function

We assume that Ω is bounded and connected with piecewise C^1 boundary, then $-\Delta_D^{\Omega}$ has a purely discrete spectrum which allows us to write the Green function

$$\mathcal{G}_0^z(\vec{x}, \vec{x}') = \sum_{n \in \mathbb{N}_0, k < N_n} \frac{\psi_{n,k}(\vec{x}') \, \psi_{n,k}(\vec{x})}{\lambda_n + z}$$

where N_n is the multiplicity of the n-th eigenvalue Note that it has the same diagonal singularity as the corresponding Green's function in the whole \mathbb{R}^d ,

$$\mathcal{G}^{z}(\vec{x}, \vec{x}') = \frac{1}{2\pi} K_{0}(\sqrt{z} |\vec{x} - \vec{x}'|) \text{ and } e^{-\sqrt{z}|\vec{x} - \vec{x}'|} 4\pi |\vec{x} - \vec{x}'|$$

for d=2,3, respectively. This motivates us to define

$$h(\cdot,\cdot,\sqrt{z})$$
 by $\mathcal{G}_0^z(\vec{x},\vec{x}') = \mathcal{G}^z(\vec{x},\vec{x}') - h(\vec{x},\vec{x}',\sqrt{z})$

Spectral condition

The function h is regular and solves the b.v. problem

$$\begin{cases} (-\Delta + z) h(\vec{x}, \vec{x}', \sqrt{z}) = 0 \\ h(\vec{x}, \vec{x}', \sqrt{z})|_{\vec{x} \in \partial \Omega} = \mathcal{G}^z(\vec{x}, \vec{x}')|_{\vec{x} \in \partial \Omega} \end{cases}$$
 for any $\vec{x}' \in \Omega$

Spectral condition

The function h is regular and solves the b.v. problem

$$\begin{cases} (-\Delta + z) h(\vec{x}, \vec{x}', \sqrt{z}) = 0 \\ h(\vec{x}, \vec{x}', \sqrt{z})|_{\vec{x} \in \partial \Omega} = \mathcal{G}^z(\vec{x}, \vec{x}')|_{\vec{x} \in \partial \Omega} \end{cases}$$
 for any $\vec{x}' \in \Omega$

The point perturbation is introduced by the same boundary conditions as above. Spectral properties of the perturbed operator are obtained by *Krein's formula*

Spectral condition

The function h is regular and solves the b.v. problem

$$\begin{cases} (-\Delta + z) h(\vec{x}, \vec{x}', \sqrt{z}) = 0 \\ h(\vec{x}, \vec{x}', \sqrt{z})|_{\vec{x} \in \partial \Omega} = \mathcal{G}^z(\vec{x}, \vec{x}')|_{\vec{x} \in \partial \Omega} \end{cases}$$
 for any $\vec{x}' \in \Omega$

The point perturbation is introduced by the same boundary conditions as above. Spectral properties of the perturbed operator are obtained by *Krein's formula*

Using it we can find principal ev ξ from the condition

$$\alpha - \ln \sqrt{-\xi} - 2\pi h(\vec{x}_0, \vec{x}_0, \sqrt{-\xi}) = 0, \qquad \Omega \subset \mathbb{R}^2$$
$$\alpha + \frac{\sqrt{-\xi}}{4\pi} + h(\vec{x}_0, \vec{x}_0, \sqrt{-\xi}) = 0, \qquad \Omega \subset \mathbb{R}^3$$

The above spectral condition determines all ev's except of those for which $\psi_{\bar{n}}(\vec{x}_0)=0$ which, however, cannot happen in the ground state

The above spectral condition determines all ev's except of those for which $\psi_{\bar{n}}(\vec{x}_0) = 0$ which, however, cannot happen in the ground state

Lemma: Let λ_0 be the first ev of $-\Delta_{\Omega}^D$ corresponding to a domain $\Omega \subset \mathbb{R}^3$. For any $\alpha \in \mathbb{R}$, the equation

$$\alpha + \frac{\sqrt{-\xi}}{4\pi} + h(\vec{x}_0, \vec{x}_0, \sqrt{-\xi}) = 0, \quad \xi \in (-\infty, \lambda_0)$$

admits a unique solution $\xi(\alpha)$ such that

$$\lim_{\alpha \to -\infty} \xi(\alpha) = -\infty , \quad \xi(-h(\vec{x}_0, \vec{x}_0, 0)) = 0 , \quad \lim_{\alpha \to +\infty} \xi(\alpha) = \lambda_0$$

The same is true for $\Omega \subset \mathbb{R}^2$ except for the middle condition replaced now by $\xi(f(\vec{x}_0, \vec{x}_0, 0)) = 0$ where

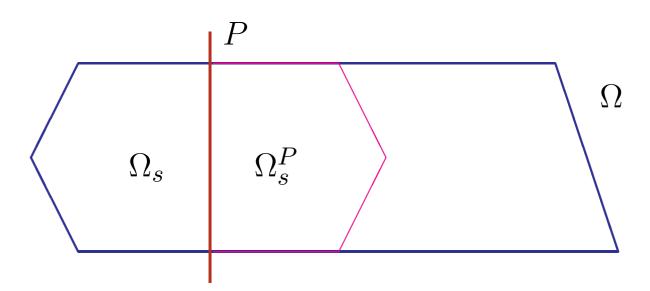
$$f(\vec{x}, \vec{x}_0, \sqrt{-\xi}) = 2\pi h(\vec{x}, \vec{x}_0, \sqrt{-\xi}) + \ln \sqrt{-\xi} I_0(\sqrt{-\xi} |\vec{x} - \vec{x}_0|), \quad \xi < \lambda_0$$

Interior reflection property

Definition: Consider a hyperplane P of dimension d-1 in \mathbb{R}^d and denote by S^P the mirror image of a set $S \subset \mathbb{R}^d$ w.r.t. P provided $S \cap P = \emptyset$. The domain Ω is said to have the *interior reflection* property w.r.t. P if $P \cap \Omega \neq \emptyset$ and there is an open connected component $\Omega_s \subset \Omega \backslash P$ such that Ω_s^P is a proper subset of $\Omega \backslash \bar{\Omega}_s$. We call Ω_s the *smaller side* of Ω and P an *interior reflection* hyperplane.

