

Product formulæ and Zeno quantum dynamics

Pavel Exner

Doppler Institute for Mathematical Physics and Applied Mathematics Prague

in collaboration with Takashi Ichinose

A talk at the Quantum Circle seminar

Prague, March 30, 2021

Product formulæ

An often used way to express exponential functions of operators is based on limit of products of their 'constituents'. Here is a classical example:

Theorem (Trotter formula)

Suppose that A, B are self-adjoint operators and C := A+B is essentially self-adjoint, then the corresponding unitary groups are related by

H. Trotter: On the product of semigroups of operators, Proc. Amer. Math. Soc. 10 (1959), 545-551.

The idea comes back to *Sophus Lie* who proved such a formula for matrices in 1875. His prooof, based on a telescopic estimate, was straightforward and generalize easily to operators on infinite-dimensional Hilbert spaces *as long as* A + B *is self-adjoint*; in the more general case the original Trotter's proof was considerably more involved.

Trotter's formula has many applications; to mention just one, recall it provides a way to define rigorously the *Feynman path integral*.

Quantum Circle

Chernoff's idea

A decade later, a significant simplification of the argument was made possible as a consequence of the following result:

Theorem

For a family $\{F(t)\}_{t\geq 0}$ of linear contractions on a Banach space and the generator A of a strongly continuous contraction semigroup, the following two conditions are equivalent:

(a) The family $\left\{ \left(\lambda_0 I + \frac{I - F(\varepsilon)}{\varepsilon} \right)^{-1} \right\}_{\varepsilon > 0}$ converges for some $\lambda_0 > 0$ strongly to the operator $(\lambda_0 I + A)^{-1}$ as $\varepsilon \to 0+$.

(b) The family $\{F(\frac{t}{n})^n\}_{n=1}^{\infty}$ converges strongly to e^{tA} as $n \to \infty$, uniformly on bounded intervals of t.

P.R. Chernoff: Note on product formulas for operator semigroups, J. Funct. Anal. 2 (1968), 238-242.

P.R. Chernoff: Product Formulas, Nonlinear Semigroups, and Addition of Unbounded Operators, Memoirs of the American Mathematical Society, vol. 140; AMS, Providence, R.I. 1974.

Moreover, Chernoff's result opened way to various other product formulæ.

Kato's results

Theorem (Trotter-Kato formula, form version)

Let A, B be positive self-adjoint operators. Suppose that $Q(A) \cap Q(B)$ is dense, then the form $[\phi, \psi] \mapsto (\phi, A\psi) + (\phi, B\psi)$ is closed and the self-adjoint operator C associated with it satisfies

$$\operatorname{s-lim}_{n\to\infty} \left(\mathrm{e}^{-tA/n} \mathrm{e}^{-tB/n} \right)^n = \mathrm{e}^{-tC}.$$

Moreover, if the density assumption fails, we denote the projection to $\overline{Q(A) \cap Q(B)}$ by P. Then the right-hand side is then replaced by $e^{-tC}P$, where C is the self-adjoint operator on PH associated with the form sum.

T. Kato: Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups, in *Topics in Functional Analysis* (G.C. Rotta, ed.), Academic press, New York 1978; pp 185–195.

There other extensions, for instance, to products of *nonlinear semigroups*:

T. Kato, K. Masuda: Trotter's product formula for nonlinear semigroups generated by the subdifferentials of convex functionals, *J. Math. Soc. Japan* **30** (1978), 169–178.

Unstable quantum systems

My main aim in this talk is to demonstrate another product formula that involves *unitary groups* and *projections*, but to explain why it should be of interest we have to make first a rather *long detour*.

We turn to a motivation to quantum mechanics, in particular, to the way in which it describes behavior of *unstable systems*. There is no need to stress how important it is, world is full of such objects: among massive *elementary particles* only electron and proton (hopefully) are stable, a significant part of *atomic nuclei* decay, to say nothing of *excited states* of atoms and molecules that de-excite spontaneously, etc.

Since *Bequerel* we know that decays have a *probabilistic character* and there is no way how to explain these processes in classical physics.

In QM, there is a general scheme using the following assumptions:

- the 'large' state space $\mathcal H$ of an *isolated system*
- projection *P* to the subspace $PH \subset H$ of the *unstable system*
- time evolution e^{-iHt} on \mathcal{H} , is not reduced by P for any t > 0

Unstable quantum systems

1

We can consider *reduced evolution* $V : V(t) = Pe^{-iHt} \upharpoonright PH$ supposines that the evolution starts at t = 0 from a state $\psi \in PH$. At some t > 0 we then perform *non-decay measurement*: the probability to find the state still in H, or the *decay law* is

$$P_{\psi}(t) := \|V(t)\psi\|^2 = \|P\,\mathrm{e}^{-iHt}\psi\|^2$$
 ;

the index ψ is often dropped when it is clear from the context.

The simplest situation occurs if dim $\mathcal{H} = 1$, that is, the unstable system is a *single state*, when

$$P(t) := |(\psi(t), \psi(0))|^2$$

A common example: we have $\mathcal{H} = L^2(\mathbb{R})$, the unstable state refers to Breit-Wigner function,

$$\psi(\lambda,0) = \left(rac{\Gamma}{2\pi}rac{1}{(\lambda-\lambda_0)^2+rac{1}{4}\Gamma^2}
ight)^{1/2},$$

and the time evolution acts as $\psi(\lambda, t) = e^{-i\lambda t}\psi(\lambda, 0)$. Then the reduced evolution is obtained by *Fourier transformation* of $\psi(\cdot, 0)$, in particular,

$$P(t) = \mathrm{e}^{-\Gamma t}$$
 for all $t \geq 0$.

Troubles with the exponential decay

At a glance, this corresponds to our *massive experience*, including even applications like the C_{14} archeology, but there is *catch*: the result requires $\sigma(H) = \mathbb{R}!$ This is not what a reasonable physical model should exhibit.

