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Leaky graphs — why are they interesting?
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Recall the “standard” graph models:
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Leaky graphs — why are they interesting?
- -

Recall the “standard” graph models:

2
—387? + ()

Also, generalized graphs — nanotubes + fullerenes, etc.

—Arp + v(x)
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Drawbacks of these models

o N

# Presence of ad hoc parameters in the b.c. describing
branchings. A natural remedy: use a zero-width limit in
a more realistic description

However, the answer is known so far only for
Neumann-type situations [Rubinstein-Schatzman,

2001; Kuchment-Zeng, 2001; E.-Post, 2003], the
Dirichlet case needed here is open (and difficult)
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Drawbacks of these models

o N

# Presence of ad hoc parameters in the b.c. describing
branchings. A natural remedy: use a zero-width limit in
a more realistic description

However, the answer is known so far only for
Neumann-type situations [Rubinstein-Schatzman,

2001; Kuchment-Zeng, 2001; E.-Post, 2003], the
Dirichlet case needed here is open (and difficult)

# Quantum tunneling is neglected: recall that a true
% guantum-wire boundary is a finite potential jump J
!
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Leaky quantum graphs

o N

We consider instead “leaky” graphs with an atiractive
interaction supported by graph edges. Formally we have

Hoyr=-A—-ad(z—-1), a>0,

in L?(R™), where I' is a graph in question, or generalized
graph, understood as a subset of R"
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Leaky quantum graphs

o N

We consider instead “leaky” graphs with an atiractive
interaction supported by graph edges. Formally we have

Hoyr=-A—-ad(z—-1), a>0,

in L?(R™), where I' is a graph in question, or generalized
graph, understood as a subset of R"

In this talk we will mostly consider the simplest graphs, or
building blocks or more complicated graphs, where I' is a
smooth manifold in R™. We have in mind three cases:

® curves in R?
o surfaces in R3

% & curves in R? J
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Definition of the Hamiltonian

fln the first two cases we have codimI' = 1 and the operatorj
can be defined by means of quadratic form,

6= [Vl — a [ ()P

which is closed and below bounded in 1W#1(R?); the second
term makes sense in view of Sobolev embedding
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Definition of the Hamiltonian

fln the first two cases we have codimI' = 1 and the operatorj
can be defined by means of quadratic form,

6= [Vl — a [ ()P

which is closed and below bounded in 1W#1(R?); the second
term makes sense in view of Sobolev embedding

For smooth manifolds and more general I such as a graph
with a locally finite number of smooth edges and no cusps
we can use an alternative definition by boundary conditions:

H,r acts as —A on functions from W;>*(R? \ T'), which are

loc

continuous and exhibit a normal-derivative jump,

o) o)

@) — )| = —av(

+

|
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The case codim ] = 2

fBoundary conditions can be used but they are more T
complicated. Moreover, for an infinite I' corresponding to

v : R — R we have to assume in addition that there is a
tubular neighbourhood of I which does not intersect itself
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The case codim ] = 2

fBoundary conditions can be used but they are more T
complicated. Moreover, for an infinite I' corresponding to

v : R — R we have to assume in addition that there is a
tubular neighbourhood of I which does not intersect itself

Employ Frenet’s frame (t(s),b(s),n(s)) for I'. Given £,n € R
we set r = (£24-n?)Y/2 and define family of “shifted” curves

!

% p =T = {0(s) = 27(s) =7(9) 4 60(s) +mls)}
o~
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The case codim ] = 2

" The restriction of f ¢ W22(R3\ T) to T, is well defined for N
small r; we say that f ¢ W2(R3\ I') N L%(R?) belongs to T if
— .1
=(f)(s) = —lim —fIp (s),

r—0 Inr

Q(f)(s) = lim [fIp (s) +E(f)(s)Inr]

r—0

exist a.e. in R, are independent of the direction +(¢,7), and
define functions from L?(R)
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The case codim ] = 2

" The restriction of f ¢ W22(R3\ T) to T, is well defined for N
small r; we say that f ¢ W2(R3\ I') N L%(R?) belongs to T if

=()(s) = ~lim = flp.(s),
Qf)(s) = lim [£Ir,(s) + 2(F)(s)Inr]

exist a.e. in R, are independent of the direction +(¢,7), and
define functions from L?(R)

Then the operator H, r has the domain

{geT: 2maZ=(g)(s) = Qg)(s) }
and acts as

—~Hyrf=—-Af for z€R3\T J
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Remarks

f # |f I' has components of codimension one and two, one T
combines the above boundary conditions
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f # |f I' has components of codimension one and two, one T
combines the above boundary conditions

# The b.c. are natural describing point interaction in the
normal plane to I'. Thus there is no way (at least within
standard QM) to define H, r in the case codimI" > 4
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Remarks

If I' has components of codimension one and two, one T
combines the above boundary conditions

The b.c. are natural describing point interaction in the
normal plane to I'. Thus there is no way (at least within
standard QM) to define H, r in the case codimI" > 4

Strong coupling considered below is closely related to
semiclassical behaviour of the operator

Hyr(h) = —h*A—ad(z-T), a>0,

which can be regarded as h*H,;,) r, where the effective
coupling constant is a(h) := ah™2 for codim " = 1, and

1
alh) :=a+ —Inh if codiml =2 J

2T
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Geometrically induced spectrum

fBending means binding, i.e. it may create isolated T
eigenvalues of H, 1. Consider a piecewise C'-smooth

