Schrödinger operators with strongly attractive graph-type interaction

Pavel Exner

in collaboration with Kazushi Yoshitomi, Sylwia Kondej,
Francois Bentosela, Pierre Duclos and Miloš Tater
exner@ujf.cas.cz

Department of Theoretical Physics, NPI, Czech Academy of Sciences and Doppler Institute, Czech Technical University

Talk overview

- Leaky quantum graphs - why are they interesting?

Talk overview

- Leaky quantum graphs - why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$

Talk overview

- Leaky quantum graphs - why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced discrete spectrum

Talk overview

- Leaky quantum graphs - why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory

Talk overview

- Leaky quantum graphs - why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory
- Strong-coupling asymptotics for a compact Γ

Talk overview

- Leaky quantum graphs - why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory
- Strong-coupling asymptotics for a compact Γ
- Technique: bracketing + coordinate transformation

Talk overview

- Leaky quantum graphs - why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory
- Strong-coupling asymptotics for a compact Γ
- Technique: bracketing + coordinate transformation
- Infinite manifolds

Talk overview

- Leaky quantum graphs - why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory
- Strong-coupling asymptotics for a compact Γ
- Technique: bracketing + coordinate transformation
- Infinite manifolds
- Periodic case, magnetic field, absolute continuity

Talk overview

- Leaky quantum graphs - why are they interesting?
- Schrödinger operators to be considered, $H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma)$
- Geometrically induced discrete spectrum
- Punctured manifolds: a perturbation theory
- Strong-coupling asymptotics for a compact Γ
- Technique: bracketing + coordinate transformation
- Infinite manifolds
- Periodic case, magnetic field, absolute continuity
- Open questions

Leaky graphs - why are they interesting?

Recall the "standard" graph models:

Hamiltonian: $-\frac{\partial^{2}}{\partial x_{j}^{2}}+v\left(x_{j}\right)$
on graph edges,
boundary conditions at vertices

Leaky graphs - why are they interesting?

Recall the "standard" graph models:

$$
\text { Hamiltonian: }-\frac{\partial^{2}}{\partial x_{j}^{2}}+v\left(x_{j}\right)
$$

on graph edges, boundary conditions at vertices

Also, generalized graphs - nanotubes + fullerenes, etc.

the edges same above,
$-\Delta_{\mathrm{LB}}+v(x)$ on the manifold
boundary conditions at vertices

Drawbacks of these models

- Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description

However, the answer is known so far only for Neumann-type situations [Rubinstein-Schatzman, 2001; Kuchment-Zeng, 2001; E.-Post, 2003], the Dirichlet case needed here is open (and difficult)

Drawbacks of these models

- Presence of ad hoc parameters in the b.c. describing branchings. A natural remedy: use a zero-width limit in a more realistic description

However, the answer is known so far only for Neumann-type situations [Rubinstein-Schatzman, 2001; Kuchment-Zeng, 2001; E.-Post, 2003], the Dirichlet case needed here is open (and difficult)

- Quantum tunneling is neglected: recall that a true quantum-wire boundary is a finite potential jump

Leaky quantum graphs

We consider instead "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{n}\right)$, where Γ is a graph in question, or generalized graph, understood as a subset of \mathbb{R}^{n}

Leaky quantum graphs

We consider instead "leaky" graphs with an attractive interaction supported by graph edges. Formally we have

$$
H_{\alpha, \Gamma}=-\Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

in $L^{2}\left(\mathbb{R}^{n}\right)$, where Γ is a graph in question, or generalized graph, understood as a subset of \mathbb{R}^{n}
In this talk we will mostly consider the simplest graphs, or building blocks or more complicated graphs, where Γ is a smooth manifold in \mathbb{R}^{n}. We have in mind three cases:

- curves in \mathbb{R}^{2}
- surfaces in \mathbb{R}^{3}
- curves in \mathbb{R}^{3}

Definition of the Hamiltonian

In the first two cases we have codim $\Gamma=1$ and the operator can be defined by means of quadratic form,

$$
\psi \mapsto\|\nabla \psi\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}-\alpha \int_{\Gamma}|\psi(x)|^{2} \mathrm{~d} x,
$$

which is closed and below bounded in $W^{2,1}\left(\mathbb{R}^{2}\right)$; the second term makes sense in view of Sobolev embedding

Definition of the Hamiltonian

In the first two cases we have codim $\Gamma=1$ and the operator can be defined by means of quadratic form,

$$
\psi \mapsto\|\nabla \psi\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2}-\alpha \int_{\Gamma}|\psi(x)|^{2} \mathrm{~d} x,
$$

which is closed and below bounded in $W^{2,1}\left(\mathbb{R}^{2}\right)$; the second term makes sense in view of Sobolev embedding
For smooth manifolds and more general Γ such as a graph with a locally finite number of smooth edges and no cusps we can use an alternative definition by boundary conditions: $H_{\alpha, \Gamma}$ acts as $-\Delta$ on functions from $W_{\text {loc }}^{1,2}\left(\mathbb{R}^{2} \backslash \Gamma\right)$, which are continuous and exhibit a normal-derivative jump,

$$
\left.\frac{\partial \psi}{\partial n}(x)\right|_{+}-\left.\frac{\partial \psi}{\partial n}(x)\right|_{-}=-\alpha \psi(x)
$$

The case codim $\Gamma=2$

Boundary conditions can be used but they are more complicated. Moreover, for an infinite Γ corresponding to $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ we have to assume in addition that there is a tubular neighbourhood of Γ which does not intersect itself

The case codim $\Gamma=2$

Boundary conditions can be used but they are more complicated. Moreover, for an infinite Γ corresponding to $\gamma: \mathbb{R} \rightarrow \mathbb{R}^{3}$ we have to assume in addition that there is a tubular neighbourhood of Γ which does not intersect itself Employ Frenet's frame $(t(s), b(s), n(s))$ for Γ. Given $\xi, \eta \in \mathbb{R}$ we set $r=\left(\xi^{2}+\eta^{2}\right)^{1 / 2}$ and define family of "shifted" curves

$$
\Gamma_{r} \equiv \Gamma_{r}^{\xi \eta}:=\left\{\gamma_{r}(s) \equiv \gamma_{r}^{\xi \eta}(s):=\gamma(s)+\xi b(s)+\eta n(s)\right\}
$$

The case $\operatorname{codim} \Gamma=2$

The restriction of $f \in W_{\text {loc }}^{2,2}\left(\mathbb{R}^{3} \backslash \Gamma\right)$ to Γ_{r} is well defined for small r; we say that $f \in W_{\text {loc }}^{2,2}\left(\mathbb{R}^{3} \backslash \Gamma\right) \cap L^{2}\left(\mathbb{R}^{3}\right)$ belongs to Υ if

$$
\begin{aligned}
& \Xi(f)(s):=-\lim _{r \rightarrow 0} \frac{1}{\ln r} f \upharpoonright_{\Gamma_{r}}(s), \\
& \Omega(f)(s):=\lim _{r \rightarrow 0}\left[f \Gamma_{\Gamma_{r}}(s)+\Xi(f)(s) \ln r\right]
\end{aligned}
$$

exist a.e. in \mathbb{R}, are independent of the direction $\frac{1}{r}(\xi, \eta)$, and define functions from $L^{2}(\mathbb{R})$

The case $\operatorname{codim} \Gamma=2$

The restriction of $f \in W_{\text {loc }}^{2,2}\left(\mathbb{R}^{3} \backslash \Gamma\right)$ to Γ_{r} is well defined for small r; we say that $f \in W_{\text {loc }}^{2,2}\left(\mathbb{R}^{3} \backslash \Gamma\right) \cap L^{2}\left(\mathbb{R}^{3}\right)$ belongs to Υ if

$$
\begin{aligned}
& \Xi(f)(s):=-\lim _{r \rightarrow 0} \frac{1}{\ln r} f \upharpoonright_{\Gamma_{r}}(s), \\
& \Omega(f)(s):=\lim _{r \rightarrow 0}\left[f \Gamma_{\Gamma_{r}}(s)+\Xi(f)(s) \ln r\right]
\end{aligned}
$$

exist a.e. in \mathbb{R}, are independent of the direction $\frac{1}{r}(\xi, \eta)$, and define functions from $L^{2}(\mathbb{R})$
Then the operator $H_{\alpha, \Gamma}$ has the domain

$$
\{g \in \Upsilon: 2 \pi \alpha \Xi(g)(s)=\Omega(g)(s)\}
$$

and acts as

$$
-H_{\alpha, \Gamma} f=-\Delta f \quad \text { for } \quad x \in \mathbb{R}^{3} \backslash \Gamma
$$

Remarks

- If Γ has components of codimension one and two, one combines the above boundary conditions

Remarks

- If Γ has components of codimension one and two, one combines the above boundary conditions
- The b.c. are natural describing point interaction in the normal plane to Γ. Thus there is no way (at least within standard QM) to define $H_{\alpha, \Gamma}$ in the case $\operatorname{codim} \Gamma \geq 4$

Remarks

- If Γ has components of codimension one and two, one combines the above boundary conditions
- The b.c. are natural describing point interaction in the normal plane to Γ. Thus there is no way (at least within standard QM) to define $H_{\alpha, \Gamma}$ in the case $\operatorname{codim} \Gamma \geq 4$
- Strong coupling considered below is closely related to semiclassical behaviour of the operator

$$
H_{\alpha, \Gamma}(h)=-h^{2} \Delta-\alpha \delta(x-\Gamma), \quad \alpha>0,
$$

which can be regarded as $h^{2} H_{\alpha(h), \Gamma}$, where the effective coupling constant is $\alpha(h):=\alpha h^{-2}$ for $\operatorname{codim} \Gamma=1$, and

$$
\alpha(h):=\alpha+\frac{1}{2 \pi} \ln h \quad \text { if } \quad \operatorname{codim} \Gamma=2
$$

