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Leaky graphs – why are they interesting?

Recall the “standard” graph models:
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on graph edges,
boundary conditions at vertices

Also, generalized graphs – nanotubes + fullerenes, etc.
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the edges same above,

−∆LB + v(x) on the manifold
boundary conditions at vertices
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Drawbacks of these models

Presence of ad hoc parameters in the b.c. describing
branchings. A natural remedy: use a zero-width limit in
a more realistic description

@
@

@
@

�
�

�
�

@
@

�
�r−→

However, the answer is known so far only for
Neumann-type situations [Rubinstein-Schatzman,
2001; Kuchment-Zeng, 2001; E.-Post, 2003], the
Dirichlet case needed here is open (and difficult)

Quantum tunneling is neglected: recall that a true
quantum-wire boundary is a finite potential jump
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Leaky quantum graphs

We consider instead “leaky” graphs with an attractive
interaction supported by graph edges. Formally we have

Hα,Γ = −∆− αδ(x− Γ) , α > 0 ,

in L2(Rn), where Γ is a graph in question, or generalized
graph, understood as a subset of R

n

In this talk we will mostly consider the simplest graphs, or
building blocks or more complicated graphs, where Γ is a
smooth manifold in R

n. We have in mind three cases:

curves in R
2

surfaces in R
3

curves in R
3
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Definition of the Hamiltonian
In the first two cases we have codim Γ = 1 and the operator
can be defined by means of quadratic form,

ψ 7→ ‖∇ψ‖2L2(R2) − α

∫

Γ
|ψ(x)|2dx ,

which is closed and below bounded in W 2,1(R2); the second
term makes sense in view of Sobolev embedding

For smooth manifolds and more general Γ such as a graph
with a locally finite number of smooth edges and no cusps
we can use an alternative definition by boundary conditions:
Hα,Γ acts as −∆ on functions from W 1,2

loc (R2 \ Γ), which are
continuous and exhibit a normal-derivative jump,

∂ψ

∂n
(x)

∣

∣

∣
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−
∂ψ

∂n
(x)
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= −αψ(x)
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The case codim Γ = 2

Boundary conditions can be used but they are more
complicated. Moreover, for an infinite Γ corresponding to
γ : R→ R

3 we have to assume in addition that there is a
tubular neighbourhood of Γ which does not intersect itself

Employ Frenet’s frame (t(s), b(s), n(s)) for Γ. Given ξ, η ∈ R

we set r = (ξ2+η2)1/2 and define family of “shifted” curves

t
b

n

Γ
Γr

Γr ≡ Γξηr := { γr(s) ≡ γξηr (s) := γ(s) + ξb(s) + ηn(s) }
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The case codim Γ = 2

The restriction of f ∈ W 2,2
loc (R3 \ Γ) to Γr is well defined for

small r; we say that f ∈ W 2,2
loc (R3 \Γ)∩L2(R3) belongs to Υ if

Ξ(f)(s) := − lim
r→0

1

ln r
f �Γr

(s) ,

Ω(f)(s) := lim
r→0

[

f �Γr
(s) + Ξ(f)(s) ln r

]

,

exist a.e. in R, are independent of the direction 1
r (ξ, η), and

define functions from L2(R)

Then the operator Hα,Γ has the domain

{ g ∈ Υ : 2παΞ(g)(s) = Ω(g)(s) }

and acts as

−Hα,Γf = −∆f for x ∈ R
3 \ Γ
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Remarks
If Γ has components of codimension one and two, one
combines the above boundary conditions

The b.c. are natural describing point interaction in the
normal plane to Γ. Thus there is no way (at least within
standard QM) to define Hα,Γ in the case codim Γ ≥ 4

Strong coupling considered below is closely related to
semiclassical behaviour of the operator

Hα,Γ(h) = −h2∆− αδ(x− Γ) , α > 0 ,

which can be regarded as h2Hα(h),Γ, where the effective
coupling constant is α(h) := αh−2 for codim Γ = 1, and

α(h) := α +
1

2π
lnh if codim Γ = 2
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Geometrically induced spectrum
Bending means binding, i.e. it may create isolated
eigenvalues of Hα,Γ. Consider a piecewise C1-smooth
Γ : R→ R

2 parameterized by its arc length, and assume:

|Γ(s)− Γ(s′)| ≥ c|s− s′| holds for some c ∈ (0, 1)