I': R — R? parameterized by its arc length, and assume:
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Geometrically induced spectrum

fBending means binding, i.e. it may create isolated T
eigenvalues of H, 1. Consider a piecewise C'-smooth

I': R — R? parameterized by its arc length, and assume:

® |['(s) —T'(s")| > ¢|s — §| holds for some ¢ € (0, 1)

» T is asymptotically straight: there are d > 0, u > 1
and w € (0, 1) such that

I —T(s —
. T(s) (s")] gd[1+|s+s’\2“} 1/2
s — 5|
in the sector S, := {(s,5'): w< & <w™!}

# straight line is excluded, i.e. [T'(s) = I'(s')| < |s — ¢|

% holds for some s,s’ € R J
)
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Bending means binding

-

Theorem [E.-Ichinose, 2001]: Under these assumptions, T
oess(Ha) = [—302,00) and H, r has at least one eigenvalue

below the threshold —1a?
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Bending means binding

-

Theorem [E.-Ichinose, 2001]: Under these assumptions, T
oess(Ha) = [—302,00) and H, r has at least one eigenvalue

below the threshold —7a?

® The same for curves in R3, under stronger regularity,
with —Xa? is replaced by the corresponding 2D p.i. ev

® For curved surfaces I' C R? such a result is proved in
the strong coupling asymptotic regime only

® Implications for graphs: let T O T in the set sense, then
H = < H,r. If the essential spectrum threshold is the

same for both graphs and I fits the above assumptions,
we have ogis.(Ho 1) # 0 by minimax principle
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Proof: generalized BS principle

fCIassicaI Birman-Schwinger principle based on the identityj
(Hy—V —2)" = (Hy—2)"t + (Hy — Z)_1V1/2
—1
AT (VY2 (H - 2) 7 VL VY (H - )
can be extended to generalized Schrodinger operators H,, 1
[BEKS94]: the multiplication by (H, — z)~1V1/2 etc. is

replaced by suitable trace maps. In this way we find that
—r?% is an eigenvalue of H, r iff the integral operator Rar

on L*(R) with the kernel

(5,8') = 5= Ko (x]0()=T(s)])

has an eigenvalue equal to one J

S
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Sketch of the proof

fWe treat Ry - as a perturbation of the operator Ra.r, T

referring to a straight line. The spectrum of the latter is
found easily: it is purely ac and equal to [0, a/2k)
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Sketch of the proof

fWe treat Ry - as a perturbation of the operator Ra.r, T

referring to a straight line. The spectrum of the latter is
found easily: it is purely ac and equal to [0, a/2k)

The curvature-induced perturbation is sign-definite: we
have (Rg,r — RZ’FO) (s,s") > 0, and the inequality is sharp

somewhere unless I is a straight line. Using a variational
argument with a suitable trial function we can check the
inequality supo(Rf, ) > 3

2k
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Sketch of the proof

fWe treat R}, - as a perturbation of the operator R T
referring to a straight line. The spectrum of the Iatter IS
found easily: it is purely ac and equal to [0, a/2k)
The curvature-induced perturbation is sign-definite: we
have (72’;;’F — RZ’FO) (s,s") > 0, and the inequality is sharp

somewhere unless I is a straight line. Using a variational
argument with a suitable trial function we can check the

inequality supo (R ) > 5~

Due to the assumed asymptotic straightness of I" the
perturbation Rf, . — Ry, r, is Hilbert-Schmidt, hence the

spectrum of Rf, - in the interval (a/2k,00) Is discrete

o e
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Sketch of the proof

fWe treat R}, - as a perturbation of the operator R T

referring to a straight line. The spectrum of the Iatter IS
found easily: it is purely ac and equal to [0, a/2k)

The curvature-induced perturbation is sign-definite: we
have (72’;;’F — RZ’FO) (s,s") > 0, and the inequality is sharp

somewhere unless I is a straight line. Using a variational
argument with a suitable trial function we can check the
inequality sup o (R}, 1) > 5

Due to the assumed asymptotic straightness of I" the
perturbation Rf, . — Ry, r, is Hilbert-Schmidt, hence the

spectrum of Rf, - in the interval (a/2k,00) Is discrete

To conclude we employ continuity and lim,_.« || Rf, p[| = 0.
%The argument can be pictorially expressed as follows: J
o)
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Pictorial sketch of the proof

a/2 K

-
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Punctured manifolds

fA natural question is what happens with ogis.(Ho 1) If T hasj
a small “hole”. We will give the answer for a compact,
(n—1)-dimensional, C1*1*/2l-smooth manifold in R”
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Punctured manifolds

fA natural question is what happens with ogis.(Ho 1) If T hasj
a small “hole”. We will give the answer for a compact,
(n—1)-dimensional, C1*1*/2l-smooth manifold in R”

Se

)

Consider a family {S; }o<-<, Of subsets of I' such that
#® each S. is Lebesgue measurable on I'
® they shrink to origin, sup,cg |z| = O(c) ase — 0

% ® 0g4isc(Hor) # 0, nontrivial for n > 3 J

!
w Okayama University, March 24, 2004 — p.15/50



Punctured manifolds: ev asymptotics

o N

Call H. := H, \g.. For small enough ¢ these operators

have the same finite number of eigenvalues, naturally
ordered, which satisfy \;j(¢) — \;(0) ase — 0

|
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Punctured manifolds: ev asymptotics

o N

Call H. := H, \g.. For small enough ¢ these operators
have the same finite number of eigenvalues, naturally
ordered, which satisfy \;j(¢) — \;(0) ase — 0