Geometrically induced spectrum

Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha, \Gamma}$. Consider a piecewise C^{1}-smooth $\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ parameterized by its arc length, and assume:

Geometrically induced spectrum

Bending means binding, i.e. it may create isolated eigenvalues of $H_{\alpha, \Gamma}$. Consider a piecewise C^{1}-smooth
$\Gamma: \mathbb{R} \rightarrow \mathbb{R}^{2}$ parameterized by its arc length, and assume:

- $\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right| \geq c\left|s-s^{\prime}\right|$ holds for some $c \in(0,1)$
- Γ is asymptotically straight: there are $d>0, \mu>\frac{1}{2}$ and $\omega \in(0,1)$ such that

$$
1-\frac{\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|}{\left|s-s^{\prime}\right|} \leq d\left[1+\left|s+s^{\prime}\right|^{2 \mu}\right]^{-1 / 2}
$$

in the sector $S_{\omega}:=\left\{\left(s, s^{\prime}\right): \omega<\frac{s}{s^{\prime}}<\omega^{-1}\right\}$

- straight line is excluded, i.e. $\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|<\left|s-s^{\prime}\right|$ holds for some $s, s^{\prime} \in \mathbb{R}$

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$ and $H_{\alpha, \Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4} \alpha^{2}$

Bending means binding

Theorem [E.-Ichinose, 2001]: Under these assumptions, $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)=\left[-\frac{1}{4} \alpha^{2}, \infty\right)$ and $H_{\alpha, \Gamma}$ has at least one eigenvalue below the threshold $-\frac{1}{4} \alpha^{2}$

- The same for curves in \mathbb{R}^{3}, under stronger regularity, with $-\frac{1}{4} \alpha^{2}$ is replaced by the corresponding 2D p.i. ev
- For curved surfaces $\Gamma \subset \mathbb{R}^{3}$ such a result is proved in the strong coupling asymptotic regime only
- Implications for graphs: let $\tilde{\Gamma} \supset \Gamma$ in the set sense, then $H_{\alpha, \tilde{\Gamma}} \leq H_{\alpha, \Gamma}$. If the essential spectrum threshold is the same for both graphs and Γ fits the above assumptions, we have $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right) \neq \emptyset$ by minimax principle

Proof: generalized BS principle

Classical Birman-Schwinger principle based on the identity

$$
\begin{aligned}
& \left(H_{0}-V-z\right)^{-1}=\left(H_{0}-z\right)^{-1}+\left(H_{0}-z\right)^{-1} V^{1 / 2} \\
& \times\left\{I-|V|^{1 / 2}\left(H_{0}-z\right)^{-1} V^{1 / 2}\right\}^{-1}|V|^{1 / 2}\left(H_{0}-z\right)^{-1}
\end{aligned}
$$

can be extended to generalized Schrödinger operators $H_{\alpha, \Gamma}$ [BEKŠ94]: the multiplication by $\left(H_{0}-z\right)^{-1} V^{1 / 2}$ etc. is replaced by suitable trace maps. In this way we find that $-\kappa^{2}$ is an eigenvalue of $H_{\alpha, \Gamma}$ iff the integral operator $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ on $L^{2}(\mathbb{R})$ with the kernel

$$
\left(s, s^{\prime}\right) \mapsto \frac{\alpha}{2 \pi} K_{0}\left(\kappa\left|\Gamma(s)-\Gamma\left(s^{\prime}\right)\right|\right)
$$

has an eigenvalue equal to one

Sketch of the proof

We treat $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ as a perturbation of the operator $\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ referring to a straight line. The spectrum of the latter is found easily: it is purely ac and equal to $[0, \alpha / 2 \kappa)$

Sketch of the proof

We treat $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ as a perturbation of the operator $\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ referring to a straight line. The spectrum of the latter is found easily: it is purely ac and equal to $[0, \alpha / 2 \kappa)$
The curvature-induced perturbation is sign-definite: we have $\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}-\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}\right)\left(s, s^{\prime}\right) \geq 0$, and the inequality is sharp somewhere unless Γ is a straight line. Using a variational argument with a suitable trial function we can check the inequality $\sup \sigma\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}\right)>\frac{\alpha}{2 \kappa}$

Sketch of the proof

We treat $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ as a perturbation of the operator $\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ referring to a straight line. The spectrum of the latter is found easily: it is purely ac and equal to $[0, \alpha / 2 \kappa)$
The curvature-induced perturbation is sign-definite: we have $\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}-\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}\right)\left(s, s^{\prime}\right) \geq 0$, and the inequality is sharp somewhere unless Γ is a straight line. Using a variational argument with a suitable trial function we can check the inequality $\sup \sigma\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}\right)>\frac{\alpha}{2 \kappa}$
Due to the assumed asymptotic straightness of Γ the perturbation $\mathcal{R}_{\alpha, \Gamma}^{\kappa}-\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ is Hilbert-Schmidt, hence the spectrum of $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ in the interval $(\alpha / 2 \kappa, \infty)$ is discrete

Sketch of the proof

We treat $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ as a perturbation of the operator $\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ referring to a straight line. The spectrum of the latter is found easily: it is purely ac and equal to $[0, \alpha / 2 \kappa)$
The curvature-induced perturbation is sign-definite: we have $\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}-\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}\right)\left(s, s^{\prime}\right) \geq 0$, and the inequality is sharp somewhere unless Γ is a straight line. Using a variational argument with a suitable trial function we can check the inequality $\sup \sigma\left(\mathcal{R}_{\alpha, \Gamma}^{\kappa}\right)>\frac{\alpha}{2 \kappa}$
Due to the assumed asymptotic straightness of Γ the perturbation $\mathcal{R}_{\alpha, \Gamma}^{\kappa}-\mathcal{R}_{\alpha, \Gamma_{0}}^{\kappa}$ is Hilbert-Schmidt, hence the spectrum of $\mathcal{R}_{\alpha, \Gamma}^{\kappa}$ in the interval $(\alpha / 2 \kappa, \infty)$ is discrete To conclude we employ continuity and $\lim _{\kappa \rightarrow \infty}\left\|\mathcal{R}_{\alpha, \Gamma}^{\kappa}\right\|=0$. The argument can be pictorially expressed as follows:

Pictorial sketch of the proof

Punctured manifolds

A natural question is what happens with $\sigma_{\mathrm{disc}}\left(H_{\alpha, \Gamma}\right)$ if Γ has a small "hole". We will give the answer for a compact, ($n-1$)-dimensional, $C^{1+[n / 2]}$-smooth manifold in \mathbb{R}^{n}

Punctured manifolds

A natural question is what happens with $\sigma_{\mathrm{disc}}\left(H_{\alpha, \Gamma}\right)$ if Γ has a small "hole". We will give the answer for a compact,

Consider a family $\left\{S_{\varepsilon}\right\}_{0 \leq \varepsilon<\eta}$ of subsets of Γ such that

- each S_{ε} is Lebesgue measurable on Γ
- they shrink to origin, $\sup _{x \in S_{\varepsilon}}|x|=\mathcal{O}(\varepsilon)$ as $\varepsilon \rightarrow 0$
- $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right) \neq \emptyset$, nontrivial for $n \geq 3$

Punctured manifolds: ev asymptotics

Call $H_{\varepsilon}:=H_{\alpha, \Gamma \backslash S_{\varepsilon}}$. For small enough ε these operators have the same finite number of eigenvalues, naturally ordered, which satisfy $\lambda_{j}(\varepsilon) \rightarrow \lambda_{j}(0)$ as $\varepsilon \rightarrow 0$

Punctured manifolds: ev asymptotics

Call $H_{\varepsilon}:=H_{\alpha, \Gamma \backslash S_{\varepsilon}}$. For small enough ε these operators have the same finite number of eigenvalues, naturally ordered, which satisfy $\lambda_{j}(\varepsilon) \rightarrow \lambda_{j}(0)$ as $\varepsilon \rightarrow 0$
Let φ_{j} be the eigenfunctions of H_{0}. By Sobolev trace thm $\varphi_{j}(0)$ makes sense. Put $s_{j}:=\left|\varphi_{j}(0)\right|^{2}$ if $\lambda_{j}(0)$ is simple, otherwise they are ev's of $C:=\left(\overline{\varphi_{i}(0)} \varphi_{j}(0)\right)$ corresponding to a degenerate eigenvalue

Punctured manifolds: ev asymptotics

Call $H_{\varepsilon}:=H_{\alpha, \Gamma \backslash S_{\varepsilon}}$. For small enough ε these operators have the same finite number of eigenvalues, naturally ordered, which satisfy $\lambda_{j}(\varepsilon) \rightarrow \lambda_{j}(0)$ as $\varepsilon \rightarrow 0$
Let φ_{j} be the eigenfunctions of H_{0}. By Sobolev trace thm $\varphi_{j}(0)$ makes sense. Put $s_{j}:=\left|\varphi_{j}(0)\right|^{2}$ if $\lambda_{j}(0)$ is simple, otherwise they are ev's of $C:=\left(\overline{\varphi_{i}(0)} \varphi_{j}(0)\right)$ corresponding to a degenerate eigenvalue

Theorem [E.-Yoshitomi, 2003]: Under the assumptions made about the family $\left\{S_{\varepsilon}\right\}$, we have

$$
\lambda_{j}(\varepsilon)=\lambda_{j}(0)+\alpha s_{j} m_{\Gamma}\left(S_{\varepsilon}\right)+o\left(\varepsilon^{n-1}\right) \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Remarks

- Formally a small-hole perturbation acts as a repulsive δ interaction with the coupling $\alpha m_{\Gamma}\left(S_{\varepsilon}\right)$