Consider another example. Let $\mathcal{H} = L^2(\mathbb{R})$ with $H = -\Delta$; if unstable states are those *localized in an interval* $\Omega = (a, b) \subset \mathbb{R}$, the decay law is

$$P_{\psi}(t) = \int_{a}^{b} |\psi(x,t)|^2 \mathrm{d}x$$

From we already saw it is clear that $P_{\psi}(t) < 1$ holds for any $\psi \in L^2(\Omega)$ and t > 0, and one can check also that $\lim_{t\to\infty} P_{\psi}(t) = 0$. However, there is no $\psi \in L^2(\Omega)$ for which the decay law would be exponential

In fact, we have the following general result:

Theorem

If the reduced evolution is a semigroup, $V(t_1)V(t_2) = V(t_1 + t_2)$ for $t_1, t_2 > 0$, then $\sigma(H) = \mathbb{R}$.

K. Sinha: On the decay of an unstable particle, Helv. Phys. Acta 45 (1972), 619-628.

Quantum Circle

The inverse decay problem

More generally, the knowledge of reduced evolution allows us to restor the complete dynamics of the decay:

- Given a weakly continuous contraction-valued function $V(\cdot)$ on a Hilbert space \mathcal{G} , one can reconstruct the triple $\{\mathcal{H}, H, P\}$, uniquely up to an isomorphism under a natural *minimality condition*, such that $\mathcal{G} = P\mathcal{H}$ and $V(t) = Pe^{-iHt} \upharpoonright \mathcal{G}$ if and only if V is of positive type, that is, $\sum_{i,j=1}^{n} (\phi_i, V(t_i - t_j)\phi_j) \ge 0$ holds for all finite combinations of vectors in \mathcal{G} and arguments of the function.
- The generalized Bochner theorem holds: V(·) is weakly continuous of positive type if and only if there is a positive operator-valued measure F such that V(t) = ∫_ℝ e^{-iλt}dF(λ).

P.E.: Open Quantum Systems and Feynman Integrals, Reidel, Dordrecht 1985

The measure F provides us with spectral information, in particular, we have the identity $\operatorname{supp} F = \sigma(H)$. This explains the above mention result since for any contraction-valued semigroup V we have $\operatorname{supp} F = \mathbb{R}$.

P.E.: Remark on the energy spectrum of a decaying system, Commun. Math. Phys. 50 (1976), 1-10.

Quantum Circle

Do the semigroup character violations matter?

The fact that the semigroup property cannot be *exactly* valid need not be anything dramatic: the difference between the actual decay law and the exponential one may be small and thus unimportant for a physicist who has to take always experimental errors into account.

The smallness was also treated mathematically in various models, e.g.

M. Demuth: Pole approximation and spectral concentration, Math. Nachr. 73 (1976), 65-72.

But some deviations *may be important*, in particular, in the behavior close to t = 0. Recall that for the Breit-Wigner function the *mean value of energy* makes no sense because $\int_{\mathbb{R}} \frac{\Gamma}{2\pi} \frac{\lambda}{(\lambda - \lambda_0)^2 + \frac{1}{4}\Gamma^2} d\lambda$ is divergent. This fact is closely related to the behavior around t = 0:

Theorem

$$\dot{P}_\psi(0+)=0$$
 holds whenever $\psi\in Q(H)$, that is, $\||H|^{1/2}\psi\|<\infty.$

M. Havlíček, P.E.: Note on the description of an unstable system, Czech J. Phys. B23 (1973), 594-600.

Repeated measurements

Suppose now that we perform non-decay measurements at times $t/n, 2t/n \ldots, t$, all with the positive outcome, then the resulting non-decay probability is $M_n(t) = P_{\psi}(t/n)P_{\psi_1}(t/n)\cdots P_{\psi_{n-1}}(t/n)$, where ψ_{j+1} is the normalized projection of $e^{-iHt/n}\psi_j$ on $P\mathcal{H}$ and $\psi_0 := \psi$, in particular, for dim P = 1 we have

 $M_n(t) = (P(t/n))^n$ (no need to indicate ψ)

Consider now the situation when the measurements are *performed frequently*, and since we watch the problem through a mathematician's eye, look what happens if $n \to \infty$. For the *exponential law* nothing happens, $M_n(t) = (e^{-\Gamma t/n})^n = e^{-\Gamma t}$ for any n

If the *initial decay rate is zero* the situation is completely different. It is straightforward to see that $\lim_{n\to\infty} f(t/n)^n = \exp\{-\dot{f}(0+)t\}$ holds if f(0) = 1 and the one-sided derivative $\dot{f}(0+)$ exists, and therefore

$$M(t) := \lim_{n \to \infty} M_n(t) = 1 \quad \text{if } \dot{P}(0+) = 0$$

Quantum Zeno effect

Consequently, in the *limit of infinite frequency* repeated measurements *prevent the system from decaying*. The mathematical fact was known from the 1950s as *Turing paradox*, in the context of unstable quantum systems it was considered first in

A. Beskow, J. Nilsson: The concept of wave function and the irreducible representations of the Poincaré group, II. Unstable systems and the exponential decay law, Arkiv Phys. **34** (1967), 561–569.

The effect was analyzed mathematically by various people after that but it attracted a lot of attention only from 1977 when Misra and Sudarshan invented a name which linked it to the *flying arrow aporia* of Zeno of Elea:

E.C.G. Sudarshan, B. Misra: The Zeno's paradox in quantum theory, J. Math. Phys. 18 (1977), 756-763.

Later the name anti-Zeno effect appeared, because we also have

$$M(t):=\lim_{n o\infty}M_n(t)=0 \quad ext{if } \dot{P}(0+)=-\infty ext{;}$$

in that case the system would decay *immediately* on the continuous observation begins – and the decay *accelerates* for finite but large measurement frequency (as we will see, $\dot{P}(0+) = -\infty$ may happen).

