Schrödinger operators with strongly attractive graph-type interaction

Pavel Exner

in collaboration with Kazushi Yoshitomi, Sylwia Kondej,

Francois Bentosela, Pierre Duclos and Miloš Tater

exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

Okayama University, March 24, 2004 - p.1/50

Leaky quantum graphs – why are they interesting?

- Leaky quantum graphs why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma)$

- Leaky quantum graphs why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma)$
- Geometrically induced discrete spectrum

- Leaky quantum graphs why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory

- Leaky quantum graphs why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory
- \checkmark Strong-coupling asymptotics for a compact Γ

- Leaky quantum graphs why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory
- \checkmark Strong-coupling asymptotics for a compact Γ
- Technique: bracketing + coordinate transformation

- Leaky quantum graphs why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory
- $\ \ \, \hbox{ Strong-coupling asymptotics for a compact } \Gamma \\$
- Technique: bracketing + coordinate transformation
- Infinite manifolds

- Leaky quantum graphs why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory
- $\ \ \, \hbox{ Strong-coupling asymptotics for a compact } \Gamma \\$
- Technique: bracketing + coordinate transformation
- Infinite manifolds
- Periodic case, magnetic field, absolute continuity

- Leaky quantum graphs why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory
- $\ \ \, \hbox{ Strong-coupling asymptotics for a compact } \Gamma \\$
- Technique: bracketing + coordinate transformation
- Infinite manifolds
- Periodic case, magnetic field, absolute continuity
- Open questions

Leaky graphs – why are they interesting?

Recall the "standard" graph models:

Hamiltonian: $-\frac{\partial^2}{\partial x_j^2} + v(x_j)$ on graph edges, boundary conditions at vertices

Leaky graphs – why are they interesting?

Recall the "standard" graph models:

Hamiltonian: $-\frac{\partial^2}{\partial x_j^2} + v(x_j)$ on graph edges, boundary conditions at vertices

Also, generalized graphs – nanotubes + fullerenes, etc.

the edges same above, $-\Delta_{
m LB} + v(x)$ on the manifold

boundary conditions at vertices

Drawbacks of these models

Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description

However, the answer is known so far only for Neumann-type situations [Rubinstein-Schatzman, 2001; Kuchment-Zeng, 2001; E.-Post, 2003], the Dirichlet case needed here is open (and difficult)

Drawbacks of these models

Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description

However, the answer is known so far only for Neumann-type situations [Rubinstein-Schatzman, 2001; Kuchment-Zeng, 2001; E.-Post, 2003], the Dirichlet case needed here is open (and difficult)

Quantum tunneling is neglected: recall that a true quantum-wire boundary is a finite potential jump

Leaky quantum graphs

We consider instead "leaky" graphs with an *attractive interaction supported by graph edges*. Formally we have

$$H_{\alpha,\Gamma} = -\Delta - \alpha\delta(x - \Gamma), \quad \alpha > 0,$$

in $L^2(\mathbb{R}^n)$, where Γ is a graph in question, or generalized graph, understood as a subset of \mathbb{R}^n

Leaky quantum graphs

We consider instead "leaky" graphs with an *attractive interaction supported by graph edges*. Formally we have

 $H_{\alpha,\Gamma} = -\Delta - \alpha \delta(x - \Gamma), \quad \alpha > 0,$

in $L^2(\mathbb{R}^n)$, where Γ is a graph in question, or generalized graph, understood as a subset of \mathbb{R}^n

In this talk we will *mostly* consider the simplest graphs, or *building blocks* or more complicated graphs, where Γ is a *smooth manifold* in \mathbb{R}^n . We have in mind three cases:

- \checkmark curves in \mathbb{R}^2
- $\, {}^{m s}$ surfaces in ${\mathbb R}^3$
- \checkmark curves in \mathbb{R}^3

Definition of the Hamiltonian

In the first two cases we have $\operatorname{codim} \Gamma = 1$ and the operator can be defined by means of quadratic form,

$$\psi \mapsto \|\nabla \psi\|_{L^2(\mathbb{R}^2)}^2 - \alpha \int_{\Gamma} |\psi(x)|^2 \mathrm{d}x$$

which is closed and below bounded in $W^{2,1}(\mathbb{R}^2)$; the second term makes sense in view of Sobolev embedding

Definition of the Hamiltonian

In the first two cases we have $\operatorname{codim} \Gamma = 1$ and the operator can be defined by means of quadratic form,

$$\psi \mapsto \|\nabla \psi\|_{L^2(\mathbb{R}^2)}^2 - \alpha \int_{\Gamma} |\psi(x)|^2 \mathrm{d}x,$$

which is closed and below bounded in $W^{2,1}(\mathbb{R}^2)$; the second term makes sense in view of Sobolev embedding

For *smooth manifolds* and more general Γ such as a graph with a locally finite number of smooth edges and *no cusps* we can use an *alternative definition* by boundary conditions: $H_{\alpha,\Gamma}$ acts as $-\Delta$ on functions from $W_{\text{loc}}^{1,2}(\mathbb{R}^2 \setminus \Gamma)$, which are continuous and exhibit a normal-derivative jump,

$$\left. \frac{\partial \psi}{\partial n}(x) \right|_{+} - \left. \frac{\partial \psi}{\partial n}(x) \right|_{-} = -\alpha \psi(x)$$

The case $\operatorname{codim} \Gamma = 2$

Boundary conditions can be used but they are more complicated. Moreover, for an infinite Γ corresponding to $\gamma : \mathbb{R} \to \mathbb{R}^3$ we have to assume in addition that there is a tubular neighbourhood of Γ which *does not intersect itself*

The case $\operatorname{codim} \Gamma = 2$

Boundary conditions can be used but they are more complicated. Moreover, for an infinite Γ corresponding to $\gamma: \mathbb{R} \to \mathbb{R}^3$ we have to assume in addition that there is a tubular neighbourhood of Γ which *does not intersect itself* Employ *Frenet's frame* (t(s), b(s), n(s)) for Γ . Given $\xi, \eta \in \mathbb{R}$ we set $r = (\xi^2 + \eta^2)^{1/2}$ and define family of "shifted" curves

 $\Gamma_r \equiv \Gamma_r^{\xi\eta} := \{ \gamma_r(s) \equiv \gamma_r^{\xi\eta}(s) := \gamma(s) + \xi b(s) + \eta n(s) \}$

The case codim $\Gamma = 2$

The restriction of $f \in W^{2,2}_{\text{loc}}(\mathbb{R}^3 \setminus \Gamma)$ to Γ_r is well defined for small r; we say that $f \in W^{2,2}_{\text{loc}}(\mathbb{R}^3 \setminus \Gamma) \cap L^2(\mathbb{R}^3)$ belongs to Υ if

$$\begin{split} &\Xi(f)(s) \ := \ -\lim_{r \to 0} \frac{1}{\ln r} f \upharpoonright_{\Gamma_r}(s) \,, \\ &\Omega(f)(s) \ := \ \lim_{r \to 0} \left[f \upharpoonright_{\Gamma_r}(s) + \Xi(f)(s) \ln r \right] \,, \end{split}$$

exist a.e. in \mathbb{R} , are independent of the direction $\frac{1}{r}(\xi, \eta)$, and define functions from $L^2(\mathbb{R})$

The case codim $\Gamma = 2$

The restriction of $f \in W^{2,2}_{\text{loc}}(\mathbb{R}^3 \setminus \Gamma)$ to Γ_r is well defined for small r; we say that $f \in W^{2,2}_{\text{loc}}(\mathbb{R}^3 \setminus \Gamma) \cap L^2(\mathbb{R}^3)$ belongs to Υ if

$$\begin{split} &\Xi(f)(s) \ := \ -\lim_{r \to 0} \frac{1}{\ln r} f \upharpoonright_{\Gamma_r}(s) \,, \\ &\Omega(f)(s) \ := \ \lim_{r \to 0} \left[f \upharpoonright_{\Gamma_r}(s) + \Xi(f)(s) \ln r \right] \,, \end{split}$$

exist a.e. in \mathbb{R} , are independent of the direction $\frac{1}{r}(\xi,\eta)$, and define functions from $L^2(\mathbb{R})$

Then the operator $H_{\alpha,\Gamma}$ has the domain

$$\{g \in \Upsilon: 2\pi \alpha \Xi(g)(s) = \Omega(g)(s)\}\$$

and acts as

$$-H_{\alpha,\Gamma}f = -\Delta f \quad \text{for} \quad x \in \mathbb{R}^3 \setminus \Gamma$$

Remarks

If Γ has components of codimension one and two, one combines the above boundary conditions

Remarks

- If Γ has components of codimension one and two, one combines the above boundary conditions
- The b.c. are natural describing point interaction in the normal plane to Γ . Thus there is *no way* (at least within standard QM) to define $H_{\alpha,\Gamma}$ in the case $\operatorname{codim} \Gamma \geq 4$