Remarks

- Formally a small-hole perturbation acts as a repulsive δ interaction with the coupling $\alpha m_{\Gamma}\left(S_{\varepsilon}\right)$
- No self-similarity of S_{ε} required

Remarks

- Formally a small-hole perturbation acts as a repulsive δ interaction with the coupling $\alpha m_{\Gamma}\left(S_{\varepsilon}\right)$
- No self-similarity of S_{ε} required
- If $n=2$, i.e. Γ is a curve, $m_{\Gamma}\left(S_{\varepsilon}\right)$ is the length of the hiatus. In this case the same asymptotic formula holds for bound states of an infinite curved Γ

Remarks

- Formally a small-hole perturbation acts as a repulsive δ interaction with the coupling $\alpha m_{\Gamma}\left(S_{\varepsilon}\right)$
- No self-similarity of S_{ε} required
- If $n=2$, i.e. Γ is a curve, $m_{\Gamma}\left(S_{\varepsilon}\right)$ is the length of the hiatus. In this case the same asymptotic formula holds for bound states of an infinite curved Γ
- Asymptotic perturbation theory for quadratic forms does not apply, because $C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \ni u \mapsto|u(0)|^{2} \in \mathbb{R}$ does not extend to a bounded form in $W^{1,2}\left(\mathbb{R}^{n}\right)$

Sketch of the proof

Take an eigenvalue $\mu \equiv \lambda_{j}(0)$ of multiplicity m. It splits in general, for small enough ε one has m eigenvalues inside $\mathcal{C}:=\left\{z:|z-\mu|<\frac{3}{4} \kappa\right\}$, where $\kappa:=\frac{1}{2} \operatorname{dist}\left(\{\mu\}, \sigma\left(H_{0}\right) \backslash\{\mu\}\right)$

Sketch of the proof

Take an eigenvalue $\mu \equiv \lambda_{j}(0)$ of multiplicity m. It splits in general, for small enough ε one has m eigenvalues inside $\mathcal{C}:=\left\{z:|z-\mu|<\frac{3}{4} \kappa\right\}$, where $\kappa:=\frac{1}{2} \operatorname{dist}\left(\{\mu\}, \sigma\left(H_{0}\right) \backslash\{\mu\}\right)$

Set $w_{k}(\zeta, \varepsilon):=\left(H_{\varepsilon}-\zeta\right)^{-1} \varphi_{k}-\left(H_{0}-\zeta\right)^{-1} \varphi_{k}$ for $\zeta \in \mathcal{C}$ and $k=j, j+1, \ldots, j+m-1$. Using the choice of \mathcal{C} and Sobolev imbedding thm, one proves

$$
\left\|w_{k}(\zeta, \varepsilon)\right\|_{W^{1,2}\left(\mathbb{R}^{n}\right)}=\mathcal{O}\left(\varepsilon^{(n-1) / 2}\right) \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Sketch of the proof

Take an eigenvalue $\mu \equiv \lambda_{j}(0)$ of multiplicity m. It splits in general, for small enough ε one has m eigenvalues inside $\mathcal{C}:=\left\{z:|z-\mu|<\frac{3}{4} \kappa\right\}$, where $\kappa:=\frac{1}{2} \operatorname{dist}\left(\{\mu\}, \sigma\left(H_{0}\right) \backslash\{\mu\}\right)$

Set $w_{k}(\zeta, \varepsilon):=\left(H_{\varepsilon}-\zeta\right)^{-1} \varphi_{k}-\left(H_{0}-\zeta\right)^{-1} \varphi_{k}$ for $\zeta \in \mathcal{C}$ and $k=j, j+1, \ldots, j+m-1$. Using the choice of \mathcal{C} and Sobolev imbedding thm, one proves

$$
\left\|w_{k}(\zeta, \varepsilon)\right\|_{W^{1,2}\left(\mathbb{R}^{n}\right)}=\mathcal{O}\left(\varepsilon^{(n-1) / 2}\right) \quad \text { as } \quad \varepsilon \rightarrow 0
$$

Next, $\left.W^{1,2}\left(\mathbb{R}^{n}\right) \ni f \mapsto f\right|_{\Gamma} \in L^{2}(\Gamma)$ is compact; it implies

$$
\sup _{\zeta \in \mathcal{C}}\left\|w_{k}(\zeta, \varepsilon)\right\|_{W^{1,2}\left(\mathbb{R}^{n}\right)}=o\left(\varepsilon^{(n-1) / 2}\right) \quad \text { as } \quad \varepsilon \longrightarrow 0
$$

Sketch of the proof

Let P_{ε} be spectral projection to these eigenvalues,

$$
P_{\varepsilon} \varphi_{k}-\varphi_{k}=\frac{1}{2 \pi i} \oint_{\mathcal{C}} w_{k}(\zeta, \varepsilon) d \zeta=o\left(\varepsilon^{(n-1) / 2}\right)
$$

in $W^{1,2}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \rightarrow 0$

Sketch of the proof

Let P_{ε} be spectral projection to these eigenvalues,

$$
P_{\varepsilon} \varphi_{k}-\varphi_{k}=\frac{1}{2 \pi i} \oint_{\mathcal{C}} w_{k}(\zeta, \varepsilon) d \zeta=o\left(\varepsilon^{(n-1) / 2}\right)
$$

in $W^{1,2}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \rightarrow 0$
Take $m \times m$ matrices $L(\varepsilon):=\left(\left(H_{\varepsilon} P_{\varepsilon} \varphi_{i}, P_{\varepsilon} \varphi_{k}\right)\right)$ and $M(\varepsilon):=\left(\left(P_{\varepsilon} \varphi_{i}, P_{\varepsilon} \varphi_{k}\right)\right)$. We find that

$$
\left(\left(H_{\varepsilon} P_{\varepsilon} \varphi_{i}, P_{\varepsilon} \varphi_{k}\right)\right)-\mu \delta_{i k}-\alpha \overline{\varphi_{i}(0)} \varphi_{k}(0) m_{\Gamma}\left(S_{\varepsilon}\right)
$$

is $o\left(\varepsilon^{n-1}\right)$ and $\left(P_{\varepsilon} \varphi_{i}, P_{\varepsilon} \varphi_{k}\right)=\delta_{i k}+o\left(\varepsilon^{n-1}\right)$

Sketch of the proof

Let P_{ε} be spectral projection to these eigenvalues,

$$
P_{\varepsilon} \varphi_{k}-\varphi_{k}=\frac{1}{2 \pi i} \oint_{\mathcal{C}} w_{k}(\zeta, \varepsilon) d \zeta=o\left(\varepsilon^{(n-1) / 2}\right)
$$

in $W^{1,2}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \rightarrow 0$
Take $m \times m$ matrices $L(\varepsilon):=\left(\left(H_{\varepsilon} P_{\varepsilon} \varphi_{i}, P_{\varepsilon} \varphi_{k}\right)\right)$ and $M(\varepsilon):=\left(\left(P_{\varepsilon} \varphi_{i}, P_{\varepsilon} \varphi_{k}\right)\right)$. We find that

$$
\left(\left(H_{\varepsilon} P_{\varepsilon} \varphi_{i}, P_{\varepsilon} \varphi_{k}\right)\right)-\mu \delta_{i k}-\alpha \overline{\varphi_{i}(0)} \varphi_{k}(0) m_{\Gamma}\left(S_{\varepsilon}\right)
$$

is $o\left(\varepsilon^{n-1}\right)$ and $\left(P_{\varepsilon} \varphi_{i}, P_{\varepsilon} \varphi_{k}\right)=\delta_{i k}+o\left(\varepsilon^{n-1}\right)$. Then

$$
L(\varepsilon) M(\varepsilon)^{-1}=\mu I+\alpha C m_{\Gamma}\left(S_{\varepsilon}\right)+o\left(\varepsilon^{n-1}\right)
$$

and the claim of the theorem follows

Illustration: a ring with $\frac{\pi}{20}$ cut

$R=6 \quad \alpha=1 \quad \theta=\pi / 20 \quad E_{0}=-0.2535$

Strong coupling for a compact Γ

Let Γ have a single component, smooth and compact Theorem [EY01, 02; EK03, Ex04]: (i) Let Γ be a C^{4} smooth manifold. In the limit $(-1)^{\operatorname{codim} \Gamma-1} \alpha \rightarrow \infty$ we have

$$
\# \sigma_{\mathrm{disc}}\left(H_{\alpha, \Gamma}\right)=\frac{|\Gamma| \alpha}{2 \pi}+\mathcal{O}(\ln \alpha)
$$

for $\operatorname{dim} \Gamma=1, \operatorname{codim} \Gamma=1$,

Strong coupling for a compact Γ

Let Γ have a single component, smooth and compact
Theorem [EY01, 02; EK03, Ex04]: (i) Let Γ be a C^{4} smooth manifold. In the limit $(-1)^{\operatorname{codim} \Gamma-1} \alpha \rightarrow \infty$ we have

$$
\# \sigma_{\mathrm{disc}}\left(H_{\alpha, \Gamma}\right)=\frac{|\Gamma| \alpha}{2 \pi}+\mathcal{O}(\ln \alpha)
$$

for $\operatorname{dim} \Gamma=1, \operatorname{codim} \Gamma=1$,

$$
\# \sigma_{\mathrm{disc}}\left(H_{\alpha, \Gamma}(h)\right)=\frac{|\Gamma| \alpha^{2}}{16 \pi^{2}}+\mathcal{O}(\ln \alpha)
$$

for $\operatorname{dim} \Gamma=2, \operatorname{codim} \Gamma=1$, and

Strong coupling for a compact Γ

Let Γ have a single component, smooth and compact Theorem [EY01, 02; EK03, Ex04]: (i) Let Γ be a C^{4} smooth manifold. In the limit $(-1)^{\operatorname{codim} \Gamma-1} \alpha \rightarrow \infty$ we have

$$
\# \sigma_{\mathrm{disc}}\left(H_{\alpha, \Gamma}\right)=\frac{|\Gamma| \alpha}{2 \pi}+\mathcal{O}(\ln \alpha)
$$

for $\operatorname{dim} \Gamma=1, \operatorname{codim} \Gamma=1$,

$$
\# \sigma_{\mathrm{disc}}\left(H_{\alpha, \Gamma}(h)\right)=\frac{|\Gamma| \alpha^{2}}{16 \pi^{2}}+\mathcal{O}(\ln \alpha)
$$

for $\operatorname{dim} \Gamma=2, \operatorname{codim} \Gamma=1$, and

$$
\# \sigma_{\mathrm{disc}}\left(H_{\alpha, \Gamma}\right)=\frac{|\Gamma|\left(-\epsilon_{\alpha}\right)^{1 / 2}}{\pi}+\mathcal{O}\left(\mathrm{e}^{-\pi \alpha}\right)
$$

for $\operatorname{dim} \Gamma=1$, $\operatorname{codim} \Gamma=2$. Here $|\Gamma|$ is the curve length or surface area, respectively, and $\epsilon_{\alpha}=-4 \mathrm{e}^{2(-2 \pi \alpha+\psi(1))}$