Γ is asymptotically straight: there are d > 0, µ > 1
2

and ω ∈ (0, 1) such that

1−
|Γ(s)− Γ(s′)|

|s− s′|
≤ d

[

1 + |s+ s′|2µ
]−1/2

in the sector Sω :=
{

(s, s′) : ω < s
s′ < ω−1

}

straight line is excluded, i.e. |Γ(s)− Γ(s′)| < |s− s′|
holds for some s, s′ ∈ R
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Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions,
σess(Hα,Γ) = [−1

4α
2,∞) and Hα,Γ has at least one eigenvalue

below the threshold −1
4α

2

The same for curves in R
3, under stronger regularity,

with −1
4α

2 is replaced by the corresponding 2D p.i. ev

For curved surfaces Γ ⊂ R
3 such a result is proved in

the strong coupling asymptotic regime only

Implications for graphs: let Γ̃ ⊃ Γ in the set sense, then
Hα,Γ̃ ≤ Hα,Γ. If the essential spectrum threshold is the
same for both graphs and Γ fits the above assumptions,
we have σdisc(Hα,Γ) 6= ∅ by minimax principle
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Proof: generalized BS principle
Classical Birman-Schwinger principle based on the identity

(H0 − V − z)
−1 = (H0 − z)

−1 + (H0 − z)
−1V 1/2

×
{

I − |V |1/2(H0 − z)
−1V 1/2

}−1
|V |1/2(H0 − z)

−1

can be extended to generalized Schrödinger operators Hα,Γ

[BEKŠ94]: the multiplication by (H0 − z)
−1V 1/2 etc. is

replaced by suitable trace maps. In this way we find that
−κ2 is an eigenvalue of Hα,Γ iff the integral operator Rκα,Γ
on L2(R) with the kernel

(s, s′) 7→
α

2π
K0

(

κ|Γ(s)−Γ(s′)|
)

has an eigenvalue equal to one
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Sketch of the proof
We treat Rκα,Γ as a perturbation of the operator Rκα,Γ0

referring to a straight line. The spectrum of the latter is
found easily: it is purely ac and equal to [0, α/2κ)
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We treat Rκα,Γ as a perturbation of the operator Rκα,Γ0

referring to a straight line. The spectrum of the latter is
found easily: it is purely ac and equal to [0, α/2κ)

The curvature-induced perturbation is sign-definite: we
have

(

Rκα,Γ −R
κ
α,Γ0

)

(s, s′) ≥ 0 , and the inequality is sharp
somewhere unless Γ is a straight line. Using a variational
argument with a suitable trial function we can check the
inequality supσ(Rκα,Γ) > α

2κ
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(
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)

(s, s′) ≥ 0 , and the inequality is sharp
somewhere unless Γ is a straight line. Using a variational
argument with a suitable trial function we can check the
inequality supσ(Rκα,Γ) > α

2κ

Due to the assumed asymptotic straightness of Γ the
perturbation Rκα,Γ −R

κ
α,Γ0

is Hilbert-Schmidt , hence the
spectrum of Rκα,Γ in the interval (α/2κ,∞) is discrete

To conclude we employ continuity and limκ→∞ ‖R
κ
α,Γ‖ = 0.

The argument can be pictorially expressed as follows:
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Pictorial sketch of the proof


r

r

σ(Rκα,Γ)

1

κα/2
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Punctured manifolds
A natural question is what happens with σdisc(Hα,Γ) if Γ has
a small “hole”. We will give the answer for a compact,
(n−1)-dimensional, C1+[n/2]-smooth manifold in R

n

Γ
Sε

Consider a family {Sε}0≤ε<η of subsets of Γ such that

each Sε is Lebesgue measurable on Γ

they shrink to origin, supx∈Sε
|x| = O(ε) as ε→ 0

σdisc(Hα,Γ) 6= ∅, nontrivial for n ≥ 3
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Punctured manifolds: ev asymptotics

Call Hε := Hα,Γ\Sε
. For small enough ε these operators

have the same finite number of eigenvalues, naturally
ordered, which satisfy λj(ε)→ λj(0) as ε→ 0
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. For small enough ε these operators

have the same finite number of eigenvalues, naturally
ordered, which satisfy λj(ε)→ λj(0) as ε→ 0

Let ϕj be the eigenfunctions of H0. By Sobolev trace thm
ϕj(0) makes sense. Put sj := |ϕj(0)|

2 if λj(0) is simple,

otherwise they are ev’s of C :=
(

ϕi(0)ϕj(0)
)

corresponding
to a degenerate eigenvalue
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Punctured manifolds: ev asymptotics