Remarks

- If Γ has components of codimension one and two, one combines the above boundary conditions
- The b.c. are natural describing point interaction in the normal plane to Γ . Thus there is *no way* (at least within standard QM) to define $H_{\alpha,\Gamma}$ in the case $\operatorname{codim} \Gamma \geq 4$
- Strong coupling considered below is closely related to semiclassical behaviour of the operator

$$H_{\alpha,\Gamma}(h) = -\frac{\hbar^2 \Delta}{\Delta} - \alpha \delta(x - \Gamma), \quad \alpha > 0,$$

which can be regarded as $h^2 H_{\alpha(h),\Gamma}$, where the effective coupling constant is $\alpha(h) := \alpha h^{-2}$ for $\operatorname{codim} \Gamma = 1$, and

$$\alpha(h) := \alpha + \frac{1}{2\pi} \ln h$$
 if $\operatorname{codim} \Gamma = 2$

Geometrically induced spectrum

Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha,\Gamma}$. Consider a *piecewise* C^1 -smooth $\Gamma : \mathbb{R} \to \mathbb{R}^2$ parameterized by its arc length, and assume:

Geometrically induced spectrum

Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha,\Gamma}$. Consider a *piecewise* C^1 -smooth $\Gamma : \mathbb{R} \to \mathbb{R}^2$ parameterized by its arc length, and assume:

- $|\Gamma(s) \Gamma(s')| \ge c|s s'|$ holds for some $c \in (0, 1)$
- Γ is asymptotically straight: there are d > 0, $\mu > \frac{1}{2}$ and $\omega \in (0, 1)$ such that

$$1 - \frac{|\Gamma(s) - \Gamma(s')|}{|s - s'|} \le d \left[1 + |s + s'|^{2\mu} \right]^{-1/2}$$

in the sector $S_{\omega} := \left\{ (s, s') : \omega < \frac{s}{s'} < \omega^{-1} \right\}$

Straight line is excluded, i.e. |Γ(s) − Γ(s')| < |s − s'|holds for some s, s' ∈ ℝ

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{ess}(H_{\alpha,\Gamma}) = [-\frac{1}{4}\alpha^2, \infty)$ and $H_{\alpha,\Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4}\alpha^2$

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{ess}(H_{\alpha,\Gamma}) = [-\frac{1}{4}\alpha^2, \infty)$ and $H_{\alpha,\Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4}\alpha^2$

- The same for *curves in* \mathbb{R}^3 , under stronger regularity, with $-\frac{1}{4}\alpha^2$ is replaced by the corresponding 2D p.i. ev
- For curved surfaces $\Gamma \subset \mathbb{R}^3$ such a result is proved in the strong coupling asymptotic regime only
- Implications for graphs: let $\tilde{\Gamma} \supset \Gamma$ in the set sense, then $H_{\alpha,\tilde{\Gamma}} \leq H_{\alpha,\Gamma}$. If the essential spectrum threshold is the same for both graphs and Γ fits the above assumptions, we have $\sigma_{\text{disc}}(H_{\alpha,\Gamma}) \neq \emptyset$ by minimax principle

Proof: generalized BS principle

Classical Birman-Schwinger principle based on the identity

$$(H_0 - V - z)^{-1} = (H_0 - z)^{-1} + (H_0 - z)^{-1} V^{1/2}$$
$$\times \left\{ I - |V|^{1/2} (H_0 - z)^{-1} V^{1/2} \right\}^{-1} |V|^{1/2} (H_0 - z)^{-1}$$

can be extended to generalized Schrödinger operators $H_{\alpha,\Gamma}$ [BEKŠ94]: the multiplication by $(H_0 - z)^{-1}V^{1/2}$ etc. is replaced by suitable trace maps. In this way we find that $-\kappa^2$ is an eigenvalue of $H_{\alpha,\Gamma}$ *iff* the integral operator $\mathcal{R}^{\kappa}_{\alpha,\Gamma}$ on $L^2(\mathbb{R})$ with the kernel

$$(s, s') \mapsto \frac{\alpha}{2\pi} K_0 \left(\kappa |\Gamma(s) - \Gamma(s')| \right)$$

has an eigenvalue equal to one

We treat $\mathcal{R}_{\alpha,\Gamma}^{\kappa}$ as a *perturbation* of the operator $\mathcal{R}_{\alpha,\Gamma_0}^{\kappa}$ referring to a *straight line*. The spectrum of the latter is found easily: it is *purely ac* and equal to $[0, \alpha/2\kappa)$

We treat $\mathcal{R}_{\alpha,\Gamma}^{\kappa}$ as a *perturbation* of the operator $\mathcal{R}_{\alpha,\Gamma_0}^{\kappa}$ referring to a *straight line*. The spectrum of the latter is found easily: it is *purely ac* and equal to $[0, \alpha/2\kappa)$ The curvature-induced perturbation is *sign-definite*: we have $\left(\mathcal{R}_{\alpha,\Gamma}^{\kappa} - \mathcal{R}_{\alpha,\Gamma_0}^{\kappa}\right)(s,s') \ge 0$, and the inequality is sharp somewhere unless Γ is a straight line. Using a *variational argument* with a suitable trial function we can check the inequality $\sup \sigma(\mathcal{R}_{\alpha,\Gamma}^{\kappa}) > \frac{\alpha}{2\kappa}$

We treat $\mathcal{R}_{\alpha,\Gamma}^{\kappa}$ as a *perturbation* of the operator $\mathcal{R}_{\alpha,\Gamma_0}^{\kappa}$ referring to a *straight line*. The spectrum of the latter is found easily: it is *purely ac* and equal to $[0, \alpha/2\kappa)$ The curvature-induced perturbation is *sign-definite*: we have $\left(\mathcal{R}_{\alpha,\Gamma}^{\kappa} - \mathcal{R}_{\alpha,\Gamma_0}^{\kappa}\right)(s,s') \ge 0$, and the inequality is sharp somewhere unless Γ is a straight line. Using a *variational argument* with a suitable trial function we can check the inequality $\sup \sigma(\mathcal{R}_{\alpha,\Gamma}^{\kappa}) > \frac{\alpha}{2\kappa}$

Due to the assumed asymptotic straightness of Γ the perturbation $\mathcal{R}_{\alpha,\Gamma}^{\kappa} - \mathcal{R}_{\alpha,\Gamma_0}^{\kappa}$ is *Hilbert-Schmidt*, hence the spectrum of $\mathcal{R}_{\alpha,\Gamma}^{\kappa}$ in the interval $(\alpha/2\kappa,\infty)$ is discrete

We treat $\mathcal{R}_{\alpha,\Gamma}^{\kappa}$ as a *perturbation* of the operator $\mathcal{R}_{\alpha,\Gamma_0}^{\kappa}$ referring to a *straight line*. The spectrum of the latter is found easily: it is *purely ac* and equal to $[0, \alpha/2\kappa)$ The curvature-induced perturbation is *sign-definite*: we have $\left(\mathcal{R}_{\alpha,\Gamma}^{\kappa} - \mathcal{R}_{\alpha,\Gamma_0}^{\kappa}\right)(s,s') \geq 0$, and the inequality is sharp somewhere unless Γ is a straight line. Using a *variational argument* with a suitable trial function we can check the inequality $\sup \sigma(\mathcal{R}_{\alpha,\Gamma}^{\kappa}) > \frac{\alpha}{2\kappa}$

Due to the assumed asymptotic straightness of Γ the perturbation $\mathcal{R}_{\alpha,\Gamma}^{\kappa} - \mathcal{R}_{\alpha,\Gamma_0}^{\kappa}$ is *Hilbert-Schmidt*, hence the spectrum of $\mathcal{R}_{\alpha,\Gamma}^{\kappa}$ in the interval $(\alpha/2\kappa,\infty)$ is discrete

To conclude we employ continuity and $\lim_{\kappa\to\infty} ||\mathcal{R}^{\kappa}_{\alpha,\Gamma}|| = 0$. The argument can be pictorially expressed as follows:

Pictorial sketch of the proof

Punctured manifolds

A natural question is what happens with $\sigma_{disc}(H_{\alpha,\Gamma})$ if Γ has a small *"hole"*. We will give the answer for a compact, (n-1)-dimensional, $C^{1+[n/2]}$ -smooth manifold in \mathbb{R}^n

Punctured manifolds

A natural question is what happens with $\sigma_{disc}(H_{\alpha,\Gamma})$ if Γ has a small *"hole"*. We will give the answer for a compact, (n-1)-dimensional, $C^{1+[n/2]}$ -smooth manifold in \mathbb{R}^n

Consider a family $\{S_{\varepsilon}\}_{0 \le \varepsilon < \eta}$ of subsets of Γ such that

- each S_{ε} is *Lebesgue measurable* on Γ
- they shrink to origin, $\sup_{x \in S_{\varepsilon}} |x| = \mathcal{O}(\varepsilon)$ as $\varepsilon \to 0$
- $\sigma_{\text{disc}}(H_{\alpha,\Gamma}) \neq \emptyset$, nontrivial for $n \ge 3$

Punctured manifolds: ev asymptotics

Call $H_{\varepsilon} := H_{\alpha,\Gamma\setminus S_{\varepsilon}}$. For small enough ε these operators have the same finite number of eigenvalues, naturally ordered, which satisfy $\lambda_j(\varepsilon) \to \lambda_j(0)$ as $\varepsilon \to 0$