Interior reflection property

Definition: Consider a hyperplane P of dimension d-1 in \mathbb{R}^d and denote by S^P the mirror image of a set $S \subset \mathbb{R}^d$ w.r.t. P provided $S \cap P = \emptyset$. The domain Ω is said to have the *interior reflection* property w.r.t. P if $P \cap \Omega \neq \emptyset$ and there is an open connected component $\Omega_s \subset \Omega \backslash P$ such that Ω_s^P is a proper subset of $\Omega \backslash \bar{\Omega}_s$. We call Ω_s the *smaller side* of Ω and P an *interior reflection* hyperplane.



Principal eigenvalue monotonicity

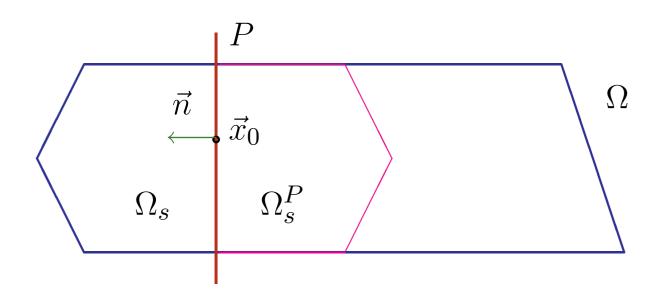
Theorem [E-Mantile'08]: Let P be an interior reflection hyperplane for Ω and \vec{n} the normal vector to P pointing towards Ω_s . Assume that $\vec{x}_0 \in \Omega \cap (\partial \Omega_s \cap P)$; then the principal eigenvalue ξ of H_α with perturbation placed at \vec{x}_0 satisfies

$$\vec{n} \cdot \nabla_{\vec{x}_0} \xi > 0$$

Principal eigenvalue monotonicity

Theorem [E-Mantile'08]: Let P be an interior reflection hyperplane for Ω and \vec{n} the normal vector to P pointing towards Ω_s . Assume that $\vec{x}_0 \in \Omega \cap (\partial \Omega_s \cap P)$; then the principal eigenvalue ξ of H_α with perturbation placed at \vec{x}_0 satisfies

$$\vec{n} \cdot \nabla_{\vec{x}_0} \xi > 0$$



Proof idea

The spectral condition is an implicit equation for ξ ; the derivative sign is related to gradient of the function $h(\cdot,\cdot,y)$. The problem can be reduced to analysis of the function u defined on Ω_s by

$$u(\vec{x}, \vec{x}_0, y) := h(\vec{x}, \vec{x}_0, y) - h(\vec{x}^P, \vec{x}_0, y), \quad \vec{x} \in \Omega_s,$$

where \vec{x}^P denotes the mirror image of $\vec{x} \in \Omega_s$ through the plane P. The function u solves the problem

$$\begin{cases} (-\Delta + y^2) u = 0 & \text{in } \Omega_s \\ u|_{P\cap\Omega} = 0, \quad u|_{\partial\Omega_s\cap\partial\Omega} = \frac{e^{-y|\vec{x}-\vec{x}_0|}}{4\pi|\vec{x}-\vec{x}_0|} - h(\vec{x}^P, \vec{x}_0, y)|_{\vec{x}\in\partial\Omega_s\cap\partial\Omega} ; \ \vec{x}_0 \in \Omega\cap P \end{cases}$$

which allows us to apply Hopf boundary point lemma (about superharmonic functions vanishing at a boundary point) and to translate the conclusion back to h and ξ

Optimization of $\xi(\vec{x}_0)$

For simplicity, consider a convex Ω . Let Π be the set of all the hyperplanes P of interior reflection for Ω ; we denote by $\Omega_{s,P}$ the smaller part related to $P \in \Pi$, provided it exists, and set

$$\Sigma := \bigcup_{P \in \Pi} \Omega_{s,P}$$

Optimization of $\xi(\vec{x}_0)$

For simplicity, consider a convex Ω . Let Π be the set of all the hyperplanes P of interior reflection for Ω ; we denote by $\Omega_{s,P}$ the smaller part related to $P \in \Pi$, provided it exists, and set

$$\Sigma := \bigcup_{P \in \Pi} \Omega_{s,P}$$

Corollary: Let $\Omega \subset \mathbb{R}^d$, d=2,3, be an open convex domain, and H_{α} as defined above with the perturbation at \vec{x}_0 . The principal eigenvalue of H_{α} takes its minimum value when \vec{x}_0 belongs to the set $\Omega \setminus \Sigma$.

Optimization of $\xi(\vec{x}_0)$

For simplicity, consider a convex Ω . Let Π be the set of all the hyperplanes P of interior reflection for Ω ; we denote by $\Omega_{s,P}$ the smaller part related to $P \in \Pi$, provided it exists, and set

$$\Sigma := \bigcup_{P \in \Pi} \Omega_{s,P}$$

Corollary: Let $\Omega \subset \mathbb{R}^d$, d=2,3, be an open convex domain, and H_{α} as defined above with the perturbation at \vec{x}_0 . The principal eigenvalue of H_{α} takes its minimum value when \vec{x}_0 belongs to the open set $\Omega \setminus \Sigma$.