One might naturally ask: is it mathematics only?

Many people thought so, however, quantum mechanics covers large segments of physical reality:

- apart from elementary particles, there are many more systems in atomic and molecular physics
- the limit may not be achievable but *sufficiently frequent* measurements can *slow down the decay* (or accelerate in case of *anti-Zeno effect* mentioned above)
- the measurement can take various forms, the absorption of a photon at some wavelength, the *release of a photon*, say, leaving an optical fiber in a prescribed mode, or others

In this way Zeno effect was first confirmed experimentally in the *cloud of Be⁺ ions* in a Penning trap, driven by radiofrequency to an excited state (decay) and exposed to frequent UV pulses (measurement):

W. Itano, D. Heinzen, J. Bollinger, D. Wineland: Quantum Zeno effect, Phys. Rev. A41 (1990), 2295-2300.

D. Leibfried, R. Blatt, C. Monroe, D. Wineland: Quantum dynamics of single trapped ions, Rev. Mod. Phys. 75 (2003), 281-324.

More real life situations

Another experiment used *ultracold sodium atoms* trapped in an *optical lattice*. Their loss due to tunneling appeared to be either suppressed or enhanced by an *appropriate accelerations* of the lattice.

M. Fischer, B. Gutiérrez-Medina, M. Raizen: Observation of the quantum Zeno and anti-Zeno effects in an unstable system, *Phys. Rev. Lett.* **84** (2001), 140402.

Still another experiment employed the light used to image single atoms to modulate tunneling in an *ultracold lattice gas*.

Y.S. Patil, S. Chakram, M. Vengalattore: Measurement-induced localization of an ultracold lattice gas, *Phys. Rev. Lett.* **115** (2015), 140402.

Furthermore, quantum Zeno effect is used nowadays in *commercial atomic magnetometers*, and there is even an evidence that *birds* use it to prevent the influence of perturbations to their sensing of the Earth magnetic field.

A.T. Dellis, I.K. Kominis: The quantum Zeno effect immunizes the avian compass against the deleterious effects of exchange and dipolar interactions, *Biophysics* **107** (2012), 153–157.

Finally, a version of QZE in the framework of *open systems*, where the evolution is considered in the *Banach space* of density matrices, has been proposed as an *error correction tool* in dealing with *quantum information*.

The anti-Zeno situation

Before passing to our main goal, let us ask under which circumstances could the anti-Zeno situation occur.

To answer this question, we need to estimate the quantity 1 - P(t), in other words $(\psi, P\psi) - (\psi, e^{iHt}Pe^{-iHt}\psi)$. We rewrite it as

$$1 - P(t) = 2 \operatorname{Re}(\psi, P(I - e^{-iHt})\psi) - \|P(I - e^{-iHt})\psi\|^2;$$

in terms of the spectral measure E_H of H the right-hand side equals

$$4\int_{-\infty}^{\infty}\sin^2\frac{\lambda t}{2}\,\mathrm{d}\|E_{\lambda}^{H}\psi\|^2 - 4\left\|\int_{-\infty}^{\infty}\mathrm{e}^{-i\lambda t/2}\,\sin\frac{\lambda t}{2}\,\mathrm{d}PE_{\lambda}^{H}\psi\right\|^2$$

This expression is non-negative by Schwarz inequality; our aim is to find tighter upper and lower bounds to it.

Consider first the case dim P = 1. Denoting $d\omega(\lambda) := d(\psi, E_{\lambda}^{H}\psi)$ for the sake of brevity, one can then write the expression as

$$4\int_{-\infty}^{\infty}\sin^2\frac{\lambda t}{2}\,\mathrm{d}\omega(\lambda)-4\left|\int_{-\infty}^{\infty}\mathrm{e}^{-i\lambda t/2}\,\sin\frac{\lambda t}{2}\,\mathrm{d}\omega(\lambda)\right|^2$$

The anti-Zeno situation, dim P = 1

By spectral-measure normalization, $\int_{-\infty}^{\infty} d\omega(\lambda) = 1$, this simplifies to

$$2\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\left(\sin^{2}\frac{\lambda t}{2}+\sin^{2}\frac{\mu t}{2}\right)\mathrm{d}\omega(\lambda)\mathrm{d}\omega(\mu)-4\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\cos\frac{(\lambda-\mu)t}{2}\sin\frac{\lambda t}{2}\sin\frac{\mu t}{2}\mathrm{d}\omega(\lambda)\mathrm{d}\omega(\mu),$$

or equivalently

$$1-P(t)=2\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\sin^2rac{(\lambda-\mu)t}{2}\,\mathrm{d}\omega(\lambda)\mathrm{d}\omega(\mu).$$

Thus we have to estimate the integrated function. Let us fix $\alpha \in (0, 2]$. Using $|x|^{\alpha} \ge |\sin x|^{\alpha} \ge \sin^2 x$ together with $|\lambda - \mu|^{\alpha} \le 2^{\alpha}(|\lambda|^{\alpha} + |\mu|^{\alpha})$ we infer from the above formula

$$\begin{split} \frac{1-P(t)}{t^{\alpha}} &\leq 2^{1-\alpha} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |\lambda-\mu|^{\alpha} \mathrm{d}\omega(\lambda) \mathrm{d}\omega(\mu) \\ &\leq 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (|\lambda|^{\alpha}+|\mu|^{\alpha}) \mathrm{d}\omega(\lambda) \mathrm{d}\omega(\mu) \leq 4 \langle |H|^{\alpha} \rangle_{\psi} \end{split}$$

Hence $1 - P(t) = O(t^{\alpha})$ if $\psi \in D(|H|^{\alpha/2})$. If this is true for some $\alpha > 1$ we have Zeno effect – which is a slightly weaker sufficient condition than the above mentioned one.