Call Hε := Hα,Γ\Sε
. For small enough ε these operators

have the same finite number of eigenvalues, naturally
ordered, which satisfy λj(ε)→ λj(0) as ε→ 0

Let ϕj be the eigenfunctions of H0. By Sobolev trace thm
ϕj(0) makes sense. Put sj := |ϕj(0)|

2 if λj(0) is simple,

otherwise they are ev’s of C :=
(

ϕi(0)ϕj(0)
)

corresponding
to a degenerate eigenvalue

Theorem [E.-Yoshitomi, 2003]: Under the assumptions
made about the family {Sε}, we have

λj(ε) = λj(0) + αsjmΓ(Sε) + o(εn−1) as ε→ 0
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Remarks

Formally a small-hole perturbation acts as a repulsive δ
interaction with the coupling αmΓ(Sε)

No self-similarity of Sε required

If n = 2, i.e. Γ is a curve, mΓ(Sε) is the length of the
hiatus. In this case the same asymptotic formula holds
for bound states of an infinite curved Γ

Asymptotic perturbation theory for quadratic forms does
not apply, because C∞

0 (Rn) 3 u 7→ |u(0)|2 ∈ R does not
extend to a bounded form in W 1,2(Rn)
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Sketch of the proof
Take an eigenvalue µ ≡ λj(0) of multiplicity m. It splits in
general, for small enough ε one has m eigenvalues inside
C := {z : |z − µ| < 3

4κ}, where κ := 1
2dist ({µ}, σ(H0) \ {µ})

&%
'$r r q q qλj−1(0) µ C
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C := {z : |z − µ| < 3

4κ}, where κ := 1
2dist ({µ}, σ(H0) \ {µ})

&%
'$r r q q qλj−1(0) µ C

Set wk(ζ, ε) := (Hε − ζ)
−1ϕk − (H0 − ζ)

−1ϕk for ζ ∈ C and
k = j, j + 1, . . . , j +m− 1. Using the choice of C and
Sobolev imbedding thm, one proves

‖wk(ζ, ε)‖W 1,2(Rn) = O(ε(n−1)/2) as ε→ 0
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Next, W 1,2(Rn) 3 f 7→ f |Γ ∈ L
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Sketch of the proof
Let Pε be spectral projection to these eigenvalues,

Pεϕk − ϕk =
1

2πi

∮

C
wk(ζ, ε) dζ = o(ε(n−1)/2)

in W 1,2(Rn) as ε→ 0
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Take m×m matrices L(ε) := ((HεPεϕi, Pεϕk)) and
M(ε) := ((Pεϕi, Pεϕk)). We find that

((HεPεϕi, Pεϕk))− µδik − αϕi(0)ϕk(0)mΓ(Sε)

is o(εn−1) and (Pεϕi, Pεϕk) = δik + o(εn−1)
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is o(εn−1) and (Pεϕi, Pεϕk) = δik + o(εn−1). Then

L(ε)M(ε)−1 = µI + αCmΓ(Sε) + o(εn−1)

and the claim of the theorem follows �
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Illustration: a ring with π
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Strong coupling for a compact Γ

Let Γ have a single component, smooth and compact
Theorem [EY01, 02; EK03, Ex04]: (i) Let Γ be a C4 smooth
manifold. In the limit (−1)codimΓ−1α→∞ we have

#σdisc(Hα,Γ) =
|Γ|α

2π
+O(lnα)

for dim Γ = 1, codim Γ = 1,
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Let Γ have a single component, smooth and compact
Theorem [EY01, 02; EK03, Ex04]: (i) Let Γ be a C4 smooth
manifold. In the limit (−1)codimΓ−1α→∞ we have

#σdisc(Hα,Γ) =
|Γ|α

2π
+O(lnα)

for dim Γ = 1, codim Γ = 1,

#σdisc(Hα,Γ(h)) =
|Γ|α2

16π2
+O(lnα)

for dim Γ = 2, codim Γ = 1, and

#σdisc(Hα,Γ) =
|Γ|(−εα)1/2

π
+O(e−πα)

for dim Γ = 1, codim Γ = 2. Here |Γ| is the curve length or
surface area, respectively, and εα = −4 e2(−2πα+ψ(1))
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Strong coupling for a compact Γ

Theorem, continued: (ii) In addition, suppose that Γ has no
boundary . Then the j-th eigenvalue of Hα,Γ behaves as