Punctured manifolds: ev asymptotics

Call $H_{\varepsilon} := H_{\alpha,\Gamma\setminus S_{\varepsilon}}$. For small enough ε these operators have the same finite number of eigenvalues, naturally ordered, which satisfy $\lambda_j(\varepsilon) \to \lambda_j(0)$ as $\varepsilon \to 0$

Let φ_j be the eigenfunctions of H_0 . By Sobolev trace thm $\varphi_j(0)$ makes sense. Put $s_j := |\varphi_j(0)|^2$ if $\lambda_j(0)$ is simple, otherwise they are ev's of $C := \left(\overline{\varphi_i(0)}\varphi_j(0)\right)$ corresponding to a degenerate eigenvalue

Punctured manifolds: ev asymptotics

Call $H_{\varepsilon} := H_{\alpha,\Gamma\setminus S_{\varepsilon}}$. For small enough ε these operators have the same finite number of eigenvalues, naturally ordered, which satisfy $\lambda_j(\varepsilon) \to \lambda_j(0)$ as $\varepsilon \to 0$

Let φ_j be the eigenfunctions of H_0 . By Sobolev trace thm $\varphi_j(0)$ makes sense. Put $s_j := |\varphi_j(0)|^2$ if $\lambda_j(0)$ is simple, otherwise they are ev's of $C := \left(\overline{\varphi_i(0)}\varphi_j(0)\right)$ corresponding to a degenerate eigenvalue

Theorem [E.-Yoshitomi, 2003]: Under the assumptions made about the family $\{S_{\varepsilon}\}$, we have

 $\lambda_j(\varepsilon) = \lambda_j(0) + \alpha s_j m_{\Gamma}(S_{\varepsilon}) + o(\varepsilon^{n-1}) \quad \text{as} \quad \varepsilon \to 0$

Formally a small-hole perturbation acts as a repulsive δ interaction with the coupling $\alpha m_{\Gamma}(S_{\varepsilon})$

- Formally a small-hole perturbation acts as a repulsive δ interaction with the coupling $\alpha m_{\Gamma}(S_{\varepsilon})$
- **•** No self-similarity of S_{ε} required

- Formally a small-hole perturbation acts as a *repulsive* δ *interaction* with the coupling $\alpha m_{\Gamma}(S_{\varepsilon})$
- No self-similarity of S_{ε} required
- If n = 2, i.e. Γ is a curve, $m_{\Gamma}(S_{\varepsilon})$ is the length of the hiatus. In this case the same asymptotic formula holds for bound states of an infinite curved Γ

- Formally a small-hole perturbation acts as a *repulsive* δ *interaction* with the coupling $\alpha m_{\Gamma}(S_{\varepsilon})$
- No self-similarity of S_{ε} required
- If n = 2, i.e. Γ is a curve, $m_{\Gamma}(S_{\varepsilon})$ is the length of the hiatus. In this case the same asymptotic formula holds for bound states of an infinite curved Γ
- ▲ Asymptotic perturbation theory for quadratic forms does not apply, because $C_0^{\infty}(\mathbb{R}^n) \ni u \mapsto |u(0)|^2 \in \mathbb{R}$ does not extend to a bounded form in $W^{1,2}(\mathbb{R}^n)$

Take an eigenvalue $\mu \equiv \lambda_j(0)$ of multiplicity m. It splits in general, for small enough ε one has m eigenvalues inside $\mathcal{C} := \{z : |z - \mu| < \frac{3}{4}\kappa\}$, where $\kappa := \frac{1}{2} \text{dist} (\{\mu\}, \sigma(H_0) \setminus \{\mu\})$

Take an eigenvalue $\mu \equiv \lambda_j(0)$ of multiplicity m. It splits in general, for small enough ε one has m eigenvalues inside $\mathcal{C} := \{z : |z - \mu| < \frac{3}{4}\kappa\}$, where $\kappa := \frac{1}{2} \text{dist}(\{\mu\}, \sigma(H_0) \setminus \{\mu\})$

Set $w_k(\zeta, \varepsilon) := (H_{\varepsilon} - \zeta)^{-1} \varphi_k - (H_0 - \zeta)^{-1} \varphi_k$ for $\zeta \in C$ and $k = j, j + 1, \dots, j + m - 1$. Using the choice of C and Sobolev imbedding thm, one proves

 $||w_k(\zeta,\varepsilon)||_{W^{1,2}(\mathbb{R}^n)} = \mathcal{O}(\varepsilon^{(n-1)/2}) \text{ as } \varepsilon \to 0$

Take an eigenvalue $\mu \equiv \lambda_j(0)$ of multiplicity m. It splits in general, for small enough ε one has m eigenvalues inside $\mathcal{C} := \{z : |z - \mu| < \frac{3}{4}\kappa\}$, where $\kappa := \frac{1}{2} \text{dist}(\{\mu\}, \sigma(H_0) \setminus \{\mu\})$

Set $w_k(\zeta, \varepsilon) := (H_{\varepsilon} - \zeta)^{-1} \varphi_k - (H_0 - \zeta)^{-1} \varphi_k$ for $\zeta \in C$ and $k = j, j + 1, \dots, j + m - 1$. Using the choice of C and Sobolev imbedding thm, one proves

 $||w_k(\zeta,\varepsilon)||_{W^{1,2}(\mathbb{R}^n)} = \mathcal{O}(\varepsilon^{(n-1)/2}) \text{ as } \varepsilon \to 0$

Next, $W^{1,2}(\mathbb{R}^n) \ni f \mapsto f|_{\Gamma} \in L^2(\Gamma)$ is compact; it implies

 $\sup_{\zeta \in \mathcal{C}} \|w_k(\zeta, \varepsilon)\|_{W^{1,2}(\mathbb{R}^n)} = o(\varepsilon^{(n-1)/2}) \quad \text{as} \quad \varepsilon \to 0$

Let P_{ε} be spectral projection to these eigenvalues,

$$P_{\varepsilon}\varphi_{k} - \varphi_{k} = \frac{1}{2\pi i} \oint_{\mathcal{C}} w_{k}(\zeta, \varepsilon) \, d\zeta = o(\varepsilon^{(n-1)/2})$$

in $W^{1,2}(\mathbb{R}^n)$ as $\varepsilon \to 0$

Let P_{ε} be spectral projection to these eigenvalues,

$$P_{\varepsilon}\varphi_{k} - \varphi_{k} = \frac{1}{2\pi i} \oint_{\mathcal{C}} w_{k}(\zeta, \varepsilon) \, d\zeta = o(\varepsilon^{(n-1)/2})$$

in $W^{1,2}(\mathbb{R}^n)$ as $\varepsilon \to 0$

Take $m \times m$ matrices $L(\varepsilon) := ((H_{\varepsilon}P_{\varepsilon}\varphi_i, P_{\varepsilon}\varphi_k))$ and $M(\varepsilon) := ((P_{\varepsilon}\varphi_i, P_{\varepsilon}\varphi_k))$. We find that

 $((H_{\varepsilon}P_{\varepsilon}\varphi_i, P_{\varepsilon}\varphi_k)) - \mu\delta_{ik} - \alpha\overline{\varphi_i(0)}\varphi_k(0)m_{\Gamma}(S_{\varepsilon})$

is $o(\varepsilon^{n-1})$ and $(P_{\varepsilon}\varphi_i, P_{\varepsilon}\varphi_k) = \delta_{ik} + o(\varepsilon^{n-1})$

Let P_{ε} be spectral projection to these eigenvalues,

$$P_{\varepsilon}\varphi_{k} - \varphi_{k} = \frac{1}{2\pi i} \oint_{\mathcal{C}} w_{k}(\zeta, \varepsilon) \, d\zeta = o(\varepsilon^{(n-1)/2})$$

in $W^{1,2}(\mathbb{R}^n)$ as $\varepsilon \to 0$

Take $m \times m$ matrices $L(\varepsilon) := ((H_{\varepsilon}P_{\varepsilon}\varphi_i, P_{\varepsilon}\varphi_k))$ and $M(\varepsilon) := ((P_{\varepsilon}\varphi_i, P_{\varepsilon}\varphi_k))$. We find that

 $\left(\left(H_{\varepsilon}P_{\varepsilon}\varphi_{i}, P_{\varepsilon}\varphi_{k}\right)\right) - \mu\delta_{ik} - \alpha\overline{\varphi_{i}(0)}\varphi_{k}(0)m_{\Gamma}(S_{\varepsilon})$

is $o(\varepsilon^{n-1})$ and $(P_{\varepsilon}\varphi_i, P_{\varepsilon}\varphi_k) = \delta_{ik} + o(\varepsilon^{n-1})$. Then