Pavel Exner: Product formulæ and Zeno

The anti-Zeno situation, dim P = 1

By negation, $\psi \notin D(|H|^{1/2})$ is a *necessary condition* for the anti-Zeno effect. Notice that in the particular case $\psi \in \mathcal{H}_{ac}(H)$ the same follows from *Lipschitz regularity*, since $P(t) = |\hat{\omega}(t)|^2$ and $\hat{\omega}$ is bounded and uniformly α -Lipschitz if and only if $\int_{\mathbb{R}} \omega(\lambda)(1 + |\lambda|^{\alpha}) d\lambda < \infty$.

To find a sufficient condition we note that for $\lambda, \mu \in [-1/t, 1/t]$ there is a positive C independent of t such that

$$\left|\sinrac{(\lambda-\mu)t}{2}
ight|\geq C|\lambda-\mu|t$$
 ;

one can make the constant explicit but it is not necessary. Consequently, we have the estimate

$$1 - P(t) \ge 2C^2 t^2 \int_{-1/t}^{1/t} \mathrm{d}\omega(\lambda) \int_{-1/t}^{1/t} \mathrm{d}\omega(\mu) (\lambda - \mu)^2$$
 which in turn implies

 $\frac{1-P(t)}{t} \ge 4C^2 t \left\{ \int_{-1/t}^{1/t} \lambda^2 \,\mathrm{d}\omega(\lambda) \int_{-1/t}^{1/t} \mathrm{d}\omega(\lambda) - \left(\int_{-1/t}^{1/t} \lambda \,\mathrm{d}\omega(\lambda) \right)^2 \right\}$

The anti-Zeno situation, dim P = 1

It implies that anti-Zeno effect occurs if the right-hand side diverges as $t \rightarrow 0$, in other words, if the inequality

$$\int_{-N}^{N} \lambda^2 \,\mathrm{d}\omega(\lambda) \int_{-N}^{N} \mathrm{d}\omega(\lambda) - \left(\int_{-N}^{N} \lambda \,\mathrm{d}\omega(\lambda)\right)^2 \ge c N^{\alpha}$$

holds for any N and some c > 0, $\alpha > 1$.

To see what it means, consider the following *example*: let H be bounded from below and $\psi \in \mathcal{H}_{ac}(H)$ s.t. $\omega(\lambda) \approx c\lambda^{-\beta}$ as $\lambda \to +\infty$ for some c > 0 and $\beta \in (1,2)$. While $\int_{-N}^{N} \omega(\lambda) d\lambda \to 1$, the other two integrals diverge giving

$$\frac{c}{3-\beta} N^{3-\beta} - \left(\frac{c}{2-\beta}\right)^2 N^{4-2\beta}$$

as the asymptotic behavior of the left-hand side, where the first term is dominating; this gives $\dot{P}(0+) = -\infty$ so AZ effect occurs.

Note also that for $\beta > 2$ we have Zeno effect, so that the gap between the Zeno and anti-Zeno extremes is rather narrow!

Quantum Circle

Anti-Zeno effect: a sufficient condition

Moreover, even for $\beta = 2$ the appropriate limit *need not exist*: for instance, choosing $d\omega(\lambda) = \frac{2}{\pi}(1+\lambda^2)^{-1}\Theta(\lambda)d\lambda$ we can compute explicitly

$$\mathbf{v}(t) = \mathrm{e}^{-t} - \frac{i}{\pi} \big(\mathrm{e}^{-t} \mathrm{Ei}(t) - \mathrm{e}^{t} \mathrm{Ei}(-t) \big) = \mathrm{e}^{-t} \Big[1 - \frac{2i}{\pi} \big(t \ln t + \mathcal{O}(t) \big) \Big].$$

This means, in particular, that $\arg v(\frac{t}{n})^n$ is for $n \to \infty$ dominated by the fast oscillating term $\frac{2t}{\pi} \ln \frac{n}{t}$ and the limit does not exist.

It is not difficult to extend the argument to the case dim P > 1 using an orthonormal basis in $P\mathcal{H}$. To write the result concisely, we denote $I_N := E_H(\Delta_N)$ with $\Delta_N := (-N, N)$ and $H_N^\beta := H^\beta I_N$.

Theorem

In the above notation, suppose that

 $(\langle H_{N}^{2}PI_{N}\rangle_{\psi} - \|PH_{N}\psi\|^{2})^{-1} = o(N^{-1})$

holds as $N \to \infty$, uniformly with respect to $\psi \in P\mathcal{H}$, then the permanent observation causes the anti-Zeno effect.

P.E.: Sufficient conditions for the anti-Zeno effect, J. Phys. A: Math. Gen. 38 (2005), L449-L454.

Zeno dynamics

Let us return to the Zeno effect in a system the Hamiltonian of which is *bounded from below*. In the non-trivial situation, dim $\mathcal{H} > 1$, there is an important question that remains open: does the limit

 $(Pe^{-iHt/n}P)^n \longrightarrow e^{-iH_Pt}$

hold as $n \to \infty$, *in which sense*, and what is then the Zeno dynamics generator, that is, the operator H_P ?

Consider the quadratic form $u \mapsto ||H^{1/2}Pu||^2$ with the form domain $D(H^{1/2}P)$ which is closed. By [Chernoff'74, loc.cit.] the associated self-adjoint operator, $(H^{1/2}P)^*(H^{1/2}P)$, is a natural candidate for the role of H_P (while, in general, PHP is not!)