λj(α) = −
α2

4
+ µj +O(α−1 lnα)

for codim Γ = 1 and
λj(α) = εα + µj +O(eπα)

for codim Γ = 2,

where µj is the j-th eigenvalue of

SΓ = −
d

ds2
−

1

4
k(s)2

on L2((0, |Γ|)) for dim Γ = 1, where k is curvature of Γ, and
SΓ = −∆Γ +K −M2

on L2(Γ, dΓ) for dim Γ = 2, where −∆Γ is Laplace-Beltrami
operator on Γ and K,M , respectively, are the corresponding
Gauss and mean curvatures
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Proof technique
Consider first the 1 + 1 case. Take a closed curve Γ and call
L = |Γ|. We start from a tubular neighborhood of Γ

Lemma: Φa : [0, L)× (−a, a)→ R
2 defined by

(s, u) 7→ (γ1(s)− uγ
′
2(s), γ2(s) + uγ′1(s)).

is a diffeomorphism for all a > 0 small enough
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do not take the LaTeX
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DN bracketing
The idea is to apply to the operator Hα,Γ in question
Dirichlet-Neumann bracketing at the boundary of
Σa := Φ([0, L)× (−a, a)). This yields

(−∆N
Λa

)⊕ L−
a,α ≤ Hα,Γ ≤ (−∆D

Λa
)⊕ L+

a,α,

where Λa = Λin
a ∪ Λout

a is the exterior domain, and L±
a,α are

self-adjoint operators associated with the forms

q±a,α[f ] = ‖∇f‖2L2(Σa) − α

∫

Γ
|f(x)|2 dS

where f ∈ W 1,2
0 (Σa) and W 1,2(Σa) for ±, respectively

Important : The exterior part does not contribute to the
negative spectrum, so we may consider L±

a,α only
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Transformed interior operator
We use the curvilinear coordinates passing from L±

a,α to
unitarily equivalent operators given by quadratic forms

b+
a,α[f ] =

∫ L

0

∫ a

−a

(1 + uk(s))−2

∣

∣

∣

∣

∂f

∂s

∣

∣

∣

∣

2

du ds +

∫ L

0

∫ a

−a

∣

∣

∣

∣

∂f

∂u

∣

∣

∣

∣

2

du ds

+

∫ L

0

∫ a

−a
V (s, u)|f |2 ds du− α

∫ L

0
|f(s, 0)|2 ds

with f ∈ W 1,2((0, L)× (−a, a)) satisfying periodic b.c. in the
variable s and Dirichlet b.c. at u = ±a, and

b−a,α[f ] = b+a,α[f ]−
1
∑

j=0

1

2
(−1)j

∫ L

0

k(s)

1 + (−1)jak(s)
|f(s, (−1)ja)|2 ds

where V is the curvature induced potential,

V (s, u) = −
k(s)2

4(1+uk(s))2
+

uk′′(s)

2(1+uk(s))3
−

5u2k′(s)2

4(1+uk(s))4
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Estimates with separated variables
We pass to rougher bounds squeezing Hα,Γ between

H̃±
a,α = U±

a ⊗ 1 + 1⊗ T±
a,α

Here U±
a are s-a operators on L2(0, L)

U±
a = −(1∓ a‖k‖∞)−2 d2

ds2
+ V±(s)

with PBC, where V−(s) ≤ V (s, u) ≤ V+(s) with an O(a) error,
and the transverse operators are associated with the forms

t+a,α[f ] =

∫ a

−a
|f ′(u)|2 du− α|f(0)|2

and

t−a,α[f ] = t−a,α[f ]− ‖k‖∞(|f(a)|2 + |f(−a)|2)

with f ∈ W 1,2
0 (−a, a) and W 1,2(−a, a), respectively

Okayama University, March 24, 2004 – p.26/50



Estimates with separated variables
We pass to rougher bounds squeezing Hα,Γ between

H̃±
a,α = U±

a ⊗ 1 + 1⊗ T±
a,α

Here U±
a are s-a operators on L2(0, L)

U±
a = −(1∓ a‖k‖∞)−2 d2

ds2
+ V±(s)

with PBC, where V−(s) ≤ V (s, u) ≤ V+(s) with an O(a) error,
and the transverse operators are associated with the forms

t+a,α[f ] =

∫ a

−a
|f ′(u)|2 du− α|f(0)|2

and

t−a,α[f ] = t−a,α[f ]− ‖k‖∞(|f(a)|2 + |f(−a)|2)

with f ∈ W 1,2
0 (−a, a) and W 1,2(−a, a), respectively

Okayama University, March 24, 2004 – p.26/50



Concluding the planar curve case
Lemma: There are positive c, cN such that T±

α,a has for α
large enough a single negative eigenvalue κ±α,a satisfying

−
α2

4

(

1 + cNe−αa/2
)