 $L(\varepsilon)M(\varepsilon)^{-1} = \mu I + \alpha Cm_{\Gamma}(S_{\varepsilon}) + o(\varepsilon^{n-1})$

and the claim of the theorem follows

Illustration: a ring with $\frac{\pi}{20}$ **cut**

Let Γ have a single component, smooth and compact **Theorem** [EY01, 02; EK03, Ex04]: *(i)* Let Γ be a C^4 smooth manifold. In the limit $(-1)^{\operatorname{codim}\Gamma-1}\alpha \to \infty$ we have

$$#\sigma_{\text{disc}}(H_{\alpha,\Gamma}) = \frac{|\Gamma|\alpha}{2\pi} + \mathcal{O}(\ln \alpha)$$

for dim $\Gamma = 1$, codim $\Gamma = 1$,

Let Γ have a single component, smooth and compact **Theorem** [EY01, 02; EK03, Ex04]: *(i)* Let Γ be a C^4 smooth manifold. In the limit $(-1)^{\operatorname{codim} \Gamma - 1} \alpha \to \infty$ we have

$$\#\sigma_{\mathrm{disc}}(H_{\alpha,\Gamma}) = \frac{|\Gamma|\alpha}{2\pi} + \mathcal{O}(\ln \alpha)$$

for dim $\Gamma = 1$, codim $\Gamma = 1$,

$$\#\sigma_{\rm disc}(H_{\alpha,\Gamma}(h)) = \frac{|\Gamma|\alpha^2}{16\pi^2} + \mathcal{O}(\ln\alpha)$$

for dim $\Gamma = 2$, codim $\Gamma = 1$, and

Let Γ have a single component, smooth and compact **Theorem** [EY01, 02; EK03, Ex04]: *(i)* Let Γ be a C^4 smooth manifold. In the limit $(-1)^{\operatorname{codim} \Gamma - 1} \alpha \to \infty$ we have

$$\#\sigma_{\operatorname{disc}}(H_{\alpha,\Gamma}) = \frac{|\Gamma|\alpha}{2\pi} + \mathcal{O}(\ln \alpha)$$

for dim $\Gamma = 1$, codim $\Gamma = 1$,

$$\#\sigma_{\rm disc}(H_{\alpha,\Gamma}(h)) = \frac{|\Gamma|\alpha^2}{16\pi^2} + \mathcal{O}(\ln\alpha)$$

for dim $\Gamma = 2$, codim $\Gamma = 1$, and $\#\sigma_{\text{disc}}(H_{\alpha,\Gamma}) = \frac{|\Gamma|(-\epsilon_{\alpha})^{1/2}}{-} + \mathcal{O}(e^{-\pi\alpha})$

for dim $\Gamma = 1$, codim $\Gamma = 2$. Here $|\Gamma|$ is the curve length or surface area, respectively, and $\epsilon_{\alpha} = -4 e^{2(-2\pi\alpha + \psi(1))}$

Theorem, continued: *(ii)* In addition, suppose that Γ has *no* boundary. Then the *j*-th eigenvalue of $H_{\alpha,\Gamma}$ behaves as

$$\lambda_j(\alpha) = -\frac{\alpha^2}{4} + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$

for $\operatorname{codim} \Gamma = 1$ and

$$\lambda_j(\alpha) = \epsilon_\alpha + \mu_j + \mathcal{O}(\mathrm{e}^{\pi\alpha})$$

for $\operatorname{codim} \Gamma = 2$,

Theorem, continued: *(ii)* In addition, suppose that Γ has *no* boundary. Then the *j*-th eigenvalue of $H_{\alpha,\Gamma}$ behaves as

$$\lambda_j(\alpha) = -\frac{\alpha^2}{4} + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$

for $\operatorname{codim} \Gamma = 1$ and

$$\lambda_j(\alpha) = \epsilon_\alpha + \mu_j + \mathcal{O}(e^{\pi\alpha})$$

for $\operatorname{codim} \Gamma = 2$, where μ_j is the *j*-th eigenvalue of

$$S_{\Gamma} = -\frac{\mathrm{d}}{\mathrm{d}s^2} - \frac{1}{4}k(s)^2$$

on $L^2((0, |\Gamma|))$ for dim $\Gamma = 1$, where k is *curvature* of Γ , and $S_{\Gamma} = -\Delta_{\Gamma} + K - M^2$

on $L^2(\Gamma, d\Gamma)$ for dim $\Gamma = 2$, where $-\Delta_{\Gamma}$ is Laplace-Beltrami operator on Γ and K, M, respectively, are the corresponding *Gauss* and *mean* curvatures

Proof technique

Consider first the 1 + 1 case. Take a closed curve Γ and call $L = |\Gamma|$. We start from a *tubular neighborhood* of Γ

Proof technique

Consider first the 1 + 1 case. Take a closed curve Γ and call $L = |\Gamma|$. We start from a *tubular neighborhood* of Γ

Lemma: Φ_a : $[0, L) \times (-a, a) \rightarrow \mathbb{R}^2$ defined by

 $(s,u)\mapsto (\gamma_1(s)-u\gamma_2'(s),\gamma_2(s)+u\gamma_1'(s)).$

is a diffeomorphism for all a > 0 small enough

constant-width strip, do not take the LaTeX drawing too literary!

DN bracketing

The idea is to apply to the operator $H_{\alpha,\Gamma}$ in question *Dirichlet-Neumann bracketing* at the boundary of $\Sigma_a := \Phi([0, L) \times (-a, a))$. This yields

$$(-\Delta_{\Lambda_a}^{\mathrm{N}}) \oplus L_{a,\alpha}^{-} \leq H_{\alpha,\Gamma} \leq (-\Delta_{\Lambda_a}^{\mathrm{D}}) \oplus L_{a,\alpha}^{+},$$

where $\Lambda_a = \Lambda_a^{\text{in}} \cup \Lambda_a^{\text{out}}$ is the exterior domain, and $L_{a,\alpha}^{\pm}$ are self-adjoint operators associated with the forms

$$q_{a,\alpha}^{\pm}[f] = \|\nabla f\|_{L^2(\Sigma_a)}^2 - \alpha \int_{\Gamma} |f(x)|^2 \,\mathrm{d}S$$

where $f \in W_0^{1,2}(\Sigma_a)$ and $W^{1,2}(\Sigma_a)$ for \pm , respectively

DN bracketing

The idea is to apply to the operator $H_{\alpha,\Gamma}$ in question *Dirichlet-Neumann bracketing* at the boundary of $\Sigma_a := \Phi([0, L) \times (-a, a))$. This yields

$$(-\Delta_{\Lambda_a}^{\mathrm{N}}) \oplus L_{a,\alpha}^{-} \leq H_{\alpha,\Gamma} \leq (-\Delta_{\Lambda_a}^{\mathrm{D}}) \oplus L_{a,\alpha}^{+},$$

where $\Lambda_a = \Lambda_a^{\text{in}} \cup \Lambda_a^{\text{out}}$ is the exterior domain, and $L_{a,\alpha}^{\pm}$ are self-adjoint operators associated with the forms

$$q_{a,\alpha}^{\pm}[f] = \|\nabla f\|_{L^2(\Sigma_a)}^2 - \alpha \int_{\Gamma} |f(x)|^2 \,\mathrm{d}S$$

where $f \in W_0^{1,2}(\Sigma_a)$ and $W^{1,2}(\Sigma_a)$ for \pm , respectively *Important*: The exterior part does not contribute to the negative spectrum, so we may consider $L_{a,\alpha}^{\pm}$ only

Transformed interior operator

We use the curvilinear coordinates passing from $L_{a,\alpha}^{\pm}$ to unitarily equivalent operators given by quadratic forms

$$b_{a,\alpha}^{+}[f] = \int_{0}^{L} \int_{-a}^{a} (1+uk(s))^{-2} \left| \frac{\partial f}{\partial s} \right|^{2} du ds + \int_{0}^{L} \int_{-a}^{a} \left| \frac{\partial f}{\partial u} \right|^{2} du ds + \int_{0}^{L} \int_{-a}^{a} \left| \frac{\partial f}{\partial u} \right|^{2} du ds$$
$$+ \int_{0}^{L} \int_{-a}^{a} V(s,u) |f|^{2} ds du - \alpha \int_{0}^{L} |f(s,0)|^{2} ds$$

with $f \in W^{1,2}((0,L) \times (-a,a))$ satisfying periodic b.c. in the variable s and Dirichlet b.c. at $u = \pm a$, and

$$b_{a,\alpha}^{-}[f] = b_{a,\alpha}^{+}[f] - \sum_{j=0}^{1} \frac{1}{2} (-1)^{j} \int_{0}^{L} \frac{k(s)}{1 + (-1)^{j} a k(s)} |f(s,(-1)^{j}a)|^{2} ds$$

where V is the curvature induced potential,

$$V(s,u) = -\frac{k(s)^2}{4(1+uk(s))^2} + \frac{uk''(s)}{2(1+uk(s))^3} - \frac{5u^2k'(s)^2}{4(1+uk(s))^4}$$

Estimates with separated variables

We pass to rougher bounds squeezing $H_{\alpha,\Gamma}$ between $\tilde{H}_{a,\alpha}^{\pm} = U_a^{\pm} \otimes 1 + 1 \otimes T_{a,\alpha}^{\pm}$