Without loss of generality, we may suppose that H is *positive*. In addition to the semiboundedness, we have to assume that H is *densely defined*. We have encountered counterexamples illustrating this claim, for others see

M. Matolcsi, R. Shvidkoy: Trotter's product formula for projections, Arch. der Math. 81 (2003), 309-317.

Zeno dynamics, dim $P < \infty$

The simplest situation occurs when the subspace to which permanent measurement localizes the state is *finite-dimensional*:

Proposition

Let H be a self-adjoint operator in a Hilbert space \mathcal{H} , bounded from below, and assume that P is a finite-dimensional orthogonal projection on \mathcal{H} . If $\mathcal{PH} \subset \mathcal{Q}(\mathcal{H})$, then for any $\psi \in \mathcal{H}$ and $t \geq 0$ we have

$$\lim_{n\to\infty} (P \mathrm{e}^{-iHt/n} P)^n \psi = \mathrm{e}^{-iH_P t} \psi,$$

uniformly on any compact interval of the variable t.

Proof (following unpublished notes of G.-M. Graf and his student A. Guekos): first we have to check that

$$\lim_{t\to 0} t^{-1} \left\| P \mathrm{e}^{-itH} P - P \mathrm{e}^{-itH_P} P \right\| = 0,$$

because it implies $\|(Pe^{-itH/n}P)^n - e^{-itH_P}\| = n o(t/n)$ as $n \to \infty$ by means of a natural telescopic estimate.

Zeno dynamics, dim $P < \infty$

Without loss of generality one may assume $H \ge cI$ for some c > 0. To begin with, we check that

$$t^{-1}\left[(f, Pe^{-itH}Pg) - (f, g) - it(\sqrt{H}Pf, \sqrt{H}Pg)\right] \longrightarrow 0$$

holds as $t \to 0$ for all f, g from $D(\sqrt{HP}) = P\mathcal{H}$. Indeed, this expression equals $\left(\sqrt{HPf}, \left[\frac{e^{-itH}-I}{tH} - i\right]\sqrt{HPg}\right)$ and by functional calculus, the square bracket tends to zero strongly. In the same way we find that

$$t^{-1}\left[(f, Pe^{-itH_P}Pg) - (f, g) - it(\sqrt{H_P}f, \sqrt{H_P}g)\right] \longrightarrow 0$$

holds as $t \to 0$ for any $f, g \in P\mathcal{H}$.

Next we note that $(\sqrt{H_P}f, \sqrt{H_P}g) = (\sqrt{H}Pf, \sqrt{H}Pg)$ holds by definition, which means that $t^{-1}(Pe^{-itH}P - Pe^{-itH_P}P) \rightarrow 0$ weakly as $t \rightarrow 0$, however, the weak and strong topologies are equivalent if dim $P < \infty$.

Zeno dynamics, general case

Without the dimensional restriction, the situation becomes much more complicated. For instance, one can prove the product formula, but with an additional restriction and the convergence *in a weaker topology*:

Theorem

Let \mathcal{H} be separable, then we have for any $\psi \in \mathcal{H}$ and any T > 0 the relation $\lim_{n \to \infty} \int_0^T \|(P e^{-iHt/n}P)^n \psi - e^{-iH_P t}\psi\|^2 dt = 0,$

and the same with (0, T) replaced by an arbitrary open interval.

P.E., T. Ichinose: A product formula related to quantum Zeno dynamics, Ann. Henri Poincaré 6(2) (2005), 195–215.

One might argue that such a result can be regarded as *sufficient from the viewpoint of physics* due to the fact that every measurement, in particular, that of time is burdened with errors, and any actual experiment typically involves averaging over a large number of system copies.

It is desirable, though, to answer the question *without such a underpinning* by demonstrating the convergence in the strong operator topology.

Zeno dynamics, general case

This proved to be a challenge. One can derive a modified formula:

Theorem

Under same assumptions, except that \mathcal{H} need not be separable,

$$\lim_{h\to\infty} (PE_H([0,\pi n/t)) e^{-iHt/n} P)^n \psi = e^{-iH_P t} \psi,$$

uniformly on any compact interval of the variable t.

P.E., T. Ichinose, H. Neidhardt, and V.A. Zagrebnov: Zeno product formula revisited, Integral Eq. Oper. Theory 57(1) (2007), 67–81.

Corollary

Strong convergence holds if H is bounded.

Moreover, the analogous result holds for $(P\phi(tH/n)P)^n$ with a function satisfying $|\phi(x)| \le 1$ and $\phi(0) = i\phi'(0) = 1$ provided $\operatorname{Im} \phi(x) \le 0$.

An example of such a function is $(1 + ix)^{-1}$, but unfortunately *this class fails to include* e^{-ix} corresponding to our unitary group e^{-itH} .

A new result

Theorem

Let H be a nonnegative self-adjoint operator on a separable Hilbert space \mathcal{H} , and P an orthogonal projection onto a closed subspace of \mathcal{H} . Suppose that $H^{1/2}P$ is densely defined, so that $H_P := (H^{1/2}P)^*(H^{1/2}P)$ is a self-adjoint operator. Let $P(\cdot)$ be a strongly continuous projection-valued function satisfying P(0) = P and

$$\lim_{\tau \to 0+} [\tau^{-1}(I - e^{-it\tau H})]^{1/2} P(\tau) v = e^{\pi i/4} (tH)^{1/2} P v,$$

for every $v \in D[H^{1/2}P]$. Then for any $f \in \mathcal{H}$ and $\varepsilon = \pm 1$ we have

$$\lim_{n \to \infty} (P(1/n) e^{-\varepsilon i t H/n} P(1/n))^n f = e^{-\varepsilon i t H_P} Pf$$
$$\lim_{n \to \infty} (e^{-\varepsilon i t H/n} P(1/n))^n f = e^{-\varepsilon i t H_P} Pf,$$
$$\lim_{n \to \infty} (P(1/n) e^{-\varepsilon i t H/n})^n f = e^{-\varepsilon i t H_P} Pf,$$

in the norm of \mathcal{H} , uniformly on every bounded t-interval in \mathbb{R} .