Let ¢; be the eigenfunctions of Hy. By Sobolev trace thm
»;(0) makes sense. Put s; := |p;(0)]? if A\;(0) is simple,

otherwise they are ev's of C' := (gp,,;(())gpj(())) corresponding
to a degenerate eigenvalue

|
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Punctured manifolds: ev asymptotics

-

Call H. := H, \g.. For small enough ¢ these operators

have the same finite number of eigenvalues, naturally
ordered, which satisfy \;j(¢) — \;(0) ase — 0

-

Let ¢; be the eigenfunctions of Hy. By Sobolev trace thm
»;(0) makes sense. Put s; := |p,(0)]? if A;(0) is simple,

otherwise they are ev's of C' := (QO@'(O)QO]'(O)) corresponding
to a degenerate eigenvalue

Theorem [E.-Yoshitomi, 2003]: Under the assumptions
made about the family {S.}, we have

Aj(e) = Xj(0) + asymp(S:) +o(e"!) as £—0
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Remarks

o N

# Formally a small-hole perturbation acts as a repulsive §
interaction with the coupling amr(S:)
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interaction with the coupling amr(S:)

# No self-similarity of S. required
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Remarks

o N

# Formally a small-hole perturbation acts as a repulsive §
interaction with the coupling amr(S:)

# No self-similarity of S. required

® lfn=2le. I'isacurve, mr(S:) is the length of the
hiatus. In this case the same asymptotic formula holds
for bound states of an infinite curved I'
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Remarks

-

Formally a small-hole perturbation acts as a repulsive o
interaction with the coupling amr(S:)

No self-similarity of S. required

If n =2, 1.e. ' Is a curve, mp(S:) Is the length of the
hiatus. In this case the same asymptotic formula holds
for bound states of an infinite curved I'

Asymptotic perturbation theory for quadratic forms does
not apply, because C$°(R") > u — |u(0)|* € R does not
extend to a bounded form in W12(R")

|
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Sketch of the proof

fTake an eigenvalue p = \;(0) of multiplicity m. It splits in T
general, for small enough < one has m eigenvalues inside
C:={z: |z — | < 3k}, where x := 3dist ({u}, o(Ho) \ {1}

Aj-1(0) m C
\__/

|

Okayama University, March 24, 2004 — p.18/50

S



Sketch of the proof

fTake an eigenvalue p = \;(0) of multiplicity m. It splits in T
general, for small enough < one has m eigenvalues inside
C:={z: |z — | < 3k}, where x := 3dist ({u}, o(Ho) \ {1}

Aj-1(0) m C
\__/

Set wy(¢,e) == (He — )~ o, — (Ho — )"y, for ¢ € C and
k=34,7+1,....5+m— 1. Using the choice of C and
Sobolev imbedding thm, one proves

lwi(C, &) llwremn) = O(€(n_1)/2) as € — 0

|
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Sketch of the proof

fTake an eigenvalue p = \;(0) of multiplicity m. It splits in T
general, for small enough < one has m eigenvalues inside
C:={z: |z — | < 3k}, where x := 3dist ({u}, o(Ho) \ {1}

Aj-1(0) m C
\__/

Set wy(¢,e) == (He — )~ o, — (Ho — )"y, for ¢ € C and
k=34,7+1,....5+m— 1. Using the choice of C and
Sobolev imbedding thm, one proves

lwi(C, &) llwremn) = O(€(n_1)/2) as € — 0
Next, W2(R") > f — f|r € L*(I") is compact; it implies
% sup wi(C, €) lwren = o™ ?) as e—0 |
a

¢eC
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Sketch of the proof

Let P. be spectral projection to these eigenvalues,
1
Peok — ok = 5— ]{ wi (¢, ) d¢ = o(e\" D72
271 C

in WH2(R") as e — 0
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Sketch of the proof

Let P. be spectral projection to these eigenvalues,
1 _
Pepr, — or = T]{wk@ﬁ) d¢ = o(c"1)/?)
m Jc
in WH2(R") as e — 0

Take m x m matrices L(¢) := ((H:P-p;, P-¢1)) and
M (e) := ((P-ypi, P-¢1)). We find that

(HePzpi, Peor)) — p0i — ai(0)pr(0)mp(Se)

s o(e" ') and (P.g;, Pepy) = 04 + o(e" 1)

|
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Sketch of the proof

Let P. be spectral projection to these eigenvalues,
1 _
Pepr, — or = T]{wk@ﬁ) d¢ = o(c"1)/?)
m Jc
in WH2(R") as e — 0

Take m x m matrices L(¢) := ((H:P-p;, P-¢1)) and
M (e) := ((P-ypi, P-¢1)). We find that

((He Pewpiy, Pepr)) — p10i — api(0)r (0)mr(Se)
is o(s" 1) and (P.y;, P-oy,) = 6; + o(e"1). Then
L(e)M ()™ = pul + aCmp(S:) + o(e™™ 1)

and the claim of the theorem follows [ J

S
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ustration: a ring with 5; cu

R=6 a=1 6=w/20 E =-0.2535
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Strong coupling for a compact [

fLet ' have a single component, smooth and compact T

Theorem [EY01, 02; EK03, Ex04]: (i) Let T be a C* smooth
manifold. In the limit (—1)°d™m 1o — o0 we have

'«
#Odisc(Hoz P) | ’

+ O(In )
27
for dimI' = 1, codim " = 1,
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Strong coupling for a compact [

fLet ' have a single component, smooth and compact T

Theorem [EY01, 02; EK03, Ex04]: (i) Let T be a C* smooth
manifold. In the limit (—1)°d™m 1o — o0 we have