< κ−α,a < −
α2

4
< κ+

α,a < −
α2

4

(

1− 8e−αa/2
)

Finishing the proof:
the eigenvalues of U±

a differ by O(a) from those of the
comparison operator
we choose a = 6α−1 lnα as the neighbourhood width
putting the estimates together we get the eigenvalue
asymptotics for a planar loop, i.e. the claim (ii)
if Γ is not closed, the same can be done with the
comparison operators SD,N

Γ having appropriate b.c. at
the endpoints of Γ. This yields the claim (i)
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A curve in R
3

The argument is similar:

Σa

Γ

D, N

The “straightening” transformation Φa is defined by

Φa(s, r, θ) := γ(s)− r[n(s) cos(θ − β(s)) + b(s) sin(θ − β(s))]

To separate variables, we choose β so that β̇(s) equals the
torsion τ(s) of Γ. The effective potential is then

V = −
k2

4h2
+
hss
2h3
−

5h2
s

4h4
,

where h := 1 + rk cos(θ − β). It is important that the leading
term is −1

4k
2 again, the torsion part being O(a)
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A curve in R
3

The transverse estimate is replaced by
Lemma: There are c1, c2 > 0 such that T±

α has for large
enough negative α a single negative ev κ±α,a which satisfies

εα − S(α) < κ−α,a < ξα < κ+
α,a < ξα + S(α)

as α→ −∞, where S(α) = c1e
−2πα exp(−c2e

−πα)

The rest of the argument is the same as above

Remark: Notice that the result extends easily to Γ’s
consisting of a finite number of connected components
(curves) which are C4 and do not intersect. The same will
be true for surfaces considered below
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A surface in R
3

The argument modifies easily; Σa is now a layer
neighborhood . However, the intrinsic geometry of Γ
can no longer be neglected

Let Γ ⊂ R
3 be a C4 smooth compact Riemann surface of a

finite genus g. The metric tensor given in the local
coordinates by gµν = p,µ · p,ν defines the invariant surface
area element dΓ := g1/2d2s, where g := det(gµν).
The Weingarten tensor is then obtained by raising the index
in the second fundamental form, hµ ν := −n,µ · p,σg

σν ; the
eigenvalues k± of (hµ

ν) are the principal curvatures. They
determine Gauss curvature K and mean curvature M by

K = det(hµ
ν) = k+k− , M =

1

2
Tr (hµ

ν) =
1

2
(k++ k−)
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Proof sketch in the surface case

The bracketing argument proceeds as before,

−∆N
Λa
⊕H−

α,Γ ≤ Hα,Γ ≤ −∆D
Λa
⊕H+

α,Γ , Λa := R
3 \ Σa,

the interior only contributing to the negative spectrum

Using the curvilinear coordinates: For small enough a we
have the “straightening” diffeomorphism

La(x, u) = x+ un(x) , (x, u) ∈ Na := Γ× (−a, a)

Then we transform H±
α,Γ by the unitary operator

Ûψ = ψ ◦ La : L2(Ωa)→ L2(Na, dΩ)

and estimate the operators Ĥ±
α,Γ := ÛH±

α,ΓÛ
−1 in L2(Na, dΩ)

Okayama University, March 24, 2004 – p.31/50



Proof sketch in the surface case

The bracketing argument proceeds as before,

−∆N
Λa
⊕H−

α,Γ ≤ Hα,Γ ≤ −∆D
Λa
⊕H+

α,Γ , Λa := R
3 \ Σa,

the interior only contributing to the negative spectrum
Using the curvilinear coordinates: For small enough a we
have the “straightening” diffeomorphism

La(x, u) = x+ un(x) , (x, u) ∈ Na := Γ× (−a, a)

Then we transform H±
α,Γ by the unitary operator
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Straightening transformation
Denote the pull-back metric tensor by Gij,

Gij =

(

(Gµν) 0

0 1

)