P. Exner, T. Ichinose: Note on a product formula related to quantum Zeno dynamics, Ann. H. Poincaré 22 (2021), to appear; arXiv:2012.15061

The idea is to use Chernoff's theorem as Kato did proving a modified Trotter formula. This would work, were the exponentials *real*. For complex ones, however, we get in this way an oscillatory term - recall the condition $\operatorname{Im} \phi(x) \leq 0$ in [EINZ'07] mentioned above – which requires additional, and rather involved considerations.

Given $H \ge 0$ with the spectral representation $H = \int_0^\infty \lambda E(d\lambda)$ we put

$$K(\kappa) := \frac{1}{\kappa} [I - e^{-i\kappa H}] = G(\kappa) + iH(\kappa)$$

for $\kappa > 0$, where $G(\kappa) := \frac{I - \cos \kappa H}{\kappa} \ge 0$ and $H(\kappa) := \frac{\sin \kappa H}{\kappa}$ are bounded self-adjoint operators, and furthermore

 $F(\zeta;\tau) := P(\tau) e^{-\zeta \tau H} P(\tau), \quad S(\zeta;\tau) := \tau^{-1} [I - F(\zeta;\tau)]$

for $\zeta = it$. The former is obviously a contraction and we have

 $\operatorname{Re}(f, S(it; \tau)f) > 0$

for all $f \in \mathcal{H}$, so that $S(it; \tau)$ is an *m*-accretive operator. Then $I + S(it; \tau)$ has a bounded inverse and $(I + S(it; \tau))^{-1}$ is also a *contraction*.

Pavel Exner: Product formulæ and Zeno

To prove the result are going to use Chernoff's result and verify that

 $(I + S(it; \tau))^{-1} \stackrel{s}{\longrightarrow} (I + itH_P)^{-1}P$ as $\tau \to 0+$

holds pointwise for any fixed $t \in \mathbb{R}$. To be precise, function $F(it; \tau)$ differs slightly from F(t) appearing in condition (a) of Chernoff's theorem, but one can adapt his proof of the implication (a) \Rightarrow (b) to our situation.

The expression the convergence of which we study can be rewritten as

$$(I + S(it; \tau))^{-1} = (1 + \tau^{-1})^{-1}(I - P(\tau)) \oplus [P(\tau)(I + tG(t\tau) + itH(t\tau))P(\tau)]^{-1}$$

and by spectral theorem we have $G(\kappa)^{1/2}u \longrightarrow 0$, $H^+(\kappa)^{1/2}u \longrightarrow H^{1/2}u$, and $H^-(\kappa)^{1/2}u \longrightarrow 0$ for any $u \in D[H^{1/2}]$, where $H^{\pm}(\kappa)$ is the positive and negative part of $H(\kappa)$, respectively.

For an arbitrary but fixed $f \in \mathcal{H}$, $\tau > 0$, and $t \in \mathbb{R}$ we put

 $u_{\tau}(t) := (I + S(it; \tau))^{-1}f.$

Obviously, $u_{\tau}(\cdot)$ is uniformly bounded and strongly continuous; our aim is to show that for each fixed $t \in \mathbb{R}$, the family $\{u_{\tau}(t)\}$ converges strongly to some $u(t) \in \mathcal{H}$ as $\tau \to 0+$ and that $u(t) = (I + itH_P)^{-1}Pf$.

For any $\tau > 0$ we have the identities

$$\begin{split} \langle (I - P(\tau)) u_{\tau}(t), f \rangle &= (1 + \tau^{-1}) \| (I - P(\tau)) u_{\tau}(t) \|^2 \\ \operatorname{Re} \langle P(\tau) u_{\tau}(t), f \rangle &= \| P(\tau) u_{\tau}(t) \|^2 + \| (|t| G(t\tau))^{1/2} P(\tau) u_{\tau}(t) \|^2 \end{split}$$

which implies that the families $\{P(\tau)u_{\tau}(t)\}$ and $\{(I - P(\tau))u_{\tau}(t)\}$, as well as $\{\tau^{-1}(I - P(\tau))u_{\tau}(t)\}$, are uniformly bounded by ||f||, and the same is true for $\{(|t|G(\tau))^{1/2}P(\tau)u_{\tau}(t)\}$.

It follows that for each $t \in \mathbb{R}$, there is a (sub)sequence $\{\tau'\}_{0 < \tau' \leq 1}$ along which the sequences $\{u_{\tau'}(t)\}$, $\{(\tau')^{-1/2}(I - P(\tau'))u_{\tau'}(t)\}$ and $\{t^{1/2}G(|t|\tau')^{1/2}u_{\tau'}(t)\}$ converge *weakly* to vectors u(t), $u_0(t)$ and g(t), respectively. This also means that $\{P(\tau')u_{\tau'}(t)\}$ converges weakly to Pu(t) where, in general, the limit may depend on the chosen subsequence. Note in passing that, unfortunately, we cannot use the same argument for $\operatorname{Im} \langle P(\tau)u_{\tau}(t), f \rangle = \|(|t|H^+(t\tau))^{1/2}P(\tau)u_{\tau}(t)\|^2 - \|(|t|H^-(t\tau))^{1/2}P(\tau)u_{\tau}(t)\|^2$; the trouble is that we do know whether each of the two terms on the right-hand side is *separately* uniformly bounded.

The limiting vectors can be specified, so we have, as $\tau' \to 0+$

 $u_{\tau'}(t) \xrightarrow{w} u(t) = Pu(t), \quad (\tau')^{-1/2}(I - P(\tau'))u_{\tau'}(t) \xrightarrow{w} 0,$ $P(\tau')u_{\tau'}(t) \xrightarrow{w} Pu(t), \quad (|t|G(t\tau'))^{1/2}P(\tau')u_{\tau'}(t) \xrightarrow{w} 0.$

On the other hand, given $\{u_{\tau'}(t)\}$, the most we have been able to prove about the families $\{(|t|H^{\pm}(t\tau'))^{1/2}P(\tau')u_{\tau'}(t)\}$ is that they are Cauchy sequences, and as such they are weakly bounded, only in terms of the $\sigma(\mathcal{H}, D[H^{1/2}])$ -weak topology, and the 'negative' one converges to zero in it. This does not allow us to conclude that Pu(t) belongs to $D[H^{1/2}]$ and forces us to use a different strategy.