[Cla

#Udisc(Hoz F) 9 - O(ln a)
T
for dimI' = 1, codim " = 1,
D]
- (H = 1
#Udlsc( a,F(h)) 167 —|—O(Iloz)

for dimI' = 2, codimI" = 1, and
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Strong coupling for a compact [

fLet ' have a single component, smooth and compact T
Theorem [EY01, 02; EK03, Ex04]: (i) Let T be a C* smooth
manifold. In the limit (—1)°d™m 1o — o0 we have

Lo

#Udisc(Hoz F) 9 T O(ln CV)
70
for dimI' = 1, codim " = 1,
~ |Dlo?
#Udlsc(Ha,F(h)) =~ 1672 + (’)(ln Oz)
for dimI' = 2, codimI" = 1, and
T 1/2 B
#Udisc(Ha F) ’ ’( - ) T O(e 7704)

for dimI" = 1, codim I" = 2. Here |I'| is the curve length or
surface area, respectively, and ¢, = —4 e2(-2ma+$(1)) |

S
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Strong coupling for a compact [

fTheorem, continued: (1) In addition, suppose that I" has noT

boundary. Then the j-th eigenvalue of H, r behaves as
2

Aj(@) = ==+ + O™ Ina)

for codimI’ = 1 and
Aj(@) = €a + 11 + O(e™)
for codim ' = 2,

|
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Strong coupling for a compact [

fTheorem, continued: (1) In addition, suppose that I" has noj

boundary. Then the j-th eigenvalue of H, r behaves as
2

\i(a) = _% + 11+ O(a ' na)

for codimI’ = 1 and
Aj(ar) = €a 4 pj + O(e™)

for codimI' =2, where p; is the j-th eigenvalue of
Sp = —% _ i/{(s)Z
on L?((0,|T'])) for dimI" = 1, where k is curvature of I, and
Sp = —Apr + K — M?
on L(T',dI') for dimI" = 2, where —Ar is Laplace-Beltrami
operator on I" and K, M, respectively, are the corresponding
%Gauss and mean curvatures o
a

Okayama University, March 24, 2004 — p.22/50



Proof technique

fConsider firstthe 1 + 1 case. Take a closed curve I and calﬂ
L = |I'|. We start from a tubular neighborhood of T
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Proof technique

fConsider first the 1 + 1 case. Take a closed curve I and calﬂ
= |I'|. We start from a fubular neighborhood of I'

Lemma: ®,: [0,L) x (—a,a) — R? defined by

(s,u) — (71(s) — uya(s),v2(s) + uyy(s)).

IS a diffeomorphism for all « > 0 small enough

|
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DN bracketing

fThe idea is to apply to the operator H,, r in question T
Dirichlet-Neumann bracketing at the boundary of
Yo : = ([0, L) X (—a,a)). This yields
(—AX)® Ly < Hop < (AR )@ LY}

a,o

where A, = A" U AS™ is the exterior domain, and L7, are
self-adjoint operators associated with the forms

Gald) = IV sy = [ @) a8

where f € W,7(%,) and W2(%,) for +, respectively
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DN bracketing

fThe idea is to apply to the operator H,, r in question T
Dirichlet-Neumann bracketing at the boundary of
Yo : = ([0, L) X (—a,a)). This yields

(—AX)® L, < Hor < (A} )& LY}

a,o

where A, = A" U AS™ is the exterior domain, and L7, are
self-adjoint operators associated with the forms

Gald) = IV sy = [ @) a8

where f € W,7(%,) and W2(%,) for +, respectively

Important: The exterior part does not contribute to the
negative spectrum, so we may consider LE,, only J

)
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Transformed interior operator

fWe use the curvilinear coordinates passing from L7, to T
unitarily equivalent operators given by quadratic forms

:/L/_C;(1+uk(s))2 - Qduds—l—/L/_C; or [
//_ Su]f\stdu—oz/ 1 £(s,0)]* ds

with f € W12((0, L) x (—a, a)) satisfying periodic b.c. in the

variable s and Dlrlchlet b c at v = +a, and
1

L
el = Hall)=D o5 [y s D P

where V' is the curvature induced potential,
B k(s)? uk” (s) Su?k!(s)?
% VW) = = I ruk(0)? T 2 uk(s))? (1t uk(s))? |
o)
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Estimates with separated variables

fWe pass to rougher bounds squeezing H, r between T
Hi,=U;®1+1®T,,

|
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Estimates with separated variables

fWe pass to rougher bounds squeezing H, r between T
Hi,=U;®1+1®T,,
Here U are s-a operators on L?(0, L)
., d?
Uy = —(17F al[k]l) 2@ + Vi (s)

with PBC, where V_(s) < V(s,u) < Vi (s) with an O(a) error,
and the transverse operators are associated with the forms

thalfl = [ 17 @P du = al )
and
taalf] = taalf] = Ikl (| f (@) + | f(—=a)|?)
%with f € Wh2(—a,a) and W2(—a, a), respectively |
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Concluding the planar curve case

fLemma: There are positive ¢, ¢y such that T, has for o T
large enough a single negative eigenvalue « , satisfying

o o’ o

T (1 + cNe_O‘a/2) < Fga < — < /sj);a <-7 (1 — 8e_o‘a/2)
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Concluding the planar curve case

fLemma: There are positive ¢, ¢y such that T, has for o T
large enough a single negative eigenvalue « , satisfying