Strong coupling for a compact Γ

Theorem, continued: (ii) In addition, suppose that Γ has no boundary. Then the j-th eigenvalue of $H_{\alpha, \Gamma}$ behaves as

$$
\lambda_{j}(\alpha)=-\frac{\alpha^{2}}{4}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right)
$$

for $\operatorname{codim} \Gamma=1$ and

$$
\lambda_{j}(\alpha)=\epsilon_{\alpha}+\mu_{j}+\mathcal{O}\left(\mathrm{e}^{\pi \alpha}\right)
$$

for $\operatorname{codim} \Gamma=2$,

Strong coupling for a compact Γ

Theorem, continued: (ii) In addition, suppose that Γ has no boundary. Then the j-th eigenvalue of $H_{\alpha, \Gamma}$ behaves as

$$
\lambda_{j}(\alpha)=-\frac{\alpha^{2}}{4}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right)
$$

for $\operatorname{codim} \Gamma=1$ and

$$
\lambda_{j}(\alpha)=\epsilon_{\alpha}+\mu_{j}+\mathcal{O}\left(\mathrm{e}^{\pi \alpha}\right)
$$

for $\operatorname{codim} \Gamma=2$, where μ_{j} is the j-th eigenvalue of

$$
S_{\Gamma}=-\frac{\mathrm{d}}{\mathrm{~d} s^{2}}-\frac{1}{4} k(s)^{2}
$$

on $L^{2}((0,|\Gamma|))$ for $\operatorname{dim} \Gamma=1$, where k is curvature of Γ, and

$$
S_{\Gamma}=-\Delta_{\Gamma}+K-M^{2}
$$

on $L^{2}(\Gamma, \mathrm{~d} \Gamma)$ for $\operatorname{dim} \Gamma=2$, where $-\Delta_{\Gamma}$ is Laplace-Beltrami operator on Γ and K, M, respectively, are the corresponding Gauss and mean curvatures

Proof technique

Consider first the $1+1$ case. Take a closed curve Γ and call $L=|\Gamma|$. We start from a tubular neighborhood of Γ

Proof technique

Consider first the $1+1$ case. Take a closed curve Γ and call $L=|\Gamma|$. We start from a tubular neighborhood of Γ
Lemma: $\Phi_{a}:[0, L) \times(-a, a) \rightarrow \mathbb{R}^{2}$ defined by

$$
(s, u) \mapsto\left(\gamma_{1}(s)-u \gamma_{2}^{\prime}(s), \gamma_{2}(s)+u \gamma_{1}^{\prime}(s)\right) .
$$

is a diffeomorphism for all $a>0$ small enough

DN bracketing

The idea is to apply to the operator $H_{\alpha, \Gamma}$ in question Dirichlet-Neumann bracketing at the boundary of $\Sigma_{a}:=\Phi([0, L) \times(-a, a))$. This yields

$$
\left(-\Delta_{\Lambda_{a}}^{\mathrm{N}}\right) \oplus L_{a, \alpha}^{-} \leq H_{\alpha, \Gamma} \leq\left(-\Delta_{\Lambda_{a}}^{\mathrm{D}}\right) \oplus L_{a, \alpha}^{+},
$$

where $\Lambda_{a}=\Lambda_{a}^{\text {in }} \cup \Lambda_{a}^{\text {out }}$ is the exterior domain, and $L_{a, \alpha}^{ \pm}$are self-adjoint operators associated with the forms

$$
q_{a, \alpha}^{ \pm}[f]=\|\nabla f\|_{L^{2}\left(\Sigma_{a}\right)}^{2}-\alpha \int_{\Gamma}|f(x)|^{2} \mathrm{~d} S
$$

where $f \in W_{0}^{1,2}\left(\Sigma_{a}\right)$ and $W^{1,2}\left(\Sigma_{a}\right)$ for \pm, respectively

DN bracketing

The idea is to apply to the operator $H_{\alpha, \Gamma}$ in question Dirichlet-Neumann bracketing at the boundary of $\Sigma_{a}:=\Phi([0, L) \times(-a, a))$. This yields

$$
\left(-\Delta_{\Lambda_{a}}^{\mathrm{N}}\right) \oplus L_{a, \alpha}^{-} \leq H_{\alpha, \Gamma} \leq\left(-\Delta_{\Lambda_{a}}^{\mathrm{D}}\right) \oplus L_{a, \alpha}^{+},
$$

where $\Lambda_{a}=\Lambda_{a}^{\text {in }} \cup \Lambda_{a}^{\text {out }}$ is the exterior domain, and $L_{a, \alpha}^{ \pm}$are self-adjoint operators associated with the forms

$$
q_{a, \alpha}^{ \pm}[f]=\|\nabla f\|_{L^{2}\left(\Sigma_{a}\right)}^{2}-\alpha \int_{\Gamma}|f(x)|^{2} \mathrm{~d} S
$$

where $f \in W_{0}^{1,2}\left(\Sigma_{a}\right)$ and $W^{1,2}\left(\Sigma_{a}\right)$ for \pm, respectively Important: The exterior part does not contribute to the negative spectrum, so we may consider $L_{a, \alpha}^{ \pm}$only

Transformed interior operator

We use the curvilinear coordinates passing from $L_{a, \alpha}^{ \pm}$to unitarily equivalent operators given by quadratic forms

$$
\begin{aligned}
& b_{a, \alpha}^{+}[f]=\int_{0}^{L} \int_{-a}^{a}(1+u k(s))^{-2}\left|\frac{\partial f}{\partial s}\right|^{2} \mathrm{~d} u \mathrm{~d} s+\int_{0}^{L} \int_{-a}^{a}\left|\frac{\partial f}{\partial u}\right|^{2} \mathrm{~d} u \mathrm{~d} s \\
& \quad+\int_{0}^{L} \int_{-a}^{a} V(s, u)|f|^{2} \mathrm{~d} s \mathrm{~d} u-\alpha \int_{0}^{L}|f(s, 0)|^{2} \mathrm{~d} s
\end{aligned}
$$

with $f \in W^{1,2}((0, L) \times(-a, a))$ satisfying periodic b.c. in the variable s and Dirichlet b.c. at $u= \pm a$, and

$$
b_{a, \alpha}^{-}[f]=b_{a, \alpha}^{+}[f]-\sum_{j=0}^{1} \frac{1}{2}(-1)^{j} \int_{0}^{L} \frac{k(s)}{1+(-1)^{j} a k(s)}\left|f\left(s,(-1)^{j} a\right)\right|^{2} \mathrm{~d} s
$$

where V is the curvature induced potential,

$$
V(s, u)=-\frac{k(s)^{2}}{4(1+u k(s))^{2}}+\frac{u k^{\prime \prime}(s)}{2(1+u k(s))^{3}}-\frac{5 u^{2} k^{\prime}(s)^{2}}{4(1+u k(s))^{4}}
$$

Estimates with separated variables

We pass to rougher bounds squeezing $H_{\alpha, \Gamma}$ between

$$
\tilde{H}_{a, \alpha}^{ \pm}=U_{a}^{ \pm} \otimes 1+1 \otimes T_{a, \alpha}^{ \pm}
$$

Estimates with separated variables

We pass to rougher bounds squeezing $H_{\alpha, \Gamma}$ between

$$
\tilde{H}_{a, \alpha}^{ \pm}=U_{a}^{ \pm} \otimes 1+1 \otimes T_{a, \alpha}^{ \pm}
$$

Here $U_{a}^{ \pm}$are s-a operators on $L^{2}(0, L)$

$$
U_{a}^{ \pm}=-\left(1 \mp a\|k\|_{\infty}\right)^{-2} \frac{\mathrm{~d}^{2}}{\mathrm{~d} s^{2}}+V_{ \pm}(s)
$$

with PBC, where $V_{-}(s) \leq V(s, u) \leq V_{+}(s)$ with an $\mathcal{O}(a)$ error, and the transverse operators are associated with the forms

$$
t_{a, \alpha}^{+}[f]=\int_{-a}^{a}\left|f^{\prime}(u)\right|^{2} \mathrm{~d} u-\alpha|f(0)|^{2}
$$

and

$$
t_{a, \alpha}^{-}[f]=t_{a, \alpha}^{-}[f]-\|k\|_{\infty}\left(|f(a)|^{2}+|f(-a)|^{2}\right)
$$

with $f \in W_{0}^{1,2}(-a, a)$ and $W^{1,2}(-a, a)$, respectively

Concluding the planar curve case

Lemma: There are positive c, c_{N} such that $T_{\alpha, a}^{ \pm}$has for α large enough a single negative eigenvalue $\kappa_{\alpha, a}^{ \pm}$satisfying

$$
-\frac{\alpha^{2}}{4}\left(1+c_{N} \mathrm{e}^{-\alpha a / 2}\right)<\kappa_{\alpha, a}^{-}<-\frac{\alpha^{2}}{4}<\kappa_{\alpha, a}^{+}<-\frac{\alpha^{2}}{4}\left(1-8 \mathrm{e}^{-\alpha a / 2}\right)
$$