Estimates with separated variables

We pass to rougher bounds squeezing $H_{\alpha,\Gamma}$ between $\tilde{H}_{a,\alpha}^{\pm} = U_a^{\pm} \otimes 1 + 1 \otimes T_{a,\alpha}^{\pm}$

Here U_a^{\pm} are s-a operators on $L^2(0, L)$ $U_a^{\pm} = -(1 \mp a ||k||_{\infty})^{-2} \frac{\mathrm{d}^2}{\mathrm{d}s^2} + V_{\pm}(s)$

with PBC, where $V_{-}(s) \leq V(s, u) \leq V_{+}(s)$ with an $\mathcal{O}(a)$ error, and the transverse operators are associated with the forms

$$t_{a,\alpha}^{+}[f] = \int_{-a}^{a} |f'(u)|^2 \,\mathrm{d}u - \alpha |f(0)|^2$$

and

$$t_{a,\alpha}^{-}[f] = t_{a,\alpha}^{-}[f] - ||k||_{\infty}(|f(a)|^{2} + |f(-a)|^{2})$$

with $f \in W_0^{1,2}(-a,a)$ and $W^{1,2}(-a,a)$, respectively

Concluding the planar curve case

Lemma: There are positive c, c_N such that $T_{\alpha,a}^{\pm}$ has for α large enough a single negative eigenvalue $\kappa_{\alpha,a}^{\pm}$ satisfying

$$-\frac{\alpha^2}{4} \left(1 + c_N e^{-\alpha a/2} \right) < \kappa_{\alpha,a}^- < -\frac{\alpha^2}{4} < \kappa_{\alpha,a}^+ < -\frac{\alpha^2}{4} \left(1 - 8e^{-\alpha a/2} \right)$$

Concluding the planar curve case

Lemma: There are positive c, c_N such that $T_{\alpha,a}^{\pm}$ has for α large enough a single negative eigenvalue $\kappa_{\alpha,a}^{\pm}$ satisfying

$$-\frac{\alpha^2}{4} \left(1 + c_N e^{-\alpha a/2} \right) < \kappa_{\alpha,a}^- < -\frac{\alpha^2}{4} < \kappa_{\alpha,a}^+ < -\frac{\alpha^2}{4} \left(1 - 8e^{-\alpha a/2} \right)$$

Finishing the proof:

- the eigenvalues of U_a^{\pm} differ by $\mathcal{O}(a)$ from those of the comparison operator
- we choose $a = 6\alpha^{-1} \ln \alpha$ as the neighbourhood width
- putting the estimates together we get the eigenvalue asymptotics for a planar loop, i.e. the claim (ii)
- if Γ is not closed, the same can be done with the comparison operators $S_{\Gamma}^{D,N}$ having appropriate b.c. at the endpoints of Γ . This yields the claim *(i)*

The argument is similar:

The *"straightening" transformation* Φ_a is defined by

 $\Phi_a(s, r, \theta) := \gamma(s) - r[n(s)\cos(\theta - \beta(s)) + b(s)\sin(\theta - \beta(s))]$

To separate variables, we choose β so that $\dot{\beta}(s)$ equals the torsion $\tau(s)$ of Γ . The *effective potential* is then

$$V = -\frac{k^2}{4h^2} + \frac{h_{ss}}{2h^3} - \frac{5h_s^2}{4h^4},$$

where $h := 1 + rk \cos(\theta - \beta)$. It is important that the *leading term is* $-\frac{1}{4}k^2$ *again*, the torsion part being O(a)

A curve in \mathbb{R}^3

The transverse estimate is replaced by

Lemma: There are c_1 , $c_2 > 0$ such that T^{\pm}_{α} has for large enough negative α a single negative ev $\kappa^{\pm}_{\alpha,a}$ which satisfies

$$\epsilon_{\alpha} - S(\alpha) < \kappa_{\alpha,a}^{-} < \xi_{\alpha} < \kappa_{\alpha,a}^{+} < \xi_{\alpha} + S(\alpha)$$

as $\alpha \to -\infty$, where $S(\alpha) = c_1 e^{-2\pi\alpha} \exp(-c_2 e^{-\pi\alpha})$

The rest of the argument is the same as above

A curve in \mathbb{R}^3

The transverse estimate is replaced by

Lemma: There are c_1 , $c_2 > 0$ such that T_{α}^{\pm} has for large enough negative α a single negative ev $\kappa_{\alpha,a}^{\pm}$ which satisfies

 $\epsilon_{\alpha} - S(\alpha) < \kappa_{\alpha,a}^{-} < \xi_{\alpha} < \kappa_{\alpha,a}^{+} < \xi_{\alpha} + S(\alpha)$

as $\alpha \to -\infty$, where $S(\alpha) = c_1 e^{-2\pi\alpha} \exp(-c_2 e^{-\pi\alpha})$

The rest of the argument is the same as above

Remark: Notice that the result extends easily to Γ 's consisting of a *finite number of connected components* (curves) which are C^4 and do not intersect. The same will be true for surfaces considered below

A surface in \mathbb{R}^3

The argument modifies easily; Σ_a is now a *layer neighborhood*. However, the intrinsic geometry of Γ can no longer be neglected

A surface in \mathbb{R}^3

The argument modifies easily; Σ_a is now a *layer neighborhood*. However, the intrinsic geometry of Γ can no longer be neglected

Let $\Gamma \subset \mathbb{R}^3$ be a C^4 smooth compact Riemann surface of a finite genus g. The metric tensor given in the local coordinates by $g_{\mu\nu} = p_{,\mu} \cdot p_{,\nu}$ defines the invariant surface area element $d\Gamma := g^{1/2}d^2s$, where $g := \det(g_{\mu\nu})$.

The Weingarten tensor is then obtained by raising the index in the second fundamental form, $h_{\mu}{}^{\nu} := -n_{,\mu} \cdot p_{,\sigma} g^{\sigma\nu}$; the eigenvalues k_{\pm} of $(h_{\mu}{}^{\nu})$ are the principal curvatures. They determine *Gauss curvature* K and *mean curvature* M by

$$K = \det(h_{\mu}{}^{\nu}) = k_{+}k_{-}, \ M = \frac{1}{2}\operatorname{Tr}(h_{\mu}{}^{\nu}) = \frac{1}{2}(k_{+}+k_{-})$$

Proof sketch in the surface case

The bracketing argument proceeds as before,

$$-\Delta_{\Lambda_a}^N \oplus H_{\alpha,\Gamma}^- \leq H_{\alpha,\Gamma} \leq -\Delta_{\Lambda_a}^D \oplus H_{\alpha,\Gamma}^+, \ \Lambda_a := \mathbb{R}^3 \setminus \overline{\Sigma}_a,$$

the interior only contributing to the negative spectrum

Proof sketch in the surface case

The bracketing argument proceeds as before,

$$-\Delta_{\Lambda_a}^N \oplus H_{\alpha,\Gamma}^- \le H_{\alpha,\Gamma} \le -\Delta_{\Lambda_a}^D \oplus H_{\alpha,\Gamma}^+, \ \Lambda_a := \mathbb{R}^3 \setminus \overline{\Sigma}_a,$$

the interior only contributing to the negative spectrum Using the curvilinear coordinates: For small enough a we have the "straightening" diffeomorphism

 $\mathcal{L}_a(x,u) = x + un(x), \quad (x,u) \in \mathcal{N}_a := \Gamma \times (-a,a)$

Then we transform $H_{\alpha,\Gamma}^{\pm}$ by the unitary operator

$$\hat{U}\psi = \psi \circ \mathcal{L}_a : L^2(\Omega_a) \to L^2(\mathcal{N}_a, \mathrm{d}\Omega)$$

and estimate the operators $\hat{H}_{\alpha,\Gamma}^{\pm} := \hat{U} H_{\alpha,\Gamma}^{\pm} \hat{U}^{-1}$ in $L^2(\mathcal{N}_a, \mathrm{d}\Omega)$

Straightening transformation

Denote the pull-back metric tensor by G_{ij} ,

$$G_{ij} = \begin{pmatrix} (G_{\mu\nu}) & 0\\ 0 & 1 \end{pmatrix}, \ G_{\mu\nu} = (\delta^{\sigma}_{\mu} - uh_{\mu}{}^{\sigma})(\delta^{\rho}_{\sigma} - uh_{\sigma}{}^{\rho})g_{\rho\nu},$$

so $d\Sigma := G^{1/2} d^2 s \, du$ with $G := \det(G_{ij})$ given by $G = g \left[(1 - uk_+)(1 - uk_-) \right]^2 = g (1 - 2Mu + Ku^2)^2$

Straightening transformation

Denote the pull-back metric tensor by G_{ij} ,

$$G_{ij} = \begin{pmatrix} (G_{\mu\nu}) & 0\\ 0 & 1 \end{pmatrix}, \ G_{\mu\nu} = (\delta^{\sigma}_{\mu} - uh_{\mu}{}^{\sigma})(\delta^{\rho}_{\sigma} - uh_{\sigma}{}^{\rho})g_{\rho\nu},$$

so $d\Sigma := G^{1/2} d^2 s \, du$ with $G := \det(G_{ij})$ given by $G = g \left[(1 - uk_+)(1 - uk_-) \right]^2 = g (1 - 2Mu + Ku^2)^2$