2 2 2

> —aa/2 — o o~ —aa/2
_Z<1+0N6 /></ia7a<—z</<;;;a<—z<1—8e /)
Finishing the proof:

» the eigenvalues of U differ by O(a) from those of the
comparison operator
® we choose a = 6o~ ! In a as the neighbourhood width

# putting the estimates together we get the eigenvalue
asymptotics for a planar loop, i.e. the claim (ii)

o if I'is not closed, the same can be done with the

comparison operators S?’N having appropriate b.c. at
% the endpoints of I'. This yields the claim (i) J
&)
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A curve in R’

fThe argument is similar: @
P

D,N

|
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A curve in R’

fThe argument is similar: @ T

The “straightening” transformation &, is defined by

Dy(s,7,0) :=~v(s) —r[n(s)cos(d — B(s)) + b(s)sin(0 — B(s))]

To separate variables, we choose 3 so that 3(s) equals the
torsion 7(s) of I'. The effective potential is then

k*  hgs  5h?

ISR TERRPTS
where h := 1+ rkcos(6 — ). It is important that the /eading
term is —1k* again, the torsion part being O(a) J
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A curve in R’

-

The transverse estimate is replaced by

Lemma: There are ¢, co > 0 such that T has for large
enough negative « a single negative ev xZ , which satisfies

€a — S(a) < higq <o <FKhq <bat+S(a)

as o — —oo, Where S(a) = c1e™?™ exp(—cge™ ™)
The rest of the argument is the same as above
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A curve in R’

-

The transverse estimate is replaced by

Lemma: There are ¢, co > 0 such that T has for large
enough negative « a single negative ev xZ , which satisfies

€a — S(a) < higq <o <FKhq <bat+S(a)

as o — —oo, Where S(a) = c1e™?™ exp(—cge™ ™)
The rest of the argument is the same as above

Remark: Notice that the result extends easily to I''s
consisting of a finite number of connected components

(curves) which are C* and do not intersect. The same will
be true for surfaces considered below

" -
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A surface in R?

fThe argument modifies easily; >, is now a /ayer T
neighborhood. However, the intrinsic geometry of I
can no longer be neglected
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A surface in R®

fThe argument modifies easily; >, is now a /ayer T
neighborhood. However, the intrinsic geometry of I
can no longer be neglected

Let I' ¢ R? be a C* smooth compact Riemann surface of a
finite genus g. The metric tensor given in the local
coordinates by ¢, = p, - p,, defines the invariant surface

area element dI' := ¢'/2d%s, where g := det(g,.,).

The Weingarten tensor is then obtained by raising the index
in the second fundamental form, »,” := —n_, - p ,¢9°"; the
eigenvalues k4 of (h, ") are the principal curvatures. They
determine Gauss curvature K and mean curvature M by

1 1
K =det(h,”) = kik_, M = =Tr (h,") = =(ky+ k_)
. -
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Proof sketch in the surface case

-

The bracketing argument proceeds as before,
~AY @ H < Ho,r<-AF ©HI., Ay =R\ %,

the interior only contributing to the negative spectrum

|
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Proof sketch in the surface case

o N

The bracketing argument proceeds as before,
~AY @ H < Ho,r<-AF ©HI., Ay =R\ %,

the interior only contributing to the negative spectrum

Using the curvilinear coordinates: For small enough a we
have the “straightening” diffeomorphism

Lo(x,u)=x+un(z), (xr,u)€ Ny :=TI x(—a,a)
Then we transform H_ . by the unitary operator
Uh = oLy : L?(Q) — LE(N,, dQ)

%and estimate the operators A . := UHL .U~ in L*(N,,dQ)
o
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Straightening transformation

fDenote the pull-back metric tensor by G, T
Gij = ( (Ga) 0 ) , Gy = (0], — uhy, 7)(65 — uhe ) gpw,

s0 d¥ := G/2d%s du with G := det(G;;) given by
G=g[(1—uky)(1—uk )] =g(l—2Mu+ Ku?)?

|
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Straightening transformation

fDenote the pull-back metric tensor by G;;, T

Gu) O - -
Gij = <( g) 1>7GMV(5,LLUhM )08 — uhe ) gpu,

s0 d¥ := G/2d%s du with G := det(G;;) given by
G=g[(1—uky)(1—uk )] =g(l—2Mu+ Ku?)?

Let (-,-)¢ denote the inner product in L2(A;, d2). Then A,
are associated with the forms

A

0] = 0, G0l — a [ (s o) ar,

with the domains W, (N, d2) and W'2(N,, dQ) for the +

%sign, respectively |
o
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Straightening continued

fNext we remove 1 — 2Mu + Ku? from the weight G/2 in thej
inner product of L?(\,, dQ) by the unitary transformation
U: L*(Ng,dQ) — L*(N,,dl'du),

Ut = (1 — 2Mu + Ku?)"%

|
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Straightening continued

fNext we remove 1 — 2Mu + Ku? from the weight G/2 in thej
inner product of L?(\,, dQ) by the unitary transformation
U: L*(Ng,dQ) — L*(N,,dl'du),

Uty := (1 —2Mu + Ku?)"/%
Denote the inner product in L?(N,,dl'du) by (-,-),. The
operators B, . := UH_ .U~ are associated with the forms
bzf[w] — (a,uw? Gwaﬂb)g -+ (¢7 (Vl + V2)¢)g

ol - o /F (s, 0)[2T

J
%for o from W' (Q,, dDdu) and W21 (Q,, dT'dw), respectively »

1
borl) = B+ 317 [ M (o)l (- 1i)ar
—0 I

)
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Effective potential

fHere M, = (M — Ku)(1 — 2Mu + Ku?)~! is the mean T
curvature of the parallel surface to I" and

K — M?