Concluding the planar curve case

Lemma: There are positive c, c_{N} such that $T_{\alpha, a}^{ \pm}$has for α large enough a single negative eigenvalue $\kappa_{\alpha, a}^{ \pm}$satisfying
$-\frac{\alpha^{2}}{4}\left(1+c_{N} \mathrm{e}^{-\alpha a / 2}\right)<\kappa_{\alpha, a}^{-}<-\frac{\alpha^{2}}{4}<\kappa_{\alpha, a}^{+}<-\frac{\alpha^{2}}{4}\left(1-8 \mathrm{e}^{-\alpha a / 2}\right)$
Finishing the proof:

- the eigenvalues of $U_{a}^{ \pm}$differ by $\mathcal{O}(a)$ from those of the comparison operator
- we choose $a=6 \alpha^{-1} \ln \alpha$ as the neighbourhood width
- putting the estimates together we get the eigenvalue asymptotics for a planar loop, i.e. the claim (ii)
- if Γ is not closed, the same can be done with the comparison operators $S_{\Gamma}^{\mathrm{D}, \mathrm{N}}$ having appropriate b.c. at the endpoints of Γ. This yields the claim (i)

A curve in \mathbb{R}^{3}

The argument is similar:

A curve in \mathbb{R}^{3}

The argument is similar:

The "straightening" transformation Φ_{a} is defined by

$$
\Phi_{a}(s, r, \theta):=\gamma(s)-r[n(s) \cos (\theta-\beta(s))+b(s) \sin (\theta-\beta(s))]
$$

To separate variables, we choose β so that $\dot{\beta}(s)$ equals the torsion $\tau(s)$ of Γ. The effective potential is then

$$
V=-\frac{k^{2}}{4 h^{2}}+\frac{h_{s s}}{2 h^{3}}-\frac{5 h_{s}^{2}}{4 h^{4}},
$$

where $h:=1+r k \cos (\theta-\beta)$. It is important that the leading term is $-\frac{1}{4} k^{2}$ again, the torsion part being $\mathcal{O}(a)$

A curve in \mathbb{R}^{3}

The transverse estimate is replaced by
Lemma: There are $c_{1}, c_{2}>0$ such that $T_{\alpha}^{ \pm}$has for large enough negative α a single negative ev $\kappa_{\alpha, a}^{ \pm}$which satisfies

$$
\epsilon_{\alpha}-S(\alpha)<\kappa_{\alpha, a}^{-}<\xi_{\alpha}<\kappa_{\alpha, a}^{+}<\xi_{\alpha}+S(\alpha)
$$

as $\alpha \rightarrow-\infty$, where $S(\alpha)=c_{1} \mathrm{e}^{-2 \pi \alpha} \exp \left(-c_{2} \mathrm{e}^{-\pi \alpha}\right)$
The rest of the argument is the same as above

A curve in \mathbb{R}^{3}

The transverse estimate is replaced by
Lemma: There are $c_{1}, c_{2}>0$ such that $T_{\alpha}^{ \pm}$has for large enough negative α a single negative ev $\kappa_{\alpha, a}^{ \pm}$which satisfies

$$
\epsilon_{\alpha}-S(\alpha)<\kappa_{\alpha, a}^{-}<\xi_{\alpha}<\kappa_{\alpha, a}^{+}<\xi_{\alpha}+S(\alpha)
$$

as $\alpha \rightarrow-\infty$, where $S(\alpha)=c_{1} \mathrm{e}^{-2 \pi \alpha} \exp \left(-c_{2} \mathrm{e}^{-\pi \alpha}\right)$
The rest of the argument is the same as above
Remark: Notice that the result extends easily to Г's consisting of a finite number of connected components (curves) which are C^{4} and do not intersect. The same will be true for surfaces considered below

A surface in \mathbb{R}^{3}

The argument modifies easily; Σ_{a} is now a layer neighborhood. However, the intrinsic geometry of Γ can no longer be neglected

A surface in \mathbb{R}^{3}

The argument modifies easily; Σ_{a} is now a layer neighborhood. However, the intrinsic geometry of Γ can no longer be neglected
Let $\Gamma \subset \mathbb{R}^{3}$ be a C^{4} smooth compact Riemann surface of a finite genus g. The metric tensor given in the local coordinates by $g_{\mu \nu}=p_{, \mu} \cdot p_{, \nu}$ defines the invariant surface area element $\mathrm{d} \Gamma:=g^{1 / 2} d^{2} s$, where $g:=\operatorname{det}\left(g_{\mu \nu}\right)$.
The Weingarten tensor is then obtained by raising the index in the second fundamental form, $h_{\mu}{ }^{\nu}:=-n_{, \mu} \cdot p_{, \sigma} g^{\sigma \nu}$; the eigenvalues $k_{ \pm}$of $\left(h_{\mu}{ }^{\nu}\right)$ are the principal curvatures. They determine Gauss curvature K and mean curvature M by

$$
K=\operatorname{det}\left(h_{\mu}^{\nu}\right)=k_{+} k_{-}, M=\frac{1}{2} \operatorname{Tr}\left(h_{\mu}^{\nu}\right)=\frac{1}{2}\left(k_{+}+k_{-}\right)
$$

Proof sketch in the surface case

The bracketing argument proceeds as before,

$$
-\Delta_{\Lambda_{a}}^{N} \oplus H_{\alpha, \Gamma}^{-} \leq H_{\alpha, \Gamma} \leq-\Delta_{\Lambda_{a}}^{D} \oplus H_{\alpha, \Gamma}^{+}, \Lambda_{a}:=\mathbb{R}^{3} \backslash \bar{\Sigma}_{a},
$$

the interior only contributing to the negative spectrum

Proof sketch in the surface case

The bracketing argument proceeds as before,

$$
-\Delta_{\Lambda_{a}}^{N} \oplus H_{\alpha, \Gamma}^{-} \leq H_{\alpha, \Gamma} \leq-\Delta_{\Lambda_{a}}^{D} \oplus H_{\alpha, \Gamma}^{+}, \Lambda_{a}:=\mathbb{R}^{3} \backslash \bar{\Sigma}_{a},
$$

the interior only contributing to the negative spectrum Using the curvilinear coordinates: For small enough a we have the "straightening" diffeomorphism

$$
\mathcal{L}_{a}(x, u)=x+u n(x), \quad(x, u) \in \mathcal{N}_{a}:=\Gamma \times(-a, a)
$$

Then we transform $H_{\alpha, \Gamma}^{ \pm}$by the unitary operator

$$
\hat{U} \psi=\psi \circ \mathcal{L}_{a}: L^{2}\left(\Omega_{a}\right) \rightarrow L^{2}\left(\mathcal{N}_{a}, \mathrm{~d} \Omega\right)
$$

and estimate the operators $\hat{H}_{\alpha, \Gamma}^{ \pm}:=\hat{U} H_{\alpha, \Gamma}^{ \pm} \hat{U}^{-1}$ in $L^{2}\left(\mathcal{N}_{a}, \mathrm{~d} \Omega\right)$

Straightening transformation

Denote the pull-back metric tensor by $G_{i j}$,

$$
G_{i j}=\left(\begin{array}{cc}
\left(G_{\mu \nu}\right) & 0 \\
0 & 1
\end{array}\right), G_{\mu \nu}=\left(\delta_{\mu}^{\sigma}-u h_{\mu}{ }^{\sigma}\right)\left(\delta_{\sigma}^{\rho}-u h_{\sigma}{ }^{\rho}\right) g_{\rho \nu}
$$

so $\mathrm{d} \Sigma:=G^{1 / 2} \mathrm{~d}^{2} s \mathrm{~d} u$ with $G:=\operatorname{det}\left(G_{i j}\right)$ given by

$$
G=g\left[\left(1-u k_{+}\right)\left(1-u k_{-}\right)\right]^{2}=g\left(1-2 M u+K u^{2}\right)^{2}
$$

Straightening transformation

Denote the pull-back metric tensor by $G_{i j}$,

$$
G_{i j}=\left(\begin{array}{cc}
\left(G_{\mu \nu}\right) & 0 \\
0 & 1
\end{array}\right), G_{\mu \nu}=\left(\delta_{\mu}^{\sigma}-u h_{\mu}{ }^{\sigma}\right)\left(\delta_{\sigma}^{\rho}-u h_{\sigma}{ }^{\rho}\right) g_{\rho \nu},
$$

so $\mathrm{d} \Sigma:=G^{1 / 2} \mathrm{~d}^{2} s \mathrm{~d} u$ with $G:=\operatorname{det}\left(G_{i j}\right)$ given by

$$
G=g\left[\left(1-u k_{+}\right)\left(1-u k_{-}\right)\right]^{2}=g\left(1-2 M u+K u^{2}\right)^{2}
$$

Let $(\cdot, \cdot)_{G}$ denote the inner product in $L^{2}\left(\mathcal{N}_{a}, \mathrm{~d} \Omega\right)$. Then $\hat{H}_{\alpha, \Gamma}^{ \pm}$ are associated with the forms

$$
\eta_{\alpha, \Gamma}^{ \pm}\left[\hat{U}^{-1} \psi\right]:=\left(\partial_{i} \psi, G^{i j} \partial_{j} \psi\right)_{G}-\alpha \int_{\Gamma}|\psi(s, 0)|^{2} \mathrm{~d} \Gamma,
$$

with the domains $W_{0}^{1,2}\left(\mathcal{N}_{a}, \mathrm{~d} \Omega\right)$ and $W^{1,2}\left(\mathcal{N}_{a}, \mathrm{~d} \Omega\right)$ for the \pm sign, respectively