Examples: disc, elliptic disc, ball, ellipsoid — the minimum is reached with the point interaction at the centre; with less symmetry $\Omega \setminus \Sigma$ may be of nonzero dimension $d_{\Omega} \leq d$

A similar result can be proved also for non-convex domains where interior reflection may give rise to more than one smaller part

- A similar result can be proved also for non-convex domains where interior reflection may give rise to more than one smaller part
- Note that the result is *independent* of the point interaction coupling parameter α

- A similar result can be proved also for non-convex domains where interior reflection may give rise to more than one smaller part
- Note that the result is *independent* of the point interaction coupling parameter α
- One can compare with [Harrell-Kröger-Kurata'01 who proved that for a hard-wall obstacle the principal eigenvalue *decreases* as it moves towards the boundary. The difference is in the different boundary conditions: the hard obstacle is characterized by Dirichlet b.c., while H_{α} can be obtained as the norm-resolvent limit of a family of sphere interactions Hamiltonians $H_{\alpha}(r)$ with the b.c. of a *mixed type* as the radius $r \to 0$

One dimension: attractive δ 's on the line

Consider Hamiltonian of the form $-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \sum_{j=1}^n \alpha_j \delta(x-y_j)$. Defined rigorously [AGHH'08] it is denoted as $-\Delta_{\alpha,Y}$ where $\alpha := \{\alpha_1, \dots, \alpha_n\}$ and $Y := \{y_1, \dots, y_n\}$.

We suppose that all y_j 's are mutually distinct and the interactions are attractive, $\alpha_j < 0$, $j = 1, \ldots, n$. Then $\sigma_{\mathrm{cont}}(-\Delta_{\alpha,Y}) = \mathbb{R}_+$ and $\sigma_{\mathrm{disc}}(-\Delta_{\alpha,Y}) \subset \mathbb{R}_-$ is non-empty. In particular, there is a ground-state eigenvalue $\lambda_0 < 0$ with a strictly positive eigenfunction ψ_0 ; we ask how does λ_0 depend on the geometry of the set Y.

One dimension: attractive δ 's on the line

Consider Hamiltonian of the form $-\frac{\mathrm{d}^2}{\mathrm{d}x^2} + \sum_{j=1}^n \alpha_j \delta(x-y_j)$. Defined rigorously [AGHH'08] it is denoted as $-\Delta_{\alpha,Y}$ where $\alpha := \{\alpha_1, \dots, \alpha_n\}$ and $Y := \{y_1, \dots, y_n\}$.

We suppose that all y_j 's are mutually distinct and the interactions are attractive, $\alpha_j < 0$, $j = 1, \ldots, n$. Then $\sigma_{\mathrm{cont}}(-\Delta_{\alpha,Y}) = \mathbb{R}_+$ and $\sigma_{\mathrm{disc}}(-\Delta_{\alpha,Y}) \subset \mathbb{R}_-$ is non-empty. In particular, there is a ground-state eigenvalue $\lambda_0 < 0$ with a strictly positive eigenfunction ψ_0 ; we ask how does λ_0 depend on the geometry of the set Y.

Proposition: Let $\sharp Y_1=\sharp Y_2$ and $y_{j,1}< y_{j,2}<\ldots< y_{j,n}$. Suppose there is an i such that $y_{2,j}=y_{1,j}$ for $j=1,\ldots,i$ and $y_{2,j}=y_{1,j}+\eta$ for $j=i+1,\ldots,n$. Assume further that $\psi_0'(y_i+)<0$ and $\psi_0'(y_{i+1}-)>0$. Then we have $\min\sigma(-\Delta_{\alpha,Y_1})\leq \min\sigma(-\Delta_{\alpha,Y_2})$ for any $\eta>0$.

Proof by bracketing

Since $\psi_0>0$ and $\psi''=-\lambda_0\psi$ between the points y_j , the function is convex; by assumption there is $x_0\in (y_i,y_{i+1})$ such that $\psi_0'(x_0)=0$. Consider the operator $-\tilde{\Delta}_{\alpha,Y_1}$ which acts as $-\Delta_{\alpha,Y_1}$ with the additional Neumann condition at x_0

We have $-\tilde{\Delta}_{\alpha,Y_1}=-\tilde{\Delta}_{\alpha,Y_1}^l\oplus -\tilde{\Delta}_{\alpha,Y_1}^r$ and the two operators have obviously the same ground state. Consider now the operator $-\hat{\Delta}_{\alpha,Y_2}:=-\tilde{\Delta}_{\alpha,Y_1}^l\oplus -\Delta_N\oplus -\tilde{\Delta}_{\alpha,Y_1}^r$ where the added operator is the Neumann Laplacian on $L^2(0,\eta)$; it is clear that the latter does not contribute to the negative spectrum, hence $\min\sigma(-\hat{\Delta}_{\alpha,Y_2})=\min\sigma(-\tilde{\Delta}_{\alpha,Y_1})$

Furthermore, $-\hat{\Delta}_{\alpha,Y_2}$ is obviously unitarily equivalent to $-\tilde{\Delta}_{\alpha,Y_2}$ with added Neumann conditions at $x=x_0,x_0+\eta$, hence the result follows by Neumann bracketing $\ \square$

A stronger result

It is easy to see that the derivative-sign assumption is satisfied if $-\alpha_i$, $-\alpha_{i+1}$ are large enough or, which is the same by scaling, the distance $y_{i+1} - y_i$ is large enough. However, we can make a stronger claim

A stronger result

It is easy to see that the derivative-sign assumption is satisfied if $-\alpha_i$, $-\alpha_{i+1}$ are large enough or, which is the same by scaling, the distance $y_{i+1} - y_i$ is large enough. However, we can make a stronger claim