—1/2/ 1/2 1% 1%
Vi =g /(/GWJ)MhIG Jus Vo= T mta s Ko

with J := 2 In(1 — 2Mu + Ku®?)
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Effective potential

fHere M, = (M — Ku)(1 — 2Mu + Ku?)~! is the mean T

curvature of the parallel surface to I" and

K — M?

_ . —1/2/ 1/2 ~uv 1% _

with J := 3 In(1 — 2Mu + Ku?)

A rougher estimate with separated variables: squeeze
1 — 2Mu + Ku® between Cy(a) := (1 £ ap')?, where

0 := max({||k+|l., Ik-|l.})~ . Consequently, the matrix
inequality C_(a)g,, < G < Cy(a)g,, is valid

|
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Effective potential

fHere M, = (M — Ku)(1 — 2Mu + Ku?)~! is the mean T
curvature of the parallel surface to I" and

K — M?

_ . —1/2/ 1/2 ~uv 1% _

with J := 3 In(1 — 2Mu + Ku?)

A rougher estimate with separated variables: squeeze
1 — 2Mu + Ku® between Cy(a) := (1 £ ap')?, where

0 := max({||k+|l., Ik-|l.})~ . Consequently, the matrix
inequality C_(a)g,, < G < Cy(a)g,, is valid

V1 behaves as O(a) for a — 0, while V5 can be squeezed
between the functions C%(a)(K — M?), both uniformly in

%’[he surface variables J

)
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Concluding the estimate

" Hence we estimate B~ . by N
Byg =Sy @I +1xT,,

with SF := —C.4(a)Ar + C1%(a)(K — M?) £ va in the space
L*(T,dT") ® L*(—a, a) for a v > 0, where T, are the same as
in the 1 + 1 case (the same lemma applies)
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Concluding the estimate

" Hence we estimate B~ . by N
Byg =Sy @I +1xT,,

with SF := —C.4(a)Ar + C1%(a)(K — M?) £ va in the space
L*(T,dI') ® L*(—a, a) for a v > 0, where T, are the same as
in the 1 + 1 case (the same lemma applies)

As above the eigenvalues of the operators S coincide up
to an O(a) error with those of S, and therefore choosing
a ;= 6a 1 Ina, we find

L 5

ANi(a) = 3 + i +O(a ' na)

as a — 0 which is equivalent to the claim (i)

" -
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Concluding the estimate

" Hence we estimate B~ . by N
Byg =Sy @I +1xT,,

with SF := —C.4(a)Ar + C1%(a)(K — M?) £ va in the space
L*(T,dI') ® L*(—a, a) for a v > 0, where T, are the same as
in the 1 + 1 case (the same lemma applies)

As above the eigenvalues of the operators S coincide up
to an O(a) error with those of S, and therefore choosing
a ;= 6a 1 Ina, we find

L 5

ANi(a) = 3 + i +O(a ' na)

as a — 0 which is equivalent to the claim (i)

To get (if) we employ Weyl asymptotics for Sp. Extension to
I's having a finite # of connected components is easy

!
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Infinite manifolds

fBound states may exist also if I' is noncompact. The T
comparison operator St has an attractive potential, so
oaisc(Ha1) # 0 can be expected in the strong coupling
regime, even if a direct proof is missing as for surfaces
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Infinite manifolds

fBound states may exist also if I' is noncompact. The T
comparison operator St has an attractive potential, so
oaisc(Ha1) # 0 can be expected in the strong coupling
regime, even if a direct proof is missing as for surfaces

It is needed that 0., does not feel curvature, not only for
H, r but for the estimating operators as well. Sufficient
conditions:

® k(s),k'(s)and k"(s)/2 are O(|s|~17¢) as |s| — o
for a planar curve

# in addition, the torsion bounded for a curve in R3

# a surface I' admits a global normal parametrization with
a uniformly elliptic metric, K, M — 0 as the geodesic

% radius » — oo J
&)
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Infinite manifolds

o N

We must also assume that there is a tubular neighborhood
>, Without self-intersections for small a, i.e. to avoid

VAVAS
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Infinite manifolds

o N

We must also assume that there is a tubular neighborhood
>, Without self-intersections for small a, i.e. to avoid

NNV

VAVAS

Theorem [EY02; EKO3, Ex04]: With the above listed
assumptions, the asymptotic expansions (ii) for the
eigenvalues derived in the compact case hold again
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Periodic manifolds

fOne uses Floquet expansion. It is important to choose the
periodic cells C of the space and I'¢ of the manifold
consistently, I'c = I' N C; we assume that I'; is connected

16
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Periodic manifolds

fOne uses Floquet expansion. It is important to choose the
periodic cells C of the space and I'¢ of the manifold
consistently, I'c = I' N C; we assume that I'; is connected

ei@

Lemma: 3 unitary &/ : L*(R?) — f[?%)r L?(C)df s.t.
D

Z/[Ha,rz/{_lz/ Haﬁd@ and U(Hajp): U O(Hajg)