Straightening continued

Next we remove $1-2 M u+K u^{2}$ from the weight $G^{1 / 2}$ in the inner product of $L^{2}\left(\mathcal{N}_{a}, \mathrm{~d} \Omega\right)$ by the unitary transformation $U: L^{2}\left(\mathcal{N}_{a}, \mathrm{~d} \Omega\right) \rightarrow L^{2}\left(\mathcal{N}_{a}, \mathrm{~d} \Gamma \mathrm{~d} u\right)$,

$$
U \psi:=\left(1-2 M u+K u^{2}\right)^{1 / 2} \psi
$$

Straightening continued

Next we remove $1-2 M u+K u^{2}$ from the weight $G^{1 / 2}$ in the inner product of $L^{2}\left(\mathcal{N}_{a}, \mathrm{~d} \Omega\right)$ by the unitary transformation $U: L^{2}\left(\mathcal{N}_{a}, \mathrm{~d} \Omega\right) \rightarrow L^{2}\left(\mathcal{N}_{a}, \mathrm{~d} \Gamma \mathrm{~d} u\right)$,

$$
U \psi:=\left(1-2 M u+K u^{2}\right)^{1 / 2} \psi
$$

Denote the inner product in $L^{2}\left(\mathcal{N}_{a}, \mathrm{~d} \Gamma d u\right)$ by $(\cdot, \cdot)_{g}$. The operators $B_{\alpha, \Gamma}^{ \pm}:=U \hat{H}_{\alpha, \Gamma}^{ \pm} U^{-1}$ are associated with the forms

$$
\begin{aligned}
b_{\alpha, \Gamma}^{+}[\psi]= & \left(\partial_{\mu} \psi, G^{\mu \nu} \partial_{\nu} \psi\right)_{g}+\left(\psi,\left(V_{1}+V_{2}\right) \psi\right)_{g} \\
& +\left\|\partial_{u} \psi\right\|_{g}^{2}-\alpha \int_{\Gamma}|\psi(s, 0)|^{2} \mathrm{~d} \Gamma, \\
b_{\alpha, \Gamma}^{-}[\psi]= & b_{\alpha, \Gamma}^{+}[\psi]+\sum_{j=0}^{1}(-1)^{j} \int_{\Gamma} M_{(-1)^{j} a}(s)\left|\psi\left(s,(-1)^{j} a\right)\right|^{2} \mathrm{~d} \Gamma
\end{aligned}
$$

for ψ from $W_{0}^{2,1}\left(\Omega_{a}, \mathrm{~d} \Gamma d u\right)$ and $W^{2,1}\left(\Omega_{a}, d \Gamma \mathrm{~d} u\right)$, respectively

Effective potential

Here $M_{u}:=(M-K u)\left(1-2 M u+K u^{2}\right)^{-1}$ is the mean curvature of the parallel surface to Γ and
$V_{1}=g^{-1 / 2}\left(g^{1 / 2} G^{\mu \nu} J_{, \nu}\right)_{, \mu}+J_{, \mu} G^{\mu \nu} J_{, \nu}, \quad V_{2}=\frac{K-M^{2}}{\left(1-2 M u+K u^{2}\right)^{2}}$
with $J:=\frac{1}{2} \ln \left(1-2 M u+K u^{2}\right)$

Effective potential

Here $M_{u}:=(M-K u)\left(1-2 M u+K u^{2}\right)^{-1}$ is the mean curvature of the parallel surface to Γ and
$V_{1}=g^{-1 / 2}\left(g^{1 / 2} G^{\mu \nu} J_{, \nu}\right)_{, \mu}+J_{, \mu} G^{\mu \nu} J_{, \nu}, \quad V_{2}=\frac{K-M^{2}}{\left(1-2 M u+K u^{2}\right)^{2}}$
with $J:=\frac{1}{2} \ln \left(1-2 M u+K u^{2}\right)$
A rougher estimate with separated variables: squeeze $1-2 M u+K u^{2}$ between $C_{ \pm}(a):=\left(1 \pm a \varrho^{-1}\right)^{2}$, where $\varrho:=\max \left(\left\{\left\|k_{+}\right\|_{\infty},\left\|k_{-}\right\|_{\infty}\right\}\right)^{-1}$. Consequently, the matrix inequality $C_{-}(a) g_{\mu \nu} \leq G_{\mu \nu} \leq C_{+}(a) g_{\mu \nu}$ is valid

Effective potential

Here $M_{u}:=(M-K u)\left(1-2 M u+K u^{2}\right)^{-1}$ is the mean curvature of the parallel surface to Γ and
$V_{1}=g^{-1 / 2}\left(g^{1 / 2} G^{\mu \nu} J_{, \nu}\right)_{, \mu}+J_{, \mu} G^{\mu \nu} J_{, \nu}, \quad V_{2}=\frac{K-M^{2}}{\left(1-2 M u+K u^{2}\right)^{2}}$
with $J:=\frac{1}{2} \ln \left(1-2 M u+K u^{2}\right)$
A rougher estimate with separated variables: squeeze $1-2 M u+K u^{2}$ between $C_{ \pm}(a):=\left(1 \pm a \varrho^{-1}\right)^{2}$, where $\varrho:=\max \left(\left\{\left\|k_{+}\right\|_{\infty},\left\|k_{-}\right\|_{\infty}\right\}\right)^{-1}$. Consequently, the matrix inequality $C_{-}(a) g_{\mu \nu} \leq G_{\mu \nu} \leq C_{+}(a) g_{\mu \nu}$ is valid
V_{1} behaves as $\mathcal{O}(a)$ for $a \rightarrow 0$, while V_{2} can be squeezed between the functions $C_{ \pm}^{-2}(a)\left(K-M^{2}\right)$, both uniformly in the surface variables

Concluding the estimate

Hence we estimate $B_{\alpha, \Gamma}^{ \pm}$by

$$
\tilde{B}_{\alpha, a}^{ \pm}:=S_{a}^{ \pm} \otimes I+I \otimes T_{\alpha, a}^{ \pm}
$$

with $S_{a}^{ \pm}:=-C_{ \pm}(a) \Delta_{\Gamma}+C_{ \pm}^{-2}(a)\left(K-M^{2}\right) \pm v a$ in the space $L^{2}(\Gamma, \mathrm{~d} \Gamma) \otimes L^{2}(-a, a)$ for a $v>0$, where $T_{\alpha, a}^{ \pm}$are the same as in the $1+1$ case (the same lemma applies)

Concluding the estimate

Hence we estimate $B_{\alpha, \Gamma}^{ \pm}$by

$$
\tilde{B}_{\alpha, a}^{ \pm}:=S_{a}^{ \pm} \otimes I+I \otimes T_{\alpha, a}^{ \pm}
$$

with $S_{a}^{ \pm}:=-C_{ \pm}(a) \Delta_{\Gamma}+C_{ \pm}^{-2}(a)\left(K-M^{2}\right) \pm v a$ in the space $L^{2}(\Gamma, \mathrm{~d} \Gamma) \otimes L^{2}(-a, a)$ for a $v>0$, where $T_{\alpha, a}^{ \pm}$are the same as in the $1+1$ case (the same lemma applies)
As above the eigenvalues of the operators $S_{a}^{ \pm}$coincide up to an $\mathcal{O}(a)$ error with those of S_{Γ}, and therefore choosing $a:=6 \alpha^{-1} \ln \alpha$, we find

$$
\lambda_{j}(\alpha)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right)
$$

as $a \rightarrow 0$ which is equivalent to the claim (i)

Concluding the estimate

Hence we estimate $B_{\alpha, \Gamma}^{ \pm}$by

$$
\tilde{B}_{\alpha, a}^{ \pm}:=S_{a}^{ \pm} \otimes I+I \otimes T_{\alpha, a}^{ \pm}
$$

with $S_{a}^{ \pm}:=-C_{ \pm}(a) \Delta_{\Gamma}+C_{ \pm}^{-2}(a)\left(K-M^{2}\right) \pm v a$ in the space $L^{2}(\Gamma, \mathrm{~d} \Gamma) \otimes L^{2}(-a, a)$ for a $v>0$, where $T_{\alpha, a}^{ \pm}$are the same as in the $1+1$ case (the same lemma applies)
As above the eigenvalues of the operators $S_{a}^{ \pm}$coincide up to an $\mathcal{O}(a)$ error with those of S_{Γ}, and therefore choosing $a:=6 \alpha^{-1} \ln \alpha$, we find

$$
\lambda_{j}(\alpha)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right)
$$

as $a \rightarrow 0$ which is equivalent to the claim (i)
To get (ii) we employ Weyl asymptotics for S_{Γ}. Extension to Γ 's having a finite \# of connected components is easy

Infinite manifolds

Bound states may exist also if Γ is noncompact. The comparison operator S_{Γ} has an attractive potential, so $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right) \neq \emptyset$ can be expected in the strong coupling regime, even if a direct proof is missing as for surfaces

Infinite manifolds

Bound states may exist also if Γ is noncompact. The comparison operator S_{Γ} has an attractive potential, so $\sigma_{\text {disc }}\left(H_{\alpha, \Gamma}\right) \neq \emptyset$ can be expected in the strong coupling regime, even if a direct proof is missing as for surfaces It is needed that $\sigma_{\text {ess }}$ does not feel curvature, not only for $H_{\alpha, \Gamma}$ but for the estimating operators as well. Sufficient conditions:

- $k(s), k^{\prime}(s)$ and $k^{\prime \prime}(s)^{1 / 2}$ are $\mathcal{O}\left(|s|^{-1-\varepsilon}\right)$ as $|s| \rightarrow \infty$ for a planar curve
- in addition, the torsion bounded for a curve in \mathbb{R}^{3}
- a surface Γ admits a global normal parametrization with a uniformly elliptic metric, $K, M \rightarrow 0$ as the geodesic radius $r \rightarrow \infty$

Infinite manifolds

We must also assume that there is a tubular neighborhood Σ_{a} without self-intersections for small a, i.e. to avoid

Infinite manifolds

We must also assume that there is a tubular neighborhood Σ_{a} without self-intersections for small a, i.e. to avoid

Theorem [EY02; EK03, Ex04]: With the above listed assumptions, the asymptotic expansions (ii) for the eigenvalues derived in the compact case hold again

Periodic manifolds

One uses Floquet expansion. It is important to choose the periodic cells \mathcal{C} of the space and $\Gamma_{\mathcal{C}}$ of the manifold consistently, $\Gamma_{\mathcal{C}}=\Gamma \cap \mathcal{C}$; we assume that $\Gamma_{\mathcal{C}}$ is connected

Periodic manifolds

One uses Floquet expansion. It is important to choose the periodic cells \mathcal{C} of the space and $\Gamma_{\mathcal{C}}$ of the manifold consistently, $\Gamma_{\mathcal{C}}=\Gamma \cap \mathcal{C}$; we assume that $\Gamma_{\mathcal{C}}$ is connected

Lemma: \exists unitary $\mathcal{U}: L^{2}\left(\mathbb{R}^{3}\right) \rightarrow \int_{[0,2 \pi)^{r}}^{\oplus} L^{2}(\mathcal{C}) \mathrm{d} \theta$ s.t.

$$
\mathcal{U} H_{\alpha, \Gamma} \mathcal{U}^{-1}=\int_{[0,2 \pi)^{r}}^{\oplus} H_{\alpha, \theta} \mathrm{d} \theta \text { and } \sigma\left(H_{\alpha, \Gamma}\right)=\bigcup_{[0,2 \pi)^{r}} \sigma\left(H_{\alpha, \theta}\right)
$$

Comparison operators

The fibre comparison operators are

$$
S_{\theta}=-\frac{\mathrm{d}}{\mathrm{~d} s^{2}}-\frac{1}{4} k(s)^{2}
$$

on $L^{2}\left(\Gamma_{\mathcal{C}}\right)$ parameterized by arc length for $\operatorname{dim} \Gamma=1$, with Floquet b.c., and

$$
S_{\theta}=g^{-1 / 2}\left(-i \partial_{\mu}+\theta_{\mu}\right) g^{1 / 2} g^{\mu \nu}\left(-i \partial_{\nu}+\theta_{\nu}\right)+K-M^{2}
$$

with periodic b.c. for $\operatorname{dim} \Gamma=2$, where $\theta_{\mu}, \mu=1, \ldots, r$, are quasimomentum components; recall that $r=1,2,3$ depending on the manifold type

Periodic manifold asymptotics

Theorem [EY01; EK03, Ex04]: Let Γ be a C^{4}-smooth r-periodic manifold without boundary. The strong coupling asymptotic behavior of the j-th Floquet eigenvalue is

$$
\lambda_{j}(\alpha, \theta)=-\frac{1}{4} \alpha^{2}+\mu_{j}(\theta)+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty
$$

for $\operatorname{codim} \Gamma=1$ and

$$
\lambda_{j}(\alpha, \theta)=\epsilon_{\alpha}+\mu_{j}(\theta)+\mathcal{O}\left(\mathrm{e}^{\pi \alpha}\right) \quad \text { as } \quad \alpha \rightarrow-\infty
$$

for $\operatorname{codim} \Gamma=2$. The error terms are uniform w.r.t. θ

Periodic manifold asymptotics

Theorem [EY01; EK03, Ex04]: Let Γ be a C^{4}-smooth r-periodic manifold without boundary. The strong coupling asymptotic behavior of the j-th Floquet eigenvalue is

$$
\lambda_{j}(\alpha, \theta)=-\frac{1}{4} \alpha^{2}+\mu_{j}(\theta)+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty
$$

for $\operatorname{codim} \Gamma=1$ and

$$
\lambda_{j}(\alpha, \theta)=\epsilon_{\alpha}+\mu_{j}(\theta)+\mathcal{O}\left(\mathrm{e}^{\pi \alpha}\right) \quad \text { as } \quad \alpha \rightarrow-\infty
$$

for $\operatorname{codim} \Gamma=2$. The error terms are uniform w.r.t. θ
Corollary: If $\operatorname{dim} \Gamma=1$ and coupling is strong enough, $H_{\alpha, \Gamma}$ has open spectral gaps

Large gaps in the disconnected case

If Γ is not connected and each connected component is contained in a translate of $\Gamma_{\mathcal{C}}$, the comparison operator is independent of θ and asymptotic formula reads

$$
\lambda_{j}(\alpha, \theta)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty
$$

for $\operatorname{codim} \Gamma=1$ and similarly for for $\operatorname{codim} \Gamma=2$

Large gaps in the disconnected case

If Γ is not connected and each connected component is contained in a translate of $\Gamma_{\mathcal{C}}$, the comparison operator is independent of θ and asymptotic formula reads

$$
\lambda_{j}(\alpha, \theta)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right) \quad \text { as } \quad \alpha \rightarrow \infty
$$

for $\operatorname{codim} \Gamma=1$ and similarly for for $\operatorname{codim} \Gamma=2$
Moreover, the assumptions can be weakened

Soft graphs with magnetic field

Add a homogeneous magnetic field with the vector potential $A=\frac{1}{2} B\left(-x_{2}, x_{1}\right)$. We ask about existence of persistent currents, i.e. nonzero probability flux along a closed loop

$$
\frac{\partial \lambda_{n}(\phi)}{\partial \phi}=-\frac{1}{c} I_{n},
$$

where $\lambda_{n}(\phi)$ is the n-th eigenvalue of the Hamiltonian

$$
H_{\alpha, \Gamma}(B):=(-i \nabla-A)^{2}-\alpha \delta(x-\Gamma)
$$

and ϕ is the magnetic flux through the loop (in standard units its quantum equals $2 \pi \hbar c|e|^{-1}$)

Soft graphs with magnetic field

Add a homogeneous magnetic field with the vector potential $A=\frac{1}{2} B\left(-x_{2}, x_{1}\right)$. We ask about existence of persistent currents, i.e. nonzero probability flux along a closed loop

$$
\frac{\partial \lambda_{n}(\phi)}{\partial \phi}=-\frac{1}{c} I_{n},
$$

where $\lambda_{n}(\phi)$ is the n-th eigenvalue of the Hamiltonian

$$
H_{\alpha, \Gamma}(B):=(-i \nabla-A)^{2}-\alpha \delta(x-\Gamma)
$$

and ϕ is the magnetic flux through the loop (in standard units its quantum equals $2 \pi \hbar c|e|^{-1}$)

Persistent currents

The same technique, different comparison operator, namely

$$
S_{\Gamma}(B)=-\frac{\mathrm{d}}{\mathrm{~d} s^{2}}-\frac{1}{4} k(s)^{2}
$$

on $L^{2}(0, L)$ with $\psi(L-)=\mathrm{e}^{i B|\Omega|} \psi(0+), \psi^{\prime}(L-)=\mathrm{e}^{i B|\Omega|} \psi^{\prime}(0+)$, where Ω is the area encircled by Γ

Persistent currents

The same technique, different comparison operator, namely

$$
S_{\Gamma}(B)=-\frac{\mathrm{d}}{\mathrm{~d} s^{2}}-\frac{1}{4} k(s)^{2}
$$

on $L^{2}(0, L)$ with $\psi(L-)=\mathrm{e}^{i B|\Omega|} \psi(0+), \psi^{\prime}(L-)=\mathrm{e}^{i B|\Omega|} \psi^{\prime}(0+)$, where Ω is the area encircled by Γ
Theorem [E.-Yoshitomi, 2003]: Let Γ be a C^{4}-smooth. The for large α the operator $H_{\alpha, \Gamma}(B)$ has a non-empty discrete spectrum and the j-th eigenvalue behaves as

$$
\lambda_{j}(\alpha, B)=-\frac{1}{4} \alpha^{2}+\mu_{j}(B)+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right),
$$

where $\mu_{j}(B)$ is the j-th eigenvalue of $S_{\Gamma}(B)$ and the error term is uniform in B. In particular, for a fixed j and α large enough the function $\lambda_{j}(\alpha, \cdot)$ cannot be constant

Persistent currents

The same technique, different comparison operator, namely

$$
S_{\Gamma}(B)=-\frac{\mathrm{d}}{\mathrm{~d} s^{2}}-\frac{1}{4} k(s)^{2}
$$

on $L^{2}(0, L)$ with $\psi(L-)=\mathrm{e}^{i B|\Omega|} \psi(0+), \psi^{\prime}(L-)=\mathrm{e}^{i B|\Omega|} \psi^{\prime}(0+)$, where Ω is the area encircled by Γ
Theorem [E.-Yoshitomi, 2003]: Let Γ be a C^{4}-smooth. The for large α the operator $H_{\alpha, \Gamma}(B)$ has a non-empty discrete spectrum and the j-th eigenvalue behaves as

$$
\lambda_{j}(\alpha, B)=-\frac{1}{4} \alpha^{2}+\mu_{j}(B)+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right),
$$

where $\mu_{j}(B)$ is the j-th eigenvalue of $S_{\Gamma}(B)$ and the error term is uniform in B. In particular, for a fixed j and α large enough the function $\lambda_{j}(\alpha, \cdot)$ cannot be constant
Remark: [Honnouvo-Hounkonnou, 2004] proved the same for AB flux

Absolute continuity

One is also interested in the nature of the spectrum of $H_{\alpha, \Gamma}$ with a periodic Γ. By [Birman-Suslina-Shterenberg 00, 01] the spectrum is absolutely continuous if $\operatorname{codim} \Gamma=1$ and the period cell is compact. This tells us nothing, e.g., about a single periodic curve in $\mathbb{R}^{d}, d=2,3$.