, Gµν = (δσµ − uhµ
σ)(δρσ − uhσ

ρ)gρν ,

so dΣ := G1/2d2s du with G := det(Gij) given by

G = g [(1− uk+)(1− uk−)]2 = g(1− 2Mu+Ku2)2

Let (·, ·)G denote the inner product in L2(Na, dΩ). Then Ĥ±
α,Γ

are associated with the forms

η±α,Γ[Û−1ψ] := (∂iψ,G
ij∂jψ)G − α

∫

Γ
|ψ(s, 0)|2 dΓ ,

with the domains W 1,2
0 (Na, dΩ) and W 1,2(Na, dΩ) for the ±

sign, respectively
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Straightening continued
Next we remove 1− 2Mu+Ku2 from the weight G1/2 in the
inner product of L2(Na, dΩ) by the unitary transformation
U : L2(Na, dΩ)→ L2(Na, dΓdu),

Uψ := (1− 2Mu+Ku2)1/2ψ

Denote the inner product in L2(Na, dΓdu) by (·, ·)g. The
operators B±

α,Γ := UĤ±
α,ΓU

−1 are associated with the forms

b+α,Γ[ψ] = (∂µψ,G
µν∂νψ)g + (ψ, (V1 + V2)ψ)g

+‖∂uψ‖
2
g − α

∫

Γ
|ψ(s, 0)|2dΓ ,

b−α,Γ[ψ] = b+α,Γ[ψ] +
1
∑

j=0

(−1)j
∫

Γ
M(−1)ja(s)|ψ(s, (−1)ja)|2dΓ

for ψ from W 2,1
0 (Ωa, dΓdu) and W 2,1(Ωa, dΓdu), respectively

Okayama University, March 24, 2004 – p.33/50



Straightening continued
Next we remove 1− 2Mu+Ku2 from the weight G1/2 in the
inner product of L2(Na, dΩ) by the unitary transformation
U : L2(Na, dΩ)→ L2(Na, dΓdu),

Uψ := (1− 2Mu+Ku2)1/2ψ

Denote the inner product in L2(Na, dΓdu) by (·, ·)g. The
operators B±

α,Γ := UĤ±
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Effective potential

Here Mu := (M −Ku)(1− 2Mu+Ku2)−1 is the mean
curvature of the parallel surface to Γ and

V1 = g−1/2(g1/2GµνJ,ν),µ+J,µG
µνJ,ν , V2 =

K −M2

(1− 2Mu+Ku2)2

with J := 1
2 ln(1− 2Mu+Ku2)
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A rougher estimate with separated variables: squeeze
1− 2Mu+Ku2 between C±(a) := (1± a%−1)2, where
% := max({‖k+‖∞ , ‖k−‖∞})

−1. Consequently, the matrix
inequality C−(a)gµν ≤ Gµν ≤ C+(a)gµν is valid
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A rougher estimate with separated variables: squeeze
1− 2Mu+Ku2 between C±(a) := (1± a%−1)2, where
% := max({‖k+‖∞ , ‖k−‖∞})

−1. Consequently, the matrix
inequality C−(a)gµν ≤ Gµν ≤ C+(a)gµν is valid

V1 behaves as O(a) for a→ 0, while V2 can be squeezed
between the functions C−2

± (a)(K −M2), both uniformly in
the surface variables
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Concluding the estimate
Hence we estimate B±

α,Γ by

B̃±
α,a := S±

a ⊗ I + I ⊗ T±
α,a

with S±
a := −C±(a)∆Γ + C−2

± (a)(K −M2)± va in the space
L2(Γ, dΓ)⊗L2(−a, a) for a v > 0, where T±

α,a are the same as
in the 1 + 1 case (the same lemma applies)
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As above the eigenvalues of the operators S±

a coincide up
to an O(a) error with those of SΓ, and therefore choosing
a := 6α−1 lnα, we find

λj(α) = −
1

4
α2 + µj +O(α−1 lnα)

as a→ 0 which is equivalent to the claim (i)
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± (a)(K −M2)± va in the space
L2(Γ, dΓ)⊗L2(−a, a) for a v > 0, where T±

α,a are the same as
in the 1 + 1 case (the same lemma applies)
As above the eigenvalues of the operators S±

a coincide up
to an O(a) error with those of SΓ, and therefore choosing
a := 6α−1 lnα, we find

λj(α) = −
1

4
α2 + µj +O(α−1 lnα)

as a→ 0 which is equivalent to the claim (i)
To get (ii) we employ Weyl asymptotics for SΓ. Extension to
Γ’s having a finite # of connected components is easy
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Infinite manifolds
Bound states may exist also if Γ is noncompact . The
comparison operator SΓ has an attractive potential, so
σdisc(Hα,Γ) 6= ∅ can be expected in the strong coupling
regime, even if a direct proof is missing as for surfaces