Let $(\cdot, \cdot)_G$ denote the inner product in $L^2(\mathcal{N}_a, d\Omega)$. Then $\hat{H}_{\alpha,\Gamma}^{\pm}$ are associated with the forms

$$\eta_{\alpha,\Gamma}^{\pm}[\hat{U}^{-1}\psi] := (\partial_i\psi, G^{ij}\partial_j\psi)_G - \alpha \int_{\Gamma} |\psi(s,0)|^2 \,\mathrm{d}\Gamma \,,$$

with the domains $W_0^{1,2}(\mathcal{N}_a, \mathrm{d}\Omega)$ and $W^{1,2}(\mathcal{N}_a, \mathrm{d}\Omega)$ for the \pm sign, respectively

Straightening continued

Next we remove $1 - 2Mu + Ku^2$ from the weight $G^{1/2}$ in the inner product of $L^2(\mathcal{N}_a, d\Omega)$ by the unitary transformation $U: L^2(\mathcal{N}_a, d\Omega) \to L^2(\mathcal{N}_a, d\Gamma du)$,

 $U\psi := (1 - 2Mu + Ku^2)^{1/2}\psi$

Straightening continued

Next we remove $1 - 2Mu + Ku^2$ from the weight $G^{1/2}$ in the inner product of $L^2(\mathcal{N}_a, d\Omega)$ by the unitary transformation $U: L^2(\mathcal{N}_a, d\Omega) \to L^2(\mathcal{N}_a, d\Gamma du)$,

 $U\psi := (1 - 2Mu + Ku^2)^{1/2}\psi$

Denote the inner product in $L^2(\mathcal{N}_a, \mathrm{d}\Gamma du)$ by $(\cdot, \cdot)_g$. The operators $B^{\pm}_{\alpha,\Gamma} := U\hat{H}^{\pm}_{\alpha,\Gamma}U^{-1}$ are associated with the forms

$$b_{\alpha,\Gamma}^{+}[\psi] = (\partial_{\mu}\psi, G^{\mu\nu}\partial_{\nu}\psi)_{g} + (\psi, (V_{1}+V_{2})\psi)_{g} + \|\partial_{u}\psi\|_{g}^{2} - \alpha \int_{\Gamma} |\psi(s,0)|^{2} d\Gamma,$$

$$b_{\alpha,\Gamma}^{-}[\psi] = b_{\alpha,\Gamma}^{+}[\psi] + \sum_{j=0}^{1} (-1)^{j} \int_{\Gamma} M_{(-1)^{j}a}(s) |\psi(s,(-1)^{j}a)|^{2} d\Gamma$$

for ψ from $W_0^{2,1}(\Omega_a, d\Gamma du)$ and $W^{2,1}(\Omega_a, d\Gamma du)$, respectively

Effective potential

Here $M_u := (M - Ku)(1 - 2Mu + Ku^2)^{-1}$ is the mean curvature of the parallel surface to Γ and

 $V_1 = g^{-1/2} (g^{1/2} G^{\mu\nu} J_{,\nu})_{,\mu} + J_{,\mu} G^{\mu\nu} J_{,\nu} , \quad V_2 = \frac{K - M^2}{(1 - 2Mu + Ku^2)^2}$ with $J := \frac{1}{2} \ln(1 - 2Mu + Ku^2)$

Effective potential

Here $M_u := (M - Ku)(1 - 2Mu + Ku^2)^{-1}$ is the mean curvature of the parallel surface to Γ and

 $V_1 = g^{-1/2} (g^{1/2} G^{\mu\nu} J_{,\nu})_{,\mu} + J_{,\mu} G^{\mu\nu} J_{,\nu} , \quad V_2 = \frac{K - M^2}{(1 - 2Mu + Ku^2)^2}$ with $J := \frac{1}{2} \ln(1 - 2Mu + Ku^2)$

A rougher estimate with separated variables: squeeze $1 - 2Mu + Ku^2$ between $C_{\pm}(a) := (1 \pm a\varrho^{-1})^2$, where $\varrho := \max(\{\|k_+\|_{\infty}, \|k_-\|_{\infty}\})^{-1}$. Consequently, the matrix inequality $C_{-}(a)g_{\mu\nu} \leq G_{\mu\nu} \leq C_{+}(a)g_{\mu\nu}$ is valid

Effective potential

Here $M_u := (M - Ku)(1 - 2Mu + Ku^2)^{-1}$ is the mean curvature of the parallel surface to Γ and

 $V_1 = g^{-1/2} (g^{1/2} G^{\mu\nu} J_{,\nu})_{,\mu} + J_{,\mu} G^{\mu\nu} J_{,\nu} , \quad V_2 = \frac{K - M^2}{(1 - 2Mu + Ku^2)^2}$ with $J := \frac{1}{2} \ln(1 - 2Mu + Ku^2)$

A rougher estimate with separated variables: squeeze $1 - 2Mu + Ku^2$ between $C_{\pm}(a) := (1 \pm a\varrho^{-1})^2$, where $\varrho := \max(\{\|k_+\|_{\infty}, \|k_-\|_{\infty}\})^{-1}$. Consequently, the matrix inequality $C_{-}(a)g_{\mu\nu} \leq G_{\mu\nu} \leq C_{+}(a)g_{\mu\nu}$ is valid

 V_1 behaves as $\mathcal{O}(a)$ for $a \to 0$, while V_2 can be squeezed between the functions $C_{\pm}^{-2}(a)(K - M^2)$, both uniformly in the surface variables

Concluding the estimate

Hence we estimate $B_{\alpha,\Gamma}^{\pm}$ by $\tilde{B}_{\alpha,a}^{\pm} := S_a^{\pm} \otimes I + I \otimes T_{\alpha,a}^{\pm}$ with $S_a^{\pm} := -C_{\pm}(a)\Delta_{\Gamma} + C_{\pm}^{-2}(a)(K - M^2) \pm va$ in the space $L^2(\Gamma, d\Gamma) \otimes L^2(-a, a)$ for a v > 0, where $T_{\alpha,a}^{\pm}$ are the same as in the 1 + 1 case (the same lemma applies)

Concluding the estimate

Hence we estimate $B_{\alpha,\Gamma}^{\pm}$ by

$$\tilde{B}_{\alpha,a}^{\pm} := S_a^{\pm} \otimes I + I \otimes T_{\alpha,a}^{\pm}$$

with $S_a^{\pm} := -C_{\pm}(a)\Delta_{\Gamma} + C_{\pm}^{-2}(a)(K - M^2) \pm va$ in the space $L^2(\Gamma, d\Gamma) \otimes L^2(-a, a)$ for a v > 0, where $T_{\alpha, a}^{\pm}$ are the same as in the 1 + 1 case (the same lemma applies)

As above the eigenvalues of the operators S_a^{\pm} coincide up to an $\mathcal{O}(a)$ error with those of S_{Γ} , and therefore choosing $a := 6\alpha^{-1} \ln \alpha$, we find

$$\lambda_j(\alpha) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$

as $a \rightarrow 0$ which is equivalent to the claim (i)

Concluding the estimate

Hence we estimate $B_{\alpha,\Gamma}^{\pm}$ by

$$\tilde{B}_{\alpha,a}^{\pm} := S_a^{\pm} \otimes I + I \otimes T_{\alpha,a}^{\pm}$$

with $S_a^{\pm} := -C_{\pm}(a)\Delta_{\Gamma} + C_{\pm}^{-2}(a)(K - M^2) \pm va$ in the space $L^2(\Gamma, d\Gamma) \otimes L^2(-a, a)$ for a v > 0, where $T_{\alpha, a}^{\pm}$ are the same as in the 1 + 1 case (the same lemma applies)

As above the eigenvalues of the operators S_a^{\pm} coincide up to an $\mathcal{O}(a)$ error with those of S_{Γ} , and therefore choosing $a := 6\alpha^{-1} \ln \alpha$, we find

$$\lambda_j(\alpha) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha)$$

as $a \rightarrow 0$ which is equivalent to the claim (i)

To get *(ii)* we employ Weyl asymptotics for S_{Γ} . Extension to Γ 's having a finite # of connected components is easy

Bound states may exist also if Γ is *noncompact*. The comparison operator S_{Γ} has an attractive potential, so $\sigma_{\text{disc}}(H_{\alpha,\Gamma}) \neq \emptyset$ can be expected in the strong coupling regime, *even if a direct proof is missing* as for surfaces

Bound states may exist also if Γ is *noncompact*. The comparison operator S_{Γ} has an attractive potential, so $\sigma_{\text{disc}}(H_{\alpha,\Gamma}) \neq \emptyset$ can be expected in the strong coupling regime, *even if a direct proof is missing* as for surfaces

It is needed that σ_{ess} does not feel curvature, not only for $H_{\alpha,\Gamma}$ but for the estimating operators as well. *Sufficient conditions:*

- k(s), k'(s) and $k''(s)^{1/2}$ are $\mathcal{O}(|s|^{-1-\varepsilon})$ as $|s| \to \infty$ for a planar curve
- in addition, the torsion bounded for a curve in \mathbb{R}^3
- a surface Γ admits a global normal parametrization with a uniformly elliptic metric, $K, M \to 0$ as the geodesic radius $r \to \infty$

We must also *assume* that there is a tubular neighborhood Σ_a without self-intersections for small a, i.e. to avoid

We must also *assume* that there is a tubular neighborhood Σ_a without self-intersections for small a, i.e. to avoid

Theorem [EY02; EK03, Ex04]: With the above listed assumptions, the asymptotic expansions *(ii)* for the eigenvalues derived in the compact case hold again

Periodic manifolds

One uses Floquet expansion. It is important to choose the periodic cells C of the space and Γ_C of the manifold consistently, $\Gamma_C = \Gamma \cap C$; we assume that Γ_C is *connected*

Periodic manifolds

One uses Floquet expansion. It is important to choose the periodic cells C of the space and Γ_C of the manifold consistently, $\Gamma_C = \Gamma \cap C$; we assume that Γ_C is *connected*

Lemma: \exists unitary $\mathcal{U} : L^2(\mathbb{R}^3) \to \int_{[0,2\pi)^r}^{\oplus} L^2(\mathcal{C}) d\theta$ s.t.