0.2y 0.2y -

) i
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Comparison operators

-

The fibre comparison operators are

d 1.,
% =32 ~ 1*)

on L?(I'¢) parameterized by arc length for dim I' = 1, with
Floquet b.c., and

Sp = g Y2 (—id, + 60,)g" 2 g" (—id, + 6,) + K — M>

with periodic b.c. for dimI' = 2, where 0,,, p=1,...,r,
are quasimomentum components; recall that r =1,2,3
depending on the manifold type
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Periodic manifold asymptotics

-

Theorem [EY01; EK03, Ex04]: Let I' be a C*-smooth
r-periodic manifold without boundary. The strong coupling
asymptotic behavior of the j-th Floquet eigenvalue is

1
ANj(a,0) = —1042 +ui(0) +O0(atlna) as a — oo

for codimI' = 1 and
Ni(a,0) =€q +pi(0) + O(™) as a— —o0

for codimI' = 2. The error terms are uniform w.r.t. 9

" -
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Periodic manifold asymptotics

-

Theorem [EY01; EK03, Ex04]: Let I' be a C*-smooth
r-periodic manifold without boundary. The strong coupling
asymptotic behavior of the j-th Floquet eigenvalue is

1
ANj(a,0) = —1042 +ui(0) +O0(atlna) as a — oo

for codimI' = 1 and
Ni(a,0) =€q +pi(0) + O(™) as a— —o0
for codimI" = 2. The error terms are uniform w.r.t.

Corollary: If dimI" = 1 and coupling is strong enough,
H,r has open spectral gaps
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Large gaps in the disconnected case

o N

If I" iIs not connected and each connected component is
contained in a translate of I'¢, the comparison operator is
independent of # and asymptotic formula reads

1
ANi(a,0) = —1042 +ui+O0(@tna) as a— oo

for codimI" = 1 and similarly for for codimI" = 2

wi Okayama University, March 24, 2004 — p.41/50



Large gaps in the disconnected case

o N

If I" iIs not connected and each connected component is
contained in a translate of I'¢, the comparison operator is
independent of # and asymptotic formula reads

1
ANi(a,0) = —ZOP +ui+O0(@tna) as a— oo

for codimI" = 1 and similarly for for codimI" = 2
Moreover, the assumptions can be weakened

)
) i
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Soft graphs with magnetic field

fAdd a homogeneous magnetic field with the vector potentiaﬂ
A = 3 B(—z2,21). We ask about existence of persistent
currents, 1.e. nonzero probability flux along a closed loop
Ohn(¢) 1

96 o™
where )\, (¢) Is the n-th eigenvalue of the Hamiltonian
Hor(B) i= (—iV — A)? —ad(x — )

and ¢ is the magnetic flux through the loop (in standard
units its quantum equals 2whacle| 1)
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Soft graphs with magnetic field

fAdd a homogeneous magnetic field with the vector potentiaﬂ

A = 3 B(—z2,21). We ask about existence of persistent

currents, 1.e. nonzero probability flux along a closed loop

Male) 1
op c[n’

where )\, (¢) Is the n-th eigenvalue of the Hamiltonian
Hor(B) i= (—iV — A)? —ad(x — )

and ¢ is the magnetic flux through the loop (in standard
units its quantum equals 2whacle| 1)

. . .
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Persistent currents

fThe same technique, different comparison operator, namelyj

d 1
Sr(B) = —=3 -~ 1/{:(3)2

on L2(0, L) with 1(L—) = B2y (0+4), ¢/ (L—) = By (0+),
where (Q is the area encircled by T

|
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Persistent currents

fThe same technique, different comparison operator, namelyj

_ d 1 2
Sr(B) = i Zk(s)
on L*(0, L) with ¢ (L—) = ePyp(0+), ¢/ (L—) = &Py (0+),
where (Q is the area encircled by T
Theorem [E.-Yoshitomi, 2003]: Let I" be a C*-smooth. The

for large o the operator H, r(B) has a non-empty discrete
spectrum and the j-th eigenvalue behaves as

1
)\]’(04, B) — _1&2 + M](B) + O(&_l th() )
where p;(B) is the j-th eigenvalue of Sr(B) and the error

term is uniform in B. In particular, for a fixed j and « large
enough the function \;(«a, -) cannot be constant

wi Okayama University, March 24, 2004 — p.43/50



-

Persistent currents

The same technique, different comparison operator, namelyj
_ d 1 2
Sr(B) = i Zk(s)
on L2(0, L) with o (L—) = e?BI%y(04), o' (L—) = B8y (04),
where (Q is the area encircled by T
Theorem [E.-Yoshitomi, 2003]: Let I' be a C4-smooth. The
for large o the operator H, r(B) has a non-empty discrete

spectrum and the j-th eigenvalue behaves as
1
Aj(a, B) = =50 + 5(B) + O(a” ' Ina).

where p;(B) is the j-th eigenvalue of Sr(B) and the error
term is uniform in B. In particular, for a fixed j and « large
enough the function \;(«a, -) cannot be constant

Remark: [Honnouvo-Hounkonnou, 2004] proved the same for AB flux J
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Absolute continuity

-

One is also interested in the nature of the spectrum of H,

with a periodic I'. By [Birman-Suslina-Shterenberg 00, 01]
the spectrum is absolutely continuous if codimI" = 1 and the
period cell is compact. This tells us nothing, e.g., about a

single periodic curve in R?, d = 2, 3.
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Absolute continuity

o N

One is also interested in the nature of the spectrum of H,

with a periodic I'. By [Birman-Suslina-Shterenberg 00, 01]
the spectrum is absolutely continuous if codimI" = 1 and the
period cell is compact. This tells us nothing, e.g., about a

single periodic curve in R?, d = 2, 3.