Theorem [E-Jex'12]: Suppose again $\sharp Y_1=\sharp Y_2$ and $\alpha_j<0$ for all j. Let further $y_{1,i}-y_{1,j}\leq y_{2,i}-y_{2,j}$ hold for all i,j and $y_{1,i}-y_{1,j}< y_{2,i}-y_{2,j}$ for at least one pair of i,j, then we have $\min\sigma(-\Delta_{\alpha,Y_1})<\min\sigma(-\Delta_{\alpha,Y_2})$

A stronger result

It is easy to see that the derivative-sign assumption is satisfied if $-\alpha_i, -\alpha_{i+1}$ are large enough or, which is the same by scaling, the distance $y_{i+1} - y_i$ is large enough. However, we can make a stronger claim

Theorem [E-Jex'12]: Suppose again $\sharp Y_1=\sharp Y_2$ and $\alpha_j<0$ for all j. Let further $y_{1,i}-y_{1,j}\leq y_{2,i}-y_{2,j}$ hold for all i,j and $y_{1,i}-y_{1,j}< y_{2,i}-y_{2,j}$ for at least one pair of i,j, then we have $\min\sigma(-\Delta_{\alpha,Y_1})<\min\sigma(-\Delta_{\alpha,Y_2})$

Proof: We employ Krein's formula which makes it possible to reduce the spectral problem at energy k^2 to solution of the secular equation, $\det \Gamma_{\alpha,Y}(\kappa) = 0$, where

$$[\Gamma_{\alpha,Y}(k)]_{jj'} = -[\alpha_j^{-1}\delta_{jj'} + G_k(y_j - y_{j'})]_{j,j'=1}^N$$

and $G_k(y_j - y_{j'}) = \frac{i}{2k} e^{ik|y_j - y_{j'}|}$ is the free resolvent kernel

Proof by Krein's formula

Writing $k = i\kappa$ with $\kappa > 0$, we have to investigate the *lowest* eigenvalue of $\Gamma_{\alpha,Y}(\kappa)$ which is, of course, given by

$$\mu_0(\alpha, Y; \kappa) = \min_{|c|=1} \left(c, \Gamma_{\alpha, Y}(\kappa) c \right);$$

the ground state energy $-\kappa^2$ corresponds to κ such that $\mu_0(\alpha,Y;\kappa)=0$. We set $\ell_{ij}:=|y_i-y_j|$, then the quantity to be minimized is explicitly

$$\left(c, \Gamma_{\alpha, Y}(\kappa)c\right) = \sum_{i=1}^{n} |c_i|^2 \left(-\frac{1}{\alpha_i} - \frac{1}{2\kappa}\right) - 2\sum_{i=1}^{n} \sum_{j=1}^{i-1} \operatorname{Re} \bar{c}_i c_j \frac{e^{-\kappa \ell_{ij}}}{2\kappa}$$

Proof by Krein's formula

Writing $k = i\kappa$ with $\kappa > 0$, we have to investigate the *lowest* eigenvalue of $\Gamma_{\alpha,Y}(\kappa)$ which is, of course, given by

$$\mu_0(\alpha, Y; \kappa) = \min_{|c|=1} \left(c, \Gamma_{\alpha, Y}(\kappa) c \right);$$

the ground state energy $-\kappa^2$ corresponds to κ such that $\mu_0(\alpha,Y;\kappa)=0$. We set $\ell_{ij}:=|y_i-y_j|$, then the quantity to be minimized is explicitly

$$\left(c, \Gamma_{\alpha, Y}(\kappa)c\right) = \sum_{i=1}^{n} |c_i|^2 \left(-\frac{1}{\alpha_i} - \frac{1}{2\kappa}\right) - 2\sum_{i=1}^{n} \sum_{j=1}^{i-1} \operatorname{Re} \bar{c}_i c_j \frac{e^{-\kappa \ell_{ij}}}{2\kappa}$$

The eigenfunction corresponding to the ground state, i.e. c for which the minimum is reached can be chosen *strictly positive*; this follows from the fact that the semigroup $\{e^{-t\Gamma_{\alpha,Y}(\kappa)}: t \geq 0\}$ is positivity improving

Proof by Krein's formula, continued

This means, in particular, that we have

$$\mu_0(\alpha, Y; \kappa) = \min_{|c|=1, c>0} \left(c, \Gamma_{\alpha, Y}(\kappa) c \right)$$

Proof by Krein's formula, continued

This means, in particular, that we have

$$\mu_0(\alpha, Y; \kappa) = \min_{|c|=1, c>0} \left(c, \Gamma_{\alpha, Y}(\kappa) c \right)$$

Take now two configurations, (α,Y) and (α,\tilde{Y}) such that $\ell_{ij} \leq \tilde{\ell}_{ij}$ and the inequality is strict for at least one pair (i,j). For a fixed c>0 we have $\left(c,\Gamma_{\alpha,Y}(\kappa)c\right)<\left(c,\Gamma_{\alpha,\tilde{Y}}(\kappa)c\right)$, and consequently, taking a minimum overs all such c's we get

$$\mu_0(\alpha, Y; \kappa) < \mu_0(\alpha, \tilde{Y}; \kappa)$$

for all κ with the obvious implication for the ground state of $-\Delta_{\alpha,Y}$; the sharp inequality holds due to the fact that there is a c for which the minimum is attained. \square

Quantum graphs

More complicated "1D" problems one can find in *quantum* graphs. Consider such a graph Γ consisting of vertices, $\mathcal{V} = \{\mathcal{X}_j : j \in I\}$, and edges of two categories, finite, $\mathcal{L} = \{\mathcal{L}_{jn} : (\mathcal{X}_j, \mathcal{X}_n) \text{ with } (j, n) \in I_{\mathcal{L}} \subset I \times I\}$, and infinite, $\mathcal{L}_{\infty} = \{\mathcal{L}_{k\infty} : k \in I_{\mathcal{C}}\}$. We regard Γ as a configuration space of a quantum system with the Hilbert space

$$\mathcal{H} = \bigoplus_{j \in I_{\mathcal{L}}} L^2([0, l_j]) \oplus \bigoplus_{k \in I_{\mathcal{C}}} L^2([0, \infty))$$

with columns $\psi = (f_j : \mathcal{L}_j \in \mathcal{L}, g_j : \mathcal{L}_{j\infty} \in \mathcal{L}_{\infty})^T$ as elements