 $\mathcal{U}H_{\alpha,\Gamma}\mathcal{U}^{-1} = \int_{[0,2\pi)^r}^{\oplus} H_{\alpha,\theta} \,\mathrm{d}\theta \quad \text{and} \quad \sigma(H_{\alpha,\Gamma}) = \bigcup_{[0,2\pi)^r} \sigma(H_{\alpha,\theta})$

Comparison operators

The fibre comparison operators are

$$S_{\theta} = -\frac{\mathrm{d}}{\mathrm{d}s^2} - \frac{1}{4}k(s)^2$$

on $L^2(\Gamma_{\mathcal{C}})$ parameterized by arc length for $\dim \Gamma = 1$, with Floquet b.c., and

 $S_{\theta} = g^{-1/2} (-i\partial_{\mu} + \theta_{\mu}) g^{1/2} g^{\mu\nu} (-i\partial_{\nu} + \theta_{\nu}) + K - M^2$

with periodic b.c. for dim $\Gamma = 2$, where θ_{μ} , $\mu = 1, ..., r$, are *quasimomentum components*; recall that r = 1, 2, 3 depending on the manifold type

Periodic manifold asymptotics

Theorem [EY01; EK03, Ex04]: Let Γ be a C^4 -smooth r-periodic manifold without boundary. The strong coupling asymptotic behavior of the j-th Floquet eigenvalue is

$$\lambda_j(\alpha, \theta) = -\frac{1}{4}\alpha^2 + \mu_j(\theta) + \mathcal{O}(\alpha^{-1}\ln\alpha) \quad \text{as} \quad \alpha \to \infty$$

for $\operatorname{codim} \Gamma = 1$ and

$$\lambda_j(\alpha, \theta) = \epsilon_\alpha + \mu_j(\theta) + \mathcal{O}(e^{\pi \alpha}) \quad \text{as} \quad \alpha \to -\infty$$

for $\operatorname{codim} \Gamma = 2$. The error terms are uniform w.r.t. θ

Periodic manifold asymptotics

Theorem [EY01; EK03, Ex04]: Let Γ be a C^4 -smooth r-periodic manifold without boundary. The strong coupling asymptotic behavior of the j-th Floquet eigenvalue is

$$\lambda_j(\alpha, \theta) = -\frac{1}{4}\alpha^2 + \mu_j(\theta) + \mathcal{O}(\alpha^{-1}\ln\alpha) \quad \text{as} \quad \alpha \to \infty$$

for $\operatorname{codim} \Gamma = 1$ and

$$\lambda_j(\alpha, \theta) = \epsilon_\alpha + \mu_j(\theta) + \mathcal{O}(e^{\pi \alpha}) \quad \text{as} \quad \alpha \to -\infty$$

for $\operatorname{codim} \Gamma = 2$. The error terms are uniform w.r.t. θ

Corollary: If dim $\Gamma = 1$ and coupling is strong enough, $H_{\alpha,\Gamma}$ has open spectral gaps

Large gaps in the disconnected case

If Γ is not connected and each connected component is contained in a translate of Γ_c , the comparison operator is independent of θ and asymptotic formula reads

$$\lambda_j(\alpha, \theta) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha) \quad \text{as} \quad \alpha \to \infty$$

for $\operatorname{codim} \Gamma = 1$ and similarly for for $\operatorname{codim} \Gamma = 2$

Large gaps in the disconnected case

If Γ is not connected and each connected component is contained in a translate of Γ_c , the comparison operator is independent of θ and asymptotic formula reads

$$\lambda_j(\alpha, \theta) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha) \quad \text{as} \quad \alpha \to \infty$$

for $\operatorname{codim} \Gamma = 1$ and similarly for for $\operatorname{codim} \Gamma = 2$ Moreover, the assumptions can be weakened

Soft graphs with magnetic field

Add a homogeneous magnetic field with the vector potential $A = \frac{1}{2}B(-x_2, x_1)$. We ask about existence of *persistent currents*, i.e. nonzero probability flux along a closed loop

$$\frac{\partial \lambda_n(\phi)}{\partial \phi} = -\frac{1}{c} I_n \,,$$

where $\lambda_n(\phi)$ is the *n*-th eigenvalue of the Hamiltonian

$$H_{\alpha,\Gamma}(B) := (-i\nabla - A)^2 - \alpha\delta(x - \Gamma)$$

and ϕ is the magnetic flux through the loop (in standard units its quantum equals $2\pi\hbar c|e|^{-1}$)

Soft graphs with magnetic field

Add a homogeneous magnetic field with the vector potential $A = \frac{1}{2}B(-x_2, x_1)$. We ask about existence of *persistent currents*, i.e. nonzero probability flux along a closed loop

$$\frac{\partial \lambda_n(\phi)}{\partial \phi} = -\frac{1}{c} I_n \,,$$

where $\lambda_n(\phi)$ is the *n*-th eigenvalue of the Hamiltonian

$$H_{\alpha,\Gamma}(B) := (-i\nabla - A)^2 - \alpha\delta(x - \Gamma)$$

and ϕ is the magnetic flux through the loop (in standard units its quantum equals $2\pi\hbar c|e|^{-1}$)

Persistent currents

The same technique, different comparison operator, namely $S_{\Gamma}(B)=-\frac{{\rm d}}{{\rm d}s^2}-\frac{1}{4}k(s)^2$

on $L^2(0,L)$ with $\psi(L-) = e^{iB|\Omega|}\psi(0+), \ \psi'(L-) = e^{iB|\Omega|}\psi'(0+),$ where Ω is the area encircled by Γ

Persistent currents

The same technique, different comparison operator, namely $S_{\Gamma}(B)=-\frac{{\rm d}}{{\rm d}s^2}-\frac{1}{4}k(s)^2$

on $L^2(0,L)$ with $\psi(L-) = e^{iB|\Omega|}\psi(0+), \ \psi'(L-) = e^{iB|\Omega|}\psi'(0+),$ where Ω is the area encircled by Γ

Theorem [E.-Yoshitomi, 2003]: Let Γ be a C^4 -smooth. The for large α the operator $H_{\alpha,\Gamma}(B)$ has a non-empty discrete spectrum and the *j*-th eigenvalue behaves as

$$\lambda_j(\alpha, B) = -\frac{1}{4}\alpha^2 + \mu_j(B) + \mathcal{O}(\alpha^{-1}\ln\alpha),$$

where $\mu_j(B)$ is the *j*-th eigenvalue of $S_{\Gamma}(B)$ and the error term is uniform in *B*. In particular, for a fixed *j* and α large enough the function $\lambda_j(\alpha, \cdot)$ *cannot be constant*

Persistent currents

The same technique, different comparison operator, namely $S_{\Gamma}(B)=-\frac{{\rm d}}{{\rm d}s^2}-\frac{1}{4}k(s)^2$

on $L^2(0,L)$ with $\psi(L-) = e^{iB|\Omega|}\psi(0+), \ \psi'(L-) = e^{iB|\Omega|}\psi'(0+),$ where Ω is the area encircled by Γ

Theorem [E.-Yoshitomi, 2003]: Let Γ be a C^4 -smooth. The for large α the operator $H_{\alpha,\Gamma}(B)$ has a non-empty discrete spectrum and the *j*-th eigenvalue behaves as

$$\lambda_j(\alpha, B) = -\frac{1}{4}\alpha^2 + \mu_j(B) + \mathcal{O}(\alpha^{-1}\ln\alpha),$$

where $\mu_j(B)$ is the *j*-th eigenvalue of $S_{\Gamma}(B)$ and the error term is uniform in *B*. In particular, for a fixed *j* and α large enough the function $\lambda_j(\alpha, \cdot)$ *cannot be constant*

Remark: [Honnouvo-Hounkonnou, 2004] proved the same for AB flux

One is also interested in the nature of the spectrum of $H_{\alpha,\Gamma}$ with a periodic Γ . By [Birman-Suslina-Shterenberg 00, 01] the spectrum is *absolutely continuous* if $\operatorname{codim} \Gamma = 1$ and the period cell is compact. This tells us nothing, e.g., about a single periodic curve in \mathbb{R}^d , d = 2, 3.