The assumption about connectedness of I'¢ can be always
satisfied if d = 2 but not for d = 3; recall the crotfchet curve
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Absolute continuity

o N

Theorem [Bentosela-Duclos-E., 2003]: To any E > 0 there
Is an ag > 0 such that the spectrum of H,, r is absolutely

continuous in (—oo, &(a) + E) as long as (—1)% > ag,
where £(a) = —1a? and ¢, for d = 2, 3, respectively
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Absolute continuity

o N

Theorem [Bentosela-Duclos-E., 2003]: To any E > 0 there
Is an ag > 0 such that the spectrum of H,, r is absolutely
continuous in (—oo, &(a) + E) as long as (—1)% > ag,
where £(a) = —1a? and ¢, for d = 2, 3, respectively

Proof: The fiber operators H, r(0) form a type A analytic
family. In a finite interval each of them has a finite number
of ev’s , so one has just to check non-constancy of the
functions \;(«,-) as in the case of persistent currents [
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Open questions

f » Strong coupling, manifolds with boundary: If I has a T

boundary, we have a strong-coupling asymptotics for
the bound state number but not for ev’s themselves.

We conjecture that the latter is given again by

1
Aj(a) = —1042 + 1+ 0@ Ina),

etc., where p; refers to St with Dirichlet b.c.

|
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Open questions

f » Strong coupling, manifolds with boundary: If I has a T

boundary, we have a strong-coupling asymptotics for
the bound state number but not for ev’'s themselves.
We conjecture that the latter is given again by

1 2

Aj(a) = O Ty O(a™' Ina),

etc., where p; refers to St with Dirichlet b.c.

Strong coupling, less reqularity: Examples show that

the above relation is not valid for a non-smooth T, rather
1; is replaced by a term proportional to o*. How does

the asymptotic expansion look in this case and how it
depends on dimension and codimension of I'? The
analogous question can be asked more generally for
graphs with branching points and generalized graphs J
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Open questions

o N

® Scattering theory on non-compact “leaky” curves,
manifolds, graphs, and generalized graphs:

|
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Open questions

o N

® Scattering theory on non-compact “leaky” curves,
manifolds, graphs, and generalized graphs:

s existence and completeness, including spectral a.c.
in (—1a?,0) w.r.t. asymptotic geometry of T
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Open questions

® Scattering theory on non-compact “leaky” curves,
manifolds, graphs, and generalized graphs:

s existence and completeness, including spectral a.c.
in (—1a?,0) w.r.t. asymptotic geometry of T

s asymptotic behavior of S-matrix in strong-coupling
regime, including relations between S-matrices of
leaky and “ideal” graphs

|

Okayama University, March 24, 2004 — p.47/50



Open questions

o N

® Scattering theory on non-compact “leaky” curves,
manifolds, graphs, and generalized graphs:

» existence and completeness, including spectral a.c.
in (—1a?,0) w.r.t. asymptotic geometry of T
s asymptotic behavior of S-matrix in strong-coupling

regime, including relations between S-matrices of
leaky and “ideal” graphs

s prove existence of resonances, at least within
particular models

" -
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Open questions

o N

® Scattering theory on non-compact “leaky” curves,
manifolds, graphs, and generalized graphs:

» existence and completeness, including spectral a.c.
in (—1a?,0) w.r.t. asymptotic geometry of T
s asymptotic behavior of S-matrix in strong-coupling

regime, including relations between S-matrices of
leaky and “ideal” graphs

s prove existence of resonances, at least within
particular models

® Periodic I': one expects that the whole spectrum is
absolutely continuous, independently of «, but it
remains to be proved. Also strong-coupling asymptotic

% properties of spectral gaps are not known J
)
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Open questions

f ® RHandom graphs, either by their shape or by a random T
coupling a: I' — R.. Is it true that the whole negative
part of o.ss(H, 1) IS @always p.p. once a disorder is

present?
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Open questions

-

® RHandom graphs, either by their shape or by a random
coupling o : I' — R. Is it true that the whole negative
part of o.ss(H, 1) IS @always p.p. once a disorder is
present?

® Adding magnetic field: Will the curvature-induced
discrete spectrum survive under any magnetic field?
On the other hand, will (at least a part of) the a.c.
spectrum of (—iV — A)? — ad(z — I') survive a
randomization of a straight I'?

|
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Open questions

o N

® RHandom graphs, either by their shape or by a random
coupling o : I' — R. Is it true that the whole negative
part of o.ss(H, 1) IS @always p.p. once a disorder is
present?

® Adding magnetic field: Will the curvature-induced
discrete spectrum survive under any magnetic field?
On the other hand, will (at least a part of) the a.c.
spectrum of (—iV — A)? — ad(z — I') survive a
randomization of a straight I'?

® elc, efc

" .
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The talk was based on

‘ [BDEOS3] F. Bentosela, P. Duclos, P.E.: Absolute continuity in periodic thin tubes and \

strongly coupled leaky wires, Lett. Math. Phys. 65 (2003), 75-82.
[BEKS94] J.F. Brasche, P.E., Yu.A. Kuperin, P. Seba: Schrbédinger operators with singular

interactions, J. Math. Anal. Appl. 184 (1994), 112—139.
[Ex01] P.E.: Bound states of infinite curved polymer chains, Lett. Math. Phys. 57 (2001),

87-96.
[Ex04] P.E.: Spectral properties of Schrédinger operators with a strongly attractive ¢

interaction supported by a surface, to appear in Proceedings of the NSF Summer
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