Quantum graphs

More complicated "1D" problems one can find in *quantum* graphs. Consider such a graph Γ consisting of vertices, $\mathcal{V} = \{\mathcal{X}_j : j \in I\}$, and edges of two categories, finite, $\mathcal{L} = \{\mathcal{L}_{jn} : (\mathcal{X}_j, \mathcal{X}_n) \text{ with } (j,n) \in I_{\mathcal{L}} \subset I \times I\}$, and infinite, $\mathcal{L}_{\infty} = \{\mathcal{L}_{k\infty} : k \in I_{\mathcal{C}}\}$. We regard Γ as a configuration space of a quantum system with the Hilbert space

$$\mathcal{H} = \bigoplus_{j \in I_{\mathcal{L}}} L^2([0, l_j]) \oplus \bigoplus_{k \in I_{\mathcal{C}}} L^2([0, \infty))$$

with columns $\psi = (f_j : \mathcal{L}_j \in \mathcal{L}, g_j : \mathcal{L}_{j\infty} \in \mathcal{L}_{\infty})^T$ as elements

The Hamiltonian acts as $-d^2/dx^2$ on each edge; to make it self-adjoint s-a, general boundary conditions

$$(U_j - I)\Psi_j + i(U_j + I)\Psi'_j = 0$$

with unitary matrices U_j have to be imposed at the vertices \mathcal{Y}_j where Ψ_j and Ψ_j' are vectors of boundary values

Assumptions

We will be interested in the following particular situation:

• the internal part of the graphs is *finite* and so is the number of external edges, $\#I_{\mathcal{L}} < \infty$ and $\#I_{\mathcal{C}} < \infty$

Assumptions

We will be interested in the following particular situation:

- the internal part of the graphs is *finite* and so is the number of external edges, $\#I_{\mathcal{L}} < \infty$ and $\#I_{\mathcal{C}} < \infty$
- vertex couplings are of δ -type which means they correspond to $U_j = \frac{2}{n+i\alpha_j} \mathcal{J} I$, or explicitly

$$\psi_{j,i}(0) = \psi_{j,k}(0) =: \psi_j(0), j, k = 1, \dots, n_j, \quad \sum_{i=1}^{n_j} \psi'_{j,i}(0) = \alpha_j \psi_j(0),$$

where $n_j = \deg \mathcal{X}_j$ and edges are parametrized so that x=0 corresponds to the vertex. In particular, we have Robin condition, $\psi_j'(l_j) + \alpha_j \psi_j(l_j) = 0$, at "free endpoints"

Assumptions

We will be interested in the following particular situation:

- the internal part of the graphs is *finite* and so is the number of external edges, $\#I_{\mathcal{L}} < \infty$ and $\#I_{\mathcal{C}} < \infty$
- vertex couplings are of δ -type which means they correspond to $U_j = \frac{2}{n+i\alpha_j} \mathcal{J} I$, or explicitly

$$\psi_{j,i}(0) = \psi_{j,k}(0) =: \psi_j(0), j, k = 1, \dots, n_j, \quad \sum_{i=1}^{n_j} \psi'_{j,i}(0) = \alpha_j \psi_j(0),$$

where $n_j=\deg \mathcal{X}_j$ and edges are parametrized so that x=0 corresponds to the vertex. In particular, we have Robin condition, $\psi_j'(l_j)+\alpha_j\psi_j(l_j)=0$, at "free endpoints"

● all the couplings involved are *non-repulsive*, $\alpha_j \leq 0$ for all $j \in I$, and at least one of them is *attractive*, $\alpha_{j_0} < 0$ for some $j_0 \in I$

Existence of negative spectrum

The quadratic form of H can be then written as

$$q[\Psi] = \sum_{j \in I_{\mathcal{L}}} \int_{0}^{l_{j}} |\psi'_{j}(x)|^{2} dx + \sum_{k \in I_{\mathcal{C}}} \int_{+} |\psi'_{k}(x)|^{2} dx + \sum_{i \in I} \alpha_{i} |\psi_{i}(0)|^{2}$$

being defined on ${\cal L}^2$ functions which are $W^{1,2}$ on the graph edges and continuous at the vertices

Existence of negative spectrum

The quadratic form of H can be then written as

$$q[\Psi] = \sum_{j \in I_{\mathcal{L}}} \int_{0}^{l_{j}} |\psi'_{j}(x)|^{2} dx + \sum_{k \in I_{\mathcal{C}}} \int_{+} |\psi'_{k}(x)|^{2} dx + \sum_{i \in I} \alpha_{i} |\psi_{i}(0)|^{2}$$

being defined on ${\cal L}^2$ functions which are $W^{1,2}$ on the graph edges and continuous at the vertices

Proposition: $\inf \sigma(H) < 0$ holds under our assumptions

Existence of negative spectrum

The quadratic form of H can be then written as

$$q[\Psi] = \sum_{j \in I_{\mathcal{L}}} \int_{0}^{l_{j}} |\psi'_{j}(x)|^{2} dx + \sum_{k \in I_{\mathcal{C}}} \int_{+} |\psi'_{k}(x)|^{2} dx + \sum_{i \in I} \alpha_{i} |\psi_{i}(0)|^{2}$$

being defined on ${\cal L}^2$ functions which are $W^{1,2}$ on the graph edges and continuous at the vertices

Proposition: $\inf \sigma(H) < 0$ holds under our assumptions

Proof: If $I_{\mathcal{C}} = \emptyset$ we take $\Psi = c$ on Γ which belongs to $\mathrm{Dom}[q]$ because $|\Gamma| < \infty$; we get $q[\Psi] \leq \alpha_{j_0} |c|^2$. If $I_{\mathcal{C}} \neq \emptyset$, we take $\Psi = c$ on the internal part of the graph and $\psi_k(x) = c \, \mathrm{e}^{-\kappa x}$ on each external semiinfinite edge, obtaining

$$q[\Psi] \le \left(\alpha_{j_0} + \frac{1}{2}\kappa \sharp I_{\mathcal{C}}\right)|c|^2$$

which can be made < 0 by choosing κ small enough.