Absolute continuity

One is also interested in the nature of the spectrum of $H_{\alpha, \Gamma}$ with a periodic Γ. By [Birman-Suslina-Shterenberg 00, 01] the spectrum is absolutely continuous if $\operatorname{codim} \Gamma=1$ and the period cell is compact. This tells us nothing, e.g., about a single periodic curve in $\mathbb{R}^{d}, d=2,3$.
The assumption about connectedness of $\Gamma_{\mathcal{C}}$ can be always satisfied if $d=2$ but not for $d=3$; recall the crotchet curve

Absolute continuity

Theorem [Bentosela-Duclos-E., 2003]: To any $E>0$ there is an $\alpha_{E}>0$ such that the spectrum of $H_{\alpha, \Gamma}$ is absolutely continuous in $(-\infty, \xi(\alpha)+E)$ as long as $(-1)^{d} \alpha>\alpha_{E}$, where $\xi(\alpha)=-\frac{1}{4} \alpha^{2}$ and ϵ_{α} for $d=2,3$, respectively

Absolute continuity

Theorem [Bentosela-Duclos-E., 2003]: To any $E>0$ there is an $\alpha_{E}>0$ such that the spectrum of $H_{\alpha, \Gamma}$ is absolutely continuous in $(-\infty, \xi(\alpha)+E)$ as long as $(-1)^{d} \alpha>\alpha_{E}$, where $\xi(\alpha)=-\frac{1}{4} \alpha^{2}$ and ϵ_{α} for $d=2,3$, respectively

Proof: The fiber operators $H_{\alpha, \Gamma}(\theta)$ form a type A analytic family. In a finite interval each of them has a finite number of ev's, so one has just to check non-constancy of the functions $\lambda_{j}(\alpha, \cdot)$ as in the case of persistent currents

Open questions

- Strong coupling, manifolds with boundary: If Γ has a boundary, we have a strong-coupling asymptotics for the bound state number but not for ev's themselves. We conjecture that the latter is given again by

$$
\lambda_{j}(\alpha)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right),
$$

etc., where μ_{j} refers to S_{Γ} with Dirichlet b.c.

Open questions

- Strong coupling, manifolds with boundary: If Γ has a boundary, we have a strong-coupling asymptotics for the bound state number but not for ev's themselves. We conjecture that the latter is given again by

$$
\lambda_{j}(\alpha)=-\frac{1}{4} \alpha^{2}+\mu_{j}+\mathcal{O}\left(\alpha^{-1} \ln \alpha\right),
$$

etc., where μ_{j} refers to S_{Γ} with Dirichlet b.c.

- Strong coupling, less regularity: Examples show that the above relation is not valid for a non-smooth Γ, rather μ_{j} is replaced by a term proportional to α^{2}. How does the asymptotic expansion look in this case and how it depends on dimension and codimension of Γ ? The analogous question can be asked more generally for graphs with branching points and generalized graphs

Open questions

- Scattering theory on non-compact "leaky" curves, manifolds, graphs, and generalized graphs:

Open questions

- Scattering theory on non-compact "leaky" curves, manifolds, graphs, and generalized graphs:
- existence and completeness, including spectral a.c. in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ w.r.t. asymptotic geometry of Γ

Open questions

- Scattering theory on non-compact "leaky" curves, manifolds, graphs, and generalized graphs:
- existence and completeness, including spectral a.c. in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ w.r.t. asymptotic geometry of Γ
- asymptotic behavior of S-matrix in strong-coupling regime, including relations between S-matrices of leaky and "ideal" graphs

Open questions

- Scattering theory on non-compact "leaky" curves, manifolds, graphs, and generalized graphs:
- existence and completeness, including spectral a.c. in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ w.r.t. asymptotic geometry of Γ
- asymptotic behavior of S-matrix in strong-coupling regime, including relations between S-matrices of leaky and "ideal" graphs
- prove existence of resonances, at least within particular models

Open questions

- Scattering theory on non-compact "leaky" curves, manifolds, graphs, and generalized graphs:
- existence and completeness, including spectral a.c. in $\left(-\frac{1}{4} \alpha^{2}, 0\right)$ w.r.t. asymptotic geometry of Γ
- asymptotic behavior of S-matrix in strong-coupling regime, including relations between S-matrices of leaky and "ideal" graphs
- prove existence of resonances, at least within particular models
- Periodic Г: one expects that the whole spectrum is absolutely continuous, independently of α, but it remains to be proved. Also strong-coupling asymptotic properties of spectral gaps are not known

Open questions

- Random graphs, either by their shape or by a random coupling $\alpha: \Gamma \rightarrow \mathbb{R}_{+}$. Is it true that the whole negative part of $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)$ is always p.p. once a disorder is present?

Open questions

- Random graphs, either by their shape or by a random coupling $\alpha: \Gamma \rightarrow \mathbb{R}_{+}$. Is it true that the whole negative part of $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)$ is always p.p. once a disorder is present?
- Adding magnetic field: Will the curvature-induced discrete spectrum survive under any magnetic field? On the other hand, will (at least a part of) the a.c. spectrum of $(-i \nabla-A)^{2}-\alpha \delta(x-\Gamma)$ survive a randomization of a straight Γ ?

Open questions

- Random graphs, either by their shape or by a random coupling $\alpha: \Gamma \rightarrow \mathbb{R}_{+}$. Is it true that the whole negative part of $\sigma_{\text {ess }}\left(H_{\alpha, \Gamma}\right)$ is always p.p. once a disorder is present?
- Adding magnetic field: Will the curvature-induced discrete spectrum survive under any magnetic field? On the other hand, will (at least a part of) the a.c. spectrum of $(-i \nabla-A)^{2}-\alpha \delta(x-\Gamma)$ survive a randomization of a straight Γ ?
- etc, etc

The talk was based on

[BDE03] F. Bentosela, P. Duclos, P.E.: Absolute continuity in periodic thin tubes and strongly coupled leaky wires, Lett. Math. Phys. 65 (2003), 75-82.
[BEKŠ94] J.F. Brasche, P.E., Yu.A. Kuperin, P. Šeba: Schrödinger operators with singular interactions, J. Math. Anal. Appl. 184 (1994), 112-139.
[Ex01] P.E.: Bound states of infinite curved polymer chains, Lett. Math. Phys. 57 (2001), 87-96.
[Ex04] P.E.: Spectral properties of Schrödinger operators with a strongly attractive δ interaction supported by a surface, to appear in Proceedings of the NSF Summer Research Conference (Mt. Holyoke 2002); AMS "Contemporary Mathematics" Series, Providence, R.I., 2004
[EI01] P.E., T. Ichinose: Geometrically induced spectrum in curved leaky wires, J. Phys. A34 (2001), 1439-1450.
[EK02] P.E., S. Kondej: Curvature-induced bound states for a δ interaction supported by a curve in \mathbb{R}^{3}, Ann. H. Poincaré 3 (2002), 967-981.
[EK03a] P.E., S. Kondej: Bound states due to a strong δ interaction supported by a curved surface, J. Phys. A36 (2003), 443-457.
[EK03b] P.E., S. Kondej: Strong-coupling asymptotic expansion for Schrödinger operators with a singular interaction supported by a curve in \mathbb{R}^{3}, Rev. math. Phys., to appear; math-ph/0303033

And it is not all, see also

[EK03c] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, math-ph/0312055
[EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, J. Phys. A36 (2003), 10173-10193.
[ET04] P.E., M. Tater: Spectra of soft ring graphs, Waves in Random Media 13 (2003), S47-S60.
[EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ-interaction on a periodic curve, Ann. H. Poincaré 2 (2001), 1139-1158.
[EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358.
[EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong δ-interaction on a loop, J. Phys. A35 (2002), 3479-3487.
[EY03] P.E., K. Yoshitomi: Eigenvalue asymptotics for the Schrödinger operator with a δ-interaction on a punctured surface, Lett. Math. Phys. 65 (2003), 19-26.

And it is not all, see also

[EK03c] P.E., S. Kondej: Schrödinger operators with singular interactions: a model of tunneling resonances, math-ph/0312055
[EN03] P.E., K. Němcová: Leaky quantum graphs: approximations by point interaction Hamiltonians, J. Phys. A36 (2003), 10173-10193.
[ET04] P.E., M. Tater: Spectra of soft ring graphs, Waves in Random Media 13 (2003), S47-S60.
[EY01] P.E., K. Yoshitomi: Band gap of the Schrödinger operator with a strong δ-interaction on a periodic curve, Ann. H. Poincaré 2 (2001), 1139-1158.
[EY02a] P.E., K. Yoshitomi: Asymptotics of eigenvalues of the Schrödinger operator with a strong δ-interaction on a loop, J. Geom. Phys. 41 (2002), 344-358.
[EY02b] P.E., K. Yoshitomi: Persistent currents for 2D Schrödinger operator with a strong δ-interaction on a loop, J. Phys. A35 (2002), 3479-3487.
[EY03] P.E., K. Yoshitomi: Eigenvalue asymptotics for the Schrödinger operator with a δ-interaction on a punctured surface, Lett. Math. Phys. 65 (2003), 19-26.

Fortunately, you need not copy all of this - to find links to these papers see http://www.ujf.cas.cz/ exner