We have encountered this problem already in [El'05]. There we did not restrict ζ to the purely imaginary values $\zeta = it$ and using *analyticity properties* of $S(\zeta)$ in combination with *Vitali theorem*, we established the above mentioned convergence in the topology of the Fréchet space $L^2_{\text{loc}}(\mathbb{R}; \mathcal{H}) = L^2_{\text{loc}}(\mathbb{R}) \otimes \mathcal{H}$ with the topology induced by the family of semi-norms $v \mapsto (\int_a^b \|v(t)\|^2 dt)^{1/2}$ for any bounded interval (a, b).

L.

Repeated once more, the result of [EI'05] says that

$$\int_a^b \|u_\tau(t) - (I + itH_P)^{-1}Pf\|^2 \,\mathrm{d}t \longrightarrow 0 \quad \text{as } \tau \to 0 +$$

and our intention is to use this claim as a departing point here.

The above relation implies that for every $f \in \mathcal{H}$, there is a set $M_f \subset \mathbb{R}$ of *Lebesgue measure zero*, possibly dependent on f, and a (sub)sequence $\{\tau'\}_{0 < \tau' \leq 1}$ of $\{\tau\}_{0 < \tau \leq 1}$ such that for all $s \in \mathbb{R} \setminus M_f$ we have

 $u_{\tau}(s) \longrightarrow (I + isH_P)^{-1}Pf$ in the norm of \mathcal{H} .

Naturally, the set $\mathbb{R} \setminus M_f$ at which the convergence takes place is *dense* in \mathbb{R} . Furthermore, since \mathcal{H} is *separable* by assumption, we can choose a countable dense subset $\mathcal{D} := \{f_l\}_{l=1}^{\infty}$ in \mathcal{H} . Putting $M = M_{\mathcal{D}} := \bigcup_{l=1}^{\infty} M_{f_l}$, which is also a set of Lebesgue measure zero, we get the validity of the above convergence for all $s \in \mathbb{R} \setminus M$ and for every $f \in \mathcal{D}$, and hence, in view of the density, also for every $f \in \mathcal{H}$.

To pass from the 'almost all t' to the 'all t' stage, one has to check that the exceptional set M is in fact *empty*. This task may seem a small step, but in reality it proved to be a deep and highly nontrivial question.

We will do that in *four steps* starting from the following crucial claim:

Lemma

Let $f \in \mathcal{H}$. Then the family $\{u_{\tau}(t)\}_{0 < \tau \leq 1}$ is equicontinuous locally in t with respect to the strong topology on \mathcal{H} . More explicitly, for every $\varepsilon > 0$ and for every $s \in \mathbb{R} \setminus \{0\}$ there exists an s-dependent constant $\delta = \delta(f; \varepsilon; s) > 0$ such that if t, s > 0 or t, s < 0 with $|t - s| < \delta$, then $||u_{\tau}(t) - u_{\tau}(s)|| < \varepsilon$ holds for all $0 < \tau \leq 1$.

The proof of this lemma is the toughest part of the task. It is based on the following factorization of the expression in question,

$$u_{\tau}(t) - u_{\tau}(s) = T_1(t;\tau) T_2(t,s;\tau) T_3(s;\tau)$$

with the help of $K(\kappa) = G(\kappa) + iH(\kappa)$ and $H_{\tau} := H(I + \tau H)^{-1}$, where

 $T_{1}(t;\tau) = T^{P}(t;\tau) = [P(\tau)(I + tK(t\tau))P(\tau)]^{-1}$ $T_{2}(t,s;\tau) = (sK(s\tau) - tK(t\tau))(I + |s|H_{\tau})^{-1},$ $T_{3}(s;\tau) = (I + |s|H_{\tau})P(\tau)[P(\tau)(I + sK(s,\tau))P(\tau)]^{-1}.$

together with properties of operators which may be thought of as the $\tau\text{-limits}$ of the first and last of the above families,

 $T_1(t) := (I + itH_P)^{-1}P, \quad T_3(s) := (I + |s|H)[(I + isH_P)^{-1}P],$

of which the first is a contraction and the second can be extend to a bounded operator with $||T_3(s)|| \le \sqrt{2}$.

In view of the *density of M* it is sufficient to establish the claim for $s \in \mathbb{R} \setminus M$. For those s we use the equivalence the strong resolvent and strong graph limits to show that the family $\{T_3(s; \tau)\}_{0 < \tau \leq 1}$ converges strongly to $T_3(s)$ as $\tau \to 0+$, next we use the uniform boundedness principle to establish the existence of a $C_{T_3}(s) \geq \sqrt{2}$ such that

 $\|T_3(s; au)\| \leq C_{T_3}(s)$ for all $au \in (0, 1]$.

Since we have clearly $||T_1(t; \tau)|| \le 1$, the claim of the lemma depends on the properties of the middle factor $T_2(t, s; \tau)$.

Using spectral theorem, we rewrite its norm as

$$\|T_2(t,s;\tau)g\|^2 = \int_{0-}^{\infty} \Big|\frac{\frac{2}{\tau}\sin(\frac{t-s}{2}\tau\lambda)}{I+|s|\lambda(I+\tau\lambda)^{-1}}\Big|^2 \|E(\mathrm{d}\lambda)g\|^2;$$

this allows us to check that the family is uniformly bounded, locally uniformly for $t, s \in \mathbb{R} \setminus \{0\}$, and moreover, that for all $f \in \mathcal{H}$ and $\varepsilon > 0$, there is an s-dependent number $\delta = \delta(f; \varepsilon; s) > 0$ such that

 $t \in \mathbb{R} \setminus \{0\}$ with $|t - s| < \delta \implies ||T_2(t,s;\tau)f|| < \varepsilon$,

uniformly with respect to $au \in (0,1]$.