Existence of ground state

Theorem [E-Jex'12]: In addition, let Γ be connected, then $\lambda_0 = \inf \sigma(H)$ is a simple isolated eigenvalue. The corresponding eigenfunction $\Psi^{(0)}$ can be chosen strictly positive on Γ being convex on each edge

Existence of ground state

Theorem [E-Jex'12]: In addition, let Γ be connected, then $\lambda_0 = \inf \sigma(H)$ is a simple isolated eigenvalue. The corresponding eigenfunction $\Psi^{(0)}$ can be chosen strictly positive on Γ being convex on each edge

Proof: $\sigma(H)$ is discrete if $I_{\mathcal{C}} = \emptyset$, otherwise one checks easily using Krein's formula that $\sigma_{\mathrm{ess}}(H) = \mathbb{R}_+$ and $\sigma_{\mathrm{disc}}(H) \subset \mathbb{R}_-$ is finite; by the previous result it is non-empty.

The ground state positivity follows, for instance, from a quantum-graph modification of Courant theorem [Band et al.'11]. The ef being positive and its component $\psi_j^{(0)}$ at the jth edge twice differentiable away of the vertices, we have $(\psi_j^{(0)})'' = -\lambda_0 \psi_j^{(0)} > 0$, which means the convexity. \square

Ground state edge indices

In fact, we know more. Writing $\lambda_0 = -\kappa^2$ we see that the ef component on each edge is a linear combination of $e^{\kappa x}$ and $e^{-\kappa x}$. Since we are free to choose the edge orientation, each component has one of the following three forms,

$$\psi_j^{(0)}(x) = \begin{cases} c_j \cosh \kappa (x + d_j) & \dots & d_j \in \mathbb{R} \\ c_j e^{\pm \kappa (x + d_j)} & \dots & d_j \in \mathbb{R} \\ c_j \sinh \kappa (x + d_j) & \dots & x + d_j > 0 \end{cases}$$

where c_j is a positive constant.

Ground state edge indices

In fact, we know more. Writing $\lambda_0 = -\kappa^2$ we see that the ef component on each edge is a linear combination of $e^{\kappa x}$ and $e^{-\kappa x}$. Since we are free to choose the edge orientation, each component has one of the following three forms,

$$\psi_j^{(0)}(x) = \begin{cases} c_j \cosh \kappa (x + d_j) & \dots & d_j \in \mathbb{R} \\ c_j e^{\pm \kappa (x + d_j)} & \dots & d_j \in \mathbb{R} \\ c_j \sinh \kappa (x + d_j) & \dots & x + d_j > 0 \end{cases}$$

where c_j is a positive constant. For further purposes we introduce *edge index*

$$\sigma_{j} := \begin{cases} +1 & \dots & \psi_{j}^{(0)}(x) = c_{j} \cosh \kappa(x + d_{j}) \\ 0 & \dots & \psi_{j}^{(0)}(x) = c_{j} e^{\pm \kappa(x + d_{j})} \\ -1 & \dots & \psi_{j}^{(0)}(x) = c_{j} \sinh \kappa(x + d_{j}) \end{cases}$$

Ground state monotonicity

Given Γ and $\tilde{\Gamma}$ with the same topology differing possibly by inner edge lengths, we say they belong to the same *ground-state class* in the indices are the same for them and all interpolating graphs.

For connected graphs we have then the following result:

Theorem [E-Jex'12]: Under the stated assumptions, consider graphs Γ and $\tilde{\Gamma}$ of the same ground-state class. Let H and \tilde{H} be the corresponding Hamiltonians with the same couplings in the respective vertices, and λ_0 and $\tilde{\lambda}_0$ the corresponding ground-state eigenvalues. Suppose that $\sigma_j \tilde{l}_j \leq \sigma_j l_j$ holds all $j \in I_{\mathcal{L}}$ such that $|\sigma_j| = 1$ and $\tilde{l}_j = l_j$ if $\sigma_j = 0$, then $\tilde{\lambda}_0 \leq \lambda_0$; the inequality is sharp if $\sigma_j \tilde{l}_j < \sigma_j l_j$ holds for at least one $j \in I_{\mathcal{L}}$.

Proof by a scaling argument

It is sufficient to consider length change of a single edge and prove the claim *locally*. We pick a segment in the interior of the a fixed edge and scale it by factor ξ being less than one in case of shrinking and larger than one otherwise

Proof by a scaling argument

It is sufficient to consider length change of a single edge and prove the claim *locally*. We pick a segment in the interior of the a fixed edge and scale it by factor ξ being less than one in case of shrinking and larger than one otherwise

We have to find $\Psi \in L^2(\tilde{\Gamma})$ such that the Rayleigh quotient on $\tilde{\Gamma}$ satisfies

$$\frac{\tilde{q}[\Psi]}{\|\Psi\|^2} < \lambda_0$$

for $\xi < 1$ if $\sigma_j = 1$ and $\xi > 1$ if $\sigma_j = -1$. We construct such a trial function $\tilde{\Psi}^{(0)}$ putting $\tilde{\Psi}^{(0)}(x) = \Psi^{(0)}(x)$ for $x \in \Gamma_J$, while the jth component on \tilde{J} is obtained by scaling

$$\tilde{\psi}_{j}^{(0)}(\tilde{a} + \xi y) = \psi_{j}^{(0)}(a + y) \quad \text{for} \quad 0 \le y \le |J|$$