One is also interested in the nature of the spectrum of $H_{\alpha,\Gamma}$ with a periodic Γ . By [Birman-Suslina-Shterenberg 00, 01] the spectrum is *absolutely continuous* if $\operatorname{codim} \Gamma = 1$ and the period cell is compact. This tells us nothing, e.g., about a single periodic curve in \mathbb{R}^d , d = 2, 3.

The assumption about connectedness of $\Gamma_{\mathcal{C}}$ can be always satisfied if d = 2 but not for d = 3; recall the *crotchet curve*

Theorem [Bentosela-Duclos-E., 2003]: To any E > 0 there is an $\alpha_E > 0$ such that the spectrum of $H_{\alpha,\Gamma}$ is absolutely continuous in $(-\infty, \xi(\alpha) + E)$ as long as $(-1)^d \alpha > \alpha_E$, where $\xi(\alpha) = -\frac{1}{4}\alpha^2$ and ϵ_{α} for d = 2, 3, respectively

Theorem [Bentosela-Duclos-E., 2003]: To any E > 0 there is an $\alpha_E > 0$ such that the spectrum of $H_{\alpha,\Gamma}$ is absolutely continuous in $(-\infty, \xi(\alpha) + E)$ as long as $(-1)^d \alpha > \alpha_E$, where $\xi(\alpha) = -\frac{1}{4}\alpha^2$ and ϵ_{α} for d = 2, 3, respectively

Proof: The fiber operators $H_{\alpha,\Gamma}(\theta)$ form a type A analytic family. In a finite interval each of them has a finite number of ev's , so one has just to check non-constancy of the functions $\lambda_j(\alpha, \cdot)$ as in the case of persistent currents \Box

Strong coupling, manifolds with boundary: If Γ has a boundary, we have a strong-coupling asymptotics for the bound state number but not for ev's themselves. We conjecture that the latter is given again by

$$\lambda_j(\alpha) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha) \,,$$

etc., where μ_j refers to S_{Γ} with *Dirichlet* b.c.

Strong coupling, manifolds with boundary: If Γ has a boundary, we have a strong-coupling asymptotics for the bound state number but not for ev's themselves. We conjecture that the latter is given again by

$$\lambda_j(\alpha) = -\frac{1}{4}\alpha^2 + \mu_j + \mathcal{O}(\alpha^{-1}\ln\alpha) \,,$$

etc., where μ_j refers to S_{Γ} with *Dirichlet* b.c.

• Strong coupling, less regularity: Examples show that the above relation is not valid for a non-smooth Γ , rather μ_j is replaced by a term proportional to α^2 . How does the asymptotic expansion look in this case and how it depends on dimension and codimension of Γ ? The analogous question can be asked more generally for graphs with branching points and generalized graphs _____

Scattering theory on non-compact "leaky" curves, manifolds, graphs, and generalized graphs:

- Scattering theory on non-compact "leaky" curves, manifolds, graphs, and generalized graphs:
 - existence and completeness, including spectral *a.c.* in $(-\frac{1}{4}\alpha^2, 0)$ w.r.t. asymptotic geometry of Γ

- Scattering theory on non-compact "leaky" curves, manifolds, graphs, and generalized graphs:
 - existence and completeness, including spectral *a.c.* in $(-\frac{1}{4}\alpha^2, 0)$ w.r.t. asymptotic geometry of Γ
 - asymptotic behavior of S-matrix in strong-coupling regime, including relations between S-matrices of leaky and "ideal" graphs

- Scattering theory on non-compact "leaky" curves, manifolds, graphs, and generalized graphs:
 - existence and completeness, including spectral *a.c.* in $(-\frac{1}{4}\alpha^2, 0)$ w.r.t. asymptotic geometry of Γ
 - asymptotic behavior of S-matrix in strong-coupling regime, including relations between S-matrices of leaky and "ideal" graphs
 - prove existence of resonances, at least within particular models

- Scattering theory on non-compact "leaky" curves, manifolds, graphs, and generalized graphs:
 - existence and completeness, including spectral *a.c.* in $(-\frac{1}{4}\alpha^2, 0)$ w.r.t. asymptotic geometry of Γ
 - asymptotic behavior of S-matrix in strong-coupling regime, including relations between S-matrices of leaky and "ideal" graphs
 - prove existence of resonances, at least within particular models
- Periodic Γ: one expects that the whole spectrum is absolutely continuous, independently of α, but it remains to be proved. Also strong-coupling asymptotic properties of spectral gaps are not known

■ *Random graphs*, either by their shape or by a random coupling α : $\Gamma \to \mathbb{R}_+$. Is it true that the whole negative part of $\sigma_{ess}(H_{\alpha,\Gamma})$ is always *p.p.* once a disorder is present?

- *Random graphs*, either by their shape or by a random coupling α : $\Gamma \to \mathbb{R}_+$. Is it true that the whole negative part of $\sigma_{ess}(H_{\alpha,\Gamma})$ is always *p.p.* once a disorder is present?
- Adding magnetic field: Will the curvature-induced discrete spectrum survive under any magnetic field? On the other hand, will (at least a part of) the *a.c.* spectrum of $(-i\nabla A)^2 \alpha\delta(x \Gamma)$ survive a randomization of a straight Γ ?

- *Random graphs*, either by their shape or by a random coupling α : $\Gamma \to \mathbb{R}_+$. Is it true that the whole negative part of $\sigma_{ess}(H_{\alpha,\Gamma})$ is always *p.p.* once a disorder is present?
- Adding magnetic field: Will the curvature-induced discrete spectrum survive under any magnetic field? On the other hand, will (at least a part of) the *a.c.* spectrum of $(-i\nabla A)^2 \alpha\delta(x \Gamma)$ survive a randomization of a straight Γ ?
- etc, etc

The talk was based on

[BDE03] F. Bentosela, P. Duclos, P.E.: Absolute continuity in periodic thin tubes and strongly coupled leaky wires, *Lett. Math. Phys.* 65 (2003), 75-82.

- [BEKŠ94] J.F. Brasche, P.E., Yu.A. Kuperin, P. Šeba: Schrödinger operators with singular interactions, *J. Math. Anal. Appl.* **184** (1994), 112–139.
- [Ex01] P.E.: Bound states of infinite curved polymer chains, *Lett. Math. Phys.* **57** (2001), 87-96.
- [Ex04] P.E.: Spectral properties of Schrödinger operators with a strongly attractive δ interaction supported by a surface, to appear in *Proceedings of the NSF Summer Research Conference (Mt. Holyoke 2002)*; AMS "Contemporary Mathematics" Series, Providence, R.I., 2004
- [EI01] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, *J. Phys.* A34 (2001), 1439-1450.
- [EK02] P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by a curve in \mathbb{R}^3 , Ann. H. Poincaré **3** (2002), 967-981.
- [EK03a] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, *J. Phys.* A36 (2003), 443-457.
- [EK03b] P.E., S. Kondej: Strong-coupling asymptotic expansion for Schrödinger operators with a singular interaction supported by a curve in \mathbb{R}^3 , *Rev. math. Phys., to appear;* math-ph/0303033

And it is not all, see also

[EK03c] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, math-ph/0312055

- [EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, *J. Phys.* A36 (2003), 10173-10193.
- [ET04] P.E., M. Tater: Spectra of soft ring graphs, Waves in Random Media 13 (2003), S47-S60.
- [EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ -interaction on a periodic curve, *Ann. H. Poincaré* **2** (2001), 1139-1158.
- [EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ -interaction on a loop, *J. Geom. Phys.* **41** (2002), 344-358.
- [EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong δ -interaction on a loop, *J. Phys.* A35 (2002), 3479-3487.
- [EY03] P.E., K. Yoshitomi: Eigenvalue asymptotics for the Schrödinger operator with a δ -interaction on a punctured surface, *Lett. Math. Phys.* **65** (2003), 19-26.

And it is not all, see also

[EK03c] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, math-ph/0312055

- [EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, *J. Phys.* A36 (2003), 10173-10193.
- [ET04] P.E., M. Tater: Spectra of soft ring graphs, Waves in Random Media 13 (2003), S47-S60.
- [EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ -interaction on a periodic curve, *Ann. H. Poincaré* **2** (2001), 1139-1158.
- [EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ -interaction on a loop, *J. Geom. Phys.* **41** (2002), 344-358.
- [EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong δ-interaction on a loop, *J. Phys.* A35 (2002), 3479-3487.
- [EY03] P.E., K. Yoshitomi: Eigenvalue asymptotics for the Schrödinger operator with a δ -interaction on a punctured surface, *Lett. Math. Phys.* **65** (2003), 19-26.

Fortunately, you need not copy all of this – to find links to these papers see http://www.ujf.cas.cz/~exner