This is the core of the argument; together with the appropriate dose of 'abstract nonsense', this proves the lemma.

Concluding the proof

The second step is to show that the family $\{u_{\tau}(t)\}_{0 < \tau \leq 1}$ converges as $\tau \to 0+$ for each fixed $t \in \mathbb{R}$ to some $u(t) \in \mathcal{H}$ in the weak topology of \mathcal{H} , and that the convergence is even locally uniform with respect to $t \in \mathbb{R} \setminus \{0\}$; the limit function u(t) turns out to be continuous in $t \in \mathbb{R}$, again in the weak topology of \mathcal{H} .

Since \mathcal{H} is separable by assumption, the ball $B_{\|f\|}(0)$ is metrizable in the weak topology and the claim follows from the *Ascoli–Arzelà theorem*.

Step III: We have established convergence of the family $\{u_{\tau}(t)\}_{0<\tau\leq 1}$ in two different topologies, the *weak topology* of \mathcal{H} , (locally) uniformly for $t \in \mathbb{R} \setminus \{0\}$, and the the convergence to $(I + itH_P)^{-1}Pf$ in $L^2_{loc}(\mathbb{R}; \mathcal{H})$ in the strong, and therefore also weak sense. This allows us to conclude that the two limit coincide,

$$u(t) = (I + itH_P)^{-1}Pf$$
 for all t.

Concluding the proof

Step IV: The rest is easy, to check that the family $\{u_{\tau}(t)\}_{0 < \tau \leq 1}$ converges as $\tau \to 0+$ for any fixed $t \in \mathbb{R}$ to $u(t) \equiv (I + itH_P)^{-1}Pf$ also in the strong topology of \mathcal{H} , and furthermore, that the convergence is even locally uniform with respect to $t \in \mathbb{R} \setminus \{0\}$.

Since we have already established the *weak* convergence, we need only to show that the τ -families of the *norms* of these vectors converge.

In analogy with an earlier argument, we observe how $\operatorname{Re} \langle u_{\tau}(t), P(\tau)f \rangle$ behaves as $\tau \to 0+$, to conclude that $P(\tau)u_{\tau}(t) \longrightarrow Pu(t)$. As the part of $u_{\tau}(t)$ on the orthogonal complement to $P(\tau)\mathcal{H}$ is trivial, we arrive finally at the result we seek.

Remark: We also get $(|t|G(t\tau))^{1/2}P(\tau)u_{\tau}(t) \rightarrow 0$, but predictably no result for H^{\pm} associated with the imaginary part.

Corollary

For a constant projection-valued function, $P(\tau) = P$ we get the validity of the Zeno product formula in the strong operator topology.

Example: position measurement

Consider a *perpetual position ascertaining* to an open domain $\Omega \subset \mathbb{R}^d$ with a smooth boundary, thought of as the *detector volume*, and associate with it the orthogonal projection P acting as multiplication operator by the indicator function χ_{Ω} .

Suppose that, apart from the measurement, the particle is *free*, that is, its dynamics is described by the Hamiltonian $H = -\Delta$, obviously positive.

The domain density assumption of $H^{1/2}P = (-\Delta)^{1/2}\chi_{\Omega}$ is satisfied, since it contains $C_0^{\infty}(\Omega) \cup C_0^{\infty}(\mathbb{R}^d \setminus \overline{\Omega})$, where $\overline{\Omega}$ is the closure of Ω .

Consider further the *Dirichlet Laplacian* $-\Delta_{\Omega}$ in $L^{2}(\Omega)$ defined as the *Friedrichs extension* of the appropriate quadratic form. It is not difficult to check that

$$(-\Delta)_P := ((-\Delta)^{1/2}P)^* (-\Delta)^{1/2}P$$

is densely defined and its restriction to $L^2(\Omega)$ is nothing but $-\Delta_{\Omega}$ with the domain $D[-\Delta_{\Omega}] = W_0^1(\Omega) \cap W^2(\Omega)$.

Example: position measurement

In this situation, our main result says that

$$\operatorname{s-lim}_{n\to\infty} (P \operatorname{e}^{-it(-\Delta/n)} P)^n = \operatorname{e}^{-it(-\Delta_{\Omega})} P$$

holds in the strong operator topology of $\mathcal{B}(L^2(\mathbb{R}^d))$, the Banach space of bounded linear operators on $L^2(\mathbb{R}^d)$.

In other words, the perpetual reduction of the wave function forces the particle to move within the region Ω as if its boundary was Dirichlet, i.e. *hard wall*. This is, of course, the expected conclusion; on the formal level the limit was calculated using the stationary phase method in

P. Facchi, S. Pascazio, A. Scardicchio, and L.S. Schulman: Zeno dynamics yields ordinary constraints, *Phys. Rev.* A65 (2001), 012108.

Only the present result, however, justifies this claim rigorously.

Where to go further

- The argument we presented is not exactly simple, and it would be good to have an *alternative proof*. It seems useful to think of methods *not* based on Chernoff's theorem.
- Various open problems of Zeno type can be found in the open system setting where one studies convergence of the expressions $(Me^{t\mathcal{L}/n})^n$, where \mathcal{L} is the generator of a dynamical semigroup on the space $\mathcal{T}(\mathcal{H})$ of trace-class operators, and $M = \{M_j\}$ is a quantum operation, which means a completely positive, trace non-increasing map on $\mathcal{T}(\mathcal{H})$. For some recent results see
 - S. Becker, N. Datta, R. Salzmann: Quantum Zeno effect for open quantum systems, arXiv:2010.04121

It remains to say

Thank you for your attention!