Proof by a scaling argument, continued

The Rayleigh quotient can be then easily rewritten as

$$\frac{\tilde{q}[\tilde{\Psi}^{(0)}]}{\|\tilde{\Psi}^{(0)}\|^2} = \frac{a + b\xi^{-1}}{c + d\xi} =: f(\xi),$$

where

$$a := q_{\Gamma_J}[\Psi^{(0)}], \quad b := \int_J |(\psi_j^{(0)})'(x)|^2 dx$$

and c,d are the parts of the squared norm of $\Psi^{(0)}$ corresponding to $\Gamma \setminus J$ and J, respectively

Proof by a scaling argument, continued

The Rayleigh quotient can be then easily rewritten as

$$\frac{\tilde{q}[\tilde{\Psi}^{(0)}]}{\|\tilde{\Psi}^{(0)}\|^2} = \frac{a + b\xi^{-1}}{c + d\xi} =: f(\xi),$$

where

$$a := q_{\Gamma_J}[\Psi^{(0)}], \quad b := \int_J |(\psi_j^{(0)})'(x)|^2 dx$$

and c,d are the parts of the squared norm of $\Psi^{(0)}$ corresponding to $\Gamma \setminus J$ and J, respectively

Check that
$$\sigma_j f'(1) = -\sigma_j (bc + 2bd + ad)(c+d)^{-2} > 0$$
.

Choosing $\|\Psi^{(0)}\|=1$, we have c+d=1 and $a+b=\lambda_0$, hence the property to be checked is $-\sigma_j(\lambda_0 d+b)>0$, or more explicitly

$$-\sigma_j \left(\lambda_0 \|\psi_j^{(0)}\|_J^2 + \|(\psi_j^{(0)})'\|_J^2 \right) > 0$$

Proof by a scaling argument, continued

Using $\lambda_0 = -\kappa^2$ we find for $\sigma_j = 1$

$$\int_{J} |(\psi_{j}^{(0)})'(x)|^{2} dx = c_{j}^{2} \kappa^{2} \int_{J} (\sinh \kappa x)^{2} dx < c_{j}^{2} \kappa^{2} \int_{J} (\cosh \kappa x)^{2} dx$$
$$= -\lambda_{0} \int_{J} |\psi_{j}^{(0)}(x)|^{2} dx$$

and the opposite inequality for $\sigma_j = -1$ where the roles of hyperbolic sine and cosine are interchanged, which is what we have set out to prove. \Box

Chain graphs

Corollary: Under our assumptions, suppose that *graph* Γ *has no branchings*, i.e. the degree of no vertex exceeds two. Then the index of any edge is non-negative being equal to one for any internal edge, hence *a length increase of any internal edge moves the ground-state energy up.*

Chain graphs

Corollary: Under our assumptions, suppose that *graph* Γ has no branchings, i.e. the degree of no vertex exceeds two. Then the index of any edge is non-negative being equal to one for any internal edge, hence a length increase of any internal edge moves the ground-state energy up.

Proof: By assumption Γ is a chain, either a loop or an open chain. Consider the latter possibility; the former can be dealt with using Krein's formula similarly as above

Obviously it is impossible to have all the indices negative; the question is whether one can have a \sinh -type solution at some position within the chain

Proof, continued

Then wavefunction components with different indices have to match somewhere. Parametrize the chain by a single variable x choosing x=0 for the vertex in question. Let the ground-state eigenfunction be $\psi_j(x)=\cosh\kappa(d_1-x)$ for x<0 and $\psi_{j+1}(x)=c\sinh\kappa(d_2\mp x)$ for x>0. They are coupled by an *attractive* δ interaction, hence c is determined by the continuity requirement and $\psi'_{j+1}(0+)-\psi'_j(0-)$ must be *negative*; recall that $\psi_j(0-)=\psi_{j+1}(0+)>0$

Proof, continued

Then wavefunction components with different indices have to match somewhere. Parametrize the chain by a single variable x choosing x=0 for the vertex in question. Let the ground-state eigenfunction be $\psi_j(x)=\cosh\kappa(d_1-x)$ for x<0 and $\psi_{j+1}(x)=c\sinh\kappa(d_2\mp x)$ for x>0. They are coupled by an *attractive* δ interaction, hence c is determined by the continuity requirement and $\psi'_{j+1}(0+)-\psi'_j(0-)$ must be *negative*; recall that $\psi_j(0-)=\psi_{j+1}(0+)>0$

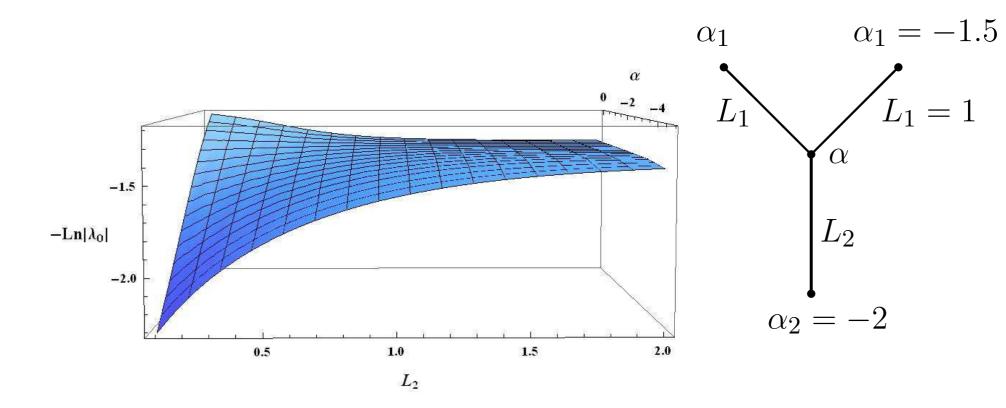
However, this expression equals $\mp \kappa \cosh \kappa (d_1 \pm d_2)/\sinh \kappa d_2$, hence the needed match is impossible for a \sinh solution decreasing towards the vertex. The same is true for the opposite order of the two solutions, and in a similar way one can check that a negative-index edge cannot neighbour with a semiinfinite one. \Box