It is needed that σess does not feel curvature, not only for
Hα,Γ but for the estimating operators as well. Sufficient
conditions:

k(s), k′(s) and k′′(s)1/2 are O(|s|−1−ε) as |s| → ∞
for a planar curve

in addition, the torsion bounded for a curve in R
3

a surface Γ admits a global normal parametrization with
a uniformly elliptic metric, K,M → 0 as the geodesic
radius r →∞
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Infinite manifolds

We must also assume that there is a tubular neighborhood
Σa without self-intersections for small a, i.e. to avoid

Theorem [EY02; EK03, Ex04]: With the above listed
assumptions, the asymptotic expansions (ii) for the
eigenvalues derived in the compact case hold again
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Periodic manifolds
One uses Floquet expansion. It is important to choose the
periodic cells C of the space and ΓC of the manifold
consistently, ΓC = Γ ∩ C; we assume that ΓC is connected

C

ΓC

eiθ

Lemma: ∃ unitary U : L2(R3)→
∫ ⊕
[0,2π)r L2(C) dθ s.t.

UHα,ΓU
−1 =

∫ ⊕

[0,2π)r

Hα,θ dθ and σ(Hα,Γ)=
⋃

[0,2π)r

σ(Hα,θ)
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Comparison operators

The fibre comparison operators are

Sθ = −
d

ds2
−

1

4
k(s)2

on L2(ΓC) parameterized by arc length for dim Γ = 1, with
Floquet b.c., and

Sθ = g−1/2(−i∂µ + θµ)g
1/2gµν(−i∂ν + θν) +K −M2

with periodic b.c. for dim Γ = 2, where θµ, µ = 1, . . . , r,
are quasimomentum components; recall that r = 1, 2, 3
depending on the manifold type
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Periodic manifold asymptotics

Theorem [EY01; EK03, Ex04]: Let Γ be a C4-smooth
r-periodic manifold without boundary. The strong coupling
asymptotic behavior of the j-th Floquet eigenvalue is

λj(α, θ) = −
1

4
α2 + µj(θ) +O(α−1 lnα) as α→∞

for codim Γ = 1 and

λj(α, θ) = εα + µj(θ) +O(eπα) as α→ −∞

for codim Γ = 2. The error terms are uniform w.r.t. θ

Corollary: If dim Γ = 1 and coupling is strong enough,
Hα,Γ has open spectral gaps
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Large gaps in the disconnected case

If Γ is not connected and each connected component is
contained in a translate of ΓC, the comparison operator is
independent of θ and asymptotic formula reads

λj(α, θ) = −
1

4
α2 + µj +O(α−1 lnα) as α→∞

for codim Γ = 1 and similarly for for codim Γ = 2

Moreover, the assumptions can be weakened
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Soft graphs with magnetic field
Add a homogeneous magnetic field with the vector potential
A = 1

2B(−x2, x1). We ask about existence of persistent
currents, i.e. nonzero probability flux along a closed loop

∂λn(φ)

∂φ
= −

1

c
In ,

where λn(φ) is the n-th eigenvalue of the Hamiltonian

Hα,Γ(B) := (−i∇− A)2 − αδ(x− Γ)

and φ is the magnetic flux through the loop (in standard
units its quantum equals 2π~c|e|−1)

B
Γ
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Persistent currents
The same technique, different comparison operator, namely

SΓ(B) = −
d

ds2
−

1

4
k(s)2

on L2(0, L) with ψ(L−) = eiB|Ω|ψ(0+), ψ′(L−) = eiB|Ω|ψ′(0+),
where Ω is the area encircled by Γ
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4
k(s)2

on L2(0, L) with ψ(L−) = eiB|Ω|ψ(0+), ψ′(L−) = eiB|Ω|ψ′(0+),
where Ω is the area encircled by Γ

Theorem [E.-Yoshitomi, 2003]: Let Γ be a C4-smooth. The
for large α the operator Hα,Γ(B) has a non-empty discrete
spectrum and the j-th eigenvalue behaves as

λj(α,B) = −
1

4
α2 + µj(B) +O(α−1 lnα) ,

where µj(B) is the j-th eigenvalue of SΓ(B) and the error
term is uniform in B. In particular, for a fixed j and α large
enough the function λj(α, ·) cannot be constant
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where Ω is the area encircled by Γ

Theorem [E.-Yoshitomi, 2003]: Let Γ be a C4-smooth. The
for large α the operator Hα,Γ(B) has a non-empty discrete
spectrum and the j-th eigenvalue behaves as