Branched graphs

This is no longer true for graphs with branchings as one can illustrate on a *simple example*

Branched graphs

This is no longer true for graphs with branchings as one can illustrate on a *simple example*



We see *different regimes* with transition at $\alpha_{\rm crit} \approx -1.09088$

Point interactions in \mathbb{R}^d , d=2,3

Consider the Hamiltonians $-\Delta_{\alpha,Y_1}$ mentioned in the introduction with a finite set Y. The problem is dimension dependent: the ground state exists for all $\alpha \in \mathbb{R}^N$ if d=2 while for d=3 we have to assume that α_j 's are below a critical value. In analogy with the 1D case we have

Point interactions in \mathbb{R}^d , d=2,3

Consider the Hamiltonians $-\Delta_{\alpha,Y_1}$ mentioned in the introduction with a finite set Y. The problem is dimension dependent: the ground state exists for all $\alpha \in \mathbb{R}^N$ if d=2 while for d=3 we have to assume that α_j 's are below a critical value. In analogy with the 1D case we have

Theorem: Let $\sharp Y_1=\sharp Y_2$ and $y_{1,i}-y_{1,j}\leq y_{2,i}-y_{2,j}$ for all i,j with $y_{1,i}-y_{1,j}< y_{2,i}-y_{2,j}$ holding for at least one pair of i,j, then we have $\min\sigma(-\Delta_{\alpha,Y_1})<\min\sigma(-\Delta_{\alpha,Y_2})$

Point interactions in \mathbb{R}^d , d=2,3

Consider the Hamiltonians $-\Delta_{\alpha,Y_1}$ mentioned in the introduction with a finite set Y. The problem is dimension dependent: the ground state exists for all $\alpha \in \mathbb{R}^N$ if d=2 while for d=3 we have to assume that α_j 's are below a critical value. In analogy with the 1D case we have

Theorem: Let $\sharp Y_1 = \sharp Y_2$ and $y_{1,i} - y_{1,j} \leq y_{2,i} - y_{2,j}$ for all i,j with $y_{1,i} - y_{1,j} < y_{2,i} - y_{2,j}$ holding for at least one pair of i,j, then we have $\min \sigma(-\Delta_{\alpha,Y_1}) < \min \sigma(-\Delta_{\alpha,Y_2})$

Proof: We employ Krein's formula approach again. The above proof was based on the fact that Green's function is decreasing with the distance between the points. This is true in d=2,3 too, hence the argument can be modified to the present case $\ \square$

Remarks

• An alternative way to prove the result is through convexity and bracketing as in the 1D case. This time there no derivative restrictions, since ψ_0 has poles at the point-interaction sites

Remarks

- An alternative way to prove the result is through convexity and bracketing as in the 1D case. This time there no derivative restrictions, since ψ_0 has poles at the point-interaction sites
- A caveat: these results tell you nothing about the situation when some distances grow and some decrease. Consequently, we cannot deduce from here the answer to the isoperimetric problem discussed above — as an example consider a rhomboid of varying angle

The above results inspire a host of questions, e.g.

What can one say about point-interaction isoperimetric problems with bias or various types?

- What can one say about point-interaction isoperimetric problems with bias or various types?
- optimization problem for more than one point interaction in a region $\Omega \subset \mathbb{R}^d$

- What can one say about point-interaction isoperimetric problems with bias or various types?
- optimization problem for more than one point interaction in a region $\Omega \subset \mathbb{R}^d$
- Can there be different ground-state classes for a fixed topology of the graph?

- What can one say about point-interaction isoperimetric problems with bias or various types?
- optimization problem for more than one point interaction in a region $\Omega \subset \mathbb{R}^d$
- Can there be different ground-state classes for a fixed topology of the graph?
- Is there a general criterion to determine type of the quantum graph ground state?

- What can one say about point-interaction isoperimetric problems with bias or various types?
- optimization problem for more than one point interaction in a region $\Omega \subset \mathbb{R}^d$
- Can there be different ground-state classes for a fixed topology of the graph?
- Is there a general criterion to determine type of the quantum graph ground state?
- Regular-potential analogues of the results described here, etc., etc.

The talk was based on

- [E05a] P.E.: An isoperimetric problem for point interactions, *J. Phys. A: Math. Gen.* A38 (2005), 4795-4802
- [E05b] P.E.: Necklaces with interacting beads: isoperimetric problems, *Proceedings of the "International Conference on Differential Equations and Mathematical Physics"* (*Birmingham 2005*), AMS "Contemporary Mathematics" Series, vol. 412, Providence, R.I., 2003; pp. 141–149.
- [EHL05] P.E., E. Harrell, M. Loss: Global mean-chord inequalities with application to isoperimetric problems, *Lett.Math.Phys.* **75** (2006), 225–233; addendum **77** (2006), 219
- [EM08] P.E., A. Mantile: On the optimization of the principal eigenvalue for single-centre point-interaction operators in a bounded region, *J. Phys. A: Math. Gen.* **A41** (2008), 065305
- [EJ11] P.E., I. Jex: On the ground state of quantum graphs with attractive δ -coupling, *Phys. Lett. A* (2012), to appear; arXiv: 1110.1800 [math-ph]

Thank you for your attention!