λj(α,B) = −
1

4
α2 + µj(B) +O(α−1 lnα) ,

where µj(B) is the j-th eigenvalue of SΓ(B) and the error
term is uniform in B. In particular, for a fixed j and α large
enough the function λj(α, ·) cannot be constant
Remark: [Honnouvo-Hounkonnou, 2004] proved the same for AB flux
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Absolute continuity

One is also interested in the nature of the spectrum of Hα,Γ

with a periodic Γ. By [Birman-Suslina-Shterenberg 00, 01]
the spectrum is absolutely continuous if codim Γ = 1 and the
period cell is compact. This tells us nothing, e.g., about a
single periodic curve in R

d, d = 2, 3.

The assumption about connectedness of ΓC can be always
satisfied if d = 2 but not for d = 3; recall the crotchet curve
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Absolute continuity

Theorem [Bentosela-Duclos-E., 2003]: To any E > 0 there
is an αE > 0 such that the spectrum of Hα,Γ is absolutely
continuous in (−∞, ξ(α) + E) as long as (−1)dα > αE,
where ξ(α) = −1

4α
2 and εα for d = 2, 3, respectively

Proof: The fiber operators Hα,Γ(θ) form a type A analytic
family. In a finite interval each of them has a finite number
of ev’s , so one has just to check non-constancy of the
functions λj(α, ·) as in the case of persistent currents �
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Open questions
Strong coupling, manifolds with boundary: If Γ has a
boundary, we have a strong-coupling asymptotics for
the bound state number but not for ev’s themselves.
We conjecture that the latter is given again by

λj(α) = −
1

4
α2 + µj +O(α−1 lnα) ,

etc., where µj refers to SΓ with Dirichlet b.c.

Strong coupling, less regularity: Examples show that
the above relation is not valid for a non-smooth Γ, rather
µj is replaced by a term proportional to α2. How does
the asymptotic expansion look in this case and how it
depends on dimension and codimension of Γ? The
analogous question can be asked more generally for
graphs with branching points and generalized graphs
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Open questions

Scattering theory on non-compact “leaky” curves,
manifolds, graphs, and generalized graphs:

existence and completeness, including spectral a.c.
in (−1

4α
2, 0) w.r.t. asymptotic geometry of Γ

asymptotic behavior of S-matrix in strong-coupling
regime, including relations between S-matrices of
leaky and “ideal” graphs
prove existence of resonances, at least within
particular models

Periodic Γ: one expects that the whole spectrum is
absolutely continuous, independently of α, but it
remains to be proved. Also strong-coupling asymptotic
properties of spectral gaps are not known
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Open questions

Random graphs, either by their shape or by a random
coupling α : Γ→ R+. Is it true that the whole negative
part of σess(Hα,Γ) is always p.p. once a disorder is
present?

Adding magnetic field: Will the curvature-induced
discrete spectrum survive under any magnetic field?
On the other hand, will (at least a part of) the a.c.
spectrum of (−i∇− A)2 − αδ(x− Γ) survive a
randomization of a straight Γ?

etc, etc
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The talk was based on
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[BEKŠ94] J.F. Brasche, P.E., Yu.A. Kuperin, P. Šeba: Schrödinger operators with singular
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[Ex01] P.E.: Bound states of infinite curved polymer chains, Lett. Math. Phys. 57 (2001),
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[Ex04] P.E.: Spectral properties of Schrödinger operators with a strongly attractive δ

interaction supported by a surface, to appear in Proceedings of the NSF Summer
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Providence, R.I., 2004
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[EK03a] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved
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And it is not all, see also

[EK03c] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of
tunneling resonances, math-ph/0312055

[EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction
Hamiltonians, J. Phys. A36 (2003), 10173-10193.

[ET04] P.E., M. Tater: Spectra of soft ring graphs, Waves in Random Media 13 (2003),
S47-S60.

[EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ-interaction
on a periodic curve, Ann. H. Poincaré 2 (2001), 1139-1158.

[EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a
strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358.

[EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong
δ-interaction on a loop, J. Phys. A35 (2002), 3479-3487.

[EY03] P.E., K. Yoshitomi: Eigenvalue asymptotics for the Schrödinger operator with a
δ-interaction on a punctured surface, Lett. Math. Phys. 65 (2003), 19-26.

Fortunately, you need not copy all of this – to find links to
these papers see http://www.ujf.cas.cz/ ẽxner
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